
(12) United States Patent
Davison

USOO8578266B2

(10) Patent No.: US 8,578.266 B2
(45) Date of Patent: Nov. 5, 2013

(54) METHOD AND SYSTEM FOR PROVIDINGA
FRAMEWORK FOR PROCESSING MARKUP
LANGUAGE DOCUMENTS

(75) Inventor: Jeff Davison, Rockledge, FL (US)

(73) Assignee: Vertical Computer Systems, Inc.,
Richardson, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1026 days.

(21)

(22)

Appl. No.: 09/888,329

Filed: Jun. 22, 2001

(65) Prior Publication Data

US 2003/OO37O69 A1 Feb. 20, 2003

Related U.S. Application Data
(63) Continuation-in-part of application No. 09/882.494,

filed on Jun. 15, 2001, now Pat. No. 7,076,521.

(60) Provisional application No. 60/214,067, filed on Jun.
26, 2000, provisional application No. 60/235,458,
filed on Sep. 26, 2000.

Int. C.
G06F I7/00
U.S. C.
USPC ... 715/239; 715/234
Field of Classification Search
USPC 71.5/513,501.1, 713,854, 234, 236,

715/239, 249; 705/1709/203; 707/102,
707/104.1, 3, 100, 101

See application file for complete search history.

(51)
(2006.01)

(52)

(58)

DATA

ENABLER
AGENT

DATA

| O2

RESULT

SERVER
DATABASE

if 2

RESULTS

(56) References Cited

U.S. PATENT DOCUMENTS

5,574,898 A * 1 1/1996 Leblang et al. 707/1
5,701,137 A * 12/1997 Kiernan et al. ... T15,853
5,890,171 A * 3/1999 Blumer et al. T15,501.1
5,935,210 A * 8/1999 Stark TO9,224
5,963,208 A * 10/1999 Dolan et al. ... 715,760
5,974,418 A * 10/1999 Blinn et al. ... TO7/100
5,983,268 A * 1 1/1999 Freivald et al. ... TO9.218
6,009.436 A * 12/1999 Motoyama et al. TO7,102
6,230,173 B1* 5/2001 Ferrel et al. 715,205
6,510,461 B1* 1/2003 Nielsen TO9,224
6,538,673 B1* 3/2003 Maslov T15,853
6,549,952 B1 * 4/2003 Plassmann et al. T19,311
6,578,078 B1* 6/2003 Smith et al. TO9,224
6,629,135 B1* 9/2003 Ross et al. ... TO9.218
6,665,658 B1* 12/2003 DaCosta et al. 1.1
6,763,496 B1* 7/2004 Hennings et al. .. 715,205
6,779,151 B2 * 8/2004 Cahill et al. 715,503

(Continued)
OTHER PUBLICATIONS

Microsoft FrontPage 2000, Screen Shots, Dec. 31, 1999, pp. 1-20.*

(Continued)
Primary Examiner — Adam M. Queler
(74) Attorney, Agent, or Firm — Jack D. Stone, Jr.; Scheef &
Stone, L.L.P.
(57) ABSTRACT
The present invention is directed to a system and method for
processing a markup language file having one or more por
tions. Specifically, the system downloads a first markup lan
guage file using the hyper text transfer protocol and refer
ences the first markup language file by its uniform resource
location or by a name of a local file on a system on which a
user is operating. The first markup language is parsed for one
or more portions of the first markup language file. Each
portion of the first markup language file is stored into a
directory structure containing folders, subfolders, and files
complying with the structure of the first markup language file.

40 Claims, 16 Drawing Sheets

DATA
COLLECTOR

f(4
UPDATE
QUERY

: CLENT

DAABASE

RESULT

DATABASE
TOOS

RESTS
OUSERS

US 8,578.266 B2
Page 2

(56)

6,785,673
6,826,553
6,901403
6,925,470
6,941,521
7,266,512

2002fOO65814
2005/0235197

References Cited

U.S. PATENT DOCUMENTS

B1 8, 2004 Fernandez et al.

OTHER PUBLICATIONS

Microsoft, “Understanding Absolute and Relatvive URL Address
ing.” 2004, pp. 1-2, http://msdn.microsoft.com/library/default.

. 707/3 asp?url=/library/en-us/off2000/html/fphowURLs.asp.*

B1 * 1 1/2004 DaCosta et al. 1f1 Goldfarb, “The XML Handbook The XML Authority Schema Edi
B1 5, 2005 Bata et al. 707/101 tor Free Trial”. Second Edition, 2000, Prentice Hall PTR, Upper
B1* 8/2005 Sangudi et al. 707/102 Saddle River, NJ,US.
B2 9/2005 Lin et al. 715,762 Goldfarb, Preface to “The XML Handbook’, Second Edition, 2000,
B2 9, 2007 Cohn et al. TO5/26.44 , Prentice Hall PTR, Upper Saddle River, NJ,US.
Al 5/2002 Okamoto et al. 707/3
Al 10/2005 Betts et al. 71.5/5OO * cited by examiner

U.S. Patent Nov. 5, 2013 Sheet 1 of 16 US 8,578.266 B2

- - - - - - - - - - - -
DATA 120

1 1 O REQUEST -
N- ENABLER DATA

AGENT COLLECTOR

SERVER
DATABASE

RESULT

DATA
RESULTS 104

UPDATE
QUERY

CENT
DATABASE

RESULT

DATABASE
TOOLS

RESULTS
TOUSERS

150

FIG. 1

U.S. Patent Nov. 5, 2013 Sheet 2 of 16 US 8,578.266 B2

PRODUCTS products

2 12- TRCYCLE siso
3 T 16-Q UNCYCLE $209
4 18-F | TANDEM $579

212 214 216 218

210

211

222 224 226 228 229

U.S. Patent Nov. 5, 2013 Sheet 3 of 16 US 8,578.266 B2

305 REQUESTOR GENERATESURL

310 URL SENT TO SUPPLIER

315 SUPPLIERSHTTP SERVER SENDSURL TOENABLERAGENT

320 ENABLERAGENT PARSESURTOEXTRACT OUERY NAME

J25 ENABLERAGENT LOCATES QUERYUSING OUERY NAME

330 ENABLERAGENT OUERIESSERVERDATABASE

3.35 SERVER DATABASE GENERATES RESULTSET

340 RESULTSETSENT TOENABLERAGENT

ENABLERAGENT CONVERTS RESULT SETTOMARKUPLANGUAGE
345 FORMAT

550 ENABLERAGENT SENDS MARKUPLANGUAGE FORMAT
DOCUMENT TOHTTPSERVER

355 HTTPSERVERSENDSMARKUPLANGUAGE DOCUMENT TO
REQUESTOR

FIG. 3

U.S. Patent Nov. 5, 2013 Sheet 4 of 16 US 8,578.266 B2

605 USER COMPOSESQUERY

610 HTTP POST COMMAND ISSUED TO SUPPLIERS SERVER

SUPPLIERSHTTPSERVERSENDS QUERYTOENABLER
615 AGENT

62O ENABLERAGENT OUERIESSERVER DATABASE

625 SERVER DATABASE GENERATES RESULTSET

650 RESULTSETSENT TO ENABLERAGENT

635 ENABLERAGENT CONVERTS RESULTSETTOMARKUP
LANGUAGE FORMAT

64O ENABLERAGENT SENDSMARKUPLANGUAGEFORMAT
DOCUMENT TOHTTPSERVER

645 HTTP SERVER SENDSMARKUPLANGUAGE DOCUMENT TO
REQUESTOR

FIG. 4

U.S. Patent Nov. 5, 2013 Sheet 5 of 16 US 8,578.266 B2

BEGIN

ENABLERAGENT GENERATES QUERYDENTIFICATIONTAG 405

450 435
RECORDS REMAINING TO BE

PROCESSED

CREATE END OF
CONTAINERTAG

CREATE FINAL
DOCUMENTTAGS

CREATE RECORD CONTAINERTAG

FIELDS REMAINING TO BE
PROCESSED?

CREATEXML ENTRY FORFIELD

FIG. 5

Z ’91, H.

US 8,578.266 B2 Sheet 7 of 16 Nov. 5, 2013 U.S. Patent

US 8,578.266 B2 Sheet 8 of 16 Nov. 5, 2013 U.S. Patent

LICE [M]

00

US 8,578.266 B2 Sheet 9 of 16 Nov. 5, 2013 U.S. Patent

06

(EN) DIRENJITET|[OEINWO),

US 8,578.266 B2

0 I ’5).I.H.

U.S. Patent

I I ’5)I, H.

US 8,578.266 B2 U.S. Patent

U.S. Patent Nov. 5, 2013 Sheet 12 of 16 US 8,578.266 B2

OPENMARKUP
LANGUAGE

FILE
1210

ONEORMORE
SETUPDATECOMMANDS

RECEIVED
PARSE
MARKUP

LANGUAGEFILE

NO

STORE PARSED
PORTIONS IN OBJECTS
ACCORDING TO TAGS

UPDATESPECIFIED
OBJECTSACCORDING TO
OPERANDSRECEIVED

CATORDIR
COMMAND
RECEIVED

POSTISAVE
MARKUPFLECOMMAND

RECEIVED

1216
PRESENT OBJECTSAS

FOLDERS AND
SUB-FOLDERSON SCREEN

POSTSAVE
MARKUPFLE, STORING
OBJECTSINTORELATIVE
TAGGEDPORTIONS OF

MARKUPFILE

FIG. 12

U.S. Patent Nov. 5, 2013 Sheet 13 of 16 US 8,578.266 B2

1400

INVENTORY ORDERING

IFSLE
CARCO 17 | M-72 is WHEEL sizso
CARCO as 2 M282 it wHEEL sis50
TRuckco 4 is lors as Dual wheel seas
BKECO 2 is 16 BycyclewHEE spoo
Ruckco 2 is ENE as SPARETRE scos
CARCO 9 19F EV is so
1410 1420 1430 1440 f 450 1460

FIG. 13

1510 REQUESTOR GENERATESURL

REQUESTORSHTTPSERVERSENDS
1520 URL TO SUPPLIER

SUPPLIERRETURNS DATARESULTSETIN
1530 AMARKUPLANGUAGEFORMAT

DATA COLLECTOR CONVERTS RESULTS FROM
MARKUPLANGUAGE FORMAT TO
DATABASEANGUAGEFORMAT

1540

DATA COLLECTORUPDATESDATABASE
1550 WITH INFORMATION FROMRESULTSET

FIG. 14

US 8,578.266 B2 Sheet 14 of 16 Nov. 5, 2013 U.S. Patent

Ç I ’5).I.H.

