Abstract: Coil assemblies and related components and methods are disclosed. The coil assemblies can include two or more embolic coils having one or more different coil parameters.
Coil Assemblies, Components and Methods

TECHNICAL FIELD

[0001] The invention relates to embolic coil assemblies, as well as related components and methods.

BACKGROUND

[0002] Embolic coils can be used to occlude vessels in a variety of medical applications.

SUMMARY

[0003] The invention relates to embolic coil assemblies, as well as related components and methods.

[0004] In one aspect, the invention features a coil assembly that includes at least first and second embolic coils. The first embolic coil has an engaging member, and the second embolic coil has an engaging member that is engaged with the engaging member of the first embolic coil. The first embolic coil differs from the second embolic coil in at least one coil parameter.

[0005] In another aspect, the invention features coil assemblies that include three or more embolic coils. Each of the three embolic coils has an engaging member at each end that is adjacent to another embolic coil. The engaging members of each of the three embolic coils are engaged with an engaging member of an adjacent embolic coil. At least one embolic coil differs from at least one other embolic coil in at least one coil parameter.

[0006] In a further aspect, the invention features a method that includes inserting a coil assembly into a body lumen of a subject. The coil assembly includes at least first and second embolic coils. The first embolic coil has an engaging member, and the second embolic coil has an engaging member that is engaged with the engaging member of the first embolic coil. The first embolic coil differs from the second embolic coil in at least one coil parameter.
In an additional aspect, the invention features a method that includes inserting a coil assembly into a body lumen of a subject. The coil assembly includes three or more embolic coils. Each of the three embolic coils has an engaging member at each end that is adjacent to another embolic coil. The engaging members of each of the three embolic coils are engaged with an engaging member of an adjacent embolic coil. At least one embolic coil differs from at least one other embolic coil in at least one coil parameter.

In another aspect, the invention features a method of deploying embolic coils to a site. The methods include placing a distal end of a catheter at the site; pushing a coil assembly including at least two (e.g., at least three) embolic coils to the distal end of the catheter; and deploying at least two embolic coils in the coil assembly out of the catheter to the site. At least one embolic coil differs from at least another embolic coil in at least one coil parameter.

Embodiments can include one or more of the following.

The coil parameter can be selected from length, inner diameter, outer diameter, stiffness, secondary shape, and degree of fiber coverage.

The coil assembly can include additional embolic coils (e.g., a third, a fourth, a fifth, or more embolic coils), one or more of which may include engaging members for engaging with engaging members of adjacent embolic coils.

The coil assembly can include a sleeve at least partially surrounding the first and second embolic coils, and optionally any additional embolic coils. The engaging member of an embolic coil (e.g., the first embolic coil) can remain engaged with the engaging member of an adjacent embolic coil (e.g., the second embolic coil) when constrained by the sleeve, and can be capable of disengaging from the engaging member of the adjacent embolic coil when unconstrained by the sleeve.
The assembly can be configured such that movement of the second embolic coil in a proximal or distal direction results in movement of the first coil in the same direction.

The assembly can include a pusher wire. The pusher wire can include an engaging member (e.g., at the distal end of the pusher wire) that is capable of engaging with an engaging member of an adjacent embolic coil.

The embolic coils can be deployed by pushing the coil assembly distally until the distal-most embolic coil (e.g., the first embolic coil) is pushed fully out of the catheter or sleeve, where it disengages from the adjacent embolic coil (e.g., the second embolic coil), optionally repositioning the catheter or sleeve, and then pushing the coil assembly distally until the adjacent embolic coil is pushed fully out of the catheter, where it disengages and is deployed. Where there are additional embolic coils, the method can include pushing each of the embolic coils distally out of the catheter or sleeve such that they disengage and deploy, optionally with repositioning of the catheter occurring between coil deployments. One or more of the embolic coils can be pushed partially out of the catheter and then at least partially retracted back into the catheter, e.g., for repositioning. The method can include determining appropriate coil parameters for treatment of the particular defect (e.g., a vascular defect) and selecting at least first and second embolic coils that have the appropriate coil parameters.

Embodiments can include one or more of the following advantages.

In some embodiments, multiple embolic coils can be disposed within a subject without removing the pusher wire from the subject. This can reduce the complexity, e.g., by reducing the number of steps, and/or enhance the precision of disposing one or more embolic coils within a subject.

In certain embodiments, multiple embolic coils can be disposed within a subject using a continuous process. This can reduce the complexity, e.g., by
reducing the number of steps, and/or enhance the precision of disposing one or more embolic coils within a subject.

[0019] In some embodiments, multiple embolic coils can be disposed within a subject with a single push of the pusher wire. This can reduce the complexity, e.g., by reducing the number of steps, and/or enhance the precision of disposing one or more embolic coils within a subject.

[0020] In certain embodiments, at least one of the multiple embolic coils can differ from at least one other multiple embolic in a coil parameter, such as, for example, length, outer diameter, stiffness, secondary shape, and degree of fiber coverage. One or more of the embolic coils can be selected based on the desired use of the embolic coil(s). Optionally, the order of the embolic coils can also be selected based on the desired use of the embolic coils. For example, each embolic coil can be selected and/or ordered so that the multiple embolic coils as a collection form a particular configuration when disposed within the subject.

