ES 2748 100 T3

OFICINA ESPANOLA DE
PATENTES Y MARCAS

@NUmero de publicacion: 2 748 100
GDint. Ci.;

HO4N 19/176 (2014.01)
HO4N 19/61 (2014.01)
HO4N 19/82 (2014.01)
HO4N 19/11 (2014.01)
HO4N 19/593 (2014.01)

@ TRADUCCION DE PATENTE EUROPEA

Fecha de presentacién y nimero de la solicitud europea: 14.07.2011 E 17170581 (7)
Fecha y numero de publicacion de la concesion europea: 04.09.2019 EP 3226560

T3

Tl’tulo: Intra-prediccién de baja complejidad para codificacion de video

Prioridad:

14.07.2010 US 364322 P
30.09.2010 US 388541 P

Fecha de publicacién y mencion en BOPI de la
traduccion de la patente:
13.03.2020

@ Titular/es:

NTT DOCOMO, INC. (100.0%)
11-1, Nagatacho 2-chome, Chiyoda-ku
Tokyo 100-6150, JP

@ Inventor/es:

BOSSEN, FRANK JAN y
TAN, THIOW KENG

Agente/Representante:
MARTIN BADAJOZ, Irene

AViso:En el plazo de nueve meses a contar desde la fecha de publicacién en el Boletin Europeo de Patentes, de
la mencion de concesion de la patente europea, cualquier persona podra oponerse ante la Oficina Europea
de Patentes a la patente concedida. La oposicion debera formularse por escrito y estar motivada; sélo se
considerara como formulada una vez que se haya realizado el pago de la tasa de oposicion (art. 99.1 del

Convenio sobre Concesion de Patentes Europeas).

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

DESCRIPCION
Intra-prediccion de baja complejidad para codificacion de video
Antecedentes de la invencion
1. Texto sobre el campo técnico

La presente invencion se refiere a la codificacion de video y en particular a la prediccion intra-trama en la que se
predice un bloque de muestra, usando pixeles anteriormente codificados y reconstruidos de la misma trama de
video.

2. Informacién sobre antecedentes

El video digital requiere una gran cantidad de datos para representar todas y cada una de las tramas de una
secuencia de video digital (por ejemplo, serie de tramas) de una manera sin comprimir. Para la mayoria de las
aplicaciones no resulta viable transmitir video digital sin comprimir a través de redes informaticas debido a
limitaciones del ancho de banda. Ademas, el video digital sin comprimir requiere una gran cantidad de espacio de
almacenamiento. El video digital se codifica normalmente de alguna manera para reducir los requisitos de
almacenamiento y reducir los requisitos de ancho de banda.

Una técnica para codificar video digital es la prediccion inter-trama, o inter-prediccion. La inter-prediccion aprovecha
redundancias temporales entre diferentes tramas. Las tramas de video temporalmente adyacentes incluyen
normalmente bloques de pixeles, que permanecen sustancialmente iguales. Durante el procedimiento de
codificacién, un vector de movimiento interrelaciona el movimiento de un bloque de pixeles en una trama con un
bloque de pixeles similares en otra trama. Por consiguiente, no se requiere que el sistema codifique el bloque de
pixeles dos veces, sino que en vez de eso codifica el bloque de pixeles una vez y proporciona un vector de
movimiento para predecir el otro bloque de pixeles.

Otra técnica para codificar video digital es la prediccion intra-trama o intra-prediccion. La intra-prediccion codifica
una trama o una parte de la misma sin referencia a pixeles en otras tramas. La intra-prediccién aprovecha
redundancias espaciales entre bloques de pixeles dentro de una trama. Dado que bloques de pixeles espacialmente
adyacentes tienen generalmente atributos similares, la eficacia del procedimiento de codificacion se mejora haciendo
referencia a la correlacion espacial entre bloques adyacentes. Esta correlacion puede aprovecharse mediante
prediccion de un bloque objetivo basandose en modos de prediccion usados en bloques adyacentes.

Sumario de la invenciéon

La presente invencion proporciona un procedimiento de intra-prediccion Unico que mejora la eficacia de la
codificacién de video. H.264/AVC usa pixeles de referencia en un limite horizontal ubicado inmediatamente por
encima de un bloque objetivo que va a predecirse y pixeles de referencia en un limite vertical ubicado
inmediatamente a la izquierda del bloque objetivo. En la presente invencion, se recupera al menos parte de o bien
una matriz de pixeles de limite horizontal o bien una matriz de pixeles de limite vertical. Después, se afiaden los
pixeles recuperados a los otros pixeles de limite para extender la matriz de los mismos. Se realiza intra-prediccion,
basandose Unicamente en la matriz extendida de pixeles de limite. En una realizacién de la presente invencion, al
menos algunos de los pixeles de limite vertical se recuperan y se afiaden a los pixeles de limite horizontal para
extender la matriz de los mismos.

La presente invencion elimina el procedimiento de decision de seleccionar o bien el limite horizontal o bien el limite
vertical de los que se retiran pixeles de referencia. La presente invenciéon también elimina el procedimiento
recurrente de calcular una posicion del limite vertical que interseca con una direccién de prediccion, en el que el
procedimiento de calculo recurrente normalmente incluye una operacion de division. La eliminacion de estos
procedimientos permite que el procedimiento de intra-prediccién se implemente en arquitecturas de una instruccion,
multiples datos (SIMD), mejorando asi la eficacia computacional de la codificacion de video.

La presente invencion proporciona un método de codificacion de video que incluye las caracteristicas segun la
reivindicacion 1 y un descodificador de video que incluye las caracteristicas segun la reivindicacion 2. Los ejemplos
adicionales denominados realizaciones en la descripcion son ejemplos ilustrativos.

Breve descripcion de los dibujos

La figura 1 es un diagrama de bloques que muestra una arquitectura de hardware a modo de ejemplo en la que
puede implementarse la presente invencion.

La figura 2 es un diagrama de bloques que muestra una vista general de un codificador de video al que se le puede
aplicar la presente invencion.

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

La figura 3 es un diagrama de bloques que muestra una vista general de un descodificador de video al que se le
puede aplicar la presente invencion.

La figura 4 es un diagrama de bloques que muestra los médulos funcionales de un codificador segin un modo de
realizacion de la presente invencion.

La figura 5 es un diagrama de flujo que muestra un procedimiento de intra-prediccion realizado por un modulo de
intra-prediccion del modo de realizacién de la presente invencion.

La figura 6 es un diagrama de bloques que muestra los modulos funcionales de un descodificador segin un modo de
realizacion de la presente invencion.

La figura 7 es un diagrama que muestra direcciones de prediccion que ilustran modos de prediccion intra_4x4
soportados en H.264/AVC.

La figura 8 es un diagrama que muestra las direcciones de prediccion propuestas en el documento n.° JCT-VC A119.

La figura 9 es un diagrama de flujo que muestra el procedimiento, propuesto en el documento JCT-VC A119, de
generacion de un bloque predicho a lo largo de una de las direcciones de prediccion mostradas en la figura 7.

La figura 10 es un diagrama de flujo que muestra el procedimiento de intra-prediccion de baja complejidad realizado
segun un modo de realizacion de la presente invencion.

La figura 11A es una vista esquematica que muestra un bloque de prediccion y matrices de pixeles de limite
horizontal y vertical.

La figura 11B es una vista esquematica que muestra una matriz de pixeles de limite horizontal extendida con pixeles
de limite vertical.

La figura 12 es un diagrama de flujo que muestra el procedimiento de extender una matriz de pixeles de limite
horizontal realizado segin un modo de realizacion de la presente invencion.

La figura 13 es un diagrama de flujo que muestra otro modo de realizaciéon de extender una matriz de pixeles de
limite horizontal.

La figura 14 un diagrama de flujo que muestra el procedimiento de intra-prediccion de baja complejidad realizado
segun otro modo de realizacion de la presente invencion.

Descripcion detallada de los dibujos y los modos de realizacion actualmente preferidos

La figura 1 muestra una arquitectura de hardware a modo de ejemplo de un ordenador 100 en el que puede
implementarse la presente invencion. Obsérvese que la arquitectura de hardware mostrada en la figura 1 puede ser
comun tanto en un codificador de video como en un descodificador de video que implementan los modos de
realizacion de la presente invencion. El ordenador 100 incluye un procesador 101, memoria 102, dispositivo de
almacenamiento 105 y uno o mas dispositivos de entrada y/o salida (E/S) 106 (o periféricos) que estan acoplados en
comunicacion a través de una interfaz 107 local. La interfaz 105 local puede ser, por ejemplo, pero sin limitacion, uno
0 mas buses u otras conexiones por cable o inalambricas, tal como se conoce en la técnica.

El procesador 101 es un dispositivo de hardware para ejecutar software, particularmente el almacenado en la
memoria 102. El procesador 101 puede ser cualquier procesador fabricado a medida o comercialmente disponible,
una unidad de procesamiento central (CPU), un procesador auxiliar entre varios procesadores asociados con el
ordenador 100, un microprocesador basado en semiconductor (en forma de un microchip o conjunto de chips) o
generalmente cualquier dispositivo para ejecutar instrucciones de software.