U.S. Patent Nov. 5, 2013 Sheet 15 of 16 US 8,578.266 B2

1710 OPENURLTABLE

ROWS
REMAININGTOBE
PROCESSED

1790

YES

1720

1750 SENDURL TOSERVER

RECEIVERESPONSE

1750

NO SERVER ONLINE

HANDLERECORDERRORMESSAGE
YES

1770 INITIATEDATATRANSFER

1740

1760

1780 LOGPOLLING IME

FIG. 16

US 8,578.266 B2 Sheet 16 of 16 Nov. 5, 2013 U.S. Patent

ENTWA %), 10800380WH8

ON

978/

US 8,578.266 B2
1.

METHOD AND SYSTEM FOR PROVIDINGA
FRAMEWORK FOR PROCESSING MARKUP

LANGUAGE DOCUMENTS

RELATED APPLICATION INFORMATION

This application is a continuation-in-part of U.S. patent
application Ser. No. 09/882,494 filed Jun. 15, 2001, now U.S.
Pat. No. 7,076,521 entitled “Web-Based Collaborative Data
Collection System naming Jeff Davison as the sole inventor,
which claims priority from U.S. Provisional Patent Applica
tion No. 60/214,067 filed Jun. 26, 2000 entitled “XML
Enabler Agent” naming Jeff Davison as the sole inventor,
referred to herein as “the XML Agent provisional applica
tion.” and which further claims priority from U.S. Provisional
Patent Application No. 60/235,458 filed Sep. 26, 2000
entitled “Emily XML Portal' and naming Jeff Davison as the
sole inventor, referred to herein as “the XML Portal provi
sional application, all of which are incorporated herein by
reference, in their entirety.

BACKGROUND OF THE INVENTION

This invention relates to computer systems, and more par
ticularly to a system for gathering data from a server, and
storing and processing the data on the client.

With the rise of the Internet and the World-Wide-Web in
modern Society, many businesses are now taking their trans
actional business on-line. These businesses are engaging in
business to business (“B2B) on-line transactions with other
businesses. B2B refers to a wide variety of information
exchanges between different independent organizations. For
example, B2B can imply transfer of patient records from one
hospital to another, or transfer of pricing data to an indepen
dent distributor's point of sales system. B2B can also refer to
the transfer of sensitive information, Such as financial records
between different banks.

The term B2B is often used ambiguously. For example, it is
not appropriate to refer to B2B in the context of the internal
workings of a company. Although internal workflow within
an organization may be similar to a B2B system, transactions
within the same organizations are easy to direct, since a
governing authority can establish policies and protocols. In
contrast, B2B systems have no “boss' that can mandate how
transactions occur.

Also, B2B is distinctly different from Business to Con
Sumer (“B2C) exchanges. Although both B2B and B2C
share common aspects, B2B is motivated primarily by prof
itability and competitiveness, whereas B2C includes aspects
Such as glamour and mass appeal. B2B requires a high degree
of standardization, while B2C does not.
The problem associated with B2B is clearly illustrated by

electronic purchasing of products by companies. This
“e-commerce' model of B2B embodies many of the prob
lems and pitfalls associated with B2B in general. In an e-com
merce scenario, a business (the “buyer) purchases items
from another business (the “supplier). The information
interchange needed to accomplish an e-commerce transaction
includes exchange of electronic product catalogs, generation
of purchase orders, and confirmation of product delivery.

Consider an exemplary situation where a large organiza
tion wishes to make frequent periodic purchases of products.
The products are offered from a variety of vendors, all of
which are roughly equivalent. Products are distinguished
mainly by the price and delivery schedule of each supplier. To

5

10

15

25

30

40

45

50

55

60

65

2
make things complicated, the number of Suppliers can be
large, and the price and delivery times for products can fluc
tuate.

This situation is exemplified by many real world organiza
tions, such as State and Federal government agencies, and
corporations that use competitive buying practices. In the
past, this type of purchasing has required laborious combing
of vendor catalogs. Even with diligence, Such a system often
misses the best price and delivery, and encounters discontin
ued or sold-out products. It is difficult to keep the list of
Vendors and products up to date.
B2B e-commerce attempts to correct these deficiencies by

using machine-readable electronic product catalogs. These
electronic catalogs provide real-time information to e-com
merce buying programs. This allows product information
Such as part numbers, product descriptions, and pricing to be
available and automatically updated by Suppliers.
The formats of the purchase order and product catalog are

potential trouble spots for B2B systems. In most cases, the
buyer will require the supplier to present its electronic prod
uct catalog in a format that can be used by the buyer's client
software. This is important when there is more than one
Supplier, because the client program must compare pricing,
delivery, and other parameters between the various Suppliers.
Also, the buyer will require that the Supplier recognizes, and
correctly process, purchase orders generated by the buyer's
client program. Thus, the overriding difficulty of implement
ing the B2B e-commerce system is the issue of product cata
log and purchase order compatibility. Specifically, the prob
lem lies in obtaining consensus of format and protocol among
many dissimilar and autonomous organizations.

It is not workable to impose standards on the B2B process
(such as standard catalogs and purchase orders) that radically
affect the internal workings of participating organizations.
B2B e-commerce systems will work only if they can be
inexpensively layered upon the private policies of a company.
Any B2B system that attempts to make drastic changes in the
internal workings of the organization runs a high risk of being
rejected for the simple reason that participants view their
carefully crafted internal systems as part of their “competitive
edge. Furthermore, although buyers may want e-commerce,
Suppliers will resist it in the absence of any mandating author
ity until the cost of e-commerce is compensatory.

SUMMARY OF THE INVENTION

The present invention is directed to a system for gathering
data from a web-based server, transmitting the data to a web
based client, and storing the data on the web-based client.

In an aspect of an embodiment of the invention, an enabler
agent translates data from a first data model to a second data
model using a data mapping function.

In another aspect of an embodiment of the invention, an
enabler agent determines which data mapping function to
apply by referencing source-identifying information con
tained within a data request.

In another aspect of an embodiment of the invention, an
enabler agent converts data from a structured data format to a
markup language format.

In another aspect of an embodiment of the invention, an
enabler agent is entirely web-based.

In another aspect of an embodiment of the invention, a data
collector periodically polls a list of URLs to obtain updated
data from data servers pointed to by the URLs.

In another aspect of an embodiment of the invention, a data
collector accesses data stored on a data server using a pre
defined query stored on the server.

US 8,578.266 B2
3

In another aspect of an embodiment of the invention, a data
collector is entirely web-based.

In another aspect of an embodiment of the invention, a data
collector converts data from a markup language format to a
structured data format.

In another aspect of an embodiment of the invention, a data
collector is a modular component, by using a second enabler
agent to access a database associated with a data collector

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of the invention and, together with the
detailed description, serve to explain the principles of the
invention.

FIG. 1 is a depiction of a client/server relationship in accor
dance with an embodiment of the invention.

FIGS. 2A-2B represent an exemplary data model for a data
Supplier.

FIG. 3 is a flowchart of a first method for providing data to
a data collector, in accordance with an embodiment of the
invention.

FIG. 4 is a flowchart of a method of converting data from a
structured data storage format to a markup language format,
in accordance with an embodiment of the invention.

FIG. 5 is an exemplary XML data document constructed
using the method of FIG. 4.

FIG. 6 is a flowchart of a second method for providing data
to a data collector, in accordance with an embodiment of the
invention.

FIG. 7 is a depiction of a query viewer screen, in accor
dance with an embodiment of the invention.

FIG. 8 is a depiction of a query editor screen, in accordance
with an embodiment of the invention.

FIG.9 is a depiction of a parameter editor screen, in accor
dance with an embodiment of the invention.

FIG. 10 is a representation of a computer system in accor
dance with an embodiment of the invention.

FIG. 11 is a representation of a processing unit in accor
dance with an embodiment of the invention.

FIG. 12 is a flowchart of a method of parsing data using the
Emily Scripting Language of the invention.

FIG. 13 is an exemplary data model for a buyer, in accor
dance with an embodiment of the invention.

FIG. 14 is a flowchart of a method for collecting data, in
accordance with an embodiment of the invention.

FIG. 15 is an exemplary URL table, in accordance with an
embodiment of the invention.

FIG.16 is a flowchart of a method for polling data sources,
in accordance with an embodiment of the invention.

FIG. 17 is a flowchart of a method for a method of convert
ing data from a markup language format into a structured data
storage format.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Before discussing the details of the preferred embodi
ments, it is useful to provide a briefbackground on an emerg
ing standard called XML (Extensible Markup Language).
XML is similar to HTML (Hypertext Markup Language),
which is the language that web pages are writtenin. However,
XML is more flexible than HTML with regard to how tags are
named, and how data content can be constructed. Like
HTML, XML can be pulled from a web site using HTTP
(Hypertext Transport Protocol). XML provides a small
advantage to HTML in that it is more readable by programs

10

15

25

30

35

40

45

50

55

60

65

4
(although slightly less readable by humans). XML has
become a hot topic, mainly because it simplifies the construc
tion of programs that pull data from the web. Also, XML is
one of the few standards that provide assistance in the con
struction of B2B systems.
To implement an e-commerce purchasing system, a simple

Server/Clientarchitecture can be established that uses HTTP
as the communications protocol, and XML as the underlying
data format. The two basic components of such a system are
an XML server and an XML client.
The XML server resides at a supplier's site, and allows

machine-readable product catalogs to be fetched in real-time
by an XML client program at a buyer's site. The server
program “advertises' products to potential buyers. The server
may also have components to enable online buying of prod
uctS.

The XML client component resides at a buyer's site, and
fetches product catalogs from various XML servers on the
network. The client programs job is to scanthrough the list of
Suppliers, and determine the best price and delivery options
advertised. The client may also be responsible for actually
performing a purchase of the products via delivery of an
electronic purchase order to the Supplier.

These two components form the building blocks of the
B2B e-commerce model. XML servers provide product cata
logs, which are read by XML clients. XML server programs
are HTTP servers that provide XML documents rather than
HTML documents. XML client programs are programs that
read the XML data, similar to the way web browsers read
HTML, but with a special graphical user interface.
A depiction of the XML server/client relationship is pro

vided in FIG. 1. The supplier's XML server 110 includes a
server database 112, which provides electronic product cata
log information describing the organization’s products, and
an enabler agent 102 which processes this data for transmis
sion to the buyer. A data collector 104 on the buyer's XML
client 120 receives this information, and stores it in a client
database 122. Once the information is received, a database
tool 130, Such as a purchase order program, on the buyer's
client 120 can access the data for various functions, such as
initiating purchase orders to the Supplier's order processor
(not shown).

Although only one XML server and XML client is shown
in FIG. 1, each XML client program can have many XML
server relationships, and each XML server can have many
XML client relationships. Given a situation where the num
ber of buyers is less than the number of suppliers, the number
of XML clients for each server will likely be numbered in the
hundreds, while the number of XML servers for each client
will be numbered in the thousands.
A web-based data communication system in accordance

with an embodiment of the invention includes two basic func
tional units. The first functional unit is an enabler agent 102
that resides on a server, such as the XML server 110 described
above. The second functional unit is a data collector 104 that
resides on a client, such as the XML client 120 described
above. The enabler agent 102 works in tandem with a server
database 112, to provide data from the server database in a
standard, platform independent format. The data collector
104 works in tandem with a client database 122, to receive
data in a standard, platform independent format and store the
data in the client database 122. The data communication
system works in either a one-to-one, one-to-many, many-to
one or many-to-many environment. Each server communi
cates data to one or more clients. Each client receives data
from one or more servers.