[0021] Other features and advantages are apparent from the description, drawings and claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a cross-sectional view of an embodiment of a coil assembly. FIG. 2A is a cross-sectional view of an embodiment of a coil assembly illustrating disengagement of the most distal embolic coil. FIG. 2B is a perspective view of an embodiment of a secondary shape mandrel. FIG. 3A is a perspective view of an embodiment of an embolic coil. FIG. 3B is a perspective view of an embodiment of an embolic coil. FIG. 3C is a perspective view of an embodiment of an embolic coil. FIG. 3D is a perspective view of an embodiment of an embolic coil. FIG. 3E is a perspective view of an embodiment of an embolic coil. FIG. 3F is a perspective view of an embodiment of an embolic coil. FIG. 3G is a perspective view of an embodiment of an embolic coil.
FIG. 3H is a perspective view of an embodiment of an embolic coil.
FIG. 4A is a side view of an embodiment of engaging member.
FIG. 4B is a perspective view of the embodiment of FIG. 4A.
FIG. 4C is a partial cross-sectional view of an embodiment of a coil assembly.
FIG. 5A is a side view of an embodiment of engaging member.
FIG. 5B is a perspective view of the embodiment of FIG. 5A.
FIG. 5C is a partial cross-sectional view of an embodiment of a coil assembly.
FIG. 6 is a partial cross-sectional view of an embodiment of a coil assembly.
FIG. 7A is a partial cross-sectional view of an embodiment of a coil assembly.
FIG. 7B is a side view of an embodiment of engaging member.
FIG. 8 is a cross-sectional side view of an embodiment of a coil assembly,
i introducer sheath and catheter.
FIGS. 9A-C illustrate an embodiment of a method.
FIGS. 10A-10C illustrate an embodiment of a method.
Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

[0022] FIG. 1 shows an embolic coil delivery system 8, which includes a sleeve 10, in
this case a catheter. An embolic coil assembly 14 is disposed within a lumen
12 in catheter 10. Embolic coil assembly 14 includes a first embolic coil 16
having a distal end 18, a proximal end 20, and an engaging member 22 at the
proximal end 20. Embolic coil assembly 14 further includes a second embolic
coil 26 having a distal end 28, a proximal end 30, and engaging members 22 at
each end. A pusher wire 46 includes an engaging member 22 at distal end 48.

[0023] The engaging member 22 of the first embolic coil 16 is engaged with the
adjacent engaging member 22 of the second embolic coil 26. Further, the
engaging member 22 at the proximal end 30 of the second embolic coil 26 is
engaged with the engaging member 22 of the pusher wire 46. In such an
arrangement, the pusher wire 46 can be used to move the embolic coil
assembly 14 either proximally or distally within the catheter 10. The catheter
10 prohibits disengagement of the engaged embolic coils 16 and 26 while they
are constrained by the catheter 10. As illustrated in FIG. 2A, when embolic coil assembly 14 is moved distally such that the engaging member 22 at the proximal end 20 of the first embolic coil 16 is no longer constrained by the catheter 10, the first embolic coil 16 disengages from the second embolic coil 26 and is deployed. Similarly, the second embolic coil 26 can be so deployed.

[0024] The embolic coils 16 and 26 differ from each other in at least one coil parameter. For example, the embolic coils may differ from each other in secondary shape. In general, embolic coils have a primary shape and a secondary shape. The primary shape refers generally to the shape of the coil when constrained within the sleeve. The primary shape of an embolic coil generally depends on a number of coil parameters, including, for example, the composition, shape, size, and stiffness of the wire which forms the coil (or braid, where the embolic coil is a braided coil), the outer diameter of the coil, the inner diameter of the coil, and the length of the coil. The secondary shape of an embolic coil refers to the shape of the coil when it is not constrained by the sleeve. As an embolic coil exits the sleeve it can assume its secondary shape. In general, the secondary shape of an embolic coil depends on the process by which the coil was formed, particularly the shape of the mandrel on which the coil was formed and the heat treatment cycle used to shape the coil. For example, a secondary shape mandrel 34, shown in FIG. 2B, can be used to form a primary coil into a secondary shape. The secondary shape mandrel 34 includes a chuck 35 for connecting the mandrel to a device holds the mandrel steady and optionally rotates the mandrel (e.g., a drill). The mandrel 34 includes three shaping locations 36 that have a substantially diamond-shaped cross section. A groove 38 is disposed about the shaping locations 36 to form a continuous, diamond-shaped helix. A primary coil can be positioned in the groove 38 and wound around the shaping locations 36, and subject to a heat cycle to impart the helical diamond shape into the coil. The heat cycle can include, for example, elevating the coil to a temperature of from about 1025° F to about 1300° F (e.g., 1100° F) for a period of time from about 20 minutes to about 40 minutes (e.g., about 30 minutes) to impart the secondary shape into
the coil. An embolic coil shaped by one of the shaping locations 36 would represent the diamond-shaped helical coil 54 illustrated in FIG. 3C, described below. The secondary shape mandrel is typically formed of a material capable of withstanding the heat cycle to which the coil will be subjected without significantly softening or changing shape, e.g., stainless steel. The mandrel 34 can include any number of shaping locations and can simultaneously accommodate multiple embolic coils (e.g., at least 4 coils, at least 8 coils, at least 12 coils, or at least 16 coils). The secondary shape imparted by each of the shaping locations can be the same, or can vary.

[0025] Other coil parameters play a role in the secondary shape of an embolic coil. Examples of such parameters include the composition, shape, size and stiffness of the wire which forms the coil, the inner and/or outer diameter and the length of the coil, the uniformity of the windings of the coil, the pitch of the primary coil windings, and/or the spacing of the primary coil windings. Typically, the primary shape is selected for deliverability and the secondary shape is selected for the application, e.g., the embolization of an aneurysm.