La memoria 102 comprende un medio legible por ordenador que puede incluir uno cualquiera o una combinacion de
elementos de memoria volatil (por ejemplo, memoria de acceso aleatorio (RAM, tal como DRAM, SRAM, SDRAM,
etc.)) y elementos de memoria no volatil (por ejemplo, ROM, disco duro, cinta, CD-ROM, etc.). Ademas, la memoria
102 puede incorporar medios de almacenamiento electrénicos, magnéticos, opticos y/o de otros tipos. Un medio
legible por ordenador puede ser cualquier medio que pueda almacenar, comunicar, propagar o transportar el
programa para su uso por O en conexion con el sistema, aparato o dispositivo de ejecucion de instrucciones.
Obsérvese que la memoria 102 puede tener una arquitectura distribuida, en la que diversos componentes estan
situados alejados unos de otros, pero a los que puede acceder el procesador 101.

El software 103 en la memoria 102 puede incluir uno o mas programas separados, cada uno de los cuales contiene
una lista ordenada de instrucciones ejecutables para implementar funciones légicas del ordenador 100, tal como se

3

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

describe a continuacion. En el ejemplo de la figura 1, el software 103 en la memoria 102 define la funcionalidad de
codificacion de video o descodificacion de video del ordenador 100 segun la presente invencion. Ademas, aunque
no se requiere, es posible que la memoria 102 contenga un sistema operativo (S/O) 104. El sistema operativo 104
controla esencialmente la ejecucion de programas informaticos y proporciona planificacion, control de entrada-salida,
gestion de archivos y datos, gestion de memoria y control de comunicacion y servicios relacionados.

El dispositivo de almacenamiento 105 del ordenador 100 puede ser uno de muchos tipos diferentes de dispositivo de
almacenamiento, incluyendo un dispositivo de almacenamiento estacionario o dispositivo de almacenamiento
portatil. Como ejemplo, el dispositivo de almacenamiento 105 puede ser una cinta magnética, disco, memoria flash,
memoria volatil o un dispositivo de almacenamiento diferente. Ademas, el dispositivo de almacenamiento 105 puede
ser una tarjeta de memoria digital segura o cualquier otro dispositivo de almacenamiento 105 extraible.

Los dispositivos de E/S 106 pueden incluir dispositivos de entrada, por ejemplo, pero sin limitacién, una pantalla
tactil, un teclado, ratén, escaner, micréfono u otro dispositivo de entrada. Ademas, los dispositivos de E/S 106
también pueden incluir dispositivos de salida, por ejemplo, pero sin limitacion, una pantalla u otros dispositivos de
salida. Los dispositivos de E/S 106 pueden incluir ademas dispositivos que se comunican a través tanto de entradas
como de salidas, por ejemplo, pero sin limitacion, un modulador/desmodulador (médem; para acceder a otro
dispositivo, sistema o red), un transceptor de radiofrecuencia (RF), inalambrico u otro, una interfaz telefénica, un
puente, un enrutador u otros dispositivos que funcionan como entrada y como salida.

Tal como conocen bien los expertos habituales en la técnica, la compresion de video se logra eliminando
informacion redundante en una secuencia de video. Existen muchas normas diferentes de codificacion de video,
ejemplos de las cuales incluyen MPEG-1, MPEG-2, MPEG-4, H.261, H.263 y H.264/AVC. Debe observarse que no
se pretende limitar la presente invencién en cuanto a la aplicaciéon de cualquier norma de codificaciéon de video
especifica. Sin embargo, la siguiente descripcion de la presente invencion se proporciona usando el ejemplo de la
norma H.264/AVC. H.264/AVC es la norma de codificacion de video mas reciente y logra una mejora de rendimiento
significativa con respecto a las normas de codificacion anteriores tales como MPEG-1, MPEG-2, H.261 y H.263.

En H.264/AVC, cada trama o imagen de un video puede descomponerse en varios segmentos. Los segmentos se
dividen entonces en bloques de 16x16 pixeles denominados macrobloques, que después pueden dividirse
adicionalmente en bloques de 8x16, 16x8, 8x8, 4x8, 8x4, hasta 4x4 pixeles. Hay cinco tipos de segmentos
soportados por H.264/AVC. En los segmentos |, todos los macrobloques se codifican usando intra-prediccion. En los
segmentos P, los macrobloques pueden codificarse usando intra o inter-prediccion. Los segmentos P solo permiten
usar una sefial de prediccién compensada por movimiento (MCP) por macrobloque. En los segmentos B, pueden
codificarse macrobloques usando intra o inter-prediccién. Pueden usarse dos sefales de MCP por prediccion. Los
segmentos SP permiten conmutar segmentos P entre diferentes flujos de video de manera eficaz. Un segmento Sl
es una coincidencia exacta para un segmento SP para acceso aleatorio o recuperacion de error, mientras que solo
se usa intra-prediccion.

La figura 2 muestra una vista general de un codificador de video al que se le puede aplicar la presente invencion.
Los bloques mostrados en la figura representan modulos funcionales realizados por el procesador 101 que ejecuta el
software 103 en la memoria 102. Se alimenta una imagen 200 de trama de video a un codificador de video 201. El
codificador de video trata la imagen 200 en unidades de macrobloques 200A. Cada macrobloque contiene varios
pixeles de imagen 200. En cada macrobloque se realiza una transformacion en coeficientes de transformacion
seguida por una cuantificacion en niveles de coeficientes de transformacion. Ademas, se usa intra-prediccion o inter-
prediccién, para no realizar las etapas de codificacion directamente en los datos de pixel sino en las diferencias de
los mismos con respecto a valores de pixel predichos, logrando asi valores pequefios que se comprimen mas
facilmente.

Para cada segmento, el codificador 201 genera varios elementos de sintaxis, que forman una version codificada de
los macrobloques del segmento respectivo. Todos los elementos de datos residuales en los elementos de sintaxis,
que estan relacionados con la codificacion de coeficientes de transformacion, tales como los niveles de coeficientes
de transformacion o un mapa de significacion que indica niveles de coeficientes de transformacién omitidos, se
denominan elementos de sintaxis de datos residuales. Ademas de estos elementos de sintaxis de datos residuales,
los elementos de sintaxis generados por el codificador 201 contienen elementos de sintaxis de informacion de
control que contienen informacidon de control sobre como se ha codificado cada macrobloque y cémo tiene que
descaodificarse, respectivamente. En otras palabras, los elementos de sintaxis pueden dividirse en dos categorias. La
primera categoria, los elementos de sintaxis de informacién de control, contiene los elementos relacionados con un
tipo de macrobloque, tipo de sub-macrobloque e informacién sobre modos de prediccién de tipos tanto espacial
como temporal, asi como informacién de control basada en segmento y basada en macrobloque, por ejemplo. En la
segunda categoria, todos los elementos de datos residuales, tales como un mapa de significacion que indica las
ubicaciones de todos los coeficientes significativos dentro de un bloque de coeficientes de transformacion
cuantificados y los valores de los coeficientes significativos, que se indican en unidades de niveles correspondientes
a las etapas de cuantificacion, se combinan y se convierten en elementos de sintaxis de datos residuales.

El codificador 201 comprende un codificador de entropia que codifica elementos de sintaxis y genera contrasefas

4

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

aritméticas para cada segmento. Cuando se generan las contrasefias aritméticas para un segmento, el codificador
de entropia aprovecha dependencias estadisticas entre los valores de datos de elementos de sintaxis en el flujo de
bits de la sefial de video. El codificador 201 emite una sefial de video codificada para un segmento de imagen 200 a
un descodificador de video 301 mostrado en la figura 3.

La figura 3 muestra una vista general de un descodificador de video al que se le puede aplicar la presente invencion.
Asimismo, los bloques mostrados en la figura representan médulos funcionales realizados por el procesador 101 que
ejecuta el software 103 en la memoria 102. El descodificador de video 301 recibe la sefal de video codificada y en
primer lugar realiza la descodificacion de entropia de la sefial de vuelta a los elementos de sintaxis. El
descodificador 301 usa los elementos de sintaxis para reconstruir, macrobloque por macrobloque y después
segmento por segmento, las muestras 300A de imagen de pixeles en la imagen 300.

La figura 4 muestra los modulos funcionales del codificador de video 201. Estos médulos funcionales se realizan
mediante el procesador 101 que ejecuta el software 103 en la memoria 102. Una imagen de video de entrada es una
trama o un campo de una imagen de video natural (sin comprimir) definida por puntos de muestra que representan
componentes de colores originales, tales como crominancia (“croma”) y luminancia (“luma”) (otras componentes son
posibles, por ejemplo, tono, saturacion y valor). La imagen de video de entrada se divide en macrobloques 400 que
representan cada uno un area de imagen cuadrada que consiste en 16x16 pixeles de la componente luma del color
de la imagen. La imagen de video de entrada también se reparte en macrobloques que representan cada uno 8x8
pixeles de cada una de las dos componentes de croma del color de la imagen. En el funcionamiento de codificador
general, los macrobloques introducidos pueden predecirse de manera temporal o espacial usando inter o intra-
prediccion. Sin embargo, con el proposito de discusion, se supone que los macrobloques 400 son todos
macrobloques de tipo segmento | y se someten Gnicamente a intra-prediccion.

