
ES
 2

 7
48

 1
00

 T
3

11 2 748 100

OFICINA ESPAÑOLA DE
PATENTES Y MARCAS

ESPAÑA

19

Número de publicación:

51 Int. CI.:

H04N 19/176 (2014.01)

H04N 19/61 (2014.01)

H04N 19/82 (2014.01)

H04N 19/11 (2014.01)

H04N 19/593 (2014.01)

12 TRADUCCIÓN DE PATENTE EUROPEA T3

96 Fecha de presentación y número de la solicitud europea: 14.07.2011 E 17170581 (7)

97 Fecha y número de publicación de la concesión europea: 04.09.2019 EP 3226560

Intra-predicción de baja complejidad para codificación de vídeo Título:54

30 Prioridad:

14.07.2010 US 364322 P
30.09.2010 US 388541 P

45 Fecha de publicación y mención en BOPI de la
traducción de la patente:
13.03.2020

73 Titular/es:

NTT DOCOMO, INC. (100.0%)
11-1, Nagatacho 2-chome, Chiyoda-ku
Tokyo 100-6150, JP

72 Inventor/es:

BOSSEN, FRANK JAN y
TAN, THIOW KENG

74 Agente/Representante:

MARTÍN BADAJOZ, Irene

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de
la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea
de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se
considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del
Convenio sobre Concesión de Patentes Europeas).



2

DESCRIPCIÓN

Intra-predicción de baja complejidad para codificación de vídeo

Antecedentes de la invención5

1. Texto sobre el campo técnico

La presente invención se refiere a la codificación de vídeo y en particular a la predicción intra-trama en la que se 
predice un bloque de muestra, usando píxeles anteriormente codificados y reconstruidos de la misma trama de 10
vídeo.

2. Información sobre antecedentes

El vídeo digital requiere una gran cantidad de datos para representar todas y cada una de las tramas de una 15
secuencia de vídeo digital (por ejemplo, serie de tramas) de una manera sin comprimir. Para la mayoría de las 
aplicaciones no resulta viable transmitir vídeo digital sin comprimir a través de redes informáticas debido a 
limitaciones del ancho de banda. Además, el vídeo digital sin comprimir requiere una gran cantidad de espacio de 
almacenamiento. El vídeo digital se codifica normalmente de alguna manera para reducir los requisitos de 
almacenamiento y reducir los requisitos de ancho de banda.20

Una técnica para codificar vídeo digital es la predicción inter-trama, o inter-predicción. La inter-predicción aprovecha 
redundancias temporales entre diferentes tramas. Las tramas de vídeo temporalmente adyacentes incluyen 
normalmente bloques de píxeles, que permanecen sustancialmente iguales. Durante el procedimiento de 
codificación, un vector de movimiento interrelaciona el movimiento de un bloque de píxeles en una trama con un 25
bloque de píxeles similares en otra trama. Por consiguiente, no se requiere que el sistema codifique el bloque de
píxeles dos veces, sino que en vez de eso codifica el bloque de píxeles una vez y proporciona un vector de 
movimiento para predecir el otro bloque de píxeles.

Otra técnica para codificar vídeo digital es la predicción intra-trama o intra-predicción. La intra-predicción codifica 30
una trama o una parte de la misma sin referencia a píxeles en otras tramas. La intra-predicción aprovecha 
redundancias espaciales entre bloques de píxeles dentro de una trama. Dado que bloques de píxeles espacialmente 
adyacentes tienen generalmente atributos similares, la eficacia del procedimiento de codificación se mejora haciendo 
referencia a la correlación espacial entre bloques adyacentes. Esta correlación puede aprovecharse mediante 
predicción de un bloque objetivo basándose en modos de predicción usados en bloques adyacentes.35

Sumario de la invención

La presente invención proporciona un procedimiento de intra-predicción único que mejora la eficacia de la 
codificación de vídeo. H.264/AVC usa píxeles de referencia en un límite horizontal ubicado inmediatamente por 40
encima de un bloque objetivo que va a predecirse y píxeles de referencia en un límite vertical ubicado 
inmediatamente a la izquierda del bloque objetivo. En la presente invención, se recupera al menos parte de o bien 
una matriz de píxeles de límite horizontal o bien una matriz de píxeles de límite vertical. Después, se añaden los 
píxeles recuperados a los otros píxeles de límite para extender la matriz de los mismos. Se realiza intra-predicción, 
basándose únicamente en la matriz extendida de píxeles de límite. En una realización de la presente invención, al 45
menos algunos de los píxeles de límite vertical se recuperan y se añaden a los píxeles de límite horizontal para 
extender la matriz de los mismos.

La presente invención elimina el procedimiento de decisión de seleccionar o bien el límite horizontal o bien el límite 
vertical de los que se retiran píxeles de referencia. La presente invención también elimina el procedimiento 50
recurrente de calcular una posición del límite vertical que interseca con una dirección de predicción, en el que el 
procedimiento de cálculo recurrente normalmente incluye una operación de división. La eliminación de estos 
procedimientos permite que el procedimiento de intra-predicción se implemente en arquitecturas de una instrucción, 
múltiples datos (SIMD), mejorando así la eficacia computacional de la codificación de vídeo.

55
La presente invención proporciona un método de codificación de vídeo que incluye las características según la 
reivindicación 1 y un descodificador de vídeo que incluye las características según la reivindicación 2. Los ejemplos 
adicionales denominados realizaciones en la descripción son ejemplos ilustrativos.

Breve descripción de los dibujos60

La figura 1 es un diagrama de bloques que muestra una arquitectura de hardware a modo de ejemplo en la que 
puede implementarse la presente invención.

La figura 2 es un diagrama de bloques que muestra una vista general de un codificador de vídeo al que se le puede 65
aplicar la presente invención.

E17170581
26-09-2019ES 2 748 100 T3

 



3

La figura 3 es un diagrama de bloques que muestra una vista general de un descodificador de vídeo al que se le 
puede aplicar la presente invención.

La figura 4 es un diagrama de bloques que muestra los módulos funcionales de un codificador según un modo de 5
realización de la presente invención.

La figura 5 es un diagrama de flujo que muestra un procedimiento de intra-predicción realizado por un módulo de 
intra-predicción del modo de realización de la presente invención.

10
La figura 6 es un diagrama de bloques que muestra los módulos funcionales de un descodificador según un modo de 
realización de la presente invención.

La figura 7 es un diagrama que muestra direcciones de predicción que ilustran modos de predicción intra_4x4 
soportados en H.264/AVC.15

La figura 8 es un diagrama que muestra las direcciones de predicción propuestas en el documento n.º JCT-VC A119.

La figura 9 es un diagrama de flujo que muestra el procedimiento, propuesto en el documento JCT-VC A119, de
generación de un bloque predicho a lo largo de una de las direcciones de predicción mostradas en la figura 7.20

La figura 10 es un diagrama de flujo que muestra el procedimiento de intra-predicción de baja complejidad realizado 
según un modo de realización de la presente invención.

La figura 11A es una vista esquemática que muestra un bloque de predicción y matrices de píxeles de límite 25
horizontal y vertical.

La figura 11B es una vista esquemática que muestra una matriz de píxeles de límite horizontal extendida con píxeles 
de límite vertical.

30
La figura 12 es un diagrama de flujo que muestra el procedimiento de extender una matriz de píxeles de límite 
horizontal realizado según un modo de realización de la presente invención.

La figura 13 es un diagrama de flujo que muestra otro modo de realización de extender una matriz de píxeles de 
límite horizontal.35

La figura 14 un diagrama de flujo que muestra el procedimiento de intra-predicción de baja complejidad realizado 
según otro modo de realización de la presente invención.

Descripción detallada de los dibujos y los modos de realización actualmente preferidos40

La figura 1 muestra una arquitectura de hardware a modo de ejemplo de un ordenador 100 en el que puede 
implementarse la presente invención. Obsérvese que la arquitectura de hardware mostrada en la figura 1 puede ser 
común tanto en un codificador de vídeo como en un descodificador de vídeo que implementan los modos de 
realización de la presente invención. El ordenador 100 incluye un procesador 101, memoria 102, dispositivo de 45
almacenamiento 105 y uno o más dispositivos de entrada y/o salida (E/S) 106 (o periféricos) que están acoplados en 
comunicación a través de una interfaz 107 local. La interfaz 105 local puede ser, por ejemplo, pero sin limitación, uno 
o más buses u otras conexiones por cable o inalámbricas, tal como se conoce en la técnica.