US 8,578.266 B2
5

For the sake of simplicity and clarity, this discussion will
focus on an implementation of the data collection system in a
B2B e-commerce model, as discussed above. The data com
munication is not limited to e-commerce, however. The sys
tem can be generalized to cover many other situations where
information needs to be transferred between independent
entities. For example, consider how Such a system would
work in a hospital environment.

The hospital has various enabler agents that furnish access
to the databases within the organization. Various specialized
clients are provided for specific work groups. The following
system might be implemented.

Patient Server.
The enabler agent provides patient records for doctors,

indicating the current patient health. In general, the enabler
agent serves data to those hospital client programs requiring
information on patient status.

Doctor Client.
The “Doctor Portal' software allows the doctor to place

orders for new tests and medication. The orders are similar to
purchase orders, however these orders initiate actions by hos
pital nurses and technicians rather than actions by a Supplier's
shipping department.

Administrator Client.
The “Hospital Administration Portal' allows the patient

insurance forms (including tests and medication prescribed
by the Doctor) to be submitted to the insurance company.

Insurance Company Server.
At each of the various insurance companies used by the

hospital and patients, the enabler agent provides insurance
information for the hospital, for use by the Administrator
Client. This allows the administrator to inspect insurance data
and Submit insurance claims on line.
The only major changes to the B2B model are in the par

ticular data catalogs (which refer to patients rather than prod
ucts), and the types of orders initiated by the system (which
refer to medical tests and prescriptions rather than purchases.)
Otherwise, the system functions much as the B2B e-com
merce system described in preceding sections.
Enabler Agent

Referring to FIG. 1, the first component of the data collec
tion system is the enabler agent 102. The enabler agent 102
runs on the server 110, which is controlled by the data Sup
plier. The enabler agent 102 is a web-based application that
works in tandem with the server database 112. The server
database 112 is a database under the control of the data
supplier. The server database 112 stores data in a particular
data storage format. Exemplary data storage formats include
SQL, flat files of varying format, CORBA databases, XML
documents, and HTML documents. In addition to being
stored in a particular data storage format, the data is stored in
accordance with a particular data model. The details of the
data model are determined by the needs and desires of the data
Supplier, and are not critical to the invention.

FIGS. 2A-2B are an example of how a particular data
Supplier, in this case a manufacturer of bicycles, would model
their data describing bicycle parts. The data model includes a
products table 210 and a parts table 220. The data contained
within the products table 210 includes a list of all of the fully
assembled products that the bicycle manufacturer sells. The
products table 210 includes a series of product records 211,
which store the data for each product the bicycle manufac
turer sells. The products table 210 contains a products key
field 212, which uniquely identifies each record in the table.
The products key field 212 is used internally to associate the
products table 210 with other tables within the server data
base. The products table 210 also includes a model number

10

15

25

30

35

40

45

50

55

60

65

6
field 214, a description field 216, and a price field 218, which
contain the various data items which describe each product
record in the products table 210.
The data contained within the parts table 220 includes a list

of all of the various parts the bicycle manufacturer sells. The
parts table 220 includes a series of parts record 221, which
store the data for each part the bicycle manufacturer sells. The
parts table 220 has a parts key field 222, which uniquely
identifies each record in the parts table 220. The parts key
field 222 is used internally to associate the parts table 220
with other tables within the server database. The parts table
220 also includes a foreign key field 224, which refers back to
the products key field 212 of the products table 210. This field
links each parts record 221 in the parts table 220 with a
product record 211 in the products table 210. The rest of the
parts table 220 comprises a part number field 226, a part
description field 228, and a price field 229, each of which
contain data describing each part record 221 in the parts table
220.

Returning to FIG. 1, the enabler agent 102 retrieves data
from the server database 112 in response to a data request
from a user. The user may be a human being, or the user may
be a computer process controlled by a human being, or the
user may be an automated computer process. In a preferred
embodiment, the user is the data collector 104 residing on the
client 120.
The request contains information that identifies the data to

be retrieved. The request can be transmitted in a variety of
ways. In a preferred embodiment, the request is a URL trans
mitted from the data collector 104. In an alternate embodi
ment, the request is an electronic mail message. In another
alternate embodiment, the request is an application-specific
message transmitted by the data collector 104 or by another
computer process.

In a preferred embodiment, the request comprises informa
tion that identifies a pre-generated database query, the query
being stored on the server 110. An exemplary request com
prises a URL taking the following form:
http://(hostspec)/mle-cgi/xml?(query name)

In this URL, (hostspec) is a value that identifies the par
ticular server that the request is directed to. An exemplary
(hostspec) value is www.supplier.com. The portion of the
URL between the (hostspec) and the (query name) is informa
tion that identifies a particular location on the server where
the pre-generated database queries are stored. This informa
tion points to, for example, a file or directory containing the
pre-generated query.

In this URL, (query name) is a value that uniquely identifies
the particular database query that the request seeks to invoke.
The (queryname) value is an arbitrary identifier or keyword
that is mapped to a query stored on the server. An exemplary
mapping scheme comprises storing each query in a separate
file, and referencing the query in the URL by providing the
name the file it is stored in the (queryname) section of the
URL. For example, the bicycle manufacturer data model dis
cussed above would have queries named “PartsByPrice'.
which retrieves the entire parts table sorted by price, and
“BicycleParts”, which retrieves all records in the parts table
that correspond to parts used in bicycles.

In this embodiment, an administrator pre-generates a set of
database queries and stores those queries on the server. The
administrator can use a variety of ways to create these queries.
The administrator can manually write the queries. The admin
istrator can also use a query design tool to generate the query
in the query language, from a higher level model. The query
design tool may be a component associated with the particu
lar database software used to create the server database, or it

US 8,578.266 B2
7

may be a third-party or stand-alone package. In a preferred
embodiment, the administrator uses a web-based editor
accompanying the enabler agent Software to create the que
1S.

Once the queries are created, they are stored on the server. 5
In a preferred embodiment, the queries are stored in separate
files on the server. This allows the enabler agent to locate the
proper query quickly and easily, when the enabler agent is
presented with a URL containing the keyword associated
with the query, as discussed above. Queries can also be stored 10
in other formats; for example, a single file could contain a
library of related queries. The enabler agent in this example
would parse the library file to locate the particular query
specified in the request.

Turning to FIG. 3, a method for providing data to a data 15
collector in response to a pre-defined query begins at step
305, with a data requester generating an URL. An HTTP
server on the requestor's machine routes the URL over the
network to the supplier's server, at step 310. The supplier's
HTTP server determines, based upon information contained 20
in the URL, that the URL is a request for the enabler agent,
and the URL is routed to the enabler agent at step 315. This
routing is a function of the HTTP server, which maps URLs to
specific disk files and directories on the server platform. For
example, the Apache HTTP server uses an “Alias' directory 25
in the Apache configuration file. The enabler agent parses the
URL, at step 320, to extract the query identifier. Using this
query identifier, at step 325 the enabler agent locates the
query associated with the query identifier, the query being
stored on the supplier's server. At step 330, the enabler agent 30
queries the database using the query identified above. The
server database generates a result set based on the contents of
the query, at step 335. This result set comprises the rows from
the various tables of the server database that correspond to the
parameters of the query. 35
The result set is sent back form the server database to the

enabler agent, at step 340. At this stage, the result set is still
represented in the structured data storage format used by the
server database. The enabler agent converts the structured
data storage formatted data into markup language data at step 40
345, and creates a markup language formatted document. The
enabler agent then sends this document to the HTTP server at
the supplier's site, at step 350. Finally, the supplier's HTTP
server routes the markup language document to the requestor,
at step 355. 45

In another preferred embodiment, the request comprises a
database query generated at the time of the request. An exem
plary request in accordance with this embodiment is the fol
lowing URL:
http://(hostspec)/mle-cgi/xml?post 50

In the above URL, (hostspec) is defined as discussed
above. The URL is one way of sending a request to the HTTP
server, using an HTTP POST command. This allows argu
ments contained in an HTML document (using HTML
<INPUTs directives) to be sent to the enabler agent. The 55
<INPUTs directive is a standard component of HTML,
which allows input by forms to an HTTP server. In an
embodiment, the <INPUT command contains a SQL query,
or Some other way of directly specifying a request for data, the
data to be converted to an XML document. In an alternate 60
embodiment, the arguments are sent to the enabler agent by
incorporating them as part of a second URL. For example:
http://(hostspec)/mle-cgi/xml?post?(sqlstatement).

The server uses this additional information to ensure that
the query is run properly, and that the requesting user has 65
permission to access the server database. If this information is
not provided, the request is processed using default values

8
configured by the administrator of the enabler agent. The
administrator may configure the enabler agent using the web
based interface discussed below, or the administrator may
manually edit a configuration file.

Turning to FIG. 4, a method for retrieving data from a
server in response to a user-generated query begins at step
605, with a data requestor composing a query. The query is
then submitted to the supplier's HTTP server by sending an
HTTP “post command to the server, at step 610. The post
command contains the query and any additional parameters
necessary to process the query, such as a user name or a
password. The supplier's HTTP server parses the URL and
routes the post command to the enabler agent, at step 615. The
enabler agent executes a CGI script that extracts the query
from the incoming URL, and sends the query to the Supplier's
database, at step 620. The server database generates a result
set based on the contents of the query, at step 625. This result
set comprises the rows from the various tables of the server
database that correspond to the parameters of the query.
The result set is sent back form the server database to the

enabler agent, at step 630. At this stage, the result set is still
represented in the structured data storage format used by the
server database. The enabler agent converts the structured
data storage formatted data into markup language data at step
635, and creates a markup language formatted document. The
enabler agent then sends this document to the HTTP server at
the supplier's site, at step 640. Finally, the supplier's HTTP
server routes the markup language document to the requester,
at step 645.