[0026] The embolic coils can have any number of secondary shapes, the choice of which can depend on the particular application in which the embolic coil is to be used. For example, the secondary shape of a first embolic coil and of a second embolic coil can each be independently selected from the group consisting of helical or spiral dual-spiral, dual-diameter spiral, diamond, cone-shaped, random, basket-shaped, straight, C-shaped and J-shaped. As an example, in some of the embodiments, one coil can be have a secondary shape in the form of a basket, while a different coil has a secondary shape in the form of a J. As another example, in certain embodiments one coil can have a helical secondary shape, while a different coil has a diamond or a conical secondary shape. Exemplary secondary shapes are illustrated in FIGS. 3A-3H. For example, FIG. 3A shows an embolic coil 50 with a spiral secondary shape, which can be used, e.g., to provide a supportive framework along a vessel wall and/or to hold other embolic coils that are subsequently delivered.
to the target site. FIG. 3B shows an embolic coil 52 with a vortex or conical secondary shape, which can be used, e.g., to close the center of a target site such as a vessel or an aneurysm that is to be occluded, optionally in conjunction with an embolic coil or coils, for example, a coil of a different secondary shape. As shown in FIG. 3C, embolic coil 54 can have a diamond secondary shape which can be utilized in a fashion similar to coil 52. FIG. 3D shows a dual-spiral secondary shape 55 in which two conical shapes 56 and 57 meet at their smaller ends. FIG. 3E shows an embolic coil 58 with secondary shape in the form of a J, which can be used, for example, to fill remaining space in an aneurysm not filled by other coils. Optionally, a curved portion 59 of embolic coil 58 can be hooked by the operator (e.g., a physician) into a coil or coil mass that has already been deployed at the target site, with a straight part 60 of embolic coil 58 optionally extending into open space to fill the target site. FIG. 3F shows an embolic coil 62 with a secondary shape in the form of a spiral having a first section 63 with a first helical diameter and a second section 64 with a second helical diameter. Such a coil can be used, for example, to provide a supportive framework along a vessel wall and simultaneously occlude or partially occlude the vessel and/or hold other embolic coils that are subsequently delivered to the target site. FIG. 3G shows an embolic coil 66 having a basket-shaped secondary shape, which can be used, for example, to frame an aneurysm and/or hold or provide a support for other embolic coils that are subsequently delivered to the target site. Any of the shapes just described can be achieved using a braided embolic coil; for example, FIG. 3H shows a braided embolic coil 68 having a secondary shape in the form of a C, which may be used, e.g., in filling an aneurysm. It should be noted that these secondary shapes are approximations, and that the coils may be, for example, a diamond-shape or substantially a diamond shape. Other secondary shapes include random or tangled, generally spherical or spheroid, generally elliptical, clover-shaped, box-shaped. Also included are three-dimensional shapes such as these in which a single coil frames the shape and fills or partially fills the shape. For example, a spherical-shaped coil
could have a generally spherical coil frame and be partially filled by the same coil that forms the frame.

[0027] In certain embodiments, the embolic coils may differ in length. Suitable coil lengths generally include lengths of, e.g., at least about 2 cm long (e.g., at least about 8 cm long, at least about 15 cm long, or at least about 20 cm long) and/or at most about 30 cm long (e.g., at most about 20 cm long, at most about 15 cm long, or at most about 8 cm long). A coil can, for example, be from about 2 cm to about 30 cm long (e.g., from about 2 cm to about 8 cm long, from about 8 cm to about 15 cm long, from about 15 cm to about 20 cm long, or from about 20 cm to about 30 cm long). As used here, the length of an embolic coil refers to the length of the embolic coil while restrained in a sleeve (i.e. the length of the coil in its primary configuration or shape).

[0028] Thus possible coil configurations include, for example, a total coil length (the combined length of all of the embolic coils) of about 30 cm split into one 10 cm coil and ten 2 cm coils; two 5 cm coils and ten 2 cm coils; two 10 cm coils and two 5 cm coils; two 10 cm coils and five 2 cm coils; and three 5 cm coils and five 3 cm coils. The restrained (primary) coil length of an embolic coil may be related to the secondary shape of the coil. For example, a diamond-shaped coil can have a length of no more than about 80 mm (e.g., no more than about 60 mm or no more than about 40 mm) and/or can have a length of no less than about 20 mm (e.g., no less than about 40 mm or no less than about 60 mm). A diamond shaped coil can in some embodiments have a length of from about 20 mm to about 80 mm (e.g., from about 40 mm to about 60 mm). As another example, a spiral-shaped coil can have a length of no more than about 70 mm (e.g., no more than about 60 mm, no more than about 50 mm, no more than about 40 mm, no more than about 30 mm, or no more than about 20 mm) and/or can have a length of no less than about 10 mm (e.g., no less than about 20 mm, no less than about 30 mm, no less than about 40 mm, no less than about 50 mm, or no less than about 60 mm). A spiral-shaped coil can in some embodiments have a length from about 10 to about 70 mm (e.g., from about 20 mm to about 60 mm or from about 30 mm to about 50 mm). As
another example, a straight coil can have a length of no more than about 10 mm (e.g., no more than about 7 mm, no more than about 5 mm, or no more than about 3 mm) and/or can have a length of no less than about 2 mm (e.g., no less than about 3 mm, no less than about 5 mm, or no less than about 7 mm). A straight coil can in some embodiments have a length of from about 2 mm to about 10 mm (e.g., from about 3 mm to about 7 mm). As another example, a C-shaped coil can have a length of no more than about 10 mm (e.g., no more than about 7 mm, no more than about 5 mm, or no more than about 3 mm) and/or can have a length of no less than about 2 mm (e.g., no less than about 3 mm, no less than about 5 mm, or no less than about 7 mm). A C-shaped coil can in some embodiments have a length of from about 2 mm to about 10 mm (e.g., from about 3 mm to about 7 mm). As another example, a J-shaped coil can have a length of no more than about 30 mm (e.g., no more than about 25 mm, no more than about 20 mm, or no more than about 15 mm) and/or can have a length of no less than about 10 mm (e.g., no less than about 15 mm, no less than about 20 mm, or no less than about 25 mm). A J-shaped coil can in some embodiments have a length of from about 10 mm to about 30 mm (e.g., from about 15 mm to about 25 mm). As another example, a vortex-shaped or conical-shaped coil can have a length of no more than about 70 mm (e.g., no more than about 67 mm, no more than about 53 mm, or no more than about 35 mm) and/or can have a length of no less than about 30 mm (e.g., no less than about 35 mm, no less than about 53 mm, or no less than about 67 mm). A vortex-shaped or conical-shaped coil can in some embodiments have a length of from about 30 mm to about 70 mm (e.g., from about 35 mm to about 67 mm or from about 35 mm to about 53 mm).