El procesador 101 es un dispositivo de hardware para ejecutar software, particularmente el almacenado en la 50
memoria 102. El procesador 101 puede ser cualquier procesador fabricado a medida o comercialmente disponible, 
una unidad de procesamiento central (CPU), un procesador auxiliar entre varios procesadores asociados con el 
ordenador 100, un microprocesador basado en semiconductor (en forma de un microchip o conjunto de chips) o
generalmente cualquier dispositivo para ejecutar instrucciones de software.

55
La memoria 102 comprende un medio legible por ordenador que puede incluir uno cualquiera o una combinación de
elementos de memoria volátil (por ejemplo, memoria de acceso aleatorio (RAM, tal como DRAM, SRAM, SDRAM, 
etc.)) y elementos de memoria no volátil (por ejemplo, ROM, disco duro, cinta, CD-ROM, etc.). Además, la memoria
102 puede incorporar medios de almacenamiento electrónicos, magnéticos, ópticos y/o de otros tipos. Un medio 
legible por ordenador puede ser cualquier medio que pueda almacenar, comunicar, propagar o transportar el 60
programa para su uso por o en conexión con el sistema, aparato o dispositivo de ejecución de instrucciones. 
Obsérvese que la memoria 102 puede tener una arquitectura distribuida, en la que diversos componentes están 
situados alejados unos de otros, pero a los que puede acceder el procesador 101.

El software 103 en la memoria 102 puede incluir uno o más programas separados, cada uno de los cuales contiene 65
una lista ordenada de instrucciones ejecutables para implementar funciones lógicas del ordenador 100, tal como se 

E17170581
26-09-2019ES 2 748 100 T3

 



4

describe a continuación. En el ejemplo de la figura 1, el software 103 en la memoria 102 define la funcionalidad de 
codificación de vídeo o descodificación de vídeo del ordenador 100 según la presente invención. Además, aunque 
no se requiere, es posible que la memoria 102 contenga un sistema operativo (S/O) 104. El sistema operativo 104 
controla esencialmente la ejecución de programas informáticos y proporciona planificación, control de entrada-salida, 
gestión de archivos y datos, gestión de memoria y control de comunicación y servicios relacionados.5

El dispositivo de almacenamiento 105 del ordenador 100 puede ser uno de muchos tipos diferentes de dispositivo de 
almacenamiento, incluyendo un dispositivo de almacenamiento estacionario o dispositivo de almacenamiento
portátil. Como ejemplo, el dispositivo de almacenamiento 105 puede ser una cinta magnética, disco, memoria flash, 
memoria volátil o un dispositivo de almacenamiento diferente. Además, el dispositivo de almacenamiento 105 puede 10
ser una tarjeta de memoria digital segura o cualquier otro dispositivo de almacenamiento 105 extraíble.

Los dispositivos de E/S 106 pueden incluir dispositivos de entrada, por ejemplo, pero sin limitación, una pantalla 
táctil, un teclado, ratón, escáner, micrófono u otro dispositivo de entrada. Además, los dispositivos de E/S 106 
también pueden incluir dispositivos de salida, por ejemplo, pero sin limitación, una pantalla u otros dispositivos de 15
salida. Los dispositivos de E/S 106 pueden incluir además dispositivos que se comunican a través tanto de entradas 
como de salidas, por ejemplo, pero sin limitación, un modulador/desmodulador (módem; para acceder a otro 
dispositivo, sistema o red), un transceptor de radiofrecuencia (RF), inalámbrico u otro, una interfaz telefónica, un 
puente, un enrutador u otros dispositivos que funcionan como entrada y como salida.

20
Tal como conocen bien los expertos habituales en la técnica, la compresión de vídeo se logra eliminando 
información redundante en una secuencia de vídeo. Existen muchas normas diferentes de codificación de vídeo, 
ejemplos de las cuales incluyen MPEG-1, MPEG-2, MPEG-4, H.261, H.263 y H.264/AVC. Debe observarse que no 
se pretende limitar la presente invención en cuanto a la aplicación de cualquier norma de codificación de vídeo
específica. Sin embargo, la siguiente descripción de la presente invención se proporciona usando el ejemplo de la 25
norma H.264/AVC. H.264/AVC es la norma de codificación de vídeo más reciente y logra una mejora de rendimiento 
significativa con respecto a las normas de codificación anteriores tales como MPEG-1, MPEG-2, H.261 y H.263.

En H.264/AVC, cada trama o imagen de un vídeo puede descomponerse en varios segmentos. Los segmentos se 
dividen entonces en bloques de 16x16 píxeles denominados macrobloques, que después pueden dividirse 30
adicionalmente en bloques de 8x16, 16x8, 8x8, 4x8, 8x4, hasta 4x4 píxeles. Hay cinco tipos de segmentos
soportados por H.264/AVC. En los segmentos I, todos los macrobloques se codifican usando intra-predicción. En los 
segmentos P, los macrobloques pueden codificarse usando intra o inter-predicción. Los segmentos P solo permiten 
usar una señal de predicción compensada por movimiento (MCP) por macrobloque. En los segmentos B, pueden 
codificarse macrobloques usando intra o inter-predicción. Pueden usarse dos señales de MCP por predicción. Los 35
segmentos SP permiten conmutar segmentos P entre diferentes flujos de vídeo de manera eficaz. Un segmento SI 
es una coincidencia exacta para un segmento SP para acceso aleatorio o recuperación de error, mientras que solo
se usa intra-predicción.

La figura 2 muestra una vista general de un codificador de vídeo al que se le puede aplicar la presente invención. 40
Los bloques mostrados en la figura representan módulos funcionales realizados por el procesador 101 que ejecuta el 
software 103 en la memoria 102. Se alimenta una imagen 200 de trama de vídeo a un codificador de vídeo 201. El 
codificador de vídeo trata la imagen 200 en unidades de macrobloques 200A. Cada macrobloque contiene varios 
píxeles de imagen 200. En cada macrobloque se realiza una transformación en coeficientes de transformación 
seguida por una cuantificación en niveles de coeficientes de transformación. Además, se usa intra-predicción o inter-45
predicción, para no realizar las etapas de codificación directamente en los datos de píxel sino en las diferencias de
los mismos con respecto a valores de píxel predichos, logrando así valores pequeños que se comprimen más 
fácilmente.

Para cada segmento, el codificador 201 genera varios elementos de sintaxis, que forman una versión codificada de50
los macrobloques del segmento respectivo. Todos los elementos de datos residuales en los elementos de sintaxis, 
que están relacionados con la codificación de coeficientes de transformación, tales como los niveles de coeficientes 
de transformación o un mapa de significación que indica niveles de coeficientes de transformación omitidos, se 
denominan elementos de sintaxis de datos residuales. Además de estos elementos de sintaxis de datos residuales, 
los elementos de sintaxis generados por el codificador 201 contienen elementos de sintaxis de información de 55
control que contienen información de control sobre cómo se ha codificado cada macrobloque y cómo tiene que 
descodificarse, respectivamente. En otras palabras, los elementos de sintaxis pueden dividirse en dos categorías. La 
primera categoría, los elementos de sintaxis de información de control, contiene los elementos relacionados con un 
tipo de macrobloque, tipo de sub-macrobloque e información sobre modos de predicción de tipos tanto espacial 
como temporal, así como información de control basada en segmento y basada en macrobloque, por ejemplo. En la 60
segunda categoría, todos los elementos de datos residuales, tales como un mapa de significación que indica las 
ubicaciones de todos los coeficientes significativos dentro de un bloque de coeficientes de transformación
cuantificados y los valores de los coeficientes significativos, que se indican en unidades de niveles correspondientes 
a las etapas de cuantificación, se combinan y se convierten en elementos de sintaxis de datos residuales.

65
El codificador 201 comprende un codificador de entropía que codifica elementos de sintaxis y genera contraseñas 

E17170581
26-09-2019ES 2 748 100 T3

 



5

aritméticas para cada segmento. Cuando se generan las contraseñas aritméticas para un segmento, el codificador
de entropía aprovecha dependencias estadísticas entre los valores de datos de elementos de sintaxis en el flujo de 
bits de la señal de vídeo. El codificador 201 emite una señal de vídeo codificada para un segmento de imagen 200 a 
un descodificador de vídeo 301 mostrado en la figura 3.

5
La figura 3 muestra una vista general de un descodificador de vídeo al que se le puede aplicar la presente invención. 
Asimismo, los bloques mostrados en la figura representan módulos funcionales realizados por el procesador 101 que 
ejecuta el software 103 en la memoria 102. El descodificador de vídeo 301 recibe la señal de vídeo codificada y en 
primer lugar realiza la descodificación de entropía de la señal de vuelta a los elementos de sintaxis. El 
descodificador 301 usa los elementos de sintaxis para reconstruir, macrobloque por macrobloque y después 10
segmento por segmento, las muestras 300A de imagen de píxeles en la imagen 300.