In an embodiment where the markup language format is
XML, the enabler agent converts the structured data format
ted data to XML format using the method of FIG. 5. An
exemplary XML document generated by applying this
method to a query of the database shown in FIGS. 2A-2B is
shown in FIG. 6. The enabler agent receives the result set from
the server database, and generates a query identifier tag at Step
405. An exemplary query identifier tag 502 is shown for the
query “BicycleParts' discussed above. At step 410, the
enabler agent examines the result set and obtains the next
database record to be processed.
Assuming that records remain to be processed, the enabler

agent selects the next record to process, and creates a record
container tag for the record, at step 415. The record container
tag is assigned a value that uniquely identifies which record of
the client database is contained in the query. An exemplary
record container tag 504 is shown for the first record in the
result set generated by the “BicycleParts' query discussed
above. The record container tag 504 has a value of one (1),
which corresponds to the value of the key field 222 of the
record, as shown in FIGS. 2A-2B.
The enabler agent then parses the fields of the record being

processed, at step 420. Assuming that fields remain to be
processed, the enabler agent selects the next field to process,
and creates a field entry tag for the field, at step 425. By
default, the field entry tag is given the name of the corre
sponding table column matched by the specified query. An
administrator using a web-based setup screen can override
these default tag names, and the administrator can assign
different names. The field value is inserted into the field entry
tag, and the field entry tag is then closed. An exemplary field
entry tag 506 is shown for the “Key field of the first record in
the result set generated by the “BicycleParts' query discussed
above. The field entry tag 506 has a value of one (1), corre
sponding to the value of the key column 222 of the first record
of the parts table 220, as shown in FIGS. 2A-2B.
Once the field entry tag is closed, control passes back to

step 420, where the next field is processed. Once all the fields

US 8,578.266 B2

of the first record of the result set have been processed, the
enabler agent creates an end of record container tag, at step
340. An exemplary end of record container tag 508 is shown
for the first record of the result set for the query “Bicy
cleParts' discussed above. Control then returns to step 410.
for processing of the next record in the result set. Once all
records in the result set have been processed, at step 435 the
final XML tags are created and the XML document is closed.
An exemplary closing tag510 is shown for the result set of the
“BicycleParts' query discussed above. Optionally, a data type
diagram is also generated for the result set. This data type
diagram specifies the type of data being stored in each field of
the records of the result set. Table 1 shows an exemplary data
type diagram for the “BicycleParts' query.

TABLE 1.

Field Name Data Type

Key INTEGER
Fkey INTEGER
Partii PCDATA
Desc. PCDATA
Price DOLLARNUMERIC

Using this conversion method, a valid and well-formed
XML document is constructed directly from a combination of
the field names of the database and configuration data set up
by the administrator.

The enabler agent also contains a collection of utility pro
grams to facilitate the setup, operation and debugging of the
data collection system. Exemplary utility programs include: a
query viewer, to display the results of a query in HTML
format; a query editor, to assistan administrator in construct
ing the pre-defined queries discussed above; a database
parameter editor, to allow the user to configure the basic login
parameters of the enabler agent, Such as the default server
name of the server containing the server database, the default
login name to Supply to a user-generated query, the default
password to Supply to a user-generated query, and other Such
parameters; a security parameter program, to assist the
administrator in configuring the security parameters of the
enabler agent, such as a list of trusted hosts, an authentication
mechanism to be used in verifying the identity of users, and a
list of the allowed operating modes of the system, which
specify whether the enabler agent will accept either pre
defined queries, user-defined queries, or both; and a tag
browser program, which provides a simple web-based XML
and HTML client that can be used to test the operation of the
enabler agent. This list of utility programs is exemplary and
not exclusive. Other utility programs can be provided,
depending on the particular implementation parameters of a
particular embodiment.

Turning to FIG. 7, a query viewer screen 70 in accordance
with an embodiment of the enabler agent is implemented as a
web-based CGI script. The query viewer screen 70 is dis
played by activating a first URL 71, inside a web browser
program 72. The query viewer screen 70 allows the user to
select a particular query to be viewed in HTML format. The
screen shows the queried data in a tabular format, and allows
the user to select the particular query via a pull-down menu
74. The various queries available to the user are provided in
the pull-down menu 74. Queries are constructed via the query
editor tool shown in FIG. 8.
The query viewer screen 70 provides a simple way to

obtain visibility into a system for debug and analysis pur
poses. The table 76 displayed by this screen is automatically
created from the results of the query. The table 76 is generated

10

15

25

30

35

40

45

50

55

60

65

10
from the query results by parsing the query results into com
ponents that are formatted into an HTML document that is
returned to the user. The top of the table 76 indicates the
various fields 78 specified in the query, which also corre
sponds to the various markup language format tags read by
the data collector.
The query viewer screen 70, in addition to providing a view

of queried information, also provides the user with a list of the
various queries created by the query editor screen from the
pull-down menu 74. Additionally, database parameters are
configurable for the query by activating a button 77 that calls
up a query parameter screen. A button 79, when activated,
Submits the query to the database.
A user of the query viewer screen 70 views a particular

query by: (1) selecting the query from the pull-down menu 74.
(2) providing any required database parameters by activating
the button 77 and entering the values into the form that pops
up, and then (3) activating the button 79, thus submitting the
query to the database. The query results are returned, auto
matically converted into HTML format, and displayed in the
query viewer screen 70.

Turning to FIG. 8, a query editor screen 80 in accordance
with an embodiment of the enabler agent is implemented as a
web-based CGI script. The query editor screen 80 is dis
played inside the web browser 72, by activating a second URL
81. The query editor screen 80 allows the user to compose
queries that are associated with particular items in the pull
down menu 74 of the query viewer screen 70 (of FIG. 7). The
query editor screen 80 allows the user to create, modify, or
delete queries, and associate these queries with items in the
pull-down menu 74 of the query viewer screen 70 (of FIG. 7).
The query editor screen 80 contains a text window 82

where the user can enter the query, in a structured data storage
format, such as SQL. The query editor screen 80 also contains
a palette of buttons 83 that provide functionality to the screen
80. These buttons include; a save button 84, which when
activated cause the contents of the text window 82 to be saved
to long-term storage; a save as button 85, which when acti
vated causes the user to be prompted to enter an identifier to
be associated with the contents of the text window 82, and
then saves the contents into long-term storage; a reloadbutton
86, which when activated causes the user to be prompted for
a query identifier, and then retrieves the query associated with
the query identifier and displays it on the text window 82; and
finally a cancel button 87, which when cancels any operation
in progress. For example, if the user activates a long query,
and then wishes to halt operation of the query, the user clicks
the cancel button 87. These are exemplary members of the
button palette 83. Depending upon the particular functional
ity desired, other buttons could be included in the button
palette 83.
The query editor screen 80 facilitates associations of que

ries (which are not visible to clients or unprivileged users) and
the query results. Each query resides in its own file on the
server. The files can be modified by the query editor screen 80,
or by a standard text file editor.

Turning to FIG.9, a database parameter screen 90 in accor
dance with an embodiment of the enabler agent is imple
mented as a web-based CGI script. The database parameter
screen 90 is displayed inside the web browser 72, by activat
ing a third URL 91. The database parameter screen 90 pro
vides general utility in configuring the various parameters of
the system. This screen provides a central place for specifying
values needed to make queries, such as driver programs,
time-outs, passwords, and security items. This screen also

US 8,578.266 B2
11

allows easy modification of an existing mapping of a query to
a data source. This screen will typically be available to privi
leged users.
The database parameter screen 90 has textboxes 92, where

a user enters the necessary parameters for the database. The
particular parameters to be used are dependent upon the spe
cific database package chosen by the creator of the data col
lection system.
The database parameter screen 90 also has a button palette

92, which provides functionality to the screen. These buttons
include: a commit button 93 that when activated causes the
changes made by the user to be stored to the database; an edit
query button 94 that when activated pops up a window con
taining the query, and allowing the query to be edited; and a
cancel button 95 that when activated closes the database
parameter Screen 90 without making any changes. These are
exemplary members of the button palette 92. Other buttons
can be used in the button palette 92, depending on the par
ticular functionality desired.

The enabler agent is intended to be a comprehensive sys
tem containing various Support tools and facilities. Exem
plary support tools include: an embedded HTTP server, to
allow users to run the enabler agent without needing a third
party HTTP server; database insert and update utilities, which
allow privileged users to insert and update tables on the server
database and provide a programmatic interface to allow a
table to be loaded by external software, such as the Emily
Framework language discussed below, oran HTTP client; the
Emily Framework Scripting language and development kit, to
allow users to create new functionality and capabilities for the
system; and online documentation in the form of markup
language documents and PDF files, the documentation being
Sufficient to install, configure, operate and maintain the sys
tem.
Emily Framework Scripting Language

With reference to FIG. 12, a flow diagram illustrating a
typical method performed by the Emily Scripting language is
shown. The Emily scripting language may be used for pro
cessing a markup language file having one or more tagged
portions. The method comprises opening a first markup lan
guage file, step 1200, and parsing the first markup language
file for one or more portions, step 1210. The language inter
preter then stores each portion of the first markup language
file into one or more objects in an electronic memory, at step
1202.

Part of the Emily language may include a CAT or DIR
command. If Such a command is received by the language
interpreter, step 1206, then the interpreter causes the one or
more objects to be presented for selection, viewing or other
processing in one more corresponding folders and Sub-fold
ers on-screen, step 1208. The one or more folders may be
presented in a hierarchical list having Sub-folders according
to an arrangement of Sub-portions of the first markup lan
guage file, each Sub-folder representing an arrangement, Sub
arrangement, or object containing a portion of the first
markup language file.
The Emily language comprises a command language set

allowing selection, viewing and other processing of the one or
more objects. The command language set comprises a plural
ity of commands for selection, viewing and other processing.
A Subset of commands may comprise one or more commands
for processing one or more folders, Subfolders, portions, or
Sub-portions of the first markup language file, the Subset
comprising one or more executable batch files containing a
subset of the set of commands. One or more executable batch
files may be included within a second markup language file,
the subset of commands in the executable batch file compris

10

15

25

30

35

40

45

50

55

60

65

12
ing commands for including one or more of the objects con
taining portions of the first markup language file in the second
markup language file.
The language interpreter may receive one or more SET or

UPDATE commands for setting or updating objects in the
first or second markup language file, step 1210. If Such a
command is received, the language interpreter updates the
objects in memory according to the commands received, step
1212.

If a POST or SAVE command is received, step 1214, the
following steps may be performed as part of said other pro
cessing for updating the respective markup language file, step
1216: receiving a Subset of commands comprising one or
more commands, said one or more commands comprising
instructions for updating one or more objects based on the
received one or more commands; updating the one or more
portions contained in the one or more objects according to the
received one or more commands; and saving the portions
contained within the one or more objects to the first respective
language file that have been updated.

Alternatively, the following steps may be performed as part
of said other processing for providing a second markup lan
guage file to a network node identified by a uniform resource
locator: receiving a Subset of commands comprising one or
more commands, said one or more commands comprising
instructions for updating one or more objects based on the
received one or more commands; updating the one or more
portions contained in the one or more objects according to the
received one or more commands; and providing the second
markup language file to the network node identified by the
uniform resource locator.