La intra-prediccion se logra en un modulo de intra-prediccion 401, cuyo funcionamiento se analizara con detalle a
continuacion. El modulo de intra-prediccion 401 genera un bloque de prediccion 402 a partir de pixeles de limite
horizontal y vertical de bloques adyacentes, que se han codificado, reconstruido y almacenado anteriormente en una
memoria de trama 403. Un residuo 404 del bloque de prediccion 402, que es la diferencia entre un bloque objetivo
400 y el bloque de prediccion 402, se transforma, ajusta a escala y cuantifica en un modulo de
transformacion/cuantificacion 405, usando métodos y técnicas conocidas por los expertos en el campo de la
codificacion de video. Entonces se someten los coeficientes de transformacién cuantificados 406 a codificacion de
entropia en un modulo de codificacion de entropia 407 y se transmiten (junto con otra informacion relacionada con la
intra-prediccion) como una sefial de video codificada 408.

El codificador de video 201 contiene funcionalidad de descodificacién para realizar la intra-predicciéon en bloques
objetivo. La funcionalidad de descodificacion comprende un médulo de cuantificacién/transformacion inverso 409,
que realiza la cuantificacion inversa y la transformacion inversa en los coeficientes de transformacion cuantificados
406 para producir el residuo de prediccion descodificado 410, que se afiade al bloque de predicciéon 402. La suma
del residuo de prediccion descodificado 410 y el bloque de prediccion 402 es un bloque reconstruido 411, que se
almacena en la memoria de trama 403 y se leera de la misma y sera utilizado por el médulo de intra-prediccion 401
para generar un bloque de prediccion 402 para descodificar un siguiente bloque objetivo 400.

La figura 5 es un diagrama de flujo que muestra procedimientos realizados por el médulo de intra-prediccion 401.
Segun la norma H.264/AVC, la intra-prediccion implica predecir cada pixel del bloque objetivo 400 en una pluralidad
de modos de prediccion, usando interpolaciones de pixeles de limite (“pixeles de referencia”) de bloques adyacentes
anteriormente codificados y reconstruidos. Los modos de prediccion se identifican mediante numeros enteros
positivos 0, 1, 2..., cada uno asociado con una instruccion o un algoritmo diferente para predecir pixeles especificos
en el bloque objetivo 400. El moédulo de intra-prediccion 401 ejecuta una intra-prediccion en los modos de prediccion
respectivos y genera diferentes bloques de prediccion. En un algoritmo de busqueda completa (“FS”), cada uno de
los bloques de prediccion generados se compara con el bloque objetivo 400 para encontrar el modo de prediccion
6ptimo, lo cual minimiza el residuo de prediccién 404 o produce un residuo de prediccion 404 menor entre los modos
de prediccion. La identificacion del modo de prediccion 6ptimo se comprime y se envia al descodificador 301 con
otros elementos de sintaxis de informacion de control.

Cada modo de prediccion puede describirse por una direccién general de prediccion tal como se describe
verbalmente (es decir, horizontal hacia arriba, vertical y diagonal hacia abajo y a la izquierda). Una direccion de
prediccion puede describirse graficamente mediante una direccién angular que se expresa a través de un diagrama
con flechas tal como se muestra en la figura 7. En este tipo de diagrama, puede considerarse que cada flecha
representa una direccion de prediccién o un modo de prediccién. El angulo correspondiente a un modo de prediccion
tiene una relacion general con respecto a la direccion desde la ubicacion promedio ponderada de los pixeles de
referencia usados para predecir un pixel objetivo en la ubicacion de pixel objetivo. Obsérvese que los modos de
prediccion incluyen un modo de prediccion DC que no esta asociado con ninguna direccion de prediccion y, por
tanto, no puede describirse graficamente en el diagrama al contrario que los demas modos de predicciéon. En el
modo de prediccion DC, el bloque de prediccion 402 se genera de tal manera que cada pixel en el bloque de
prediccion 402 se establece uniformemente al valor medio de los pixeles de referencia.

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

Volviendo a la figura 5, el modo de prediccion se inicia en la etapa 501. Entonces se determina, en la etapa 502, si el
modo de prediccion indica la prediccion DC. Si es asi, el flujo avanza a la etapa 503, en la que se genera un bloque
de prediccién 402 DC con el valor medio de los pixeles de referencia en la etapa 503. Si el modo de predicciéon
indica otra cosa, se genera un bloque de prediccion 402 segun la instruccién o el algoritmo asociado con el modo de
prediccion en la etapa 504, cuyo procedimiento se analizara en detalle a continuacion. Tras la etapa 503 o 504, el
flujo avanza a la etapa 505, en la que se determina si los bloques de prediccion se generan para todos los modos de
prediccion. Si se ejecuta intra-prediccion en todos los modos de prediccion, el flujo avanza a la etapa 506. De lo
contrario, el modo de prediccion se aumenta en la etapa 507 y el flujo vuelve a la etapa 502. En la etapa 506, se
compara cada uno de los bloques de prediccion generados con el bloque objetivo 400 para determinar el modo de
prediccién 6ptimo, que minimiza el residuo de predicciéon 404.

La figura 6 muestra los médulos funcionales del descodificador de video 301. Estos médulos funcionales se realizan
mediante el procesador 101 que ejecuta el software 103 en la memoria 102. La sefial de video codificada del
codificador 201 es recibida en primer lugar por un descodificador de entropia 600 y se somete a descodificacion de
entropia para obtener de nuevo coeficientes de transformacién cuantificados 601. Los coeficientes de transformacion
cuantificados 601 se someten a cuantificacion inversa y se transforman mediante un modulo de
cuantificacion/transformacion inverso 602 para generar un residuo de prediccion 603. Se notifica a un médulo de
intra-prediccion 604 del modo de prediccion seleccionado por el codificador 201. Segun el modo de prediccion
seleccionado, el moédulo de intra-prediccién 604 realiza un procedimiento de intra-prediccion similar al realizado en
las etapas 502, 503 y 504 de la figura 5 para generar un bloque de prediccion 605, usando pixeles de limite de
bloques adyacentes anteriormente reconstruidos y almacenados en una memoria 606 de trama. El bloque de
prediccién 605 se afiade al residuo de prediccién 603 para reconstruir un bloque de sefial de video descodificada
607. El bloque 607 reconstruido se almacena en la memoria 606 de trama para su uso en la prediccion de un bloque
siguiente.

Se facilitara una descripcion detallada de la siguiente manera sobre el procedimiento de la etapa 504 realizado por
los modulos de intra-prediccion 401 y 604 para generar un bloque de prediccion en uno de los modos de prediccion,
excepto el modo de prediccion DC. H.264/AVC soporta prediccion intra_4x4, prediccion intra_8x8 y prediccion
intra_16x16. La prediccion intra_4x4 se usa comunmente cuando hay un detalle significativo en la imagen. La
prediccion intra_4x4 predice los dieciséis bloques de luma 4x4 dentro de un macrobloque de manera individual. La
prediccion intra_4x4 se realiza en nueve modos de prediccion, incluyendo un modo de prediccion DC. Las
direcciones de prediccion espacial a lo largo de las cuales se realiza la prediccion intra_4x4 se muestran en la figura
7. La prediccion intra_8x8 se realiza en nueve modos de prediccién, incluyendo un modo de prediccion DC. La
prediccion intra_16x16 se realiza en cuatro modos de prediccion, incluyendo un modo de prediccion DC.

Estudios recientes muestran que un aumento en el nimero de direcciones de prediccién o un aumento en el nUmero
de modos de prediccién, contribuye generalmente a mejorar la eficacia de compresion en la codificacion de video.
Véanse, por ejemplo, los documentos n.”* JCT-VC A119 (“Angular intra prediction”) y JCT-VC A124 (“Arbitrary
direction intra”) presentados al Joint Collaborative Team on Video Coding (JCT-VC). Un aumento en el niumero de
direcciones de predicciéon conduce a un aumento en el nimero de intervalos angulares de direcciones de prediccion
disponibles y, por tanto, a un aumento en el nimero de candidatos de bloque de predicciéon. El nimero aumentado
de candidatos de bloque de predicciéon simplemente aumenta las posibilidades de tener un bloque de prediccién que
sea casi el mismo que un bloque objetivo que va a codificarse. La figura 8 es un diagrama que muestra las
direcciones de prediccion propuestas en el documento n.° JCT-VC A119. En la figura 8, los pixeles de referencia
consisten en diecisiete (17) pixeles horizontales y diecisiete (17) pixeles verticales, en los que el pixel superior
izquierdo es comun a los limites tanto horizontal como vertical. Por tanto, hay 33 direcciones de prediccion diferentes
disponibles para generar pixeles de prediccion en un bloque 8x8. JCT-VC A124 propone una intra-prediccion
direccional arbitraria en la que el nimero de direcciones de prediccion se ajusta segun el tamafo de un bloque que
va a predecirse.