[0029] In general, the length of any one coil can be no more than about 80 mm (e.g., no more than about 70 mm, no more than about 60 mm, no more than about 50 mm, no more than about 40 mm, no more than about 30 mm, no more than about 20 mm, no more than about 10 mm, or no more than about 5 mm) and/or can be no less than about 0.5 mm (e.g., no less than about 5 mm, no less than about 10 mm, no less than about 20 mm, no less than about 30 mm, no less
than about 40 mm, no less than about 50 mm, no less than about 60 mm, or no less than about 70 mm). In some embodiments, the length of any one coil can be from about 0.5 mm to about 80 mm (e.g., from about 5 mm to about 70 mm, from about 10 mm to about 60 mm, from about 20 mm to about 50 mm, or from about 30 mm to about 40 mm). In some embodiments, the length of all the coils, in total, can be no more than about 60 cm (e.g., no more than about 50 cm, no more than about 40 cm, no more than about 30 cm, no more than about 20 cm, no more than about 10 cm, or no more than about 8 cm). Generally, the length of the coils, in total, is selected in part to prevent the amount of force used to push the coil assembly from becoming too large.

[0030] The coils may differ in the diameter of the wire from which they are formed. For example, the coils may be formed of wire, e.g., platinum, platinum/tungsten alloy or stainless steel wire, having a diameter of between about 0.001 inch to about 0.005 inch in diameter. One coil may be formed of wire having a diameter of between about 0.001 inch to about 0.0025 inch in diameter, while another coil may be between about 0.003 inch to about 0.005 inch in diameter. The difference in wire diameter can result in a difference in the outer diameter of the first coil and second coil (taken in their primary shapes), given a constant inner diameter of the first and second coils. For example, the outer diameter of one of the first coil and second coil may be between about 0.013 inch to about 0.015 inch and the other of the first coil and second coil may be between about 0.010 inch to about 0.012 inch while sharing a constant inner diameter.

[0031] The outer diameter of the coils may differ regardless of the inner diameter of the coils. The outer diameter of a coil refers to the outer diameter of the coil when in its secondary configuration. In certain embodiments, the outer diameter of the coils can be no more than about 14 mm (e.g., no more than about 12 mm, no more than about 10 mm, no more than about 8 mm, no more than about 6 mm, no more than about 4 mm, or no more than about 2 mm) and/or can be no less than about 1 mm (e.g., no less than about 2 mm, no less than about 4 mm, no less than about 6 mm, no less than about 8 mm, no less
than about 10 mm, or no less than about 12 mm). In some embodiments, the outer diameter of the embolic coils can be from about 1 mm to about 14 mm (e.g., from about 2 mm to about 12 mm, from about 4 mm and to about 10 mm, or from about 6 mm and to about 8 mm). In some embodiments, one embolic coil can have an outer diameter no more than about 6 mm (e.g., no more than about 5 mm, no more than about 4 mm, no more than about 3 mm, or no more than about 2 mm) while another embolic coil can have an outer diameter of not less than about 8 mm (e.g., not less than about 10 mm or not less than about 12 mm).

[0032] The stiffness of the coils may be varied. It will be recognized that certain other parameters will affect the stiffness of the coils, for example, the composition and the diameter of the wire from which the coil is formed. The diameter of a mandrel around which the coil is formed (in other words, the inner diameter of the coil) may affect the stiffness. Also, additional treatment of the coil once formed can affect the stiffness. For example, subjecting a coil to heat and then cooling the coil may result in stiffening of the coil. Coil stiffness may vary between about 0.001 lbf and about 0.004 lbf. Coil stiffness can be measured by measuring the force required to compress the outer coil 5% of the main secondary coil diameter. For example, a dynamic testing machine, such as is available from Instron Corp., can be utilized to test coil stiffness. A main outer diameter of a secondary coil is removed from the secondary coil and placed in the gripping mechanism of the testing machine such that only half of the diameter (a semi-circle shape) is exposed. The sample is placed directly below an anvil-like fixture that compresses down on the surface of the outer diameter. The force required to compress the sample by 5% of the overall main outer diameter is measured.

[0033] In some embodiments, some or all of the embolic coils may include fibers. Exemplary fiber materials include polyethylene terephthalate (e.g., Dacron®), nylon, collagen and/or cotton fibers, which may promote thrombosis by providing a substrate for clot formation. The degree of fiber coverage may be varied. For example, some of the embolic coils may have fibers while others...
do not. In some embodiments, the embolic coils may each have fibers but
have different amounts of fibers for a given length of coil. The fibers may be,
for example, of the same or different length (generally between about 0.5 mm
to about 5 mm), stiffness, and/or diameter. The spacing between fiber bundles
and the fiber densities (i.e. number of fiber filaments per fiber bundle) are
additional factors capable of variation; one coil can have bundles having
greater numbers of fibers than a different coil but have the bundles spaced
farther apart, resulting in the same number of fibers per length of coil but a
different distribution of fiber coverage on each coil.

