ITALIAN PATENT OFFICE

Document No.

102012902080172A1

Publication Date

20140303

Applicant

PONTI GROUP HOLDING S.P.A. ORA PONTI GROUP HOLDING S.R.L.

Title

METODO PER REALIZZARE CARTONI PER IMBALLAGGI ED APPARATO CHE ATTUA TALE METODO

METODO PER REALIZZARE CARTONI PER IMBALLAGGI ED APPARATO

CHE ATTUA TALE METODO

A nome: PONTI GROUP HOLDING S.p.A.

Con sede a: ROMA (RM) - Via Ceneda, 39

DESCRIZIONE DELL'INVENZIONE

La presente invenzione si inserisce nel settore tecnico relativo all'imballaggio di articoli, quali libri, confezioni di dvd, confezioni di risme di carta, ecc.. In

particolare, l'invenzione si riferisce ad un metodo per realizzare cartoni per

imballaggi e ad un apparato che attua tale metodo.

Attualmente una ditta di spedizioni di articoli deve approvvigionarsi regolarmente

di cartoni per imballare gli articoli da spedire ed avere magazzini dimensionati per

stoccare elevate quantità di cartoni per imballaggi. Ciò complica la logistica e

richiede l'impiego di magazzini di notevoli dimensioni.

Lo scopo della presente invenzione consiste nel risolvere i sopra citati

inconvenienti.

Il suddetto scopo è ottenuto mediante un metodo per imballare articoli in accordo

con la rivendicazione 1, ed un apparato per imballare articoli in accordo con la

rivendicazione 8.

Con la presente invenzione è possibile realizzare cartoni per imballaggi

direttamente in loco, impiegando per esempio bobine di cartone per imballaggi da

cui svolgere il nastro di cartone ed ottenere elevati quantitativi di cartoni per

imballaggi. Lo spazio necessario per attuare il metodo e per stoccare le bobine si

è verificato essere inferiore allo spazio necessario per stoccare in arte nota i

cartoni da imballaggio prodotti altrove; vantaggiosamente, inoltre, si semplifica la

logistica e si riduce sensibilmente il costo unitario di ogni cartone per imballaggi,

2

che ora può essere prodotto all'interno della ditta di spedizioni.

In accordo con la rivendicazione 2, è possibile realizzare cartoni da imballaggio su misura per gli articoli da spedire, i quali possono essere di svariate dimensioni e tipo.

In arte nota, invece, le ditte di spedizioni dovevano disporre anche di cartoni per imballaggi di differenti dimensioni per adattarsi alle dimensioni degli articoli da spedire. Dal momento che un articolo da spedire può avere svariate misure, un operatore doveva scegliere per l'articolo il cartone per imballaggi più idoneo in termini di dimensioni; successivamente, il cartone veniva manipolato per assumere una forma scatolare e l'articolo veniva inserito nella scatola così formata, unitamente a materiale di riempimento (es.: polistirolo) che assorbiva eventuali urti dell'articolo durante il trasporto. Queste operazioni erano dispendiose in termini di tempo e di materiale impiegato: infatti, le misure del cartone per imballaggi non erano quasi mai ottimali ma erano maggiori rispetto a quelle di un cartone per imballaggi realizzato su misura per l'articolo da spedire; inoltre le maggiori dimensioni del cartone per imballaggi rispetto all'articolo da spedire dovevano essere compensate con l'impiego di materiale di riempimento per colmare i vuoti tra articolo e scatola che lo conteneva.

Forme di realizzazione specifiche dell'invenzione saranno descritte nel seguito della presente trattazione, in accordo con quanto riportato nelle rivendicazioni e con l'ausilio delle allegate tavole di disegno, nelle quali:

- la figura 1 è una vista prospettica in scala ridotta che illustra un sistema per imballare articoli in modo automatizzato, il quale sistema comprende l'apparato oggetto dell'invenzione;
- la figura 2 è una vista in prospettiva di una parte dell'apparato di figura 1,

- indicata con il riferimento J1 in figura 1;
- le figure 3A, 3B, 3C sono viste frontali di un'unità comprendente ruote di cordonatura e recisione ed illustrata in figura 2, rispettivamente durante una fase operativa, una fase di regolazione ed una successiva fase operativa;
- le figure 4, 5, 6 sono rispettivamente le viste dei particolari ingranditi K1, K2, K3 di figura 3A;
- le figure 7A, 7B sono viste dall'alto di primi mezzi di taglio illustrati in figura 2, durante due istanti di tempo successivi al fine di mostrare una fase di regolazione delle relative forbici;
- la figura 8 è una vista ingrandita della sezione VIII-VIII di figura 7A per mostrare due posizioni distinte assunte da una forbice dell'unità di taglio, una mostrata in linea continua e l'altra mostrata in tratteggio;
- le figure 9A, 9B sono viste della sezione IX-IX di figura 8 per mostrare le suddette posizioni assunte dalla forbice;
- le figure 10A, 10B sono viste dall'alto di secondi mezzi di taglio facenti parte dell'apparato di figura 1, indicati con il riferimento J2 in figura 1, le quali figure mostrano due significativi istanti di tempo successivi;
- la figura 11 è una vista ingrandita della sezione XI-XI di figura 10A;
- la figura 12A è una vista in prospettiva di un cartone per imballaggi ottenuto con l'apparato di figura 1, il quale cartone per imballaggi è stato indicato con il riferimento J3 in figura 1;
- la figura 12B è una vista ingrandita del particolare K4 di figura 12A;
- la figura 12C è una vista in prospettiva di una prima fase di piegatura di un primo cartone per imballaggi;
- la figura 13A è una vista prospettica che illustra il rilascio di un primo articolo in