La figura 9 es un diagrama de flujo que muestra el procedimiento, propuesto en el documento JCT-VC A119, de
generar un bloque de prediccion a lo largo de una de las direcciones de prediccion mostradas en la figura 8. En la
siguiente descripcion del procedimiento, algunos algoritmos se simplifican para facilitar la explicacion. Ademas, el
procedimiento descrito se limita a la intra-prediccion a lo largo de una direccion de prediccion que es principalmente
vertical. La intra-prediccion a lo largo de una direccion de prediccion que es principalmente horizontal, puede
implementarse de manera simétrica al procedimiento mostrado en la figura 9, tal como se demuestra en el software
proporcionado por el documento JCT-VC A119. Aunque la figura 8 muestra un bloque 8x8 que va a predecirse, el
procedimiento mostrado en la figura 9 puede expandirse para aplicarse a diversos numeros de pixeles en diferentes
configuraciones. Por ejemplo, un bloque que va a predecirse puede comprender una matriz 4x4 de pixeles. Un
blogue de prediccion también puede comprender una matriz 8x8 de pixeles, una matriz 16x16 de pixeles o matrices
mas grandes de pixeles. Otras configuraciones de pixeles, incluyendo matrices tanto cuadradas como rectangulares,
también pueden constituir un bloque de prediccion.

En la etapa 900 en la figura 9, se leen pixeles de referencia en limites horizontal y vertical, que se encuentran

inmediatamente por encima y a la izquierda de un bloque objetivo, respectivamente, a partir de bloques adyacentes
que se han codificado, reconstruido y almacenado anteriormente en una memoria de trama, tal como la memoria

6

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

403 mostrada en la figura 4. Los pixeles del limite horizontal se almacenan en un area de memoria denominada
“refH”. Los pixeles del limite vertical se almacenan en otra area de memoria denominada “refV”. Volviendo a la figura
8, los pixeles de referencia se identifican mediante sus coordenadas en un sistema de coordenadas que tiene el
origen en la posicion de pixel superior izquierda en el bloque 8x8. Por tanto, los pixeles de limite horizontal tienen
coordenadas expresadas por p[x, y] con x = 0, 1...16 e y = 0. Los pixeles de limite vertical tienen coordenadas
expresadas por p[x,y]conx =0,y =0, -1, -2...-16.

Se supone que los pixeles de limite horizontal almacenados en el area de memoria refH se identifican mediante una
direccion logica (x) con x = 0, 1...16 y que los pixeles de limite vertical almacenados en el area de memoria refV se
identifican igualmente mediante una direccion légica (y) cony = 0, -1, -2...-16, donde cada pixel se almacena en la
direccion que tiene el nimero en la coordenada de la cual se lee. Por tanto, a medida que se representan
graficamente los pixeles horizontales y verticales en la figura 8, puede considerarse que las areas de memoria refH 'y
refV se extienden de manera lineal y ortogonal entre si y que tienen, cada una, una longitud de 2 x size + 1, donde
“size” es un parametro que representa el tamafo del bloque objetivo. Se supone que “size” tiene un valor igual a una
potencia entera de 2, tal como 4, 8, 16... Opcionalmente puede aplicarse un filtro de paso bajo, tal como se describe
en la seccion 8.3.2.2.1 en H.264/AVC, a los pixeles en refH y refV.

En la etapa 901, se establece un contador denominado “row” a cero (“0”). El contador row adopta un valor de desde
0 hasta size e indica una posicién de fila de un pixel de prediccién en el bloque de prediccién. En la etapa 902, se
calcula un parametro denominado “pos” mediante angle X (row+1). angle es un parametro que tiene un numero
fraccionario en una representacion de puntos fijos. Como tal, angle esta formado por una parte entera y una parte
fraccionaria, y la parte fraccionaria consiste en un nimero fijado de digitos binarios. angle representa una de las
direcciones de prediccion mostradas en la figura 8. Por ejemplo, “angle = -size” identifica la direccion de prediccion
que pasa a través de las coordenadas [x = 0, y = 0] en la figura 8. Un angle que tiene un valor positivo identifica una
direccion de prediccion que interseca Unicamente el limite horizontal, mientras que un angle que tiene un valor
negativo identifica una direccion de prediccion que interseca los limites tanto horizontal como vertical. angle varia
dentro de un intervalo determinado por el nimero de direcciones de prediccién deseadas que van a usarse. Tal
como se propone en el documento JCT-VC A124, el niUmero de direcciones de predicciéon que van a usarse puede
determinarse segun el tamafio de un bloque que va a predecirse. En la siguiente descripcion, se supone que angle
adopta un numero fraccionario que varia dentro de un intervalo desde “-size” hasta “size”. Obsérvese que los limites
de intervalo de angle pueden definirse con otros valores.

Al igual que angle, el parametro pos consiste en una parte entera y una parte fraccionaria, y la parte fraccionaria del
mismo consiste en un nimero fijado de digitos binarios, que es igual al logaritmo en base 2 del limite de intervalo de
angle, que puede expresarse mediante log2_size segun la suposicion anterior de que el limite de intervalo de angle
se establece al size. pos identifica la posicion de una interseccion entre el limite horizontal y la direccion de
prediccion representada por angle. Volviendo a la etapa 902, la operacion “pos >> log2_size” identifica un nimero
entero numero en pos, que se almacena en un parametro “int”’, y la operacion “pos & (size - 1)” identifica un nimero
fraccionario en pos, que se almacena en un parametro “frac”. El operador “>>" representa un desplazamiento
aritmético a la derecha de digitos binarios. El operador “&” representa la operacion “y” relacionada con los bits.

En la etapa 903, se determina si angle tiene un valor igual o superior a cero (“0”). Si angle tiene un valor igual o
superior a cero, el flujo avanza a la etapa 904. De lo contrario, el flujo avanza a la etapa 913. angle igual o superior a
cero sugiere que solo es posible basarse en los pixeles de referencia ubicados en el limite horizontal o almacenados
en refH, para obtener pixeles de prediccion en un bloque de prediccién. Por otro lado, angle inferior a cero sugiere
que se necesitan pixeles de referencia ubicados en el limite vertical o almacenados en refV, para obtener pixeles de
prediccion en el bloque de prediccion.

En la etapa 904, se determina si frac es distinto de cero. Si frac es distinto de cero, el flujo avanza a la etapa 905. Si
frac es cero, el flujo avanza a la etapa 906. frac igual a cero sugiere que puede copiarse un pixel de prediccion en el
bloque de prediccién directamente de un pixel de referencia en el limite horizontal. frac distinto de cero sugiere que
la direccion de prediccion interseca el limite horizontal en una posicién distinta de un nimero entero, y se necesita
una interpolacién de mas de un pixel de referencia para obtener un pixel de prediccién en el bloque de prediccion.

En la etapa 905, un contador denominado “col’ se establece a cero (“0”). El contador col se usa para abordar un
pixel de referencia en refH. En la etapa 907, se recuperan dos pixeles de referencia identificados por “int + col + 1" e
‘int + col + 2" de refH. Se calcula el promedio ponderado de estos dos pixeles de referencia o se interpolan con frac
para obtener un pixel de predicciéon v. Especificamente, se multiplica un pixel de referencia en refH identificado por
‘int + col + 1” por “size - frac” y se almacena en un parametro a. Se multiplica un pixel de referencia en refH
identificado por “int + col + 2” por “frac” y se almacena en un parametro b. Después se suman los parametros ay by
se dividen entre size, es decir, (size - frac) + frac. La divisidon entre size puede sustituirse por desplazamiento a la
derecha mediante log2_size. El pixel de prediccion obtenido v se almacena en una matriz de areas de memoria
denominada “pred”, que representa un bloque de prediccion para el bloque objetivo en una direccién de prediccion
particular. Cada area de memoria en pred se identifica mediante los parametros row y col. Después, se aumenta col
en 1 en la etapa 908 y se compara con size en la etapa 909. Siempre que col sea menor que size, se repiten las
etapas 907 y 908. Cuando col se vuelve igual a size, el flujo avanza a la etapa 920.

7

10

15

20

25

30

35

40

45

50

55

ES 2748 100 T3

Si se determina que frac es cero en la etapa 904, el contador col se establece a cero en la etapa 906. En la etapa
910, se copia el pixel de predicciéon v directamente de refH (int + col + 1) y después se almacena en el area de
memoria correspondiente en pred. Entonces se aumenta col en 1 en la etapa 911 y se compara con size en la etapa
912. Siempre que col sea menor que size, se repiten las etapas 910 y 911. Cuando col se vuelve igual a size, el flujo
avanza a la etapa 920.