La figura 4 muestra los módulos funcionales del codificador de vídeo 201. Estos módulos funcionales se realizan 
mediante el procesador 101 que ejecuta el software 103 en la memoria 102. Una imagen de vídeo de entrada es una 
trama o un campo de una imagen de vídeo natural (sin comprimir) definida por puntos de muestra que representan 15
componentes de colores originales, tales como crominancia (“croma”) y luminancia (“luma”) (otras componentes son 
posibles, por ejemplo, tono, saturación y valor). La imagen de vídeo de entrada se divide en macrobloques 400 que 
representan cada uno un área de imagen cuadrada que consiste en 16x16 píxeles de la componente luma del color 
de la imagen. La imagen de vídeo de entrada también se reparte en macrobloques que representan cada uno 8x8
píxeles de cada una de las dos componentes de croma del color de la imagen. En el funcionamiento de codificador20
general, los macrobloques introducidos pueden predecirse de manera temporal o espacial usando inter o intra-
predicción. Sin embargo, con el propósito de discusión, se supone que los macrobloques 400 son todos 
macrobloques de tipo segmento I y se someten únicamente a intra-predicción.

La intra-predicción se logra en un módulo de intra-predicción 401, cuyo funcionamiento se analizará con detalle a 25
continuación. El módulo de intra-predicción 401 genera un bloque de predicción 402 a partir de píxeles de límite 
horizontal y vertical de bloques adyacentes, que se han codificado, reconstruido y almacenado anteriormente en una 
memoria de trama 403. Un residuo 404 del bloque de predicción 402, que es la diferencia entre un bloque objetivo 
400 y el bloque de predicción 402, se transforma, ajusta a escala y cuantifica en un módulo de 
transformación/cuantificación 405, usando métodos y técnicas conocidas por los expertos en el campo de la 30
codificación de vídeo. Entonces se someten los coeficientes de transformación cuantificados 406 a codificación de 
entropía en un módulo de codificación de entropía 407 y se transmiten (junto con otra información relacionada con la 
intra-predicción) como una señal de vídeo codificada 408.

El codificador de vídeo 201 contiene funcionalidad de descodificación para realizar la intra-predicción en bloques 35
objetivo. La funcionalidad de descodificación comprende un módulo de cuantificación/transformación inverso 409, 
que realiza la cuantificación inversa y la transformación inversa en los coeficientes de transformación cuantificados 
406 para producir el residuo de predicción descodificado 410, que se añade al bloque de predicción 402. La suma
del residuo de predicción descodificado 410 y el bloque de predicción 402 es un bloque reconstruido 411, que se 
almacena en la memoria de trama 403 y se leerá de la misma y será utilizado por el módulo de intra-predicción 40140
para generar un bloque de predicción 402 para descodificar un siguiente bloque objetivo 400.

La figura 5 es un diagrama de flujo que muestra procedimientos realizados por el módulo de intra-predicción 401. 
Según la norma H.264/AVC, la intra-predicción implica predecir cada píxel del bloque objetivo 400 en una pluralidad
de modos de predicción, usando interpolaciones de píxeles de límite (“píxeles de referencia”) de bloques adyacentes 45
anteriormente codificados y reconstruidos. Los modos de predicción se identifican mediante números enteros 
positivos 0, 1, 2..., cada uno asociado con una instrucción o un algoritmo diferente para predecir píxeles específicos 
en el bloque objetivo 400. El módulo de intra-predicción 401 ejecuta una intra-predicción en los modos de predicción
respectivos y genera diferentes bloques de predicción. En un algoritmo de búsqueda completa (“FS”), cada uno de 
los bloques de predicción generados se compara con el bloque objetivo 400 para encontrar el modo de predicción50
óptimo, lo cual minimiza el residuo de predicción 404 o produce un residuo de predicción 404 menor entre los modos 
de predicción. La identificación del modo de predicción óptimo se comprime y se envía al descodificador 301 con
otros elementos de sintaxis de información de control.

Cada modo de predicción puede describirse por una dirección general de predicción tal como se describe 55
verbalmente (es decir, horizontal hacia arriba, vertical y diagonal hacia abajo y a la izquierda). Una dirección de 
predicción puede describirse gráficamente mediante una dirección angular que se expresa a través de un diagrama
con flechas tal como se muestra en la figura 7. En este tipo de diagrama, puede considerarse que cada flecha
representa una dirección de predicción o un modo de predicción. El ángulo correspondiente a un modo de predicción
tiene una relación general con respecto a la dirección desde la ubicación promedio ponderada de los píxeles de 60
referencia usados para predecir un píxel objetivo en la ubicación de píxel objetivo. Obsérvese que los modos de 
predicción incluyen un modo de predicción DC que no está asociado con ninguna dirección de predicción y, por 
tanto, no puede describirse gráficamente en el diagrama al contrario que los demás modos de predicción. En el 
modo de predicción DC, el bloque de predicción 402 se genera de tal manera que cada píxel en el bloque de 
predicción 402 se establece uniformemente al valor medio de los píxeles de referencia.65

E17170581
26-09-2019ES 2 748 100 T3

 



6

Volviendo a la figura 5, el modo de predicción se inicia en la etapa 501. Entonces se determina, en la etapa 502, si el 
modo de predicción indica la predicción DC. Si es así, el flujo avanza a la etapa 503, en la que se genera un bloque 
de predicción 402 DC con el valor medio de los píxeles de referencia en la etapa 503. Si el modo de predicción
indica otra cosa, se genera un bloque de predicción 402 según la instrucción o el algoritmo asociado con el modo de 
predicción en la etapa 504, cuyo procedimiento se analizará en detalle a continuación. Tras la etapa 503 o 504, el 5
flujo avanza a la etapa 505, en la que se determina si los bloques de predicción se generan para todos los modos de 
predicción. Si se ejecuta intra-predicción en todos los modos de predicción, el flujo avanza a la etapa 506. De lo 
contrario, el modo de predicción se aumenta en la etapa 507 y el flujo vuelve a la etapa 502. En la etapa 506, se 
compara cada uno de los bloques de predicción generados con el bloque objetivo 400 para determinar el modo de 
predicción óptimo, que minimiza el residuo de predicción 404.10

La figura 6 muestra los módulos funcionales del descodificador de vídeo 301. Estos módulos funcionales se realizan 
mediante el procesador 101 que ejecuta el software 103 en la memoria 102. La señal de vídeo codificada del 
codificador 201 es recibida en primer lugar por un descodificador de entropía 600 y se somete a descodificación de 
entropía para obtener de nuevo coeficientes de transformación cuantificados 601. Los coeficientes de transformación 15
cuantificados 601 se someten a cuantificación inversa y se transforman mediante un módulo de 
cuantificación/transformación inverso 602 para generar un residuo de predicción 603. Se notifica a un módulo de 
intra-predicción 604 del modo de predicción seleccionado por el codificador 201. Según el modo de predicción
seleccionado, el módulo de intra-predicción 604 realiza un procedimiento de intra-predicción similar al realizado en 
las etapas 502, 503 y 504 de la figura 5 para generar un bloque de predicción 605, usando píxeles de límite de20
bloques adyacentes anteriormente reconstruidos y almacenados en una memoria 606 de trama. El bloque de 
predicción 605 se añade al residuo de predicción 603 para reconstruir un bloque de señal de vídeo descodificada 
607. El bloque 607 reconstruido se almacena en la memoria 606 de trama para su uso en la predicción de un bloque
siguiente.

25
Se facilitará una descripción detallada de la siguiente manera sobre el procedimiento de la etapa 504 realizado por 
los módulos de intra-predicción 401 y 604 para generar un bloque de predicción en uno de los modos de predicción, 
excepto el modo de predicción DC. H.264/AVC soporta predicción intra_4x4, predicción intra_8x8 y predicción 
intra_16x16. La predicción intra_4x4 se usa comúnmente cuando hay un detalle significativo en la imagen. La 
predicción intra_4x4 predice los dieciséis bloques de luma 4x4 dentro de un macrobloque de manera individual. La 30
predicción intra_4x4 se realiza en nueve modos de predicción, incluyendo un modo de predicción DC. Las 
direcciones de predicción espacial a lo largo de las cuales se realiza la predicción intra_4x4 se muestran en la figura
7. La predicción intra_8x8 se realiza en nueve modos de predicción, incluyendo un modo de predicción DC. La 
predicción intra_16x16 se realiza en cuatro modos de predicción, incluyendo un modo de predicción DC.