Alternatively, the first markup language file may comprise
one or more portions receptive to data input, wherein said
other processing comprises receiving and sending said data
input by performing the steps of receiving said data input,
storing said data input into in said objects containing said one
or more portions receptive to data input; and posting said data
input to said markup language file. At least a portion of the
data input may then be processed after the step of receiving
and before the step of storing. This alternative processing may
be used, for example, to receive SQL commands for perform
ing a query on a remote database, or posting to a remote
database.
The method of parsing and presenting a markup language

document to a local computer system is divided into two
phases: a first download phase where a markup language
document is copied from a web server or local file system,
followed by a second analysis phase where the markup lan
guage document, once downloaded, is parsed and presented
to the local computer system as a linked list for further
manipulation of the document objects. This first phase begins
and ends where phase two of the markup language parser and
presenter module begins. Phase two begins where the markup
language parser and presenter module maps each document
object to a virtual root, branch, or leaf object in the memory
space of the local computer.
A markup language parser and presenter module is invoked

using a single command whose syntax resembles a typical
command-line processor. For example, the functionality of
the markup language parser and presenter module may be
implemented by the following statement:

open “http://www.vcsy.com'
where the URL is supplied as an argument to the “open’
command.

In one embodiment of the markup language parser and
presenter module, the markup language document Source is
the hypertext transport protocol (HTTP), meaning the down

US 8,578.266 B2
13

load is accomplished using HTTP to reference the markup
language document by its assigned URL (uniform resource
locator) on the network. The markup language parser and
presenter module contemplates the processing of local docu
ments as well. A local document resides on the local computer
system where the markup language parser and presenter mod
ule is executing. Thus, another embodiment of the markup
language parser and presenter module anticipates the pro
cessing of documents on the local system using the name of
the local file. Local document processing neither requires that
the document be copied from a web server using HTTP nor
that the document be referenced by a URL. In this case, the
“open' syntax would instead require a valid local file path
name to be Supplied, as in:

open “c:\DOCS\resume.htm
Or,

open /usr/data/resume.htm.
The markup language parser and presenter module parses

the command line. The markup language parser and presenter
module decides whether the markup language document
source is HTTP. If the source document is not an HTTP
document phase two analysis continues. If the Source markup
language document is an HTTP document, then processing
resumes. If the HTTP request status indicates that a redirect is
required, the markup language parser and presenter module
will derive the new URL to the document and begin the
download phase over again. If the markup language parser
and presenter module determines that no redirection is
required, processing continues. An error produced by the
HTTP request will cause the markup language parser and
presenter module to abort. Examples of HTTP errors include
404, URL not found, etc. Once the user identifies a viable
URL, processing of the markup language parser and presenter
module may resume again, but only after the user reexecutes
the module. If no error is produced by the HTTP request,
processing continues. The markup language parser and pre
senter module determines if the source document is an HTML
document. If the source markup language document is an
HTML document, every relative URL gets converted to an
absolute URL before the document is delivered to the analysis
phase.
The analysis phase of the markup language parser and

presenter module begins. The goal of the analysis phase is to
create a virtual data structure for presentation to the func
tional modules of the framework for processing markup
documents and to the host processing system. A preferred
embodiment contemplates the use of a linked list data struc
ture to accomplish the presentation.
A linked list is a type of dynamic data structure that uses

pointers to “chain’ data elements of the list together. The data
elements of the list are called nodes. Linked lists may be
either linear, in which case each node contains pointers only
to one neighboring node in a serial fashion. Thus in order to
traverse the linearlist of data elements, one must pass through
every data element of the list as though climbing a ladder,
rung by rung.
The tree structure is a type of linked list wherein the nodes

are arranged in hierarchical fashion and includes a root node.
The tree analogy used to describe this type of linked list
further extends to branch and leaf nodes. A linked list looks
like an inverted tree. Notably, leaf nodes do not contain point
ers to other nodes and the root object, of which every tree has
only one, is not pointed to by any other nodes.
A preferred embodiment of the markup language parser

and presenter contemplates the one-to-one mapping or “pre
sentation of a markup document to the other modules of the
framework as a tree wherein the nodes are the objects of the

10

15

25

30

35

40

45

50

55

60

65

14
Source markup document. The resultant tree will have as its
leaf objects, the tags and attributes of the Source markup
document and will have as its branch objects, only those tags
of the source markup document that contain either attributes,
other tags, or both attributes and tags. Finally, the root object
of the tree will contain pointers to other branch objects or leaf
objects, although the latter is rare. The root object will fre
quently derive from the first tag in the markup document that
specifies the markup language by which the document was
written. In one embodiment, the markup language is the
hypertext markup language (HTML); in another, the exten
sible markup language (XML), although other Such markup
languages are within the scope of the framework.
A parsed markup document may be derived from HTML

format into to hierarchical levels of nodes. Node level ()
represents the root node of the tree. The root node is derived
from the <HTML> tag. Similarly, the HEAD branch object of
node level 1 is derived from the <HEAD-> tag. The hierarchi
cal arrangement of the tree closely mirrors the hierarchical
arrangement of tags in an HTML document. The closing tag
element <HTML> for the HTML tag.

Rules are followed by the markup language parser and
presenter module when mapping markup language docu
ments to resultant root, branch, or leaf objects in building the
virtual directory tree presentation. These rules further ensure
that no two document objects map to the same directory tree
object in the resultant linked list. In other words, the resultant
linked list node objects must uniquely identify each respec
tive markup language parser and presenter module document
object. This is because markup language documents fre
quently contain multiple instances of the same tag. It is pos
sible, therefore, for a tag or subtag to contain more than one
Subtag of the same name. Attributes, conversely, are always
assured uniqueness because a given document tag can never
have a multivalued attribute. One rule is that same-name
Subtags of different tags maintain uniqueness by employing
instance numbers if needed. Consequently, a tag when
mapped to the directory tree is embodied as a leaf object
whose name includes the unique instance number associated
with the sequential occurrence of that tag in the markup
language document. Attribute document objects carry a simi
lar uniqueness requirement. Attribute document objects that
become named leafobjects when mapped to the directory tree
satisfy uniqueness by virtue of their associated with an
instance leaf object tag name.
The foregoing method of parsing and presenting a markup

document lays the foundation for further processing by Sub
sequent modules of the markup language document process
ing framework.
The second module of the method and system for providing

a framework for processing markup language documents is
the markup language command processor. One group of com
mands that form part of the markup language command pro
cessor is the access command group, so called because the
commands in this group perform no actions which alter the
physical structure of the tree in memory. A second group of
related commands designed to alter the tree structure shall be
described hereafter.
The markup language parser and presenter module parses

and opens a document before the command processor is
invoked. If a markup language parser and presenter module
document has not successfully been presented using the
markup language parser and presenter module technique
described above, the markup language command processor
method may suspend activity in one embodiment, awaiting
the building of a viable tree structure in memory. If the
markup language command processor encounters a viable

US 8,578.266 B2
15

tree structure in memory, the markup language command
processor acts as an interpreter, processing user input from a
command line much like the command processor kernel of a
text-based, operating system like Unix.

In one embodiment, the markup language command pro
cessor has an ability to parse wildcard characters, redirect
symbols, filters, and other command line features prevalent in
modern command processing systems that enhance process
ing and permit greater user flexibility. One noteworthy feature
is variable indirection, familiar to those skilled in the art of
computer programming control structures that cycle, loop, or
otherwise iteratively process command instructions. Familiar
to programmers are the DO-NEXT, FOR-WHILE, and
REPEAT-UNTIL control structures, all of which depend on
index variables to control processing and provide process
termination. Here, for example, a programmer-user may
desire to display the contents of a singular table element of an
HTML document. An example of a command line (variable
indirection) that accomplished this might look like the fol
lowing:

echo Shtml/body/Stable:Si/tr:S/td:Sk”
To determine if variable indirection is required, the command
processor must parse the command line looking for tag names
employing instance values. In this instance, the user wishes
the command processor to "echo', that is, display on the
standard output device (usually the monitor) the contents of
the “Skth” column of the “Sith row of the “Sith table in the
body of a presented HTML document. Of course, some of
iterative control structure must control recursive substitution
of the variables (acting as index variables) with valid instance
values. Thus, after Substitution the command line may look
like:

echo Shtml/body/Table:2/tr:3/td:2
which will display the second column of the third row of the
second table of the document.
The markup language command processor accepts com

mands from a valid command language set. The markup
language command processor first decodes each command,
usually by parsing the command line to check for proper
command syntax and/or the existence of any wildcard usage.
Once a command is decoded, the markup language com

mand processor processes the command by executing the
precoded route associated with the command. General com
mand-line conventions should be followed for successful
command execution.
A bold system prompt appearing in angle brackets means

that the user will see on the standard output device a system
prompt (often simply a single character from the host sys
tems characterset) indicating that the user is free to issue any
command recognizable by the command set associated with
the particular prompt. This is because a host system may
present more than one prompt to the user (though not simul
taneously), so that the user can be sure not to confusingly
enter local operating system commands to the markup lan
guage command processor System prompt, and vice versa.
The command itself appears in angle bracket (<>) to indicate
that the user must Supply a valid command name from the
markup language command processor command set and that
the command name is entered first on the command line,
before any command line arguments, option, wildcards, etc.
Command line arguments are separated from the command
name by a space and the vertical bar that separates arg1 from
arg2 would mean that either argl or arg2 must be selected.
The user can elect to Supply neither argl nor arg2 as an
argument. A parenthetical argument description element of
the conventional markup language command processor Syn
tax denotes a description of an argument. Items that are

10

15

25

30

35

40

45

50

55

60

65

16
enclosed in parenthesis should be substituted (including the
parenthesis) by a constant or a variable in the command. The
range or type of argument will normally be made clear in the
context of the command's narrative description. Finally,
ellipses are used to denote a repetition of arguments. Com
mands that are followed by ellipses indicate that multiple
arguments (each of up to 256 characters) may follow, to a
maximum of 1024 characters. The range or type of arguments
will always be made clear in the context of the commands
narrative description.
The following is an example of a command from a system

access group of markup language commands which conforms
to the foregoing rules of syntax:
%exec-force 1-error (command)

The percent sign (%) represents the markup language com
mand prompt. exec is the name of the command. The square
brackets containing the -force and -error argument is
optional. The (command) parenthetical argument is a
required argument in this case, the user must Supply a valid
operating system command, including scriptfiles, as an argu
ment to the exec command. For instance, if the operating
system were a Unix variant,
%exec -errorls

would tell the markup language command processor to
execute the unix “list current directory' command (ls) and to
interpret any error output of the ls command as an exception.

If the command is a request to display the content of a
specified root or branch object from the directory structure,
then the markup language command processor will traverse
the virtual linked list tree structure presented, and return to the
standard display a listing of all the tags (branch objects) found
in the tree contained in or subordinate to the specified argu
ment Supplied to the command. If the command is a request to
change the current working branch object from one branch
object to another, the markup language command processor
will traverse the virtual linked-list tree structure presented
and make the requested branch object (Supplied as an argu
ment to the command by the user) appear to the user as though
it were the root object of the linked list. If the command is a
request to list the content of a tag (i.e. a leaf object in the
linked list created from a tag in the markup language docu
ment as opposed to an attribute leaf object) then the markup
language command processor will traverse the linked list
looking for a match with the requested tag (Supplied as an
arg1 to the command by the user). When a match is found, the
markup language command processor will use the (seek posi
tion) relative content pointer to identify and return to the
standard display device the contents of the tag.