Volviendo a la etapa 903, angle inferior a cero requiere pixeles de referencia de refV para obtener pixeles de
prediccién en el blogue de prediccion. El contador col se establece a cero en la etapa 913. Entonces se determina,
en la etapa 914, si “int + col + 1” es inferior a cero. “int + col + 1” igual o superior a cero sugiere que todavia solo es
posible basarse en los pixeles de referencia almacenados en refH para obtener pixeles de prediccion en el bloque
de prediccion y el flujo avanza a la etapa 915. El procedimiento realizado en la etapa 915 es similar al de la etapa
907, y no se repetira la descripcion del mismo aqui. Entonces se aumenta col en 1 en la etapa 916 y se compara con
size en la etapa 917. Siempre que col sea menor que size, se repiten las etapas 914, 915 y 916. Cuando col se
vuelve igual a size, el flujo avanza a la etapa 920.

Si se determina que “int + col + 1” es inferior a cero en la etapa 914, se necesitan pixeles de referencia almacenados
en refV para obtener pixeles de prediccion en el bloque de prediccion. En la etapa 918, en primer lugar se determina
la posicion de una interseccion entre el limite vertical y una direccién de prediccion. En la etapa 918, la posicion se
representa mediante pos2. Obsérvese que en la etapa 902, pos, es decir, la posicidon de una intersecciéon entre el
limite horizontal y una direccion de prediccion, se determina mediante “angle X (row + 1)’. Dado que angle
representa una proporcion de diferencias horizontal y vertical, se calcula “angle” X (col + 1), en lugar de “angle x
(row + 1)’, para determinar la posicion de una interseccion entre el limite vertical y una direccion de prediccion. Tal
como se supuso anteriormente, angle esta dentro del intervalo de -size a size (-size < angle < size). Por tanto, una
proporcion « entre angle y size se define mediante:

o= angle

~— (-1<a<1).
Size

Entonces, angle'1 se define mediante:

size size’
—0

angle™ = :
o angle

Como tal, pos2 se determina en la etapa 918 con el cuadrado de size multiplicado por col + 1 y después dividido
entre el valor absoluto de angle de la siguiente manera:

.2
Ppos2 = size” x(col +1)

langle]

Al igual que pos, pos2 tiene un numero fraccionario en una representacion de puntos fijos que esta formado por una
parte entera y una parte fraccionaria. La parte fraccionaria consiste en el nimero de digitos binarios determinados
por log2_size. La parte entera de pos2 se almacena en un parametro int2 y la parte fraccionaria de pos2 se
almacena en un parametro frac2. En la etapa 919, se recuperan dos pixeles de referencia identificados mediante
“int2 + row + 1” e “int2 + row + 2" de refV. Se calcula el promedio ponderado de estos dos pixeles de referencia o se
interpolan con frac2 para obtener un pixel de predicciéon v. Especificamente, se multiplica un pixel de referencia de
refV (int2 + row + 1) por “size - frac2” y se almacena en un parametro a. Se multiplica un pixel de referencia de refV
(int2 + row + 2) por “frac2’ y se almacena en un parametro b. Entonces se suman los parametros a y b y se dividen
entre size o se desplazan a la derecha mediante log2_size. El pixel de prediccion obtenido v se almacena en el area
de memoria correspondiente de pred. Se repiten las etapas 914, 918, 919 y 916 hasta que col se vuelve igual a size
en la etapa 917.

En la etapa 920, se aumenta row en 1. Entonces se determina, en la etapa 921, si row es menor que size. Siempre
que row sea menor que size, se repiten las etapas desde la etapa 902 para obtener un pixel de prediccién en el
bloque de prediccion. El flujo termina cuando row se vuelve igual a size en la etapa 921.

Tal como se ha mencionado anteriormente, un aumento en el nimero de candidatos de bloque de prediccion
contribuye a mejorar la eficacia de codificacion, mientras que un aumento en el nimero de candidatos de bloque de
prediccion conduce a un aumento en la carga de trabajo computacional. Por lo tanto, con el fin de aumentar el
numero de candidatos de bloque de prediccion para asi mejorar la eficacia de codificacion, se necesita revisar el
procedimiento de generacién de un candidato de bloque de prediccion para lograr mayor eficacia del procedimiento.
Al revisar el procedimiento mostrado en la figura 9, pueden identificarse dos cuellos de botella computacionales. El

10

15

20

25

30

35

40

45

50

55

60

ES 2748 100 T3

primer cuello de botella computacional es la operacion de comparacion y ramificacion de la etapa 914, que se repite
dentro del bucle. El segundo cuello de botella computacional es la operacion de divisién de la etapa 918, que
también se repite dentro del bucle.

En la actualidad, se dispone de arquitecturas de una instruccion, multiples datos (SIMD) para un calculo eficaz.
SIMD permite que ordenadores con multiples elementos de procesamiento realicen la misma operacién con
multiples datos simultdneamente. Sin embargo, las arquitecturas SIMD tipicas no soportan la implementacion de
division y calculo/ramificacion en un bucle y, por lo tanto, no pueden usarse para implementar el procedimiento
mostrado en la figura 9 debido a la inclusion de las etapas 914 y 918 en el bucle, aunque los bucles que comienzan
en las etapas 907 y 910 son lo suficientemente robustos como para implementarse con SIMD. Por lo tanto, un
objetivo de la presente invencion es eliminar los cuellos de botella computacionales del procedimiento mostrado en
la figura 9 y proporcionar intra-predicciéon de baja complejidad, que permite que arquitecturas SIMD tipicas
implementen procesamiento en paralelo a lo largo de todas las direcciones de prediccion mostradas en la figura 8.

La figura 10 es un diagrama de flujo que muestra el procedimiento de intra-prediccion de baja complejidad segin un
modo de realizacion de la presente invencion, que esta disefiado para sustituir al procedimiento de la figura 9 en la
implementacion del procedimiento en la etapa 504 de la figura 5. En la figura 10, las mismas etapas de
procedimiento que las realizadas en la figura 9 se identifican con los mismos nimeros de etapa que los usados en la
figura 9, tales como las etapas 900, 901, 902, 904, 905, 906, 907, 908, 909, 910, 911, 912, 920 y 921. La descripcion
de estas etapas comunes no se repite aqui. Las etapas 1000 y 1001 son etapas particulares del procedimiento de la
figura 10. Tal como resulta evidente a partir de una comparacién con el procedimiento mostrado en la figura 9, el
procedimiento de la figura 10 elimina la etapa de comparacién de la etapa 903 y todas las etapas que se ramifican
hacia la izquierda desde la etapa 903, que se realizan cuando angle es inferior a cero, eliminando asi los cuellos de
botella computacionales de las etapas 914 y 918.

En las etapas 1000 y 1001 afiadidas, se determina si angle es igual o superior a -1. Cuando angle es igual o superior
a -1, los pixeles de referencia ubicados en el limite horizontal son suficientes para generar un pixel de prediccion en
el bloque de prediccion, y no se necesitan los pixeles de referencia en el limite vertical. Por otro lado, cuando angle
es inferior a -1, se necesitan pixeles de referencia en el limite vertical para generar un pixel de prediccion en el
blogue de prediccion. En la etapa 1001, se extienden pixeles de referencia almacenados en refH en la direcciéon
negativa, usando al menos algunos de los pixeles almacenados en refV. Las figuras 11A y 11B son
representaciones esquematicas que muestran la extension de refH realizada en la etapa 1001. En la figura 11A, los
pixeles de referencia 1102 almacenados en refH son del limite horizontal ubicado por encima del bloque objetivo
1101. Los pixeles de referencia 1103 almacenados en refV son del limite vertical ubicado a la izquierda del bloque
objetivo 1101. Tal como se muestra en la figura 11B, tras la etapa 1001 de la figura 10, algunos de los pixeles de
referencia en refV se copian en refH, y refH tiene una parte extendida 1104 que se extiende en la direccion negativa.

La figura 12 es un diagrama de flujo que muestra detalles del procedimiento realizado en la etapa 1001. En la etapa
1201, se establece un contador col a -1. Se usa col para identificar una direccién de la parte extendida de refH. En la
etapa 1202, un pixel de referencia en refV que va a copiarse en la parte extendida de refH se identifica mediante:

sizex col
angle
La divisién en la ecuacion anterior es una division de nimeros enteros y la ecuacion produce un ndmero entero. La

ecuacion funciona de manera similar al procedimiento de la etapa 918 mostrada en la figura 9. En la etapa 918, se
calcula un valor de nimero entero de pos2 mediante:

(size” x (col +1))
angle

>>log2 size.

Obsérvese que el desplazamiento a la derecha mediante log2_size es equivalente a la division entre size.

En la etapa 1203, se reduce col en 1. Después se determina, en la etapa 1204, si col es igual a angle. Si col no es
igual a angle, el flujo vuelve a la etapa 1202. Se repiten las etapas 1202 y 1203 hasta que col se vuelve igual a
angle. Por lo tanto, se leen pixeles de referencia de refV en el orden ascendente, o desde la parte superior hasta la
parte inferior del limite vertical, y se copian en refH también en el orden descendente, o desde la derecha hasta la
izquierda del limite horizontal. Ademas, no todos los pixeles de referencia en refV se copian en refH. Solo los pixeles
de referencia ubicados dentro del intervalo desde la parte superior hasta la interseccién de una direccién de
prediccién se copian de refV en refH.