- appoggio sul primo cartone per imballaggi dopo che si è conclusa la prima fase di piegatura;
- la figura 13B è una vista prospettica che illustra il rilascio di un secondo articolo in appoggio su un secondo cartone per imballaggi, anch'esso ottenuto con l'apparato oggetto dell'invenzione, dopo che si è conclusa la prima fase di piegatura;
- la figura 14 è una vista prospettica che illustra il rilascio di un documento in appoggio sul lato superiore del primo articolo dopo che si è conclusa una seconda fase di piegatura del primo cartone per imballaggi;
- la figura 15 è una vista prospettica che illustra l'applicazione di collante su una porzione del primo cartone per imballaggi dopo che si è conclusa una terza fase di piegatura del primo cartone per imballaggi;
- la figura 16 è una vista prospettica che illustra una quarta fase di piegatura del primo cartone per imballaggi per ottenere un imballaggio sigillato contenente il primo articolo;
- la figura 17A è una vista prospettica che illustra l'imballaggio dopo che è avvenuta la quarta fase di piegatura e che illustra l'applicazione di una etichetta;
- la figura 17B è una vista analoga alla vista di figura 17A da cui differisce per il fatto che l'imballaggio contiene il secondo articolo di figura 13B ed è stato ottenuto impiegando il secondo cartone per imballaggi di figura 13B.
- Il metodo per realizzare cartoni (1) per imballaggi comprende, nei suoi aspetti essenziali, le fasi di:
- a) alimentare un nastro di cartone (2) per imballaggi (nel seguito riferito come nastro di cartone (2)) lungo una direzione di avanzamento (A) che è parallela alla direzione di sviluppo del nastro di cartone (2) (fig.1);

- b) praticare una prima linea di cordonatura (11) ed una seconda linea di cordonatura (12) sul nastro di cartone (2) (figg.2, 3A-3C), in modo che la prima linea di cordonatura (11) e la seconda linea di cordonatura (12) siano parallele alla direzione di sviluppo e che restino individuati: un settore centrale (3) compreso fra la prima linea di cordonatura (11) e la seconda linea di cordonatura (12); un primo settore laterale (4) compreso fra la prima linea di cordonatura (11) ed una prima estremità laterale (6) del nastro di cartone (2); ed un secondo settore laterale (5) compreso fra la seconda linea di cordonatura (12) ed una seconda estremità laterale (7) del nastro di cartone (2) che è opposta alla prima estremità laterale (6) (figg. 2, 12A);
- c) individuare sul nastro di cartone (2) delle regioni di nastro (8) di cartone (2) (nel seguito riferite come regioni di nastro (8)) consecutive fra loro (fig.2);
- d) eseguire su ciascuna regione di nastro (8) almeno un primo taglio (21), un secondo taglio (22), un terzo taglio (23) ed un quarto taglio (24) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) in modo che: il primo taglio (21) ed il secondo taglio (22) siano eseguiti sul primo settore laterale (4) e si estendano sino alla prima linea di cordonatura (11), cosicché nel primo settore laterale (4) restino definiti una prima ala di chiusura (49), una prima ala di rinforzo (51) ed una seconda ala di rinforzo (52), la prima ala di chiusura (49) essendo interposta fra la prima ala di rinforzo (51) e la seconda ala di rinforzo (52); il terzo taglio (23) ed il quarto taglio (24) siano eseguiti sul secondo settore laterale (5) e si estendano sino alla seconda linea di cordonatura (12), cosicché sul secondo settore laterale (5) restino definiti una seconda ala di chiusura (50), una terza ala di rinforzo (53) ed una quarta ala di rinforzo (54), la seconda ala di chiusura (50) essendo interposta fra la terza ala

di rinforzo (53) e la quarta ala di rinforzo (54); la prima ala di chiusura (49) sia contrapposta alla seconda ala di chiusura (50), la prima ala di rinforzo (51) sia contrapposta alla terza ala di rinforzo (53), la seconda ala di rinforzo (52) sia contrapposta alla quarta ala di rinforzo (54);

e) recidere (figg. 10A, 10B, 11) il nastro di cartone (2) in senso trasversale per separare le succitate regioni di nastro (8) fra loro, ottenendo così dei cartoni (1) per imballaggi.

Le fasi sopraddette vengono compiute sul nastro di cartone (2) affinché ciascun cartone (1) per imballaggi così ottenuto abbia i seguenti requisiti: quando un articolo (9) da imballare è in appoggio sul settore centrale (3), tra la prima ala di chiusura (49) e la seconda ala di chiusura (50) (figg. 13A, 13B), allora:

la prima ala di chiusura (49) è piegabile verso il settore centrale (3) per avvolgere almeno un primo fianco (41) dell'articolo (9); la seconda ala di chiusura (50) è piegabile verso il settore centrale (3) per avvolgere almeno un secondo fianco (42) dell'articolo (9) che è opposto al relativo primo fianco (41) (figg. 13A, 13B); la prima ala di rinforzo (51) e la terza ala di rinforzo (53) sono piegabili verso il settore centrale (3) preferibilmente per sovrapporsi almeno parzialmente fra loro, la prima ala di rinforzo (51), la terza ala di rinforzo (53) ed una prima porzione (101) del settore centrale (3) a cui sono sovrapposti la prima ala di rinforzo (51) e la terza ala di rinforzo (53) formando un primo complesso di sovrapposizione (17) che è piegabile per avvolgere almeno un terzo fianco (43) dell'articolo (9) (il terzo fianco (43) dell'articolo (9) è compreso fra i relativi primo fianco (41) e secondo fianco (42)); la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) sono piegabili verso il settore centrale (3) preferibilmente per sovrapporsi almeno parzialmente fra loro, la seconda ala di rinforzo (52), la quarta ala di rinforzo (54)

ed una seconda porzione (102) del settore centrale (3) a cui sono sovrapposti la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) formando un secondo complesso di sovrapposizione (18) che è piegabile per avvolgere almeno un quarto fianco (44) dell'articolo (9) che è contrapposto al relativo terzo fianco (43). La prima linea di cordonatura (11) e la seconda linea di cordonatura (12) fungono da corrispondenti assi di articolazione rispetto cui possono agevolmente ruotare la prima ala di rinforzo (51), la prima ala di chiusura (49), la seconda ala di rinforzo (52), la terza ala di rinforzo (53), la seconda ala di chiusura (50) e la quarta ala di rinforzo (54).