While embodiments that contain two embolic coils have been described, the
embolic coil delivery systems can include more than two embolic coils (e.g.,
three or more, four or more, five or more, or six or more embolic coils). In
such embodiments, at least two of the embolic coils differ from each other in
at least one coil parameter. In certain embodiments, three or more, four or
more, five or more, or six or more embolic coils can differ from each other in
at least one coil parameter; further, the coil parameters that differ may be the
same coil parameter or may be two or more different coil parameters (e.g.,
three or more, four or more, five or more, or six or more different coil
parameters).

The embolic coils generally include at least one engaging member for
engaging with an adjacent embolic coil, and may optionally include two
engaging members for engaging with adjacent embolic coils or pusher wires
one either side of the embolic coil. The engaging members generally are
configured such that one member reversibly accepts a portion of a
corresponding member. Configurations include an engaging member having
an open receiving slot generally perpendicular to the longitudinal axis of the
coil and corresponding engaging member having a hook adapted to enter and
exit an open receiving slot generally perpendicular to the longitudinal axis of
the coil, and also include engaging members having an outer portion of a
generally cylindrical shape, a middle portion adapted to accept a generally
cylindrical outer portion of an adjacent corresponding engaging member, and
an inner portion adapted for attaching to the coil (where "outer" refers to the portion of the engaging member distant from the coil to which it is attached and "inner" refers to the portion nearest the coil). The engaging member of one end of a coil may be, but need not be, the same as the engaging member at a different end of the coil, where the coil has two engaging members. Each coil and each engaging member may further include a channel or lumen extending longitudinally, with a control wire extending through the channels to further engage the coils.

[0036] Examples of engaging member embodiments are illustrated in FIGS 4-6. FIGS. 4A and 4B show side and perspective views, respectively, of an embodiment of an engaging member 160. Engaging member 160 is generally cylindrical in shape with a surface 162 which may be cut or milled away to allow the surface to mesh with receiving area 164 on an adjacent engaging member. Connecting end 166 is adapted to be connected to an embolic coil or pusher wire, and maybe any suitable shape, e.g., cylindrical. Vertical mating surface 168 is adapted to meet a similar vertical mating face on an adjacent engaging member to allow one engaging member to pull the other when the first engaging member is pulled, while end surface 170 pushes against mating surface 167 when the first engaging member is pushed. FIG. 4C shows a pair of engaging members as described in FIGS. 4A and 4B when engaged, in this case engaging a pusher wire 178 and an embolic coil 180. FIGS. 5A, 5B and 5C show an interlocking member 172 having an end surface 174 that is ramped. This design can, for example, permit assembly ease in placing the coils into a catheter or introducer sheath.

[0037] In certain embodiments, the engaging members of adjacent embolic coils that are engaged with one another have different configurations from each other. For example, as shown in FIG. 6, each of the pair of engaging members has a differing configuration. A coil 300 has an engaging member 305 which has a slot 310 located thereon. Slot 310 is configured to receive a hook 322 of an engaging member 320, located at an end of coil 400.
In some embodiments, an embolic coil assembly may also include a control wire. The control wire can permit the coils to remain engaged until the control wire is removed and the coil is not constrained by a catheter or introducer sleeve. For example, FIGS. 7A and 7B show an embolic coil assembly 130 in which a coil 128 is engaged with a pusher wire 130 by engaging members 132 in combination with a control wire 106. Each engaging member 132 includes a ramped face 136 with a slot 138 and a longitudinally-extending passageway 140 for receiving control wire 106. Control wire 106 extends through lumens 131 and 133 in the pusher wire 130 and in coil 128, respectively. Engaging members 132 cannot disengage, even when unconstrained by a sleeve, until control wire 106 is pulled out of opening 141 of channel 140. When engaging members 132 are not constrained by a sleeve and control wire 106 has been pulled out of opening 141 of channel 140, the coil 120 will disengage from the pusher wire 130. Such a control wire may be incorporated into any of the other engaging member embodiments.

FIG. 8 illustrates an embolic coil assembly delivery system in which an embolic coil assembly 202 is contained in an introducer sleeve 204 which is separate from catheter 210. Optionally, the introducer sleeve 204 includes a locking portion 206, e.g., a portion of the introducer sleeve that has been twisted under heat to deform and grip the pusher wire and/or coil assembly, to lock a pusher wire 224 and/or coil assembly 202 in sleeve 204. This may prevent the coil assembly from moving longitudinally in the sleeve and possibly out of the sleeve before such is desired. Such a locking portion can be unlocked, e.g., by untwisting the sheath, to allow the pusher wire/coil assembly to move freely.

Generally, the catheter 210 is first inserted into a body lumen of a subject, for example, through an incision into the femoral artery, and moved through the body until its distal end is at a target location, for example, the opening of an aneurysm. Once in place, a distal tip 206 of sleeve 204 is placed into a hub 216 attached to a proximal end 212 of the catheter and the embolic coil assembly is pushed by means of pusher wire 224 into catheter 210 and to the
distal end of the catheter for delivery to the target site. The pusher wire is then
used to push the embolic coil assembly out of the distal tip of the catheter such
that individual coils disengage from the assembly and deploy into the target
area. Alternatively, the pusher wire may be used to hold the coil assembly in
place while the catheter is retracted, thus permitting self-disengagement of
individual coils. Where a control wire is included, it may be retracted either
before or after pushing the coils out of the catheter or retracting the catheter.