Volviendo a la figura 10, las etapas de procedimiento comenzando desde la etapa 902 se copian de la figura 9, e

10

15

20

25

30

35

40

45

50

55

60

ES 2748 100 T3

incluyen las etapas para generar pixeles de prediccion ramificadas hacia la derecha desde la etapa de comparacion
de la etapa 903 en la figura 9. Sin embargo, obsérvese que las etapas en la figura 10 para generar pixeles de
prediccion usan refH extendido (una suma de las partes 1102 + 1104 en la figura 11B), mientras que las etapas
correspondientes en la figura 9 usan refH original (parte 1102 en la figura 10A). Dado que refH se extiende en la
direccion negativa, no se necesita una operacion de intra-prediccion separada disefiada especificamente para usar
pixeles de referencia almacenados en refV, tal como se ramifica hacia la izquierda desde la etapa 903 en la figura 9,
independientemente del signo de angle.

La figura 13 es un diagrama de flujo que muestra otro modo de realizacién del procedimiento para extender refH,
usando pixeles de referencia en refV. El procedimiento mostrado en las figuras 11 y 12 elimina las etapas de cuello
de botella de las etapas 914 y 918 mostradas en la figura 9 y, por lo tanto, se espera que mejore la eficacia del
procedimiento de intra-prediccion. El procedimiento mostrado en la figura 13 elimina la operacion de division
realizada en la etapa 1202 de la figura 12 del bucle para copiar pixeles de referencia de refV en refH. Al eliminar la
operacion de division del bucle, se espera que el procedimiento mostrado en la figura 13 mejore adicionalmente la
eficacia del procedimiento de intra-prediccion.

El procedimiento mostrado en la figura 13 sustituye la etapa 1202 de la figura 12 por las etapas 1301 y 1302. La
etapa 1302 esta dentro del bucle para copiar pixeles de referencia de refV en refH, mientras que la etapa 1301 esta
fuera del bucle. La etapa 1301 introduce un nuevo parametro denominado “InvAngle”. InvAngle se define mediante:

256x %€

angle

La multiplicacion por 256 es equivalente a un desplazamiento a la izquierda mediante 8 y garantiza que cada bit
resultante de la operacion de “size/angle” representa el calculo de identificar un pixel de referencia en refV. En la
etapa 1302, la direccion de un pixel de referencia en refV que va a copiarse en la parte extendida de refH se
identifica mediante:

col x InvAngle >>8 .

El resultado de “col x InvAngle” se somete a desplazamiento a la derecha de 8 para deshacer la operacion de
desplazamiento a la izquierda realizada en la etapa 1301. Obsérvese que la operacion de desplazamiento a la
derecha en la etapa 1302 funciona para redondear a la baja el resultado de “col x InvAngle”. Para redondear al
numero entero mas proximo, puede afadirse una compensacion de redondeo de 128 al resultado de “col x InvAngle”
antes de realizar la operacion de desplazamiento a la derecha. Debe observarse que el nimero “256” solo es un
ejemplo, y la etapa 1301 puede adoptar otro nimero de compensacion, preferiblemente una potencia entera de 2,
siempre que el nimero sea lo suficientemente grande como para conservar todos los bits resultantes de la operacion
de “sizelangle”. Por ejemplo, el numero puede ser 64 en la etapa 1301, en lugar de 256, y el nimero de
desplazamientos a la derecha es 6 en la etapa 1302, en lugar de 8. Si se adopta 64, la compensacion de redondeo
debe ser de 32.

El calculo realizado en la etapa 1301 puede sustituirse por una operacién de consulta para reducir adicionalmente la
carga de trabajo computacional. En otras palabras, se prepara una tabla de consulta que almacena valores de
InvAngle en relacion con los valores de angle. La tabla 1 proporcionada a continuacion es una tabla a modo de
ejemplo para la consulta en la etapa 1301:

Tabla 1
angle 1 2 3 4 5 6 7 8
InvAngle 2048 1024 683 512 410 341 293 256

Se supone que, en la tabla anterior, size es 8, y angle adopta valores de nimero entero de desde 1 hasta 8. Sin
embargo, debe observarse que size no se limita a 8 y puede adoptar otro valor, tal como 4 y 16. Ademas, angle
puede ser un ndmero fraccionario en una representacion de puntos fijos tal como se ha definido anteriormente.

Cuando se copia un pixel de referencia de refV a refH en la etapa 1202 de la figura 12 o la etapa 1302 de la figura
13, el pixel de referencia puede pasar a través de un filtro de paso bajo para reducir un posible solapamiento en el
bloque de prediccion. La intensidad del filiro de paso bajo puede variar segun el valor de angle. Por ejemplo, cuando
angle es igual a -size, puede aplicarse un filtrado de paso bajo débil y cuando angle es igual a -2, puede aplicarse un
filtrado de paso bajo fuerte.

Tal como se ha explicado anteriormente, no todos los pixeles de referencia en refV se copian en refH. Dado que no
se copian todos los pixeles de referencia en refV, se pierde algo de informacién cuando se copian los pixeles. Para
mitigar la pérdida de informacién, puede duplicarse la resoluciéon de pixeles de referencia en refH y refV de modo
que refH y refV contienen no solo pixeles de bloques anteriormente codificados y reconstruidos, sino también un

10

10

15

20

25

30

35

40

45

50

55

60

ES 2748 100 T3

pixel entre dos pixeles reconstruidos adyacentes que se genera interpolando dos pixeles adyacentes. Puede
calcularse simplemente el promedio de dos pixeles adyacentes para generar un pixel de interpolacion. El
procedimiento de interpolacion puede realizarse cuando se leen pixeles de referencia en la etapa 900 de la figura 9.
Cuando se duplica la resolucion de pixeles en refH y refV, se necesita ajustar a escala identificaciones de las
direcciones de pixeles de referencia almacenados en refH y refV, tal como se realiza en las etapas 907, 910, 915 y
919 en la figura 9, y la etapa 1001 en la figura 10. Por ejemplo, se necesita cambiar “int + col + 1” realizado en las
etapas 907, 910 y 915 por ‘int + 2 x col + 2”. Se necesita cambiar “int + col + 2” realizado en las etapas 907, 910,
915 por “int + 2 x col + 3”. Se necesita cambiar “int2 + row + 1” e “int2 + row + 2” realizados en la etapa 919 por “int2
+ 2 xrow + 2" e “int2 + 2 x row + 3”, respectivamente.

En otro modo de realizacion, el procedimiento de la etapa 1202 en la figura 12 puede cambiarse simplemente por
“refH [coll«refV [-col]” para simplificar adicionalmente el procedimiento de copiado. Aunque se degrada la exactitud
de prediccion, este modo de realizacién proporciona la menor complejidad a la operacién de intra-prediccion.

La figura 11B muestra la parte extendida 1104 afiadida a refH. No se necesita que la parte extendida 1104 esté
formada con pixeles de referencia de refV. La parte extendida 1104 puede formarse con pixeles de un area de
blogue anteriormente reconstruido, que corresponde espacialmente a la ubicacion de la parte extendida 1104. En la
figura 11B, dado que se extiende en la direccion negativa, refH extendido (partes 1102 y 1104) oscila entre -size + 1
y 2xsize. El intervalo de refH extendido puede volver a ajustarse a escala para oscilar entre 0 y 3xsize - 1 afiadiendo
una compensacion apropiada cuando se abordan pixeles de referencia en refH extendido. Lo mismo es cierto para
volver a ajustar a escala el intervalo de refV.

En otro modo de realizacion, el limite de intervalo de angle puede elegirse libremente. En los modos de realizacion
anteriores, se supone que angle adopta un valor dentro de un intervalo de desde -size hasta size (-size < angle <
size). En otras palabras, en los modos de realizacion anteriores, los limites de intervalo de angle estan definidos con
el tamafo del bloque objetivo. Obsérvese que los limites de intervalo de angle pueden definirse independientemente
del tamario del bloque objetivo, aunque todavia es preferible que el limite de intervalo se defina con una potencia
entera de 2, de manera que log2 rangelimit sea un numero entero positivo y la ecuacion ‘“rangelimit = 1 <<
log2_rangelimit” siga siendo cierta. Al elegir un nimero grande adecuado para rangelimit, puede establecerse un
gran numero de direcciones de prediccion y representarse mediante valores de angle a intervalos angulares lo
suficientemente amplios.

Si el limite de intervalo de angle se define independientemente del tamario del bloque objetivo, se necesita sustituir
size que aparece en las figuras 9 y 10 por rangelimit y se necesita sustituir log2_size por log2_rangelimit, excepto
para las etapas 909, 912, 917 y 921. También se necesita sustituir la comparacion de “angle = -1” realizada en la
etapa 1000 de la figura 10 por “angle x sizellrangelimit= -1” o “angle x size = -rangelimit”. Ademas, se necesita
sustituir size que aparece en las etapas 1202 y 1301 en las figuras 12 y 13 por rangelimit y se necesita sustituir la
comparacion de “;col = angle?” realizada en la etapa 1204 por “;col = angle x size/rangelimit?”.