Il primo complesso di sovrapposizione (17) ed il secondo complesso di sovrapposizione (18) invece non ruotano attorno ad alcuna linea di cordonatura; ciò richiede di scegliere un nastro di cartone (2) di struttura o materiale idoneo per ottenere comunque un'agevole piegatura del primo complesso di sovrapposizione (17) e del secondo complesso di sovrapposizione (18) rispettivamente contro il terzo fianco (43) ed il quarto fianco (44) dell'articolo (9) in appoggio sul settore centrale (3). A questo proposito, per quanto concerne la struttura del nastro di cartone (2), è preferibile che il nastro di cartone (2) sia composto da un primo foglio (29) avente uno sviluppo planare e da un secondo foglio (30) avente uno sviluppo ondulato; il secondo foglio (30) è fissato al primo foglio (29), si veda fig.12B. Vantaggiosamente, il nastro di cartone (2) così ottenuto presenta buone caratteristiche di flessibilità e piegabilità e può essere persino avvolto su una bobina (19) (fig.1); il nastro di cartone (2) avente la struttura discussa sopra può essere realizzato nel materiale che è comunemente reperibile in commercio.

E' altresì preferibile che il nastro di cartone (2) venga alimentato con il secondo foglio (30) orientato verso l'alto: in questo modo quando l'articolo (9) da imballare

viene rilasciato sul settore centrale (3) allora l'articolo (9) stesso contatta il secondo foglio (30); come risulterà chiaro nel seguito, ciò fa sì che l'imballaggio ottenuto dalla piegatura del cartone (1) per imballaggi presenti esternamente soltanto il primo foglio (29) (figg. 17A, 17B), il che conferisce all'imballaggio stesso una maggiore rigidità e resistenza agli urti o tagli.

Le fasi di metodo descritte sopra sono preferibilmente eseguite, nell'ordine, da a) ad e); tuttavia è possibile eseguire queste fasi in ordine differente, per esempio a), c), d), b), e).

Le posizioni della prima linea di cordonatura (11) e della seconda linea di cordonatura (12) sono scelte per risultare preferibilmente simmetriche rispetto all'asse del nastro di cartone (2). Come conseguenza, il primo settore laterale (4) è identico al secondo settore laterale (5).

Inoltre, preferibilmente, il primo taglio (21) è allineato con il terzo taglio (23) ed il secondo taglio (22) è allineato con il quarto taglio (24). Come conseguenza risulta quanto segue: la prima ala di rinforzo (51) e la terza ala di rinforzo (53) sono identiche fra loro e simmetricamente disposte rispetto all'asse del nastro di cartone (2); la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) sono identiche fra loro e simmetricamente disposte rispetto all'asse del nastro di cartone (2); la prima ala di chiusura (49) e la seconda ala di chiusura (50) sono identiche fra loro e simmetricamente disposte rispetto all'asse del nastro di cartone (2).

Preferibilmente, le estensioni del primo settore laterale (4) e del secondo settore laterale (5), misurate perpendicolarmente alla direzione di sviluppo, sono ciascuna compresa fra il 50% ed il 100% (fig.13A) della corrispondente estensione del settore centrale (3); in questo modo si garantisce che la prima ala di rinforzo (51) e

la terza ala di rinforzo (53) si sovrappongano almeno parzialmente fra loro e che la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) si sovrappongano almeno parzialmente fra loro. Pertanto, il primo complesso di sovrapposizione (17) ed il secondo complesso di sovrapposizione (18) saranno vantaggiosamente contraddistinti da almeno due strati di cartone (sino ad un massimo di tre strati di cartone) ciascuno per proteggere rispettivamente il terzo fianco (43) ed il quarto fianco (44) dell'articolo (9) da imballare.

Da quanto sopra resta evidente che è possibile "regolare" il grado di sovrapposizione fra la prima ala di rinforzo (51) e la terza ala di rinforzo (53) e fra la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) in funzione del tipo di articolo (9) da imballare (per esempio un articolo (9) fragile può essere imballato con il massimo numero di strati di cartone possibile).

Preferibilmente, ciascuna regione di nastro (8) ha una estensione, misurata in una direzione perpendicolare alla direzione di sviluppo, che è pari alla larghezza del nastro di cartone (2).

Preferibilmente, su ciascuna regione di nastro (8) il primo taglio (21), il secondo taglio (22), il terzo taglio (23) ed il quarto taglio (24) provocano ciascuno l'eliminazione di una corrispondente striscia di materiale della stessa regione di nastro (8), cosicché restino individuate rispettivamente una prima finestra (31), una seconda finestra (32), una terza finestra (33) ed una quarta finestra (34); ciascuna di queste finestre conforma preferibilmente un'apertura rettangolare.

Il fatto che i tagli eseguiti su ciascuna regione di nastro (8) definiscano corrispondenti finestre è molto vantaggioso, come viene spiegato di seguito.