If the command is a request to list the content of an attribute
(i.e. a leaf object created from a tag in the markup language
document as opposed to a tag leaf object), then the markup
language command processor will traverse the linked list.
A host interface function module of the markup language

parser and opener is a series of methods that work in conjunc
tion with the methods of previous modules of the markup
language parser and opener to allow a host programming
language to create programs which augment the host lan
guage’s current functionality. In this sense, these methods are
available as useable features by a programmer experienced in
the host programming language. The features provided by the
host interface function module are implemented using a pre
determined API function call.
The procedural steps that a programmer writing code in the

host programming language would use to invoke the host
interface function module follow. First, the host interface
function module receives a command from the host process
ing system. The host interface function module is imple

US 8,578.266 B2
17

mented as a call level interface which allows the host process
ing language to make a function call that invokes the host
interface function whenever the host processing system fails
to recognize a command. This call level interface is a mecha
nism for enabling communication between the host process
ing language and the host interface function module of the
markup language parser and opener module by facilitating
parameter-passing. Specifically, a recognized command is
passed to the host interface function module as a parameter of
the host interface function. The kind of command that may be
passed using the host interface function includes any of the
commands from the markup language access group or the leaf
object creation and modification group, as well as the markup
language parser and opener module’s “open’ command.

Thus, a programmer may embed any and all functionality
of the markup language parser and opener into his host lan
guage program, relying on the host processing language to
make the appropriate call to the host interface function mod
ule when the need to invoke the methods of the markup
language parser and opener arise. If the host programming
language is a scripting language like PERL or TCL on a Unix
platform, the user is free to compile or write a program where
functionality is invoked by a user at will. For instance, a
sight-impaired user may wish to change the background color
of his browser's home page (i.e. the default web page auto
matically loaded whenever the user launches the browser) to
white for better contrast. To accomplish this, the user simply
runs a pre-compiled or interpreted Script which he or some
one else wrote. At run-time, the host processing system will
pass the Script commands to open and change the web page
background to white. Without a host interface mechanism
like the host interface module, the user would need to manu
ally issue one or more complicated markup language parser
and opener commands including first the “open’ command,
followed by a “set command, which together might look
like:

>open http://www.stockquotesgalore.com
>set Shtml/body/bgcolor="white'
With the host interface function module, the functionality

of these two lines of code can be included in a script which is
automatically run for the user at program initialization or at
browser launch without any manual intervention. Further
more, many browser users are not programmers and would
not have the desire or knowledge to perform this functionality
themselves. Also, with the scripting interface ability of the
host interface function module, third party software vendors
may write and distribute scripts bundled with their off-the
shelf software, as free ware, as downloadable Scriplets, or any
other conceivable manner of software distribution.
An HIF module uses memory to store the output of a

particular command. For example, if a specific command
from the markup language command processor command set
is invoked and run by the host interface function module, and
that command normally issues a status message or error level
code to the standard output device (usually the monitor), here
that status message or error level code will be redirected to
memory. Frequently, the Script program running on the host
processing system which made the system call has a need to
further process instructions based on the result of the mes
sages or codes returned by the host interface function. Thus,
the messages or codes must be memory resistant; the script or
program cannot access messages or code from a display
device.
The host interface function method determines if the com

mand passed to the host interface function as a parameter to
the host interface function matches one of the known com
mands described earlier. If no match is made, the host inter

10

15

25

30

35

40

45

50

55

60

65

18
face function module will execute the command as though it
were an external command or program (i.e. an external
executable file) stored on a host storage device Such as a hard
disk drive or CD ROM. Here again, the output of the external
command or program will be redirected to a location in
memory whereby the script or program running on the host
processing system may access the command or program out
put for further processing.

If an error code is returned by the host interface function
module, the host processing language must read, interpret,
and handle the error condition. In other words, the processing
of error conditions is the responsibility of the host, not the
host interface module. The host interface module will place a
call to the user-supplied host processing language routine
specifically written to handle the particular error; however,
the user-programmer of the host system is responsible for
ensuring the availability of an error processing routine for
each returnable error.
The sixth module of the method for providing a framework

for processing markup language documents is the CGI script
creation module. CGI scripts are commonplace web server
Software components that a web designer creates to perform
real-time processing of user-supplied data on a web server.
The output of a CGI script is a markup language document
that the web server running the script delivers to the user's
browser after processing. Perhaps, the most common use of a
CGI script is form processing.
The CGI script creation module augments the foregoing

CGI processing scheme by allowing a user-programmer the
flexibility to incorporate the previously expounded modules
of the markup document processing framework. For example,
the CGI script creation module enables creation of markup
language formatted documents that contain references to tag
variables. In other words, the inclusion of tag variables within
an HTML, XML or other markup language document is made
possible by the interaction of the CGI script creation module
with another markup document processing framework mod
ule: namely, the method of representing leaf objects as local
variables.
The clear advantage to tag variable inclusion is the inser

tion into a markup document the contents of a leafobject from
Some other document.

Thus, a document returned from processing by a CGI script
may contain references to tag or attribute values (perhaps
using variable notation and/or indirection) found in a
memory-resident linked list tree structure from a previous
invocation of the markup language parser and opener module.
The flexibility of the CGI script creation module allows a

programmer to create a CGI script which returns markup
language documents whose background color matches the
background color of the user's home page. To accomplish
this, the CGI script creates a document whose body tag con
tains reference to the home page's background color using the
following syntax:
<BODY BGCOLOR=SHTML/BODY/BGCOLORd.

CGI script creation without this functionality would merely
be able to set the returned document's background color to a
known value, say white. Thus, while one color-blind user may
prefer the contrast of black lettering atop a white background,
another sight-impaired user's disability may fancy a pink
background. The CGI script creation module allows script
creation that can satisfy both users in one Script, assuming
each user has his or her browser home page set to his or her
respective preferred background color as described earlier.
As a result, disability-conscience site designers, desiring to

cater to the sight-impaired community, for instance, would
use this technique to ensure that forms processed by sight

US 8,578.266 B2
19

impaired users always return documents high in color con
trast, according to each user's specific color-contrast needs.

This example is illustrative of the enormous programmer
flexibility built into the method for processing a markup
document.
Data Collector

Returning to FIG. 1, the second functional unit of the B2B
system is the data collector 104. The data collector 104 is a
computer program that runs on a server 120 controlled by the
buyer. The data collector 104 works in tandem with a client
database 122 under the control of the buyer. The client data
base stores data in a particular data storage format. Exem
plary data storage formats include SQL, flat files of varying
format, CORBA databases, XML documents, and HTML
documents. In addition to being stored in a particular data
storage format, the data is stored in accordance with a pro
prietary data model, determined by the needs and desires of
the buyer. This proprietary data model is typically different
from the proprietary data model used by the Supplier, as
discussed above. The client database 122 is also associated
with a suite of database tools 130, used to manipulate the data
stored in the client database 122, and to provide the data to
USCS.

FIG. 13 is an example of how a particular buyer, in this case
a distributor of wheels, would model the data describing its
inventory. The data is stored in a table 1400. The wheel
distributor orders products from many different suppliers, so
it has created a supplier ID column 1410, which contains
information identifying the source of the product. In order to
properly link the records stored in the buyer's database with
the catalog data coming from the Supplier, a Supplier record
number field 1420 is provided. The key field 1430 is a locally
maintained field that uniquely identifies each record in the
buyer's database. The supplier part number field 1440 con
tains information from the supplier that is used by the supplier
to uniquely identify the part. Note that this value can also be
used as the linking value between the Supplier-provided data
and the buyer's database, instead of using the Supplier record
number field 1420.
The description field 1450 and wholesale price field 1460

contain additional information about the catalog items stored
in the buyer's database. In this example, the fields 1420, 1440,
1450, and 1460 all contain data downloaded from the suppli
er's database. The supplier ID field 1410 is populated with the
name of the supplier. This value can be downloaded from the
supplier, or it can be supplied locally by the buyer, as will be
discussed below. The values for the key field 1430 are deter
mined locally. The exemplary buyer of FIG. 14 has loaded its
inventory ordering table 1400 with data from three suppliers,
Car Co., Truck Co., and Bike Co., the supplier discussed
above.

Returning to FIG. 1, the data collector 104 transmits a data
request to the server 110, receives a response from the server
110, the response containing the requested data, and stores
the requested data in the client database 122.

The data request can be transmitted in a variety of ways. In
a preferred embodiment, the data request is an URL transmit
ted by the data collector 104 to the server 110. In alternate
embodiments, the data request is an e-mail message sent to
the server 110 or an application-specific message sent to the
server 110 by the data collector or another computer process.
In another alternate embodiment, the server 110 initiates the
data request, and the results are pushed across the network to
the data collector 104.

The data request contains information that identifies the
data to be retrieved. In a preferred embodiment, the request
comprises information that identifies a pre-generated data

10

15

25

30

35

40

45

50

55

60

65

20
base query, the query being stored on the server 110. The
details of the pre-defined queries of this embodiment are
discussed above in the enabler agent section. In another pre
ferred embodiment, the request comprises a database query
generated at the time of the request. Details of the request of
this embodiment are also discussed above in the enabler agent
section.

Turning to FIG. 14, a method for retrieving data from a data
server begins at Step 1510, with a data requestor generating a
URL. An HTTP server on the client routes the URL over the
network to the supplier's server, at step 1520. The supplier
returns a data result set in response to the data request, at Step
1530. This result set is returned in a markup language format.
The data collector receives the markup language formatted
result set from the server, and converts the result set into the
particular structured database format used by the client data
base, at step 1540. The final step comprises the data collector
updating the client database with the information from the
result set, at step 1550.
The data collector can generate the URL of step 1510 in

several different ways. The data collector in a preferred
embodiment contains a listing of URLs of the various Suppli
ers that the data collector communicates with. Alternatively,
the data collector prompts a user to provide a URL. In an
embodiment where the server pushes the result set to the
client without needing a request from the client, steps 1510
and 1520 of the method of FIG. 14 are omitted.

In an embodiment where the data collector maintains a list
of URLs of Suppliers, a scheduling is used to automatically
provide URLs for querying supplier databases. The list of
URLs is maintained in a database table, containing a series of
records, one for each URL to be queried exemplary URL
storage table is shown in FIG. 15.
The URL column 1610 contains the URL of the server to be

polled by the data collector. The Sys Descr column 1620
contains optional additional information about the server. The
Last Polled column 1630 contains the date and time the server
was last polled for new data. The Sys Status column 1640
contains a status code indicating the status of the data server
as of the last polled time. In this example, the allowable status
codes are listed in Table 2.