Si se introduce rangelimit como limite de intervalo de angle, la tabla 1 (proporcionada anteriormente) puede
cambiarse de la siguiente forma:

Tabla 2
angle* 2 5 9 13 17 21 26 32
InvAngle 4096 1638 910 630 482 390 315 256

En la tabla 2, se establece rangelimit a 32. Angle* es igual a una aproximacion de numero entero de “rangelimit x tan
(n x angle/8)”, donde angle = 1, 2, 3, 4, 5, 6, 7y 8. InvAngle es igual a 256 x rangelimit/angle*. Los valores en la tabla
2 son todos numeros enteros que se obtienen mediante redondeo al alza. En lugar de redondearse al alza, los
numeros pueden redondearse a la baja. En la tabla 3 proporcionada a continuacion, InvAngle es igual a 32 x
rangelimitlangle*. Dado que se usa “32” en lugar de “256”, la exactitud de prediccion es necesariamente inferior a la
de la tabla 2.

Tabla 3
angle* 2 5 9 13 17 21 26 32
InvAngle 512 204 113 78 60 48 39 32

La figura 14 es un diagrama de flujo que muestra otro modo de realizacion que simplifica adicionalmente el
procedimiento mostrado en la figura 10. El procedimiento mostrado en la figura 10 de copiar pixeles de referencia de
refV en refH se realiza antes de que el flujo entre en el bucle de prediccién principal, mientras que el procedimiento
de copiado mostrado en la figura 14 se realiza dentro del bucle de prediccion principal. Ademas, el procedimiento
mostrado en la figura 14 elimina la variable InvAngle. Las etapas 900, 902 y 921 mostradas en la figura 14 son de
las etapas correspondientes en la figura 10.

11

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

En la etapa 1401, se inicia un contador /astint a -1. lastint representa el indice del ultimo pixel que se afiadio a refH.
En la etapa 902, se calcula pos mediante angle x (row + 1). Tal como se ha explicado anteriormente, pos identifica la
posicion de una interseccion entre los limites y la direcciéon de prediccion representada por angle. En el contexto de
la figura 9, la etapa 902 produce pos, que identifica la posicién de una interseccion entre el limite horizontal y la
direccion de prediccion representada por angle. Ademas, en la etapa 902, una parte entera en pos se almacena en
int y una parte fraccionaria en pos se almacena en un parametro “frac’. En la etapa 1402, se determina si int es
inferior a lastint. Si int es inferior a lastint, un pixel de referencia en refV identificado mediante row se copia en refH
en una direccioén identificada mediante “int + 1”. La etapa 1404 consiste en las etapas 904, 905, 906, 907, 908, 909,
910, 911 y 912 mostradas en las figuras 9 y 10, cuya descripcion no se repite aqui. En la etapa 1405, int se copia en
lastint. La operacion de copiar int en lastint puede realizarse en la etapa 1403, en lugar de la etapa 1405.

La operacion de copiado en la etapa 1403 da como resultado copiar el mismo pixel que se copi6 en las etapas 1202
y 1302, en las que se usa redondeo a la baja en esas etapas. La etapa 1403 puede modificarse para redondear al
numero entero mas préoximo usando de manera condicional “row + 1”, en lugar de “row”, en la etapa 1403 cuando la
posicion fraccionaria frac calculada en la etapa 902 es mayor que offset, lo cual se identifica mediante rangelimit +
(angle >> 1). Obsérvese que angle es negativo y frac es positivo. El uso de “row + 1” da como resultado redondeo al
alza. Para realizar el incremento condicional de row en 1, se cambia el procedimiento realizado en la etapa 1403 por
refHint +1] < refV[row - ((offset - frac) » 31)]; suponiendo que en una aritmética de 32 bits, el desplazamiento a la
derecha de “offset - frac” da como resultado -1 cuando frac es mayor que offset y da como resultado 0 en caso
contrario. Por lo tanto, el identificador de direccién “row - ((offset - frac) >> 31)” se convierte en “row + 1” cuando frac
es mayor que offset y se convierte en “row” en caso contrario. Si se establece offset a rangelimit, “offset-frac” sera
siempre positivo y, por lo tanto, no se producira ningin redondeo.

A continuaciéon se enumera el cédigo fuente desarrollado en el lenguaje de programacion C++, que implementa el
procedimiento mostrado en la figura 14. El cédigo fuente se modifica de la funcion TComPredictiopn::xPredintraAng
encontrada en el archivo TComPrediction.cpp que es parte del software TMuC 0.7 desarrollado por JCT-VC, que
esta disponible en http://hevc.kw.bbc.co.uk/svn/jctvc.a124/tags/0.7.

/I Funcién para obtener las intra-predicciones angulares simplificadas

Void TComPrediction::xPredintraAng (Int* pSrc, Int iSrcStride, Pel*& rpDst, Int iDstStride, Ulnt iWidth, Ulnt iHeight,
Ulnt uiDirMode, Bool bAbove, Bool bLeft) {

Intk, I;
Int deltalnt, deltaFract, refMainIindex;
Int intraPredAngle = 0;
Int absAng = 0;
Int signAng = 0;
Int blkSize = iWidth;
Bool modeDC = false;
Bool modeVer = false;
Bool modeHor = false;
Pel* pDst = rpDst;
/I Mapear el indice de modo a la direccion de prediccion principal y el angulo
if (uiDirMode == Q)
modeDC = true;
else if (uiDirMode < 18)
modeVer = true;

else

12

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

modeHor = true;
intraPredAngle = modeVer ? uiDirMode - 9 : modeHor ? uiDirMode - 25 : 0;
absAng = abs(intrapredAngle);
signAng = intraPredAngle <0 ? -1 : 1;
/I Establecer desplazamientos de bits y ajustar a escala el parametro de angulo a size2
IntiAngTable[9] ={ 0, 2, 5, 9, 13, 17, 21, 26, 32},
absAng = iAngTable[absAng];
intraPredAngle = signAng * absAng;
/I Realizar la prediccion DC
if (modeDC) {
Pel dcval = predintraGetPredValDC(pSrc, iSrcStride, iWidth, iHeight, bAbove, bLeft);
for (k=0;k<blkSize;k++) {
for (I=0;I<blkSize;1++) {

pDst(k*iDstStride+1] = dcval;

}

/l Realizar predicciones angulares
else {
Pel tmp;
Int *pSrcTL = pSrc - iSrcStride - 1;
Int iStepMain = (modeVer) ? 1 : iSrcStride;
if (intraPredAngle == 0) {
for (k=0;k<blkSize;k++) {
for (I=0;I<blkSize;1++) {

pDst [k*iDstStride+1] = pSrcTL[(1+1) * iStepMain];

}

else {
Int iStepSide = (modeVer) ? iSrcStride 1;
int lastDeltalnt = -1;

Int iOffset = 32 + (intraPredAngle >> 1); // permite redondear a la referencia lateral mas proxima

13

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

/I Int iOffset = 32; // sin redondeo.

Pel ref [2*MAX_CU_SIZE];

Pel* refMain = ref + ((intraPredAngle < 0) ? blkSize : 0);

if (intraPredAngle > 0) {
for (k = 0; k < 2*blkSize; k++)
refMain[k] = pSrcTL[(k+1) * iStepMain];
}

else {

for (k = -1; k < blkSize; k++) // el resto se copia mas tarde en la etapa 1403, segun y cuando se requiera

refMain[k] = pSrcTL[(k+1) * iStepMain];
}
for (k = 0; k < blkSize; k++) {
Int deltaPos = (k+1) * intraPredAngle;
deltalnt = deltaPos >> 5;
deltaFract = deltaPos & (32 - 1);
if (deltalnt < lastDeltalnt) { // etapa 1402

lastDeltalnt = deltalnt;

refMain[deltalnt] = pSrcTL[(k-((iOffset-deltaFract)>>31))*iStepSide]; // etapa 1403

}
// etapa 1404

if (deltaFract) {
/I Realizar filtrado lineal
for (I=0;I<blkSize;1++) {

refMainindex = 1+deltalnt;

pDst[k*iDstStride+1] = (Pel) (((32-deltaFract)

refMain[refMainindex+1] + 16) >> 5);

}
}

else {

/I Simplemente copiar las muestras de niumeros enteros

for (I=0;1<<blkSize;l++) {

pDst[k*iDstStride+1] = refMain[1+deltalnt];

14

*

refMain[refMainindex]

+

deltaFract

*

10

15

20

25

30

ES 2748 100 T3

}

/I Dar la vuelta al blogue si esto es el modo horizontal
if (modeHor) {
for (k=0;k<blkSize-1;k++) {
for (I=k+1;I<blkSize;1++) {
tmp = pDst[k*iDstStride+1];
pDst(k*iDstStride+1] = pDst(1*iDstStride+k];

pDst[1*iDstStride+k] = tmp;

}

Aunque sin duda se le ocurriran muchas alteraciones y modificaciones de la presente invencion a un experto
habitual en la técnica, tras haber leido la descripcion anterior debe entenderse que no se pretende de ninguna
manera que ningun modo de realizacion particular mostrado y descrito a modo de ilustracion se considere limitativo.
Por tanto, no se pretende que referencias a detalles de diversos modos de realizacién limiten el alcance de las
reivindicaciones, que en si mismas solo mencionan aquellas caracteristicas que se consideran esenciales para la
invencion.