35
Estudios recientes muestran que un aumento en el número de direcciones de predicción o un aumento en el número 
de modos de predicción, contribuye generalmente a mejorar la eficacia de compresión en la codificación de vídeo. 
Véanse, por ejemplo, los documentos n.

os
JCT-VC A119 (“Angular intra prediction”) y JCT-VC A124 (“Arbitrary 

direction intra”) presentados al Joint Collaborative Team on Video Coding (JCT-VC). Un aumento en el número de
direcciones de predicción conduce a un aumento en el número de intervalos angulares de direcciones de predicción40
disponibles y, por tanto, a un aumento en el número de candidatos de bloque de predicción. El número aumentado 
de candidatos de bloque de predicción simplemente aumenta las posibilidades de tener un bloque de predicción que 
sea casi el mismo que un bloque objetivo que va a codificarse. La figura 8 es un diagrama que muestra las 
direcciones de predicción propuestas en el documento n.º JCT-VC A119. En la figura 8, los píxeles de referencia
consisten en diecisiete (17) píxeles horizontales y diecisiete (17) píxeles verticales, en los que el píxel superior 45
izquierdo es común a los límites tanto horizontal como vertical. Por tanto, hay 33 direcciones de predicción diferentes 
disponibles para generar píxeles de predicción en un bloque 8x8. JCT-VC A124 propone una intra-predicción
direccional arbitraria en la que el número de direcciones de predicción se ajusta según el tamaño de un bloque que 
va a predecirse.

50
La figura 9 es un diagrama de flujo que muestra el procedimiento, propuesto en el documento JCT-VC A119, de
generar un bloque de predicción a lo largo de una de las direcciones de predicción mostradas en la figura 8. En la 
siguiente descripción del procedimiento, algunos algoritmos se simplifican para facilitar la explicación. Además, el 
procedimiento descrito se limita a la intra-predicción a lo largo de una dirección de predicción que es principalmente 
vertical. La intra-predicción a lo largo de una dirección de predicción que es principalmente horizontal, puede 55
implementarse de manera simétrica al procedimiento mostrado en la figura 9, tal como se demuestra en el software 
proporcionado por el documento JCT-VC A119. Aunque la figura 8 muestra un bloque 8x8 que va a predecirse, el 
procedimiento mostrado en la figura 9 puede expandirse para aplicarse a diversos números de píxeles en diferentes
configuraciones. Por ejemplo, un bloque que va a predecirse puede comprender una matriz 4x4 de píxeles. Un 
bloque de predicción también puede comprender una matriz 8x8 de píxeles, una matriz 16x16 de píxeles o matrices60
más grandes de píxeles. Otras configuraciones de píxeles, incluyendo matrices tanto cuadradas como rectangulares, 
también pueden constituir un bloque de predicción.

En la etapa 900 en la figura 9, se leen píxeles de referencia en límites horizontal y vertical, que se encuentran 
inmediatamente por encima y a la izquierda de un bloque objetivo, respectivamente, a partir de bloques adyacentes 65
que se han codificado, reconstruido y almacenado anteriormente en una memoria de trama, tal como la memoria 

E17170581
26-09-2019ES 2 748 100 T3

 



7

403 mostrada en la figura 4. Los píxeles del límite horizontal se almacenan en un área de memoria denominada
“refH”. Los píxeles del límite vertical se almacenan en otra área de memoria denominada “refV”. Volviendo a la figura
8, los píxeles de referencia se identifican mediante sus coordenadas en un sistema de coordenadas que tiene el 
origen en la posición de píxel superior izquierda en el bloque 8x8. Por tanto, los píxeles de límite horizontal tienen 
coordenadas expresadas por p[x, y] con x = 0, 1...16 e y = 0. Los píxeles de límite vertical tienen coordenadas 5
expresadas por p[x, y] con x = 0, y = 0, -1, -2...-16.

Se supone que los píxeles de límite horizontal almacenados en el área de memoria refH se identifican mediante una 
dirección lógica (x) con x = 0, 1...16 y que los píxeles de límite vertical almacenados en el área de memoria refV se 
identifican igualmente mediante una dirección lógica (y) con y = 0, -1, -2...-16, donde cada píxel se almacena en la 10
dirección que tiene el número en la coordenada de la cual se lee. Por tanto, a medida que se representan 
gráficamente los píxeles horizontales y verticales en la figura 8, puede considerarse que las áreas de memoria refH y
refV se extienden de manera lineal y ortogonal entre sí y que tienen, cada una, una longitud de 2 x size + 1, donde
“size” es un parámetro que representa el tamaño del bloque objetivo. Se supone que “size” tiene un valor igual a una 
potencia entera de 2, tal como 4, 8, 16... Opcionalmente puede aplicarse un filtro de paso bajo, tal como se describe 15
en la sección 8.3.2.2.1 en H.264/AVC, a los píxeles en refH y refV.

En la etapa 901, se establece un contador denominado “row” a cero (“0”). El contador row adopta un valor de desde
0 hasta size e indica una posición de fila de un píxel de predicción en el bloque de predicción. En la etapa 902, se 
calcula un parámetro denominado “pos” mediante angle X (row+1). angle es un parámetro que tiene un número 20
fraccionario en una representación de puntos fijos. Como tal, angle está formado por una parte entera y una parte 
fraccionaria, y la parte fraccionaria consiste en un número fijado de dígitos binarios. angle representa una de las 
direcciones de predicción mostradas en la figura 8. Por ejemplo, “angle = -size” identifica la dirección de predicción
que pasa a través de las coordenadas [x = 0, y = 0] en la figura 8. Un angle que tiene un valor positivo identifica una 
dirección de predicción que interseca únicamente el límite horizontal, mientras que un angle que tiene un valor 25
negativo identifica una dirección de predicción que interseca los límites tanto horizontal como vertical. angle varía 
dentro de un intervalo determinado por el número de direcciones de predicción deseadas que van a usarse. Tal 
como se propone en el documento JCT-VC A124, el número de direcciones de predicción que van a usarse puede 
determinarse según el tamaño de un bloque que va a predecirse. En la siguiente descripción, se supone que angle 
adopta un número fraccionario que varía dentro de un intervalo desde “-size” hasta “size”. Obsérvese que los límites 30
de intervalo de angle pueden definirse con otros valores.

Al igual que angle, el parámetro pos consiste en una parte entera y una parte fraccionaria, y la parte fraccionaria del 
mismo consiste en un número fijado de dígitos binarios, que es igual al logaritmo en base 2 del límite de intervalo de
angle, que puede expresarse mediante log2_size según la suposición anterior de que el límite de intervalo de angle 35
se establece al size. pos identifica la posición de una intersección entre el límite horizontal y la dirección de 
predicción representada por angle. Volviendo a la etapa 902, la operación “pos >> log2_size” identifica un número 
entero número en pos, que se almacena en un parámetro “int”, y la operación “pos & (size - 1)” identifica un número 
fraccionario en pos, que se almacena en un parámetro “frac”. El operador “>>” representa un desplazamiento 
aritmético a la derecha de dígitos binarios. El operador “&” representa la operación “y” relacionada con los bits.40

En la etapa 903, se determina si angle tiene un valor igual o superior a cero (“0”). Si angle tiene un valor igual o 
superior a cero, el flujo avanza a la etapa 904. De lo contrario, el flujo avanza a la etapa 913. angle igual o superior a
cero sugiere que solo es posible basarse en los píxeles de referencia ubicados en el límite horizontal o almacenados 
en refH, para obtener píxeles de predicción en un bloque de predicción. Por otro lado, angle inferior a cero sugiere 45
que se necesitan píxeles de referencia ubicados en el límite vertical o almacenados en refV, para obtener píxeles de 
predicción en el bloque de predicción.

En la etapa 904, se determina si frac es distinto de cero. Si frac es distinto de cero, el flujo avanza a la etapa 905. Si
frac es cero, el flujo avanza a la etapa 906. frac igual a cero sugiere que puede copiarse un píxel de predicción en el 50
bloque de predicción directamente de un píxel de referencia en el límite horizontal. frac distinto de cero sugiere que 
la dirección de predicción interseca el límite horizontal en una posición distinta de un número entero, y se necesita 
una interpolación de más de un píxel de referencia para obtener un píxel de predicción en el bloque de predicción.