Sul settore centrale (3) resta definita una prima striscia di piegatura (61) avente una lunghezza, misurata perpendicolarmente alla direzione di sviluppo, che è pari

alla larghezza del settore centrale (3) ed una larghezza, misurata parallelamente alla direzione di sviluppo, che è pari alla larghezza della prima finestra (31) e della terza finestra (33); questa prima striscia di piegatura (61) confina con il primo complesso di sovrapposizione (17) e rappresenta equivalentemente una linea di cordonatura trasversale per il primo complesso di sovrapposizione (17), il quale ruota attorno alla prima striscia di piegatura (61) (fig.14) quando viene piegato contro il terzo fianco (43) dell'articolo (9) in appoggio sul settore centrale (3). Il primo complesso di sovrapposizione (17) ruota agevolmente attorno alla prima striscia di piegatura (61) in quanto quest'ultima è formata da un solo strato di cartone, a differenza dello stesso primo complesso di sovrapposizione (17) che invece ha almeno due strati di cartone (un primo strato è formato dal settore centrale (3) ed un secondo strato è formato dalla prima ala di rinforzo (51) oppure dalla terza ala di rinforzo (53)).

Sul settore centrale (3) resta altresì definita una seconda striscia di piegatura (62) avente una lunghezza, misurata perpendicolarmente alla direzione di sviluppo, che è pari alla larghezza del settore centrale (3) ed una larghezza, misurata parallelamente alla direzione di sviluppo, che è pari alla larghezza della seconda finestra (32) e della quarta finestra (34); questa seconda striscia di piegatura (62) confina con il secondo complesso di sovrapposizione (18) e rappresenta equivalentemente una linea di cordonatura trasversale per il secondo complesso di sovrapposizione (18), il quale ruota (fig.14) attorno alla seconda striscia di piegatura (62) quando viene piegato contro il quarto fianco (44) dell'articolo (9) in appoggio sul settore centrale (3). Il secondo complesso di sovrapposizione (18) ruota agevolmente attorno alla seconda striscia di piegatura (62) in quanto quest'ultima è formata da un solo strato di cartone, a differenza dello stesso

secondo complesso di sovrapposizione (18) che invece ha almeno due strati di cartone (un primo strato è formato dal settore centrale (3) ed un secondo strato è formato dalla seconda ala di rinforzo (52) oppure dalla quarta ala di rinforzo (54)). Il cartone (1) per imballaggi viene progettato in funzione dell'articolo (9) da imballare al fine di formare preferibilmente un involucro di contenimento dell'articolo (9) stesso; pertanto, il cartone (1) per imballaggi deve ricoprire non soltanto il fondo ed i fianchi dell'articolo (9) ma preferibilmente anche il lato superiore dell'articolo (9) mediante almeno uno strato di cartone. Per ottenere la copertura del lato superiore dell'articolo (9), è possibile dimensionare il cartone (1) per imballaggi cosicché vengano rispettate una prima condizione e/o una seconda condizione di seguito esposte. La prima condizione è che il primo complesso di sovrapposizione (17) ed il secondo complesso di sovrapposizione (18) siano dimensionati per avvolgere rispettivamente il terzo fianco (43) ed una prima parte del lato superiore dell'articolo (9) ed il quarto fianco (44) ed una seconda parte del lato superiore dell'articolo (9) al punto che il primo complesso di sovrapposizione (17) ed il secondo complesso di sovrapposizione (18) si sovrappongono parzialmente fra loro in corrispondenza del lato superiore dell'articolo (9). La prima parte del lato superiore dell'articolo (9) e la seconda parte del lato superiore dell'articolo (9) si sovrappongono parzialmente fra di loro ed insieme interessano interamente il lato superiore dell'articolo (9). La seconda condizione è che la prima ala di chiusura (49) e la seconda ala di chiusura (50) siano dimensionate per avvolgere rispettivamente il primo fianco (41) ed una terza parte del lato superiore dell'articolo (9) ed il secondo fianco (42) ed una quarta parte del lato superiore dell'articolo (9) al punto che la prima ala di chiusura (49) e la seconda ala di chiusura (50) si sovrappongono parzialmente fra loro in corrispondenza del lato

superiore dell'articolo (9). La terza parte del lato superiore dell'articolo (9) e la quarta parte del lato superiore dell'articolo (9) si sovrappongono parzialmente fra di loro ed insieme interessano interamente il lato superiore dell'articolo (9)

Il cartone (1) per imballaggi illustrato nelle figure (figg.13, 14) rende chiaro che sono state soddisfatte entrambe la prima condizione e la seconda condizione: pertanto, il lato superiore dell'articolo (9) viene interamente ricoperto in ogni suo punto con almeno due strati di cartone.

La figura 14 illustra una fase in cui viene inserito un documento (65) (ad esempio una fattura) in appoggio sul lato superiore dell'articolo (9), prima che l'imballaggio sia completato.

La successiva sigillatura del cartone (1) per imballaggi al fine di formare un imballaggio che contiene l'articolo (9) può essere realizzata in modo sostanzialmente noto applicando uno strato di collante su una apposita porzione del cartone (1) per imballaggi, come illustrato in fig.15.

La figura 16 mostra la piegatura del secondo complesso di sovrapposizione (18) contro il primo complesso di sovrapposizione (17) per realizzare la sigillatura e chiusura dell'imballaggio.

La figura 17A illustra la fase di applicazione di una etichetta (66) all'imballaggio.