[0041] FIGS. 9A-C illustrate an embodiment of a method for treatment of an
aneurysm. A catheter 510 is inserted into the body and guided through a
lumen 502 in a vessel 500 to an opening 506 in an aneurysm 504. An embolic
coil assembly 514 is inserted into the catheter for deployment into the
aneurysm. Embolic coil assembly 514 includes a long coil 536 with an
engaging member 522 at a proximal end 540 and two shorter coils 516 and
526, each having engaging members 522 at each end. The coils are selected to
accomplish particular tasks with respect to treating the aneurysm. For
example, long coil 536 is selected of a sufficient length and secondary shape
to frame the embolism to add strength and prevent the aneurysm from
rupturing, to begin sealing off the opening 506, and to provide a framework to
which shorter coils 516, 526 can attach themselves. Shorter coils 516, 526
have a secondary shape in the form of a J to enable each to be hooked onto
this framework and are sufficiently flexible to enable them to pack together
densely to fill the voids in the aneurysm. In certain embodiments, the J-
shaped coils will themselves be long (e.g., from about 15 mm to about 30 mm)
as well as soft and flexible. This can enable a physician to custom fill vessels
or aneurysms as desired to achieve a desired density of packing.

[0042] A pusher wire 546 with an engaging member 522 at its distal end 548 is
engaged to coil 526. The pusher wire is used to push embolic coil assembly
514 to the distal end 511 of catheter 510 so that the long coil 536 extends
partially out of the catheter. The long coil 536 begins to assume its secondary
shape as it exits the catheter. At this point, should repositioning be desired, the
embolic coil assembly 514 can be retracted into the catheter by pulling back on the pusher wire 546.

[0043] Once in the proper position, as illustrated in FIG. 9B, the embolic coil assembly 514 is pushed sufficiently far distally that the long coil 536 passes entirely out of catheter 510, disengages and assumes its secondary basket shape and frames the aneurysm. At this point, the catheter 510 can be left in position and the remaining coils 516, 526 can be deployed. As seen in FIG. 9C, embolic coils 516 and 526 have a secondary shape in the form of a J to hook onto the long coil 536 and extend into and fill voids in the aneurysm. The pusher wire 546 need not be withdrawn to permit insertion of the additional coils. This may provide for shorter times of treatment and/or less movement of materials through the catheter, given the lack of a requirement for removing the pusher wire, inserting a J-shaped coil, reinserting the pusher wire and pushing the coil to the distal tip of the catheter, and may lead to superior results.

[0044] FIGS. 1OA-C show the occlusion of a vessel 600, with a long coil 636 having a helical secondary shape being first deployed (FIG. 1OA, 1OB), followed by a first coil 616 having a secondary shape in the form of a C that can, for example, hook itself into the helical coil 636, and followed by second coil 626 having a secondary shape in the form of a J such that, for example, the hooked portion of the J shape can attach itself to the helical coil and the straight portion can extend into the opening to occlude the vessel 600. Additional coils could be added to the embolic coil assembly, such as coils having as secondary shapes diamonds, vortexes or the like to better occlude the central part of the vessel and interweave themselves with the helical coil.

[0045] While certain embodiments have been described, others are possible.

[0046] As an example, some or all of the embolic coils in the embolic coil assembly may have secondary shapes other than those disclosed above. For example, other suitable secondary shapes, and methods for creating embolic coils
having such shapes, are discussed in U.S. Patents 4,994,069, 6,231,586, 6,322,576 and 6,635,069, each of which is hereby incorporated by reference.

[0047] As another example, one or more of the embolic coils may include a coating, e.g., a polymer coating, for example, a lubricous coating, that may reduce friction between the coil and the catheter and allow for easier pushing of the coil.

[0048] As an additional example, one or more coils may further include a therapeutic substance, e.g., a drug, for delivery to the target site along with the coil.

[0049] As a further example, the embolic coils may differ in more than one coil parameter, for example, two, three, four, five or more coil parameters may be different.

[0050] As another example, more than two of the embolic coils may differ in one or more coil parameters, for example, three, four, five, or more coils, even each of the coils, may differ from each other in one or more coil parameters.

[0051] At least one of the embolic coils may be made in whole or in part of helical wire.

[0052] At least one of the coils may be made in whole or in part of braided wire.

[0053] At least one of the coils may include a radiopaque marker, which may consist of or be a part of the engaging member.

[0054] At least one of the embolic coils may be formed of a polymer, e.g., a biocompatible polymer. Exemplary polymers include polyethylene, polyurethane, and polypropylene.

[0055] Moreover, while embodiments of the engaging members have been described as being generally cylindrical in cross-sectional shape, the engaging members may have other configurations, for example, pentagonal or hexagonal. Also, the engaging members may have different engaging configurations than those
disclosed above. Other suitable engaging members are described in U.S. Patents 5,250,071, 5,304,195, 5,800,453, 5,800,455, 5,891,130, 5,925,059, 6,099,546, RE37,117, and in WO 94/06503, each of which is hereby incorporated by reference.

[0056] Further, in some embodiments, a saline flush can be used to deliver an embolic coil from the sleeve rather than, or in addition to, the pusher wire.

[0057] Still further, in some embodiments, embolic coils can be used in conjunction with other embolic devices. Other embolic devices include, for example, embolic particles such as those described in U.S. Published Patent Application No. 2003/0185896 Al, published on October 2, 2003, and in U.S. Published Patent Application No. US 2004/0096662 Al, published on May 20, 2004, each of which are hereby incorporated by reference. Other embolic devices also include, for example, embolic gels such as described, for example, in U.S. Patent Application No. 10/927,868, filed on August 27, 2004, and entitled "Embolization", which is hereby incorporated by reference.