En la etapa 905, un contador denominado “col” se establece a cero (“0”). El contador col se usa para abordar un 55
píxel de referencia en refH. En la etapa 907, se recuperan dos píxeles de referencia identificados por “int + col + 1” e
“int + col + 2” de refH. Se calcula el promedio ponderado de estos dos píxeles de referencia o se interpolan con frac 
para obtener un píxel de predicción v. Específicamente, se multiplica un píxel de referencia en refH identificado por 
“int + col + 1” por “size - frac” y se almacena en un parámetro a. Se multiplica un píxel de referencia en refH 
identificado por “int + col + 2” por “frac” y se almacena en un parámetro b. Después se suman los parámetros a y b y60
se dividen entre size, es decir, (size - frac) + frac. La división entre size puede sustituirse por desplazamiento a la 
derecha mediante log2_size. El píxel de predicción obtenido v se almacena en una matriz de áreas de memoria
denominada “pred”, que representa un bloque de predicción para el bloque objetivo en una dirección de predicción
particular. Cada área de memoria en pred se identifica mediante los parámetros row y col. Después, se aumenta col 
en 1 en la etapa 908 y se compara con size en la etapa 909. Siempre que col sea menor que size, se repiten las 65
etapas 907 y 908. Cuando col se vuelve igual a size, el flujo avanza a la etapa 920.

E17170581
26-09-2019ES 2 748 100 T3

 



8

Si se determina que frac es cero en la etapa 904, el contador col se establece a cero en la etapa 906. En la etapa 
910, se copia el píxel de predicción v directamente de refH (int + col + 1) y después se almacena en el área de 
memoria correspondiente en pred. Entonces se aumenta col en 1 en la etapa 911 y se compara con size en la etapa
912. Siempre que col sea menor que size, se repiten las etapas 910 y 911. Cuando col se vuelve igual a size, el flujo 5
avanza a la etapa 920.

Volviendo a la etapa 903, angle inferior a cero requiere píxeles de referencia de refV para obtener píxeles de 
predicción en el bloque de predicción. El contador col se establece a cero en la etapa 913. Entonces se determina, 
en la etapa 914, si “int + col + 1” es inferior a cero. “int + col + 1” igual o superior a cero sugiere que todavía solo es 10
posible basarse en los píxeles de referencia almacenados en refH para obtener píxeles de predicción en el bloque 
de predicción y el flujo avanza a la etapa 915. El procedimiento realizado en la etapa 915 es similar al de la etapa 
907, y no se repetirá la descripción del mismo aquí. Entonces se aumenta col en 1 en la etapa 916 y se compara con 
size en la etapa 917. Siempre que col sea menor que size, se repiten las etapas 914, 915 y 916. Cuando col se 
vuelve igual a size, el flujo avanza a la etapa 920.15

Si se determina que “int + col + 1” es inferior a cero en la etapa 914, se necesitan píxeles de referencia almacenados 
en refV para obtener píxeles de predicción en el bloque de predicción. En la etapa 918, en primer lugar se determina 
la posición de una intersección entre el límite vertical y una dirección de predicción. En la etapa 918, la posición se 
representa mediante pos2. Obsérvese que en la etapa 902, pos, es decir, la posición de una intersección entre el 20
límite horizontal y una dirección de predicción, se determina mediante “angle X (row + 1)”. Dado que angle 
representa una proporción de diferencias horizontal y vertical, se calcula “angle-1 X (col + 1)”, en lugar de “angle x
(row + 1)”, para determinar la posición de una intersección entre el límite vertical y una dirección de predicción. Tal 
como se supuso anteriormente, angle está dentro del intervalo de -size a size (-size ≤ angle ≤ size). Por tanto, una 
proporción  entre angle y size se define mediante:25

Entonces, angle-1 se define mediante:
30

Como tal, pos2 se determina en la etapa 918 con el cuadrado de size multiplicado por col + 1 y después dividido 
entre el valor absoluto de angle de la siguiente manera:

35

Al igual que pos, pos2 tiene un número fraccionario en una representación de puntos fijos que está formado por una 
parte entera y una parte fraccionaria. La parte fraccionaria consiste en el número de dígitos binarios determinados 
por log2_size. La parte entera de pos2 se almacena en un parámetro int2 y la parte fraccionaria de pos2 se 40
almacena en un parámetro frac2. En la etapa 919, se recuperan dos píxeles de referencia identificados mediante 
“int2 + row + 1” e “int2 + row + 2” de refV. Se calcula el promedio ponderado de estos dos píxeles de referencia o se 
interpolan con frac2 para obtener un píxel de predicción . Específicamente, se multiplica un píxel de referencia de 
refV (int2 + row + 1) por “size - frac2” y se almacena en un parámetro a. Se multiplica un píxel de referencia de refV 
(int2 + row + 2) por “frac2” y se almacena en un parámetro b. Entonces se suman los parámetros a y b y se dividen 45
entre size o se desplazan a la derecha mediante log2_size. El píxel de predicción obtenido  se almacena en el área 
de memoria correspondiente de pred. Se repiten las etapas 914, 918, 919 y 916 hasta que col se vuelve igual a size
en la etapa 917.

En la etapa 920, se aumenta row en 1. Entonces se determina, en la etapa 921, si row es menor que size. Siempre 50
que row sea menor que size, se repiten las etapas desde la etapa 902 para obtener un píxel de predicción en el 
bloque de predicción. El flujo termina cuando row se vuelve igual a size en la etapa 921.

Tal como se ha mencionado anteriormente, un aumento en el número de candidatos de bloque de predicción
contribuye a mejorar la eficacia de codificación, mientras que un aumento en el número de candidatos de bloque de 55
predicción conduce a un aumento en la carga de trabajo computacional. Por lo tanto, con el fin de aumentar el 
número de candidatos de bloque de predicción para así mejorar la eficacia de codificación, se necesita revisar el 
procedimiento de generación de un candidato de bloque de predicción para lograr mayor eficacia del procedimiento. 
Al revisar el procedimiento mostrado en la figura 9, pueden identificarse dos cuellos de botella computacionales. El 

E17170581
26-09-2019ES 2 748 100 T3

 



9

primer cuello de botella computacional es la operación de comparación y ramificación de la etapa 914, que se repite 
dentro del bucle. El segundo cuello de botella computacional es la operación de división de la etapa 918, que 
también se repite dentro del bucle.

En la actualidad, se dispone de arquitecturas de una instrucción, múltiples datos (SIMD) para un cálculo eficaz. 5
SIMD permite que ordenadores con múltiples elementos de procesamiento realicen la misma operación con 
múltiples datos simultáneamente. Sin embargo, las arquitecturas SIMD típicas no soportan la implementación de
división y cálculo/ramificación en un bucle y, por lo tanto, no pueden usarse para implementar el procedimiento
mostrado en la figura 9 debido a la inclusión de las etapas 914 y 918 en el bucle, aunque los bucles que comienzan 
en las etapas 907 y 910 son lo suficientemente robustos como para implementarse con SIMD. Por lo tanto, un 10
objetivo de la presente invención es eliminar los cuellos de botella computacionales del procedimiento mostrado en
la figura 9 y proporcionar intra-predicción de baja complejidad, que permite que arquitecturas SIMD típicas 
implementen procesamiento en paralelo a lo largo de todas las direcciones de predicción mostradas en la figura 8.

La figura 10 es un diagrama de flujo que muestra el procedimiento de intra-predicción de baja complejidad según un 15
modo de realización de la presente invención, que está diseñado para sustituir al procedimiento de la figura 9 en la 
implementación del procedimiento en la etapa 504 de la figura 5. En la figura 10, las mismas etapas de 
procedimiento que las realizadas en la figura 9 se identifican con los mismos números de etapa que los usados en la 
figura 9, tales como las etapas 900, 901, 902, 904, 905, 906, 907, 908, 909, 910, 911, 912, 920 y 921. La descripción
de estas etapas comunes no se repite aquí. Las etapas 1000 y 1001 son etapas particulares del procedimiento de la 20
figura 10. Tal como resulta evidente a partir de una comparación con el procedimiento mostrado en la figura 9, el 
procedimiento de la figura 10 elimina la etapa de comparación de la etapa 903 y todas las etapas que se ramifican 
hacia la izquierda desde la etapa 903, que se realizan cuando angle es inferior a cero, eliminando así los cuellos de 
botella computacionales de las etapas 914 y 918.

25
En las etapas 1000 y 1001 añadidas, se determina si angle es igual o superior a -1. Cuando angle es igual o superior 
a -1, los píxeles de referencia ubicados en el límite horizontal son suficientes para generar un píxel de predicción en
el bloque de predicción, y no se necesitan los píxeles de referencia en el límite vertical. Por otro lado, cuando angle 
es inferior a -1, se necesitan píxeles de referencia en el límite vertical para generar un píxel de predicción en el 
bloque de predicción. En la etapa 1001, se extienden píxeles de referencia almacenados en refH en la dirección30
negativa, usando al menos algunos de los píxeles almacenados en refV. Las figuras 11A y 11B son 
representaciones esquemáticas que muestran la extensión de refH realizada en la etapa 1001. En la figura 11A, los 
píxeles de referencia 1102 almacenados en refH son del límite horizontal ubicado por encima del bloque objetivo
1101. Los píxeles de referencia 1103 almacenados en refV son del límite vertical ubicado a la izquierda del bloque 
objetivo 1101. Tal como se muestra en la figura 11B, tras la etapa 1001 de la figura 10, algunos de los píxeles de 35
referencia en refV se copian en refH, y refH tiene una parte extendida 1104 que se extiende en la dirección negativa.