Nei suoi aspetti essenziali, l'apparato (10) per realizzare cartoni (1) per imballaggi, che attua il metodo sopra descritto, comprende:

mezzi di alimentazione per alimentare il nastro di cartone (2);

mezzi di cordonatura per praticare la prima linea di cordonatura (11) e la seconda linea di cordonatura (12) sul nastro di cartone (2);

mezzi per individuare sul nastro di cartone (2) le regioni di nastro (8);

primi mezzi di taglio per eseguire su ciascuna regione di nastro (8) almeno il primo

taglio (21), il secondo taglio (22), il terzo taglio (23) ed il quarto taglio (24); secondi mezzi di taglio (39) per recidere il nastro di cartone (2) in senso trasversale e separare le regioni di nastro (8) fra loro, ottenendo i cartoni (1) per imballaggi.

I mezzi di alimentazione possono comprendere un motore elettrico (non illustrato) che aziona la bobina (19) da cui si svolge il nastro di cartone (2).

Preferibilmente, i mezzi di cordonatura comprendono: un primo albero (70) disposto al disopra del nastro di cartone (2) in avanzamento; una prima ruota di cordonatura (71) portata dal primo albero (70), la quale prima ruota di cordonatura (71) è girevole rispetto al proprio asse per realizzare la prima linea di cordonatura (11); una seconda ruota di cordonatura (72) portata dal primo albero (70), la quale seconda ruota di cordonatura (72) è girevole rispetto al proprio asse per realizzare la seconda linea di cordonatura (12).

Il primo albero (70) può essere vincolato al telaio (67) dell'apparato (10).

I mezzi di cordonatura possono comprendere, inoltre: un primo supporto (81) che è vincolato al primo albero (70) e che porta a sua volta la prima ruota di cordonatura (71); un secondo supporto (82) che è vincolato al primo albero (70) e che porta a sua volta la seconda ruota di cordonatura (72).

La prima ruota di cordonatura (71) e la seconda ruota di cordonatura (72) sono preferibilmente trascinate in rotazione da attuatori non illustrati.

I mezzi di cordonatura occupano preferibilmente una posizione fissa di un tratto di alimentazione del nastro di cartone (2) (figg. 1, 2). Questo significa che il primo albero (70) non trasla lungo la direzione di sviluppo del nastro di cartone (2); pertanto, la prima ruota di cordonatura (71) e la seconda ruota di cordonatura (72) eseguono la prima linea di cordonatura (11) e la seconda linea di cordonatura (12)

grazie all'avanzamento del sottostante nastro di cartone (2).

I mezzi per individuare sul nastro di cartone (2) le regioni di nastro (8) possono essere l'unità di controllo dell'apparato (10), non illustrata. L'unità di controllo può stabilire le dimensioni di ciascuna regione di nastro (8) sulla base delle dimensioni dell'articolo (9) corrispondente che dovrà essere imballato; inoltre, l'unità di controllo può regolare l'azionamento della bobina (19) e pertanto risalire, in ogni istante, a dove si trova ciascuna regione di nastro (8).

I primi mezzi di taglio sono disposti preferibilmente a valle dei mezzi di cordonatura (figg.1, 2).

I primi mezzi di taglio comprendono preferibilmente: una prima forbice (91) ed una seconda forbice (92) che agiscono dalla parte della prima estremità laterale (6) del nastro di cartone (2) per eseguire su ciascuna regione di nastro (8) rispettivamente il primo taglio (21) ed il secondo taglio (22); una terza forbice (93) ed una quarta forbice (94) che agiscono dalla parte della seconda estremità laterale (7) del nastro di cartone (2) per eseguire su ciascuna regione di nastro (8) rispettivamente il terzo taglio (23) ed il quarto taglio (24).

Preferibilmente, la prima forbice (91), la seconda forbice (92), la terza forbice (93) e la quarta forbice (94) sono azionate contemporaneamente per agire sul nastro di cartone (2); preferibilmente, il nastro di cartone (2) viene fermato per il tempo necessario alla prima forbice (91), alla seconda forbice (92), alla terza forbice (93) ed alla quarta forbice (94) di eseguire rispettivamente il primo taglio (21), il secondo taglio (22), il terzo taglio (23) ed il quarto taglio (24). Dopo che ciascuna forbice ha disimpegnato il nastro di cartone (2), allora quest'ultimo viene nuovamente azionato in avanzamento.

Preferibilmente, la prima forbice (91), la seconda forbice (92), la terza forbice (93)

e la quarta forbice (94) sono: identiche fra loro e conformate ciascuna per asportare una corrispondente striscia di materiale da ogni regione di nastro (8) del nastro di cartone (2), lasciando individuate le citate finestre sopra definite con riferimento al metodo. Pertanto, ogni primo taglio (21) prodotto dalla prima forbice (91) definisce la prima finestra (31) di una corrispondente regione di nastro (8), ogni secondo taglio (22) prodotto dalla seconda forbice (92) definisce la seconda finestra (32) di una corrispondente regione di nastro (8), ogni terzo taglio (23) prodotto dalla terza forbice (93) definisce la terza finestra (33) di una corrispondente regione di nastro (8) ed ogni quarto taglio (24) prodotto dalla quarta forbice (94) definisce la quarta finestra (34) di una corrispondente regione di nastro (8).

Le figg.8, 9A, 9B illustrano una possibile conformazione e funzionamento di una delle forbici sopra citate, in questo caso la quarta forbice (94): la quarta forbice (94) ha una lama superiore ed una contro-lama inferiore che sono incernierate fra loro. Il profilo del tagliente della lama superiore ha preferibilmente una forma ad "U" per asportare, come detto, una striscia di materiale dal nastro di cartone (2) e lasciare individuata la quarta finestra (34) in una regione di nastro (8).

I secondi mezzi di taglio (39) sono disposti preferibilmente a valle dei primi mezzi di taglio e, come detto, agiscono per eseguire un taglio trasversale sul nastro di cartone (2) al fine di separare le regioni di nastro (8) fra loro ed ottenere corrispondenti cartoni (1) per imballaggi.