TABLE 2

Code Name Description

1 Online Server functioning normally
2 Offline Server not accessible
3 Disabled Polling for this server is disabled
4 HTTP Error HTTPerror reported by HTTP server
5 XML, Error XML error reported by HTTP server
6 Other Error Misc. errors reported

The key field 1650 is a unique identifier used to link records
to other data in the client system, such as expanded Supplier
related data. The values typically increase monotonically
from one.
Once URL data table is created, the table is populated with

URLs that the buyer wishes to automatically poll for data. The
user can either supply the URL directly to the table, or pref
erably the user uses a web-based form or CGI screen to enter
the URL into the URL table.
Once the URL data table has been populated with at least

one URL, a polling schedule is created. This schedule mini
mally determines the rate at which URLs are polled for new
data. The polling schedule can also be used to perform other
periodic actions such as executing external programs. The
polling schedule is set up by the administrator of the data

US 8,578.266 B2
21

collector based upon the particular needs of the buyer. This
setup is preferably done using a web-based CGI screen.
Once the polling schedule is defined, the actual URL poll

ing is done. An automated process is periodically triggered by
the polling schedule, based upon the parameters defined by
the administrator. The polling function steps through the list
of URLs stored in the URL table, and transmits the URLs to
the HTTP server on the client, thus generating the URL as
specified in step 1510 of FIG. 14.
A method of polling the servers identified by the URLs in

the URL list is shown in FIG. 16. The method commences at
step 1700, when the data collector opens the URL table. The
data collector typically opens the URL table in response to a
command from the polling schedule. Alternatively, the data
collector can open the URL table in response to a command
from a user, or from another process running on the client.
Once the URL table is opened the poller steps through the

entries in the URL table. At step 1710, a check is made to see
if any rows remain to be processed. If all the URLs have been
polled, the method exits at step 1790.
Assuming that there are still URLs to be polled, the method

proceeds to step 1720, where the URL value is read from the
current row of the URL table. At step 1730, this value is
routed to the HTTP server on the client, then over the net
work, and then to the HTTP server at the supplier. Depending
on the status of the supplier's server, one of the different
responses, shown in Table 2, is received back from the server,
at step 1740. A check is made at step 1750, to verify that the
server is on-line and the data is available for transmission. If
the check is successful, then at step 1770 the data transfer is
initiated. If the check fails, then at step 1760 the reason for
failure is recorded in the URL table.
Once the data transfer is initiated, or where the server is

unavailable and an error is returned, the poller then records
the polling time, at step 1780. The method then returns to step
1710, for processing of the next row. The HTTP server resid
ing on the client handles the actual data transfers. Methods of
transferring data using HTTP servers are well known to those
skilled in the art and are not critical to the invention.
As the data collector polls the various data Suppliers it is

collecting data from, a collection of incoming data documents
is created. The data collector converts the incoming data
documents from the markup language format they are trans
mitted in into the structured data storage format used by the
client database. This conversion, noted as step 1540 of FIG.
14, follows the method shown in FIG. 17, as applied to the
exemplary XML data file of FIG. 6.
The data conversion method of FIG. 17 begins at step 1800,

where the data collector receives the XML data file. At step
1805, the data collector parses the query row 502 and identi
fies the data supplier for the data document. At step 1810, the
data collector determines the proper target database for the
data contained in the incoming document. Where there are
multiple possible targets, the data collector determines which
table to store the data in by, for example, checking the value
contained in the query row 502 against values stored in a URL
table stored on the client.

At step 1815, the data collector identifies the data map to
use in associating the contents of the various XML tags with
the corresponding database items. Depending on the particu
lar requirements of the implementation, this data map can be
a simple correlation offield tags to database fields, or it can be
a complex mapping of record tags to records in one table or
many different tables within a large multi-table relational
database system. In simpler systems, the data map is omitted,
and the various tags are directly mapped to database items
bearing the same name. If data type information is provided in

10

15

25

30

35

40

45

50

55

60

65

22
the XML document, this information is also parsed and stored
for future use. Data type information would typically be used
where a new table is being created to store incoming data.
Once the initial setup information has been processed, the

data collector then steps through the file, unpacking the
records and fields stored in the file. At step 1820, a check is
made to see if any records remain to be converted. If all
records have been converted, the method proceeds to step
1863, where any necessary final cleanup is done. Such as
deleting from the client database records that no longer
appear in the XML data document, closing database tables,
storing backup copies of files, etc. The method then termi
nates at step 1865.
Assuming that there are records remaining to be processed,

at step 1825, the current record identifier is read by the data
collector. The data map is also checked at this step, to see if
there is a mapping defined for this tag. The proper target
database item is then searched, at step 1830, for the record
corresponding to the current record tag. A check is made at
step 1835 to see if a corresponding record was found. If no
record corresponds to the current recordtag, then at step 1840
the data collector issues a command to the database instruct
ing the database to create a new record for storing the current
record tag.
Once the new record is created, or if the corresponding

record was found, then the collection of field tags associated
with the current record tag is parsed. At step 1845, a check is
made to see if any field tags remain to be parsed. If all field
tags associated with the record have been parsed, control
passes back to step 1820, where the next record is processed.
Assuming there are fields remaining to be parsed, at step 1850
the field tag is read by the data collector. At step 1855, the data
collector maps the field tag in the XML data document to the
proper field in the database record. Where a data map is
available, the data collector applies the mapping defined in
the data map to make the like between the field tag and the
database field. Otherwise, the data collector will default to
linking the field tag to the database field bearing the same
name as the field tag. Once the proper field has been identi
fied, at step 1860 the field tag value is written to the database
field. Control then passes back to step 1845, where the next
field tag is processed.

Additional functionality can also be incorporated into the
data collector. For example, in an embodiment the data col
lector has an alarm system. This alarm system triggers an
alarm when the content of a database item changes. The
administrator can set up an alarm that is triggered when, for
example, the value of the price field for a record changes, or
a new record is added to the database. Referring to FIG. 17.
the alarm system is invoked either at step 1840 when a new
record is created, at step 1860 when a field value is stored,
assuming the newly stored value is not the same as the old
value, and/or at step 1803 when obsolete data is deleted from
the system.
The alarm system interacts with an action and notification

system. The action and notification system allows the admin
istrator to define one or more actions that are performed when
a particular alarm is triggered. For example, when a new
record is added to the database, an e-mail message is sent to
selected users in the buyer's organization, advising them of
the newly available goods. Other actions include running an
external program, performing an HTTP post operation, or
running an Emily or third-party Script.
The data collector also contains a collection of utility pro

grams to facilitate the setup and operate of the data collector.
In a preferred embodiment, these programs are implemented
as web-based CGI scripts. Exemplary utility programs

US 8,578.266 B2
23

include screens which allow a user to: specify URLs to be
polled, define a data map for data from a particular URL, set
up alarms for the various data items stored in the client data
base, set up notifications that will be triggered by the alarms,
set up system login accounts for other users of the data col
lection system, and perform other activities needed to con
figure and maintain the data collector. Other setup and con
figuration screens can also be provided, depending on the
particular requirements of a given embodiment.

In addition to the administrative tools described above, the
data collection system optionally includes a Suite of database
manipulation tools. In an embodiment, these tools include: a
web-based search engine, whereby a user can search the
database by running a pre-defined query on the client data
base; a web-based screen creator, whereby a user can make
simple markup language screens that display data from the
client database; a script editor, whereby a user can create
Scripts in a scripting language, to execute more complex
operations on the database or to create dynamic screens;
and/or a form creator, whereby a user can create markup
language forms for updating the client database or for posting
client database items to other HTTP servers. These tools can
be provided as part of the data collection system, or they can
be third-party application programs provided by the user.
Exemplary third-party application programs include ASP.
ColdFusion, or ISQL. The particular database manipulation
tools chosen are design choices for those skilled in the art and
are not critical to the invention.

In an embodiment, the data collector also includes security
features, to limit usage to authorized personnel and to safe
guard the database. These features include an administrative/
security console program. This console program is preferably
a non-web-based application that is only available to selected
administrative personnel. For example, the console program
could be program maintained only on a special machine, or
located in a protected directory on the client machine. The
console program may also be a web-based screen or series of
SCCS.

The console program allows administrators to set pass
words and permissions on the various screens of the data
collector and associated toolkits, as well as on any embedded
HTTP server. The console program permits the administrator
to use HTTP authentication, securing any screen or directory
associated with the data collector with a pop-up login inter
face. The console program also includes a utility to set up and
maintain a trusted host list (by IP address or by network). The
trusted host list is a list of host machines that are allowed to
access various files and Screens within the client.
System Architecture Overview

Referring to FIG. 10, in an embodiment, a computer sys
tem 1020 includes a host computer 1022 connected to a
plurality of individual user stations 1024. In an embodiment,
the user stations 1024 each comprise suitable data terminals,
for example, but not limited to, e.g., personal computers,
portable laptop computers, or personal data assistants
("PDAs), which can store and independently run one or
more applications, i.e., programs. For purposes of illustra
tion, some of the user stations 1024 are connected to the host
computer 1022 via a local area network (“LAN) 1025. Other
user stations 1024 are remotely connected to the host com
puter 1022 via a public telephone switched network
(“PSTN) 1028 and/or a wireless network 1030.

In an embodiment, the host computer 1022 operates in
conjunction with a data storage system 1031, wherein the data
storage system 1031 contains a database 1032 that is readily
accessible by the host computer 1022.

10

15

25

30

35

40

45

50

55

60

65

24
In alternative embodiments, the database 1032 may be

resident on the host computer, stored, e.g., in the host com
puter's ROM, PROM, EPROM, or any other memory chip,
and/or its hard disk. In yet alternative embodiments, the data
base 1032 may be read by the host computer 1022 from one or
more floppy disks, flexible disks, magnetic tapes, any other
magnetic medium, CD-ROMs, any other optical medium,
punchcards, papertape, or any other physical medium with
patterns of holes, or any other medium from which a com
puter can read.

In an alternative embodiment, the host computer 1022 can
access two or more databases 1032, stored in a variety of
mediums, as previously discussed.

Referring to FIG. 11, in an embodiment, each user station
1024 and the host computer 1022, each referred to generally
as a processing unit, embodies a general architecture 1102. A
processing unit includes a bus 1103 or other communication
mechanism for communicating instructions, messages and
data, collectively, information, and one or more processors
1104 coupled with the bus 1103 for processing information. A
processing unit also includes a main memory 1108, Such as a
random access memory (RAM) or other dynamic storage
device, coupled to the bus 1103 for storing dynamic data and
instructions to be executed by the processor(s) 1104. The
main memory 1108 also may be used for storing temporary
data, i.e., variables, or other intermediate information during
execution of instructions by the processor(s) 1104.
A processing unit may further include a read only memory

(ROM) 1109 or other static storage device coupled to the bus
1103 for storing static data and instructions for the
processor(s) 1104. A storage device 1110. Such as a magnetic
disk or optical disk, may also be provided and coupled to the
bus 1103 for storing data and instructions for the processor(s)
1104.
A processing unit may be coupled via the bus 1103 to a

display device 1111, such as, but not limited to, a cathode ray
tube (CRT), for displaying information to a user. An input
device 1112, including alphanumeric and other keys, is
coupled to the bus 1103 for communicating information and
command selections to the processor(s) 1104. Another type of
user input device may include a cursor control 1113, Such as,
but not limited to, a mouse, a trackball, a fingerpad, or cursor
direction keys, for communicating direction information and
command selections to the processor(s) 1104 and for control
ling cursor movement on the display 1111.