La figura 12 es un diagrama de flujo que muestra detalles del procedimiento realizado en la etapa 1001. En la etapa 
1201, se establece un contador col a -1. Se usa col para identificar una dirección de la parte extendida de refH. En la 
etapa 1202, un píxel de referencia en refV que va a copiarse en la parte extendida de refH se identifica mediante:40

La división en la ecuación anterior es una división de números enteros y la ecuación produce un número entero. La 
ecuación funciona de manera similar al procedimiento de la etapa 918 mostrada en la figura 9. En la etapa 918, se 45
calcula un valor de número entero de pos2 mediante:

Obsérvese que el desplazamiento a la derecha mediante log2_size es equivalente a la división entre size.50

En la etapa 1203, se reduce col en 1. Después se determina, en la etapa 1204, si col es igual a angle. Si col no es
igual a angle, el flujo vuelve a la etapa 1202. Se repiten las etapas 1202 y 1203 hasta que col se vuelve igual a
angle. Por lo tanto, se leen píxeles de referencia de refV en el orden ascendente, o desde la parte superior hasta la 
parte inferior del límite vertical, y se copian en refH también en el orden descendente, o desde la derecha hasta la 55
izquierda del límite horizontal. Además, no todos los píxeles de referencia en refV se copian en refH. Solo los píxeles 
de referencia ubicados dentro del intervalo desde la parte superior hasta la intersección de una dirección de 
predicción se copian de refV en refH.

Volviendo a la figura 10, las etapas de procedimiento comenzando desde la etapa 902 se copian de la figura 9, e60

E17170581
26-09-2019ES 2 748 100 T3

 



10

incluyen las etapas para generar píxeles de predicción ramificadas hacia la derecha desde la etapa de comparación 
de la etapa 903 en la figura 9. Sin embargo, obsérvese que las etapas en la figura 10 para generar píxeles de 
predicción usan refH extendido (una suma de las partes 1102 + 1104 en la figura 11B), mientras que las etapas
correspondientes en la figura 9 usan refH original (parte 1102 en la figura 10A). Dado que refH se extiende en la 
dirección negativa, no se necesita una operación de intra-predicción separada diseñada específicamente para usar 5
píxeles de referencia almacenados en refV, tal como se ramifica hacia la izquierda desde la etapa 903 en la figura 9, 
independientemente del signo de angle.

La figura 13 es un diagrama de flujo que muestra otro modo de realización del procedimiento para extender refH, 
usando píxeles de referencia en refV. El procedimiento mostrado en las figuras 11 y 12 elimina las etapas de cuello 10
de botella de las etapas 914 y 918 mostradas en la figura 9 y, por lo tanto, se espera que mejore la eficacia del 
procedimiento de intra-predicción. El procedimiento mostrado en la figura 13 elimina la operación de división
realizada en la etapa 1202 de la figura 12 del bucle para copiar píxeles de referencia de refV en refH. Al eliminar la 
operación de división del bucle, se espera que el procedimiento mostrado en la figura 13 mejore adicionalmente la 
eficacia del procedimiento de intra-predicción.15

El procedimiento mostrado en la figura 13 sustituye la etapa 1202 de la figura 12 por las etapas 1301 y 1302. La 
etapa 1302 está dentro del bucle para copiar píxeles de referencia de refV en refH, mientras que la etapa 1301 está 
fuera del bucle. La etapa 1301 introduce un nuevo parámetro denominado “InvAngle”. InvAngle se define mediante:

20

La multiplicación por 256 es equivalente a un desplazamiento a la izquierda mediante 8 y garantiza que cada bit 
resultante de la operación de “size/angle” representa el cálculo de identificar un píxel de referencia en refV. En la 
etapa 1302, la dirección de un píxel de referencia en refV que va a copiarse en la parte extendida de refH se 25
identifica mediante:

El resultado de “col x InvAngle” se somete a desplazamiento a la derecha de 8 para deshacer la operación de 30
desplazamiento a la izquierda realizada en la etapa 1301. Obsérvese que la operación de desplazamiento a la 
derecha en la etapa 1302 funciona para redondear a la baja el resultado de “col x InvAngle”. Para redondear al 
número entero más próximo, puede añadirse una compensación de redondeo de 128 al resultado de “col x InvAngle”
antes de realizar la operación de desplazamiento a la derecha. Debe observarse que el número “256” solo es un 
ejemplo, y la etapa 1301 puede adoptar otro número de compensación, preferiblemente una potencia entera de 2, 35
siempre que el número sea lo suficientemente grande como para conservar todos los bits resultantes de la operación
de “size/angle”. Por ejemplo, el número puede ser 64 en la etapa 1301, en lugar de 256, y el número de
desplazamientos a la derecha es 6 en la etapa 1302, en lugar de 8. Si se adopta 64, la compensación de redondeo 
debe ser de 32.

40
El cálculo realizado en la etapa 1301 puede sustituirse por una operación de consulta para reducir adicionalmente la 
carga de trabajo computacional. En otras palabras, se prepara una tabla de consulta que almacena valores de
InvAngle en relación con los valores de angle. La tabla 1 proporcionada a continuación es una tabla a modo de 
ejemplo para la consulta en la etapa 1301:

45
Tabla 1

angle 1 2 3 4 5 6 7 8
InvAngle 2048 1024 683 512 410 341 293 256

Se supone que, en la tabla anterior, size es 8, y angle adopta valores de número entero de desde 1 hasta 8. Sin 
embargo, debe observarse que size no se limita a 8 y puede adoptar otro valor, tal como 4 y 16. Además, angle 50
puede ser un número fraccionario en una representación de puntos fijos tal como se ha definido anteriormente.

Cuando se copia un píxel de referencia de refV a refH en la etapa 1202 de la figura 12 o la etapa 1302 de la figura
13, el píxel de referencia puede pasar a través de un filtro de paso bajo para reducir un posible solapamiento en el 
bloque de predicción. La intensidad del filtro de paso bajo puede variar según el valor de angle. Por ejemplo, cuando 55
angle es igual a -size, puede aplicarse un filtrado de paso bajo débil y cuando angle es igual a -2, puede aplicarse un 
filtrado de paso bajo fuerte.

Tal como se ha explicado anteriormente, no todos los píxeles de referencia en refV se copian en refH. Dado que no 
se copian todos los píxeles de referencia en refV, se pierde algo de información cuando se copian los píxeles. Para 60
mitigar la pérdida de información, puede duplicarse la resolución de píxeles de referencia en refH y refV de modo 
que refH y refV contienen no solo píxeles de bloques anteriormente codificados y reconstruidos, sino también un 

E17170581
26-09-2019ES 2 748 100 T3

 



11

píxel entre dos píxeles reconstruidos adyacentes que se genera interpolando dos píxeles adyacentes. Puede
calcularse simplemente el promedio de dos píxeles adyacentes para generar un píxel de interpolación. El 
procedimiento de interpolación puede realizarse cuando se leen píxeles de referencia en la etapa 900 de la figura 9. 
Cuando se duplica la resolución de píxeles en refH y refV, se necesita ajustar a escala identificaciones de las 
direcciones de píxeles de referencia almacenados en refH y refV, tal como se realiza en las etapas 907, 910, 915 y5
919 en la figura 9, y la etapa 1001 en la figura 10. Por ejemplo, se necesita cambiar “int + col + 1” realizado en las 
etapas 907, 910 y 915 por “int + 2 x col + 2”. Se necesita cambiar “int + col + 2” realizado en las etapas 907, 910, 
915 por “int + 2 x col + 3”. Se necesita cambiar “int2 + row + 1” e “int2 + row + 2” realizados en la etapa 919 por “int2 
+ 2 x row + 2” e “int2 + 2 x row + 3”, respectivamente.

10
En otro modo de realización, el procedimiento de la etapa 1202 en la figura 12 puede cambiarse simplemente por 
“refH [col]←refV [-col]” para simplificar adicionalmente el procedimiento de copiado. Aunque se degrada la exactitud 
de predicción, este modo de realización proporciona la menor complejidad a la operación de intra-predicción.