Preferibilmente, il metodo comprende ulteriormente le fasi di regolare selettivamente, in funzione delle dimensioni dell'articolo (9) da imballare:

la posizione della prima linea di cordonatura (11); e/o

la posizione della seconda linea di cordonatura (12); e/o

le estensioni di ciascuna regione di nastro (8), misurate in una direzione parallela alla direzione di sviluppo, e di conseguenza le posizioni in cui recidere trasversalmente il nastro di cartone (2) per separare le regioni di nastro (8) fra loro; e/o

la posizione del primo taglio (21), del secondo taglio (22), del terzo taglio (23) e del quarto taglio (24) all'interno di ciascuna regione di nastro (8).

Queste regolazioni, inoltre, permettono vantaggiosamente di stabilire con quanti strati di cartone avvolgere il terzo fianco (43), il quarto fianco (44) ed il lato superiore dell'articolo (9) da imballare.

Per regolare le posizioni della prima linea di cordonatura (11) e/o della seconda linea di cordonatura (12) è preferibile: che il primo albero (70), che si è precisato essere vincolato al telaio (67) dell'apparato (10), sia in particolare mobile in avvicinamento ed allontanamento rispetto al nastro di cartone (2) in avanzamento; e che le posizioni della prima ruota di cordonatura (71) e della seconda ruota di cordonatura (72) siano regolabili lungo il primo albero (70).

Il primo albero (70), pertanto, può essere vincolato al telaio (67) mediante un grado di libertà che gli consente di avvicinarsi ed allontanarsi al e dal nastro di cartone (2) in avanzamento secondo una direzione verticale. Nell'esempio illustrato nelle figure (si veda fig.2) le estremità del primo albero (70) si impegnano in guide verticali ricavate in corrispondenti elementi del telaio (67) dell'apparato (10).

Il primo supporto (81) ed il secondo supporto (82) possono pertanto essere carrelli in grado di scorrere lungo il primo albero (70) (che funge da guida di scorrimento) cosicché la prima ruota di cordonatura (71) e la seconda ruota di cordonatura (72) possano agevolmente traslare lungo il primo albero (70) permettendo di regolare

le posizioni della prima linea di cordonatura (11) e della seconda linea di cordonatura (12) in funzione delle dimensioni dell'articolo (9) da imballare.

Sopra si è precisato che il nastro può essere fermato temporaneamente per eseguire il primo taglio (21), il secondo taglio (22), il terzo taglio (23) ed il quarto taglio (24).

Nel caso in cui occorra variare le posizioni della prima linea di cordonatura (11) e della seconda linea di cordonatura (12) durante la transizione da una prima regione di nastro (8) (R1) ad una successiva seconda regione di nastro (8) (R2) allora si può traslare il primo albero (70), la prima ruota di cordonatura (71) e la seconda ruota di cordonatura (72) quando il nastro è fermo. Tra la prima regione di nastro (8) (R1) e la seconda regione di nastro (8) (R2) resterà così definita una striscia di sfrido (20) avente una lunghezza, misurata perpendicolarmente alla direzione di sviluppo, pari alla larghezza del nastro di cartone (2); in questa striscia di sfrido (20) è possibile riconoscere chiaramente la discontinuità della prima linea di cordonatura (11) e della seconda linea di cordonatura (12). Se le regolazioni del primo albero (70), della prima ruota di cordonatura (71) e della seconda ruota di cordonatura (72) avvengono quando il nastro è fermo, allora la larghezza di questa striscia di sfrido (20), misurata parallelamente alla direzione di sviluppo, sarà minima; in alternativa, se queste regolazioni avvengono durante la movimentazione del nastro di cartone (2) allora tale larghezza sarà maggiore e dipenderà dalla velocità di avanzamento del nastro.

Per limitare le dimensioni della striscia di sfrido (20) da eliminare, è preferibile che le regolazioni del primo albero (70), della prima ruota di cordonatura (71) e della seconda ruota di cordonatura (72) avvengano quando il nastro di cartone (2) è fermo. Il fatto che la striscia di sfrido (20) abbia una larghezza minima ha un

ulteriore vantaggio: è infatti possibile eliminare la striscia di sfrido (20) mediante i secondi mezzi di taglio (39) (che pertanto contestualmente opereranno pure la separazione fra prima regione di nastro (8) (R1) e seconda regione di nastro (8) (R2)) con una sola operazione di taglio se il tagliente della lama dei secondi mezzi di taglio (39) ha forma ad "U" (fig.11) e dimensioni idonee per eliminare una striscia di nastro di cartone (2) di area almeno pari a quella della striscia di sfrido (20) (figg.10A, 10B).

L'estensione di ciascuna regione di nastro (8) parallelamente alla direzione di sviluppo può invece essere stabilita regolando il tempo di intervento dei secondi mezzi di taglio (39) per recidere trasversalmente il nastro di cartone (2); ad esempio, allungando questo tempo di intervento si otterranno regioni di nastro (8) aventi una maggiore estensione.

Per variare la posizione del primo taglio (21), del secondo taglio (22), del terzo taglio (23) e del quarto taglio (24) lungo la direzione di sviluppo è possibile rendere mobili la prima forbice (91), la seconda forbice (92), la terza forbice (93) e la quarta forbice (94) lungo la direzione di sviluppo; inoltre, per variare la profondità (e quindi la estensione) di questi tagli (va ricordato che i tagli devono preferibilmente raggiungere la prima linea di cordonatura (11) e la seconda linea di cordonatura (12), le quali a loro volta sono regolabili e quindi mobili) è possibile rendere mobili le forbici anche in direzione perpendicolare alla direzione di sviluppo.