[0058] In general, embolic coils may be used to treat a variety of conditions. For example, embolic coils may be used generally to treat neurological and/or peripheral conditions such as to occlude a vessel or to treat an aneurysm, an arteriovenous malformation (AVM), or a traumatic fistula. Embolic coils can be used to embolize a tumor, for example, a liver tumor. Embolic coils can be used in transarterial chemoembolization (TACE).

[0059] Other embodiments are in the claims.
WHAT IS CLAIMED IS:

1. A coil assembly, comprising:

a first embolic coil having an engaging member; and

a second embolic coil having an engaging member engaged with the

engaging member of the first embolic coil,

 wherein the first embolic coil differs from the second embolic coil in at least one coil parameter.

2. The coil assembly of claim 1, wherein the coil parameter is selected

from the group consisting of length, inner diameter, outer diameter, stiffness, secondary shape, and degree of fiber coverage.

3. The coil assembly of claim 1, further comprising a sleeve at least partially surrounding the first and second embolic coils, wherein the engaging member of the first embolic coil remains engaged with the engaging member of the second embolic coil when constrained by the sleeve, and the engaging member of the first embolic coil is capable of disengaging from the engaging member of the second embolic coil when unconstrained by the sleeve.

4. The coil assembly of claim 1, wherein movement of the second embolic coil in a proximal or distal direction results in movement of the first embolic coil in the same direction.

5. The coil assembly of claim 1, further comprising a pusher wire including an engaging member at a distal end, wherein the second embolic coil further comprises an engaging member at its proximal end capable of engaging with the engaging member located at the distal end of the pusher wire.

6. The coil assembly of claim 1, further comprising a third embolic coil having an engaging member at its proximal end, wherein the first embolic coil has an engaging member at its distal end engaged to the engaging member at the proximal end of the third embolic coil.
7. The coil assembly of claim 6, further comprising a sleeve at least partially surrounding the first and third embolic coils, wherein the engaging member of the first embolic coil remains engaged with the engaging member of the third embolic coil when constrained by the sleeve, and the engaging member of the first embolic coil is capable of disengaging from the engaging member of the third embolic coil when unconstrained by the sleeve.

8. The coil assembly of claim 1, wherein the first and second embolic coils differ in length.

9. The coil assembly of claim 8, wherein the first embolic coil is at least 50 cm long and the second embolic coil is no more than 10 cm long.

10. The coil assembly of claim 1, wherein the first and second embolic coils differ in secondary shape.

11. The coil assembly of claim 10, wherein the secondary shapes of the first and second embolic coils are each independently selected from the group consisting of helical, diamond, cone-shaped, random, basket-shaped, straight, and J-shaped.

12. The coil assembly of claim 10, wherein the secondary shape of the first embolic coil is a basket shape and the secondary shape of the second embolic coil is a J-shape.

13. The coil assembly of claim 10, wherein the secondary shape of the first embolic coil is a helical shape and the secondary shape of the second embolic coil is a diamond.

14. The coil assembly of claim 1, wherein the first embolic coil and the second embolic coil differ in stiffness.
15. The coil assembly of claim 1, wherein the first embolic coil and the second embolic coil differ in outer diameter.

16. The coil assembly of claim 15, wherein the outer diameter of one of the first embolic coil and second embolic coil is at least about 0.013 inch and the other of the first embolic coil and second embolic coil is at most about 0.012 inch.

17. The coil assembly of claim 1, further comprising a catheter and a pusher wire, the catheter containing the first embolic coil, the second embolic coil and the pusher wire, the pusher wire being adapted to push the first embolic coil and second embolic coil from a proximal end of the catheter to a distal end of the catheter.

18. The coil assembly of claim 17, further comprising an introducer sheath capable of containing the first and second embolic coils in an engaged state, the introducer sheath adapted to abut the proximal end of the catheter to permit passage of the fist and second embolic coils from the introducer sheath to the catheter without the first and second embolic coils disengaging.

19. A coil assembly, comprising:

 three or more embolic coils, wherein each of the embolic coils has an engaging member at each end that is adjacent to another embolic coil, each engaging member is engaged with an engaging member of an adjacent embolic coil, and at least one embolic coil differs from at least one other embolic coil in at least one coil parameter.

20. The coil assembly of claim 19, wherein the coil parameter is selected from the group consisting of length, inner diameter, outer diameter, stiffness, secondary shape, and degree of fiber coverage.
21. The coil assembly of claim 20, further comprising a sleeve at least partially surrounding the embolic coils, wherein the engaging members of adjacent embolic coils are engaged when constrained by the sleeve, and the engaging members of adjacent embolic coils are capable of disengaging from each other when unconstrained by the sleeve.

22. A method, comprising:
 inserting a coil assembly into a body lumen of a subject, the coil assembly comprising:
 a first embolic coil having an engaging member; and
 a second embolic coil having an engaging member engaged with the engaging member of the first embolic coil,
 wherein the first embolic coil differs from the second embolic coil in at least one coil parameter.

23. The method of claim 22, wherein the coil parameter is selected from the group consisting of length, inner diameter, outer diameter, stiffness, secondary shape, and degree of fiber coverage.

24. The method of claim 22, further comprising:
 introducing a distal end of a catheter into the body lumen of the subject;
 inserting into a proximal end of the catheter the coil assembly;
 deploying the first embolic coil by pushing the coil assembly towards the distal end of the catheter sufficiently far so that the first embolic coil is pushed fully out of the catheter and disengages from the second embolic coil; and
 deploying the second embolic coil by pushing the coil assembly towards the distal end of the catheter sufficiently far so that the second embolic coil is pushed fully out of the catheter.