La figura 11B muestra la parte extendida 1104 añadida a refH. No se necesita que la parte extendida 1104 esté 15
formada con píxeles de referencia de refV. La parte extendida 1104 puede formarse con píxeles de un área de
bloque anteriormente reconstruido, que corresponde espacialmente a la ubicación de la parte extendida 1104. En la 
figura 11B, dado que se extiende en la dirección negativa, refH extendido (partes 1102 y 1104) oscila entre -size + 1 
y 2xsize. El intervalo de refH extendido puede volver a ajustarse a escala para oscilar entre 0 y 3xsize - 1 añadiendo 
una compensación apropiada cuando se abordan píxeles de referencia en refH extendido. Lo mismo es cierto para 20
volver a ajustar a escala el intervalo de refV.

En otro modo de realización, el límite de intervalo de angle puede elegirse libremente. En los modos de realización
anteriores, se supone que angle adopta un valor dentro de un intervalo de desde -size hasta size (-size ≤ angle ≤ 
size). En otras palabras, en los modos de realización anteriores, los límites de intervalo de angle están definidos con25
el tamaño del bloque objetivo. Obsérvese que los límites de intervalo de angle pueden definirse independientemente
del tamaño del bloque objetivo, aunque todavía es preferible que el límite de intervalo se defina con una potencia 
entera de 2, de manera que log2_rangelimit sea un número entero positivo y la ecuación “rangelimit = 1 << 
log2_rangelimit” siga siendo cierta. Al elegir un número grande adecuado para rangelimit, puede establecerse un 
gran número de direcciones de predicción y representarse mediante valores de angle a intervalos angulares lo 30
suficientemente amplios.

Si el límite de intervalo de angle se define independientemente del tamaño del bloque objetivo, se necesita sustituir 
size que aparece en las figuras 9 y 10 por rangelimit y se necesita sustituir log2_size por log2_rangelimit, excepto 
para las etapas 909, 912, 917 y 921. También se necesita sustituir la comparación de “angle ≥ -1” realizada en la 35
etapa 1000 de la figura 10 por “angle x sizel/rangelimit≥ -1” o “angle x size ≥ -rangelimit”. Además, se necesita 
sustituir size que aparece en las etapas 1202 y 1301 en las figuras 12 y 13 por rangelimit y se necesita sustituir la 
comparación de “¿col = angle?” realizada en la etapa 1204 por “¿col = angle x size/rangelimit?”.

Si se introduce rangelimit como límite de intervalo de angle, la tabla 1 (proporcionada anteriormente) puede 40
cambiarse de la siguiente forma:

Tabla 2

angle* 2 5 9 13 17 21 26 32
InvAngle 4096 1638 910 630 482 390 315 256

45
En la tabla 2, se establece rangelimit a 32. Angle* es igual a una aproximación de número entero de “rangelimit x tan 
( x angle/8)”, donde angle = 1, 2, 3, 4, 5, 6, 7 y 8. InvAngle es igual a 256 x rangelimit/angle*. Los valores en la tabla
2 son todos números enteros que se obtienen mediante redondeo al alza. En lugar de redondearse al alza, los 
números pueden redondearse a la baja. En la tabla 3 proporcionada a continuación, InvAngle es igual a 32 x
rangelimitlangle*. Dado que se usa “32” en lugar de “256”, la exactitud de predicción es necesariamente inferior a la 50
de la tabla 2.

Tabla 3

angle* 2 5 9 13 17 21 26 32
InvAngle 512 204 113 78 60 48 39 32

55
La figura 14 es un diagrama de flujo que muestra otro modo de realización que simplifica adicionalmente el 
procedimiento mostrado en la figura 10. El procedimiento mostrado en la figura 10 de copiar píxeles de referencia de
refV en refH se realiza antes de que el flujo entre en el bucle de predicción principal, mientras que el procedimiento
de copiado mostrado en la figura 14 se realiza dentro del bucle de predicción principal. Además, el procedimiento
mostrado en la figura 14 elimina la variable InvAngle. Las etapas 900, 902 y 921 mostradas en la figura 14 son de 60
las etapas correspondientes en la figura 10.

E17170581
26-09-2019ES 2 748 100 T3

 



12

En la etapa 1401, se inicia un contador lastInt a -1. lastInt representa el índice del último píxel que se añadió a refH. 
En la etapa 902, se calcula pos mediante angle x (row + 1). Tal como se ha explicado anteriormente, pos identifica la 
posición de una intersección entre los límites y la dirección de predicción representada por angle. En el contexto de
la figura 9, la etapa 902 produce pos, que identifica la posición de una intersección entre el límite horizontal y la 5
dirección de predicción representada por angle. Además, en la etapa 902, una parte entera en pos se almacena en
int y una parte fraccionaria en pos se almacena en un parámetro “frac”. En la etapa 1402, se determina si int es 
inferior a lastInt. Si int es inferior a lastInt, un píxel de referencia en refV identificado mediante row se copia en refH 
en una dirección identificada mediante “int + 1”. La etapa 1404 consiste en las etapas 904, 905, 906, 907, 908, 909, 
910, 911 y 912 mostradas en las figuras 9 y 10, cuya descripción no se repite aquí. En la etapa 1405, int se copia en 10
lastInt. La operación de copiar int en lastInt puede realizarse en la etapa 1403, en lugar de la etapa 1405.

La operación de copiado en la etapa 1403 da como resultado copiar el mismo píxel que se copió en las etapas 1202 
y 1302, en las que se usa redondeo a la baja en esas etapas. La etapa 1403 puede modificarse para redondear al 
número entero más próximo usando de manera condicional “row + 1”, en lugar de “row”, en la etapa 1403 cuando la 15
posición fraccionaria frac calculada en la etapa 902 es mayor que offset, lo cual se identifica mediante rangelimit + 
(angle >> 1). Obsérvese que angle es negativo y frac es positivo. El uso de “row + 1” da como resultado redondeo al 
alza. Para realizar el incremento condicional de row en 1, se cambia el procedimiento realizado en la etapa 1403 por 
refH[int +1]  refV[row - ((offset - frac) » 31)]; suponiendo que en una aritmética de 32 bits, el desplazamiento a la 
derecha de “offset - frac” da como resultado -1 cuando frac es mayor que offset y da como resultado 0 en caso 20
contrario. Por lo tanto, el identificador de dirección “row - ((offset - frac) >> 31)” se convierte en “row + 1” cuando frac 
es mayor que offset y se convierte en “row” en caso contrario. Si se establece offset a rangelimit, “offset-frac” será 
siempre positivo y, por lo tanto, no se producirá ningún redondeo.

A continuación se enumera el código fuente desarrollado en el lenguaje de programación C++, que implementa el 25
procedimiento mostrado en la figura 14. El código fuente se modifica de la función TComPredictiopn::xPredIntraAng 
encontrada en el archivo TComPrediction.cpp que es parte del software TMuC 0.7 desarrollado por JCT-VC, que 
está disponible en http://hevc.kw.bbc.co.uk/svn/jctvc.a124/tags/0.7.

// Función para obtener las intra-predicciones angulares simplificadas30

Void TComPrediction::xPredIntraAng (Int* pSrc, Int iSrcStride, Pel*& rpDst, Int iDstStride, UInt iWidth, UInt iHeight, 
UInt uiDirMode, Bool bAbove, Bool bLeft) {

Int k, l;35

Int deltaInt, deltaFract, refMainIndex;

Int intraPredAngle = 0;
40

Int absAng = 0;

Int signAng = 0;

Int blkSize = iWidth;45

Bool modeDC = false;

Bool modeVer = false;
50

Bool modeHor = false;

Pel* pDst = rpDst;

// Mapear el índice de modo a la dirección de predicción principal y el ángulo55

if (uiDirMode == 0)

modeDC = true;
60

else if (uiDirMode < 18)

modeVer = true;

else 65

E17170581
26-09-2019ES 2 748 100 T3

 



13

modeHor = true;

intraPredAngle = modeVer ? uiDirMode - 9 : modeHor ? uiDirMode - 25 : 0;

absAng = abs(intrapredAngle);5

signAng = intraPredAngle < 0 ? -1 : 1;

// Establecer desplazamientos de bits y ajustar a escala el parámetro de ángulo a size2
10

Int iAngTable[9] = { 0, 2, 5, 9, 13, 17, 21, 26, 32};

absAng = iAngTable[absAng];

intraPredAngle = signAng * absAng;15

// Realizar la predicción DC

if (modeDC) {
20

Pel dcval = predIntraGetPredValDC(pSrc, iSrcStride, iWidth, iHeight, bAbove, bLeft);

for (k=0;k<blkSize;k++) {

for (l=0;l<blkSize;1++) {25

pDst(k*iDstStride+1] = dcval;

}
30

}

}

// Realizar predicciones angulares35

else {

Pel tmp;
40

Int *pSrcTL = pSrc - iSrcStride - 1;

Int iStepMain = (modeVer) ? 1 : iSrcStride;

if (intraPredAngle == 0) {45

for (k=0;k<blkSize;k++) {

for (l=0;l<blkSize;1++) {
50

pDst [k*iDstStride+1] = pSrcTL[(1+1) * iStepMain];

}

}55

}

else {
60

Int iStepSide = (modeVer) ? iSrcStride 1;

int lastDeltaInt = -1;

Int iOffset = 32 + (intraPredAngle >> 1); // permite redondear a la referencia lateral más próxima65

E17170581
26-09-2019ES 2 748 100 T3

 



14

// Int iOffset = 32; // sin redondeo.