La regolazione delle posizioni delle forbici può avvenire durante l'avanzamento del nastro di cartone (2), quando esse cioè non devono eseguire alcun taglio; in tal caso, quando il nastro di cartone (2) viene fermato allora le forbici dovranno soltanto eseguire i tagli.

Le figure 7A, 7B mostrano la movimentazione della prima forbice (91), della seconda forbice (92), della terza forbice (93) e della quarta forbice (94) in direzioni parallele e perpendicolari alla direzione di sviluppo nella ipotesi in cui i tagli da eseguire sulla seconda regione di nastro (8) (R2) debbano avere posizioni differenti dai tagli già eseguiti sulla prima regione di nastro (8) (R1).

Gli articoli (9) da imballare possono avere dimensioni (larghezza, lunghezza, altezza) che sono note o che possono essere ricavate dalla lettura di una etichetta (66) o codice apposti sull'articolo (9) medesimo; se non si conoscono le dimensioni precise dell'articolo (9) da imballare, allora è possibile ricorrere per esempio a sistemi di acquisizione delle dimensioni degli articoli (9), che comprendono delle telecamere (40).

In figura 1 è illustrato: un primo trasportatore (45) su cui sono disposti gli articoli (9); e delle telecamere (40) disposte al disopra del primo trasportatore (45), le quali rilevano immagini dell'articolo (9) per consentire ad un software apposito di ricavare le dimensioni dell'articolo (9).

Note le dimensioni dell'articolo (9) è possibile formare una regione di nastro (8), e quindi un cartone (1) per imballaggi, di caratteristiche adeguate per imballare l'articolo (9).

La possibilità di modificare per ogni regione di nastro (8) le caratteristiche (posizioni della prima linea di cordonatura (11), della seconda linea di cordonatura (12), dei tagli) e le dimensioni (lunghezza misurata parallelamente alla direzione di sviluppo) permette di imballare articoli (9) aventi anche dimensioni sensibilmente differenti fra loro.

Esistono però dei limiti per le dimensioni minime e massime degli articoli (9) che possono essere imballati e tali limiti dipendono dalla larghezza del nastro di

cartone (2).

Per esempio, la figura 13A illustra un primo articolo (9) avente una larghezza, misurata perpendicolarmente alla direzione di sviluppo, che è la minima consentita: infatti la prima ala di rinforzo (51) e la terza ala di rinforzo (53) si sovrappongono completamente fra loro ed alla prima porzione (101) del settore centrale (3), mentre la seconda ala di rinforzo (52) e la quarta ala di rinforzo (54) si sovrappongono completamente fra loro ed alla seconda porzione (102) del settore centrale (3). Questo significa che le estensioni del primo settore laterale (4) e del secondo settore laterale (5), misurate perpendicolarmente alla direzione di sviluppo, corrispondono ciascuna al 100% della estensione del settore centrale (3).

Preferibilmente, il metodo comprende la fase, o le fasi, di recidere una striscia di bordo del nastro di cartone (2) che è localizzata in corrispondenza della prima estremità laterale (6) del nastro di cartone (2) e/o in corrispondenza della seconda estremità laterale (7) del nastro di cartone (2), in funzione delle dimensioni dell'articolo (9) da imballare.

Pertanto, per ciascuna regione di nastro (8) è possibile recidere, se necessario: una striscia di bordo localizzata in corrispondenza della prima estremità laterale (6) del nastro di cartone (2) o in corrispondenza della seconda estremità laterale (7) del nastro di cartone (2); oppure una prima striscia di bordo (46) localizzata in corrispondenza della prima estremità laterale (6) del nastro di cartone (2) ed una seconda striscia di bordo (47) localizzata in corrispondenza della seconda estremità laterale (7) del nastro di cartone (2), preferibilmente identiche fra loro così da risultare simmetriche rispetto all'asse del nastro di cartone (2) (fig.2).

In altre parole è possibile variare in modo dinamico la larghezza del nastro di

cartone (2) in funzione delle dimensioni dell'articolo (9) da imballare; ciò è molto vantaggioso in quanto consente di imballare una varietà ancor più grande di articoli (9) di dimensioni differenti fra loro.

Per recidere, e quindi eliminare, la striscia di bordo l'apparato (10) comprende preferibilmente una ruota di recisione; la ruota di recisione è preferibilmente portata dal primo albero (70), è girevole rispetto al proprio asse e conforma un tagliente circolare. L'apparato (10) può comprendere un supporto per la ruota di recisione che può scorrere lungo il primo albero (70) e che porta la ruota di recisione, cosicché sia possibile regolare la larghezza, misurata perpendicolarmente alla direzione di sviluppo, della striscia di bordo da recidere.

La posizione della ruota di recisione lungo il primo albero (70) può essere regolata preferibilmente quando il nastro di carta si ferma per le operazioni di taglio: in tal caso il primo albero (70) si allontana dal nastro di cartone (2) (cioè si solleva) ed il supporto per la ruota di recisione può scorrere per portare la ruota di recisione in una nuova posizione.

Nelle figure si sono illustrate una prima ruota di recisione (68) ed una seconda ruota di recisione (69) per recidere rispettivamente la prima striscia di bordo (46) e la seconda striscia di bordo (47); la prima ruota di recisione (68) è portata da un terzo supporto (83), il quale può scorrere lungo il primo albero (70), mentre la seconda ruota di recisione (69) è portata da un quarto supporto (84), il quale può scorrere lungo il primo albero (70).