25. The method of claim 24, wherein the coil assembly further comprises additional embolic coils, and the method further comprises deploying at least one
of the additional embolic coils by pushing the coil assembly towards the distal end of the catheter sufficiently far so that the at least one of the additional embolic coils are pushed fully out of the catheter.

26. The method of claim 22, wherein the coil assembly is pushed by a pusher wire.

27. The method of claim 26, wherein the pusher wire comprises at a distal end an engaging member that is engaged with an engaging member of a proximal-most coil in the coil assembly.

28. The method of claim 27, further comprising the step of at least partially retracting the coil assembly into the catheter.

29. The method of claim 22, further comprising:
 determining appropriate coil parameters for treatment of a vascular defect; and
 selecting first and second embolic coils that have the appropriate coil parameters.

30. The method of claim 29, wherein the vascular defect is an aneurism, and the method further comprises selecting a first coil of sufficient length, stiffness and secondary shape to form a basket when deployed in the aneurism, and selecting a second coil of sufficient length, stiffness and secondary shape to fill at least a portion of the basket when deployed in the aneurism.

31. The method of claim 29, wherein the vascular defect is a vessel that is desired to be occluded, and the method further comprises selecting a first coil of sufficient length, stiffness and secondary shape to form a helical shape when deployed in the vessel and selecting a second coil of sufficient length, stiffness and secondary shape to form a diamond shape within the helical shape of the first coil when deployed in the vessel.
32. The method of claim 22, wherein each coil and each engaging member further includes a longitudinally extending channel, the coil assembly further comprises a control wire extending through the channels, and the method further comprises retracting the control wire to allow the engaging members to disengage.

33. The method of claim 32, wherein the first and second embolic coils are contained in a catheter, and the method further comprises retracting the control wire and then pushing the coil assembly distally sufficiently far so that the first embolic coil is pushed fully out of the catheter.

34. The method of claim 32, wherein the first and second embolic coils are contained in a catheter, and the method further comprises pushing the coil assembly distally sufficiently far so that the first embolic coil is pushed fully out of the catheter and then retracting the control wire.

35. A method of deploying embolic coils at a site within a subject, the method comprising:
 disposing a distal end of a catheter at the site;
 disposing a coil assembly comprising at least two embolic coils at the distal end of the catheter; and
 deploying at least two embolic coils in the coil assembly out of the catheter to the site,
 wherein at least one embolic coil differs from at least another embolic coil in at least one coil parameter.

36. The method of claim 35, wherein the coil parameter is selected from the group consisting of length, inner diameter, outer diameter, stiffness, secondary shape, and degree of fiber coverage.
37. The method of claim 35, wherein each coil in the coil assembly is initially engaged with a coil adjacent to it, and the method further comprises disengaging each coil from the coil adjacent to it.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B17/12

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 159 206 A (OGAWA) 12 December 2000 (2000-12-12) abstract; figures column 5, line 13 - column 6, line 29</td>
<td>1,2,4-6, 8-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 94/06503 A (TARGET THERAPEUTICS, INC.) 31 March 1994 (1994-03-31) abstract; figures page 9, lines 14-23 page 13, lines 10-16</td>
<td>1-9, 17-21</td>
</tr>
<tr>
<td>X</td>
<td>WO 99/42038 A (SCIMED LIFE SYSTEMS, INC.) 26 August 1999 (1999-08-26) abstract; figures page 16, lines 6-11 page 6, line 8 - page 8, line 6</td>
<td>1,2,4-6, 8,9,14, 17-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family.

Date of the actual completion of the international search

9 January 2007

Date of mailing of the international search report

17/01/2007

Name and mailing address of the ISA/Authorized officer

European Patent Office, P B 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel (+31-70) 340-2040, Tx 31 651 epo nl

Fax (+31-70) 340-3016

GIMENEZ BURGOS, R
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/53105 A (MICRUS CORPORATION) 14 September 2000 (2000-09-14) the whole document</td>
<td>1,2,4-6, 8,9,14, 17-20</td>
</tr>
<tr>
<td>A</td>
<td>US 4 994 069 A (RITCHART ET AL.) 19 February 1991 (1991-02-19) abstract; claims; figures</td>
<td>1,10-16, 19</td>
</tr>
</tbody>
</table>
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: 21-ZI because they relate to subject matter not required to be searched by this Authority, namely:

 Rule 39.1(iv) PCT - Method for treatment of the human or animal body by surgery

2. □ Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: .

Remark on Protest □ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 9922651 A1</td>
<td>14-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 203384 T</td>
<td>15-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 669928 B2</td>
<td>27-06-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4857793 A</td>
<td>12-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 684419 B2</td>
<td>11-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5086996 A</td>
<td>11-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2119772 A1</td>
<td>31-03-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 9320840 U1</td>
<td>02-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319088 D1</td>
<td>16-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319088 T2</td>
<td>08-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69330502 D1</td>
<td>30-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69330502 T2</td>
<td>28-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 617632 T1</td>
<td>30-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 617632 T3</td>
<td>12-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0617632 A1</td>
<td>05-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2074972 T1</td>
<td>01-10-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2159802 T3</td>
<td>16-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 942276 A</td>
<td>16-05-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2584956 B2</td>
<td>26-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7502674 T</td>
<td>23-03-1995</td>
</tr>
<tr>
<td>WO 9942038</td>
<td>26-08-1999</td>
<td>AU 2772299 A</td>
<td>06-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2320336 A1</td>
<td>26-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1056938 A1</td>
<td>06-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002503509 T</td>
<td>05-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5941888 A</td>
<td>24-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6221066 B1</td>
<td>24-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001009996 A1</td>
<td>26-07-2001</td>
</tr>
<tr>
<td>US 4994069</td>
<td>19-02-1991</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>