Pel ref [2*MAX_CU_SIZE];

Pel* refMain = ref + ((intraPredAngle < 0) ? blkSize : 0);5

if (intraPredAngle > 0) {

for (k = 0; k < 2*blkSize; k++)
10

refMain[k] = pSrcTL[(k+1) * iStepMain];

}

else {15

for (k = -1; k < blkSize; k++) // el resto se copia más tarde en la etapa 1403, según y cuando se requiera

refMain[k] = pSrcTL[(k+1) * iStepMain];
20

}

for (k = 0; k < blkSize; k++) {

Int deltaPos = (k+1) * intraPredAngle;25

deltaInt = deltaPos >> 5;

deltaFract = deltaPos & (32 - 1);
30

if (deltaInt < lastDeltaInt) { // etapa 1402

lastDeltaInt = deltaInt;

refMain[deltaInt] = pSrcTL[(k-((iOffset-deltaFract)>>31))*iStepSide]; // etapa 140335

}

// etapa 1404
40

if (deltaFract) {

// Realizar filtrado lineal

for (l=0;l<blkSize;1++) {45

refMainIndex = 1+deltaInt;

pDst[k*iDstStride+1] = (Pel) (((32-deltaFract) * refMain[refMainIndex] + deltaFract * 
refMain[refMainlndex+1] + 16) >> 5 );50

}

}
55

else {

// Simplemente copiar las muestras de números enteros

for (l=0;l<<blkSize;l++) {60

pDst[k*iDstStride+1] = refMain[1+deltaInt];

}
65

}

E17170581
26-09-2019ES 2 748 100 T3

 



15

}

}
5

// Dar la vuelta al bloque si esto es el modo horizontal

if (modeHor) {

for (k=0;k<blkSize-1;k++) {10

for (l=k+1;l<blkSize;1++) {

tmp = pDst[k*iDstStride+1];
15

pDst(k*iDstStride+1] = pDst(1*iDstStride+k];

pDst[1*iDstStride+k] = tmp;

}20

}

}
25

}

Aunque sin duda se le ocurrirán muchas alteraciones y modificaciones de la presente invención a un experto 
habitual en la técnica, tras haber leído la descripción anterior debe entenderse que no se pretende de ninguna 
manera que ningún modo de realización particular mostrado y descrito a modo de ilustración se considere limitativo. 30
Por tanto, no se pretende que referencias a detalles de diversos modos de realización limiten el alcance de las 
reivindicaciones, que en sí mismas solo mencionan aquellas características que se consideran esenciales para la 
invención.

E17170581
26-09-2019ES 2 748 100 T3

 



16

REIVINDICACIONES

1. Un método de descodificación de vídeo que comprende etapas ejecutables por ordenador ejecutadas por 
un procesador de un codificador de vídeo para implementar:

5
obtener un valor de un parámetro de ángulo inverso (InvAngle) de una tabla de consulta que indica valores 
de parámetro de ángulo inverso (InvAngle) en relación con los valores de un parámetro de ángulo (angle*) 
que representan una dirección de predicción;

identificar al menos algunos píxeles entre píxeles de límite vertical, mediante el uso de un identificador de 10
píxeles verticales que se expresa mediante una función usando [col x InvAngle], donde col es un contador 
que se reduce en 1 desde -1 hasta (angle* x size / rangelimit), donde size es un tamaño de un bloque 
objetivo y rangelimit define un intervalo del parámetro de ángulo (angle*);

recuperar los al menos algunos píxeles, según una dirección de predicción de intra-predicción en un bloque 15
objetivo que va a predecirse, de una primera área de memoria (refV) en la que se almacena una matriz de 
píxeles de límite vertical, en el que los píxeles de límite vertical se encuentran directamente a la izquierda 
del bloque objetivo;

añadir los píxeles recuperados a una matriz de píxeles de límite horizontal que se encuentra directamente 20
por encima del bloque objetivo, en el que los píxeles recuperados se añaden directamente al extremo 
izquierdo de la matriz de píxeles de límite horizontal para formar una secuencia consecutiva de los píxeles 
de límite horizontal;

almacenar los píxeles añadidos en una segunda área de memoria (refH) en la que se almacena la matriz de 25
píxeles de límite horizontal, para extender la matriz almacenada en la segunda área de memoria (refH) de la 
misma; y

realizar la intra-predicción del bloque objetivo usando solo los píxeles de límite horizontal incluyendo los 
píxeles añadidos, de la matriz extendida almacenada en la segunda área de memoria (refH) como píxeles 30
de referencia,

en el que la identificación de los al menos algunos píxeles entre los píxeles de límite vertical comprende un 
desplazamiento aritmético a la derecha en el que (col x InvAngle + 128) se desplaza a la derecha en 8 
dígitos binarios.35

2. Un descodificador de vídeo que comprende un procesador de un sistema informático y una memoria que 
almacena programas ejecutables por el procesador para:

obtener un valor de un parámetro de ángulo inverso (InvAngle) de una tabla de consulta que indica valores 40
de parámetro de ángulo inverso (InvAngle) en relación con los valores de un parámetro de ángulo (angle*) 
que representan una dirección de predicción;

identificar al menos algunos píxeles entre píxeles de límite vertical, mediante el uso de un identificador de 
píxeles verticales que se expresa mediante una función usando [col x InvAngle], donde col es un contador 45
que se reduce en 1 desde -1 hasta (angle* x size / rangelimit), donde size es un tamaño de un bloque 
objetivo y rangelimit define un intervalo del parámetro de ángulo (angle*);

recuperar los al menos algunos píxeles, según una dirección de predicción de intra-predicción en un bloque 
objetivo que va a predecirse, de una primera área de memoria (refV) en la que se almacena una matriz de 50
píxeles de límite vertical, en el que los píxeles de límite vertical se encuentran directamente a la izquierda 
del bloque objetivo;

añadir los píxeles recuperados a una matriz de píxeles de límite horizontal que se encuentra directamente 
por encima del bloque objetivo, en el que los píxeles recuperados se añaden directamente al extremo 55
izquierdo de la matriz de píxeles de límite horizontal para formar una secuencia consecutiva de los píxeles 
de límite horizontal;

almacenar los píxeles añadidos en una segunda área de memoria (refH) en la que se almacena la matriz de 
píxeles de límite horizontal, para extender la matriz almacenada en la segunda área de memoria (refH) de la 60
misma; y

realizar la intra-predicción del bloque objetivo usando solo los píxeles de límite horizontal incluyendo los 
píxeles añadidos, de la matriz extendida almacenada en la segunda área de memoria (refH) como píxeles 
de referencia,65

E17170581
26-09-2019ES 2 748 100 T3

 



17

en el que la identificación de los al menos algunos píxeles entre los píxeles de límite vertical comprende un 
desplazamiento aritmético a la derecha en el que (col x InvAngle + 128) se desplaza a la derecha en 8 
dígitos binarios.

5

E17170581
26-09-2019ES 2 748 100 T3

 



18

E17170581
26-09-2019ES 2 748 100 T3

 



19

E17170581
26-09-2019ES 2 748 100 T3

 



20

E17170581
26-09-2019ES 2 748 100 T3

 



21

E17170581
26-09-2019ES 2 748 100 T3

 



22

E17170581
26-09-2019ES 2 748 100 T3

 



23

E17170581
26-09-2019ES 2 748 100 T3

 



24

E17170581
26-09-2019ES 2 748 100 T3

 



25

E17170581
26-09-2019ES 2 748 100 T3

 



26

E17170581
26-09-2019ES 2 748 100 T3

 



27

E17170581
26-09-2019ES 2 748 100 T3

 



28

E17170581
26-09-2019ES 2 748 100 T3

 



29

E17170581
26-09-2019ES 2 748 100 T3

 


	Primera Página
	Descripción
	Reivindicaciones
	Dibujos