15

10

15

20

25

30

35

40

45

50

55

60

65

ES 2748 100 T3

REIVINDICACIONES

Un método de descodificacion de video que comprende etapas ejecutables por ordenador ejecutadas por
un procesador de un codificador de video para implementar:

obtener un valor de un parametro de angulo inverso (InvAngle) de una tabla de consulta que indica valores
de parametro de angulo inverso (InvAngle) en relacion con los valores de un parametro de angulo (angle®)
que representan una direccion de prediccion;

identificar al menos algunos pixeles entre pixeles de limite vertical, mediante el uso de un identificador de
pixeles verticales que se expresa mediante una funcion usando [col x InvAngle], donde col es un contador
que se reduce en 1 desde -1 hasta (angle* x size | rangelimit), donde size es un tamafio de un bloque
objetivo y rangelimit define un intervalo del parametro de angulo (angle®);

recuperar los al menos algunos pixeles, segun una direccion de prediccion de intra-prediccion en un bloque
objetivo que va a predecirse, de una primera area de memoria (refV) en la que se almacena una matriz de
pixeles de limite vertical, en el que los pixeles de limite vertical se encuentran directamente a la izquierda
del blogue objetivo;

afiadir los pixeles recuperados a una matriz de pixeles de limite horizontal que se encuentra directamente
por encima del bloque objetivo, en el que los pixeles recuperados se afiaden directamente al extremo
izquierdo de la matriz de pixeles de limite horizontal para formar una secuencia consecutiva de los pixeles
de limite horizontal;

almacenar los pixeles afiadidos en una segunda area de memoria (refH) en la que se almacena la matriz de
pixeles de limite horizontal, para extender la matriz almacenada en la segunda area de memoria (refH) de la
misma; y

realizar la intra-prediccion del bloque objetivo usando solo los pixeles de limite horizontal incluyendo los
pixeles afadidos, de la matriz extendida almacenada en la segunda area de memoria (refH) como pixeles
de referencia,

en el que la identificacion de los al menos algunos pixeles entre los pixeles de limite vertical comprende un
desplazamiento aritmético a la derecha en el que (col x InvAngle + 128) se desplaza a la derecha en 8
digitos binarios.

Un descodificador de video que comprende un procesador de un sistema informatico y una memoria que
almacena programas ejecutables por el procesador para:

obtener un valor de un parametro de angulo inverso (InvAngle) de una tabla de consulta que indica valores
de parametro de angulo inverso (InvAngle) en relacion con los valores de un parametro de angulo (angle®)
que representan una direccion de prediccion;

identificar al menos algunos pixeles entre pixeles de limite vertical, mediante el uso de un identificador de
pixeles verticales que se expresa mediante una funcion usando [col x InvAngle], donde col es un contador
que se reduce en 1 desde -1 hasta (angle* x size | rangelimit), donde size es un tamafio de un bloque
objetivo y rangelimit define un intervalo del parametro de angulo (angle®);

recuperar los al menos algunos pixeles, segun una direccion de prediccion de intra-prediccion en un bloque
objetivo que va a predecirse, de una primera area de memoria (refV) en la que se almacena una matriz de
pixeles de limite vertical, en el que los pixeles de limite vertical se encuentran directamente a la izquierda
del blogue objetivo;

afiadir los pixeles recuperados a una matriz de pixeles de limite horizontal que se encuentra directamente
por encima del bloque objetivo, en el que los pixeles recuperados se afiaden directamente al extremo
izquierdo de la matriz de pixeles de limite horizontal para formar una secuencia consecutiva de los pixeles
de limite horizontal;

almacenar los pixeles afiadidos en una segunda area de memoria (refH) en la que se almacena la matriz de
pixeles de limite horizontal, para extender la matriz almacenada en la segunda area de memoria (refH) de la
misma; y

realizar la intra-prediccion del bloque objetivo usando solo los pixeles de limite horizontal incluyendo los

pixeles afadidos, de la matriz extendida almacenada en la segunda area de memoria (refH) como pixeles
de referencia,

16

ES 2748 100 T3

en el que la identificacion de los al menos algunos pixeles entre los pixeles de limite vertical comprende un
desplazamiento aritmético a la derecha en el que (col x InvAngle + 128) se desplaza a la derecha en 8
digitos binarios.

17

ES 2748 100 T3

| "B

<S/4 30
901~ | SOALISOdSIa
401 W01 ZV4YILNI
VINOWIW OLNIINYNIDVINTY
201~ | 30 OALLISOJSIA d00vs3904d
Qs / /
o1~ AN 2
IHVMLIOS

f

001

18

200 A

ES 2748 100 T3

200

300 A

300

j} |
p-| Codificadorn >
senal de video
codificada
Fig. 2
j |
Des-
codificador sefal de video
codificada

Fig. 3

19

400

ES 2748 100 T3

405 407
W, 404 406 — 408
Eques Transfqrrnagif)n / c?ér: I:;z- / >
cuantificacion entropia |seaal de video
codificada
Transformacion / jﬁg
cuantificacion
inversa
410 _201
402 _l_
401
Intra- _J [411
prediccion
Y
Memoria
de trama N—403

Fig. 4

20

503

ES 2748 100 T3

{ Inicio :

Inicializar
modo de
prediccién

502

Si ¢ Prediccion

—

Generar
bloque DC

DC?

Generar [‘504
bloque de -
prediccion

205

¢ Todos los No

Modo de
prediccién

N

507

modos?

506
/.

FS

Fin

Fig. 5

21

ES 2748 100 T3

Codificar fJ 601 / 603 607 cetal
senal Des- /J Transformacion e 3? des
——» codificacion -/ cuantificacion prr S

de video | de entropia inversa 605
|
fj” 606
Intra- Memoria
301 prediccion de trama

Fig. 6

22

ES 2748 100 T3

\[

W\

NARN

NN

Fig. 8

alaalalalalalalalalplrl2l2]p]

NANNN

ANNNRNW
ARSI
N

KRR} %N]%

23

ES 2748 100 T3

ee) 50

buscar muestras de referencia y opcionalmente filtrarlas

'

rows—0

ng

!

pos«—angle = ([row+1)
int—pos==log2_size
frace—posé(size-1)

IQDE

g

ngle=0?

v

903
*Si

pos2«—(size?x(col+1))/|angle|
int2+—pos2>>log2_size

frac2«—pos2h(size-1)

a—(size-frac?) x refV[int2+row+1]

befrac2 x ref\Vint2 +row+2)
ve—[a+h)>>log2 size
pradlrow][cof]—v

919

e

809

24

lllu
906
col—0 _I f col—0
, 905 310
915 Y ¥
r S ve—refH[int+col+1] ||
a—(size-frac) x refHjint+coi+1] > pred[row][cof]«—v 907
be—frac x refHint+col+2] Y
ve{a+b)>>log2_size a—(size-frac) x refHlint+col+1
predfrow]cofl v : b«frac x refH[int+col+2]
S vi—(atb)>>log2_size =
predrow][col]—wv
> 916 911
Y — cole—col1| S/ ! /?93 Si
coli—col+1 912 [otecol

ES 2748 100 T3

buscar muestras de referencia y opcionalmente filtrarlas

900
f_

rowe—0 |=

Extender refH usando
muestras de reflf

<
1001

!

Y

pos+—angle x (row+1)
int—pos==logZ size
frace—pos&(size-1)

902

—Mo

col—0

906
.//-

L

904

Si—l

col—0

/- 905
* 907

Ve refH[int+col+1] 910
™ predirow][col)—v s

Si

a«—(size-frac) x refH[int+col+1)
b—frac x refH[int+col+2]

ve—(ath)==log2 size B

predirow][coll« v

col—col+1

I-/—QH

912

G

Mo

Y
I coli—col+1

L}

No

No

25

rows—row+1

909
920

921

Fig. 10

I/—QDB 4

ES 2748 100 T3

1102 |

1101

Fig. 11A

1103

1104

1102

1101

Fig. 11B

26

ES 2748 100 T3

1201

Col—-1

'

refH[coll«refV[size xcolfangle]

1202

g

1204

l 1203
F_J

col—col-1

No

icol = angle?

Fig. 12

27

ES 2748 100 T3

l Inicio F

Y

Cole—-1

;

1201

invAngle—256=sizelangle

'

refH[col—refV]colxinvAngle>>8]'

Y

col—col-1

seol = angle?

Fig. 13

28

1203

1301

1302

ES 2748 100 T3

Inicio

900
buscar muestras de referencia y opcionalmente fiItraﬂasM

rows—0
lastint—-1

JMI:”

'

pos«—angle x (row+1) 902
— | int—pos>>log2_ size _f
frace—pos&(size-1)

T

1402
: 1403
o
refH[int+1]«—refV]row]

Si +

1404
Generar linea predicha f

!

FOWs—Irow+1
lastint—int

/—1405

No

Fin

Fig. 14

29

	Primera Página
	Descripción
	Reivindicaciones
	Dibujos