According to one embodiment of the invention, the indi
vidual processing units perform specific operations by their
respective processor(s) 1104 executing one or more
sequences of one or more instructions contained in the main
memory 1108. Such instructions may be read into the main
memory 1108 from another computer-usable medium, such
as the ROM 1109 or the storage device 1110. Execution of the
sequences of instructions contained in the main memory 1108
causes the processor(s) 1104 to perform the processes
described herein. In alternative embodiments, hard-wired cir
cuitry may be used in place of or in combination with Soft
ware instructions to implement the invention. Thus, embodi
ments of the invention are not limited to any specific
combination of hardware circuitry and/or software.
The term “computer-usable medium, as used herein,

refers to any medium that provides information or is usable by
the processor(s) 1104. Such a medium may take many forms,
including, but not limited to, non-volatile, Volatile and trans
mission media. Non-volatile media, i.e., media that can retain
information in the absence of power, includes the ROM 1109.
Volatile media, i.e., media that can not retain information in
the absence of power, includes the main memory 1108. Trans

US 8,578.266 B2
25

mission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise the bus 1103. Trans
mission media can also take the form of carrier waves; i.e.,
electromagnetic waves that can be modulated, as in fre
quency, amplitude or phase, to transmit information signals.
Additionally, transmission media can take the form of acous
tic or light waves, such as those generated during radio wave
and infrared data communications.
Common forms of computer-usable media include, for

example: a floppy disk, flexible disk, hard disk, magnetic
tape, any other magnetic medium, CD-ROM, any other opti
cal medium, punchcards, papertape, any other physical
medium with patterns of holes, RAM, ROM, PROM (i.e.,
programmable read only memory), EPROM (i.e., erasable
programmable read only memory), including FLASH
EPROM, any other memory chip or cartridge, carrier waves,
or any other medium from which a processor 1104 can
retrieve information.

Various forms of computer-usable media may be involved
in providing one or more sequences of one or more instruc
tions to the processor(s) 1104 for execution. For example, the
instructions may initially be provided on a magnetic disk of a
remote computer (not shown). The remote computer may
load the instructions into its dynamic memory and then transit
them over a telephone line, using a modem. A modem local to
the processing unit may receive the instructions on a tele
phone line and use an infrared transmitter to convert the
instruction signals transmitted over the telephone line to cor
responding infrared signals. An infrared detector (not shown)
coupled to the bus 1103 may receive the infrared signals and
place the instructions therein on the bus 1103. The bus 1103
may carry the instructions to the main memory 1108, from
which the processor(s) 1104 thereafter retrieves and executes
the instructions. The instructions received by the main
memory 1108 may optionally be stored on the storage device
1110, either before or after their execution by the processor(s)
1104.

Each processing unit may also include a communication
interface 1114 coupled to the bus 1103. The communication
interface 1114 provides two-way communication between
the respective user stations 1024 and the host computer 1022.
The communication interface 1114 of a respective processing
unit transmits and receives electrical, electromagnetic or opti
cal signals that include data streams representing various
types of information, including instructions, messages and
data.
A communication link 1115 links a respective user station

1024 and a host computer 1022. The communication link
1115 may be a LAN 1025, in which case the communication
interface 1114 may be a LAN card. Alternatively, the com
munication link 1115 may be a PSTN 1028, in which case the
communication interface 1114 may be an integrated services
digital network (ISDN) card or a modem. Also, as a further
alternative, the communication link 1115 may be a wireless
network 1030.
A processing unit may transmit and receive messages, data,

and instructions, including program, i.e., application, code,
through its respective communication link 1115 and commu
nication interface 1114. Received program code may be
executed by the respective processor(s) 1104 as it is received,
and/or stored in the storage device 1110, or other associated
non-volatile media, for later execution. In this manner, a
processing unit may receive messages, data and/or program
code in the form of a carrier wave.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and

10

15

25

30

35

40

45

50

55

60

65

26
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
reader is to understand that the specific ordering and combi
nation of process actions shown in the process flow diagrams
described herein is merely illustrative, and the invention can
be performed using different or additional process actions, or
a different combination or ordering of process actions. The
specification and drawings are, accordingly, to be regarded in
an illustrative rather than restrictive sense, and the invention
is not to be restricted or limited except in accordance with the
following claims and their legal equivalents.

I claim:
1. A method for processing a markup language file having

one or more portions, the method comprising steps performed
by a processor of:

automatically downloading by said processor a first
markup language file using the hyper text transfer pro
tocol and referencing by said processor the first markup
language file by its uniform resource location (URL) or
by a name of a local file on a system on which a user is
operating, said first markup language file including arbi
trarily named tags;

automatically determining by said processor when the step
of downloading is complete and, upon a determination
that the step of downloading is complete, automatically
parsing by said processor the first markup language file
for one or more portions of the first markup language
file;

automatically determining by said processor when the step
of parsing is complete and, upon a determination that the
step of parsing is complete, automatically storing by said
processor each portion of the first markup language file
into a directory structure containing folders, subfolders,
and files, complying with the structure of the first
markup language file, wherein each of the folders and
Subfolders depend from the tag names in the markup
language file; and

automatically determining by said processor when the step
of storing is complete and, upon a determination that the
step of storing is complete, automatically modifying the
content of markup language documents.

2. The method of claim 1, wherein if there are any relative
uniform resource locations, automatically converting said
relative uniform resource locations into absolute uniform
resource locations.

3. The method of claim 1, comprising providing a com
mand language set allowing selection, viewing and other
processing of the one or more portions of the first markup
language file, the command language set comprising a plu
rality of commands for selection.

4. The method of claim3, wherein said command language
set comprises a command for listing the contents of a folder.

5. The method of claim3, wherein said command language
set comprises a command for changing folders and syntax for
designating Subfolders of folders.

6. The method of claim3, wherein said command language
set comprises a command for listing the contents of a file.

7. The method of claim3, wherein said command language
set comprises a command for listing the attributes of a hyper
text markup language tag.

8. The method of claim3, wherein said command language
set comprises a command for using wildcards in any path
aC.

9. The method of claim3, wherein said command language
set comprises a method for treating the contents of a file as a
local variable when a directory pathname for the files is
referenced.

US 8,578.266 B2
27

10. The method of claim 3, wherein said command lan
guage set comprises a method for treating an attribute of a
folder or file as a local variable when a directory pathname is
referenced.

11. The method of claim 3, wherein said command lan
guage set comprises a command for making new folders in
the directory structure.

12. The method of claim 3, wherein said command lan
guage set comprises a command for making new files in the
directory structure.

13. The method of claim 3, wherein said command lan
guage set comprises a command for copying folders in the
directory structure.

14. The method of claim 3, wherein said command lan
guage set comprises a command for recursively copying fold
ers in the directory structure.

15. The method of claim 3, wherein said command lan
guage set comprises a command for copying files in the
directory structure.

16. The method of claim 3, wherein said command lan
guage set comprises a command for recursively copying files
in the directory structure.

17. The method of claim 3, wherein said command lan
guage set comprises a command for renaming folders in the
directory structure.

18. The method of claim 3, wherein said command lan
guage set comprises a command for renaming files in the
directory structure.

19. The method of claim 3, wherein said command lan
guage set comprises a command for creating new files
through redirection of an output of a command.

20. The method of claim 3, wherein said command lan
guage set comprises a command for setting a file value.

21. The method of claim 3, wherein said command lan
guage set comprises a command for saving the modified first
markup language file to a disk.

22. The method of claim 3, wherein said command lan
guage set comprises a command for outputting the modified
first markup language file to standard output.

23. The method of claim 3, wherein said command lan
guage set comprises allowing creation of one or more execut
able batch files containing a subset of the set of commands.

24. The method of claim 23, comprising defining local
Variables for processing in conjunction with variables and
attributes of the files.

25. The method of claim 24, comprising a command for
creating loop processing.

26. The method of claim 24, comprising a command for
jumping to a new specified location within the batch file and
resuming execution at the new location.

27. The method of claim 3, comprising creating XML
formatted documents that contain references to tag variables,
allowing insertion into a markup language document the con
tents of a folder, subfolder or file from a second markup
language document.

28. The method of claim 1 wherein said URL is read from
a browser via a CGI transaction.

29. The method of claim 1 wherein said URL is read from
a database.

30. The method of claim 1 wherein said URL is embedded
in computer program code.

10

15

25

30

35

40

45

50

55

60

28
31. The method of claim 1 wherein said URL is in a local

variable.
32. The method of claim 1, further comprising steps per

formed by said processor of automatically modifying the
content of at least one web page.

33. The method of claim 1, further comprising steps per
formed by said processor of automatically translating the
content of at least one web page.

34. A system for processing a markup language file having
one or more portions, the system having a computer having at
least a processor, a memory operably coupled to said
memory, said memory being configured for storing a com
puter program executable by said processor, said computer
program comprising:

computer program code for automatically downloading by
said processor a first markup language file using the
hyper text transfer protocol and automatically referenc
ing by said processor the first markup language file by its
uniform resource location (URL) or by a name of a local
file on a system on which a user is operating, said first
markup language file including arbitrarily named tags;

computer program code for automatically determining by
said processor when the steps of downloading and ref
erencing are complete and, upon a determination that the
steps of downloading and referencing are complete,
computer program code for automatically parsing by
said processor the first markup language file for one or
more portions of the first markup language file;

computer program code for automatically determining by
said processor when the step of parsing is complete and,
upon a determination that the step of parsing is com
plete, computer program code for automatically storing
by said processor each portion of the first markup lan
guage file into a directory structure containing folders,
Subfolders, and files, complying with the structure of the
first markup language file, wherein each of the folders
and subfolders depend from the tag names in the markup
language file; and

computer program code for automatically determining by
said processor when the step of storing is complete and,
upon a determination that the step of storing is complete,
automatically modifying the content of markup lan
guage documents.

35. The system of claim34 wherein said computer program
further comprises computer program code for reading said
URL from a browser via a CGI transaction.

36. The system of claim34 wherein said computer program
further comprises computer program code for reading said
URL from a database.

37. The system of claim34 wherein said computer program
further comprises computer program code for reading said
URL embedded in computer program code.

38. The system of claim 34 wherein said URL is in a local
variable.

39. The system of claim34 wherein said computer program
further comprises computer program code for automatically
modifying the content of at least one web page.

40. The system of claim34 wherein said computer program
further comprises computer program code for automatically
translating the content of at least one web page.

ck ck ck ck ck