La prima striscia di bordo (46) viene pertanto recisa longitudinalmente dalla prima ruota di recisione (68) in una direzione parallela alla direzione di sviluppo, mentre viene recisa trasversalmente dai secondi mezzi di taglio (39) che la staccano definitivamente dal nastro di cartone (2). Analogamente, la seconda striscia di

bordo (47) viene recisa longitudinalmente dalla seconda ruota di recisione (69) in una direzione parallela alla direzione di sviluppo, mentre viene recisa trasversalmente dai secondi mezzi di taglio (39) che la staccano definitivamente dal nastro di cartone (2).

Preferibilmente, il metodo prevede che su ciascuna regione di nastro (8) vengano eseguiti ulteriormente: un quinto taglio (25) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la prima ala di rinforzo (51) in due parti, vale a dire una quinta ala di rinforzo (55) ed una sesta ala di rinforzo (56); un sesto taglio (26) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la terza ala di rinforzo (53) in due parti, vale a dire una settima ala di rinforzo (57) ed una ottava ala di rinforzo (58); la quinta ala di rinforzo (55) risultando contrapposta alla settima ala di rinforzo (57) e la sesta ala di rinforzo (56) risultando contrapposta alla ottava ala di rinforzo (58); le posizioni del quinto taglio (25) e del sesto taglio (26) essendo scelte in modo che le estensioni della sesta ala di rinforzo (56) e della ottava ala di rinforzo (58), misurate lungo la direzione di sviluppo, siano in relazione con l'altezza del terzo fianco (43) dell'articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il terzo fianco (43) essendo esposto verso il tratto di settore centrale (3) (precedentemente riferito come prima porzione (101) del settore centrale (3)) cui sono articolati, tramite la prima linea di cordonatura (11) e la seconda linea di cordonatura (12), la quinta ala di rinforzo (55), la sesta ala di rinforzo (56), la settima ala di rinforzo (57) e la ottava ala di rinforzo (58).

Preferibilmente, il quinto taglio (25) è allineato con il sesto taglio (26).

Preferibilmente, le estensioni della sesta ala di rinforzo (56) e della ottava ala di

rinforzo (58), misurate lungo la direzione di sviluppo, sono maggiori od uguali (preferibilmente uguali) all'altezza del terzo fianco (43) dell'articolo (9) da imballare.

Il primo complesso di sovrapposizione (17) comprende pertanto: un primo insieme (77) formato dalla quinta ala di rinforzo (55) e dalla settima ala di rinforzo (57) sovrapposte fra loro e dalla porzione di settore centrale (3) a cui si sovrappongono la quinta ala di rinforzo (55) e la settima ala di rinforzo (57); ed un secondo insieme (78) formato dalla sesta ala di rinforzo (56) e dalla ottava ala di rinforzo (58) sovrapposte fra loro e dalla porzione di settore centrale (3) a cui si sovrappongono la sesta ala di rinforzo (56) e la ottava ala di rinforzo (58).

Il quinto taglio (25) ed il sesto taglio (26) agevolano la piegatura del primo complesso di sovrapposizione (17) per avvolgere il terzo fianco (43) e la prima parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3); in particolare, il secondo insieme (78) si dispone ad un angolo, preferibilmente di novanta gradi, rispetto alla porzione di settore centrale (3) su cui è in appoggio l'articolo (9) ed il primo insieme (77) si dispone ad un angolo, preferibilmente di novanta gradi, rispetto al secondo insieme (78) per coprire la prima parte del lato superiore dell'articolo (9).

Preferibilmente, su ciascuna regione di nastro (8) il quinto taglio (25) ed il sesto taglio (26) provocano ciascuno l'eliminazione di una corrispondente striscia di materiale della stessa regione di nastro (8), cosicché restino individuate rispettivamente una quinta finestra (35) ed una sesta finestra (36); sia la quinta finestra (35) che la sesta finestra (36) conformano una corrispondente un'apertura rettangolare.

Come conseguenza, sul settore centrale (3), tra il primo insieme (77) ed il secondo

insieme (78), resta definita una terza striscia di piegatura (63) avente una lunghezza, misurata perpendicolarmente alla direzione di sviluppo, che è pari alla larghezza del settore centrale (3) ed una larghezza, misurata parallelamente alla direzione di sviluppo, che è pari alla larghezza della quinta finestra (35) e della sesta finestra (36); questa terza striscia di piegatura (63) è interposta fra il primo insieme (77) ed il secondo insieme (78) e rappresenta equivalentemente una linea di cordonatura trasversale per il primo insieme (77), il quale ruota rispetto al secondo insieme (78) (figg.15, 16) quando il primo complesso di sovrapposizione (17) viene piegato contro il terzo fianco (43) e la prima parte del lato superiore dell'articolo (9). Il primo insieme (77) ruota agevolmente rispetto al secondo insieme (78) in quanto la terza striscia di piegatura (63) che separa il primo insieme (77) dal secondo insieme (78) è formata da un solo strato di cartone, a differenza degli stessi primo insieme (77) e secondo insieme (78) che invece hanno ciascuno almeno due strati di cartone.

Preferibilmente, per formare il quinto taglio (25) (che può avere la forma della quinta finestra (35)), i primi mezzi di taglio comprendono una quinta forbice (95) che agisce dalla parte della prima estremità laterale (6) del nastro di cartone (2) e che è affiancata alla prima forbice (91); preferibilmente, per formare il sesto taglio (26) (che può avere la forma della sesta finestra (36)), i primi mezzi di taglio comprendono una sesta forbice (96) che agisce dalla parte della seconda estremità laterale (7) del nastro di cartone (2) e che è affiancata alla terza forbice (93).

La quinta forbice (95) e la sesta forbice (96) possono avere le medesime caratteristiche e funzionalità della prima forbice (91), della seconda forbice (92), della terza forbice (93) e della quarta forbice (94) già discusse sopra.

Preferibilmente, il metodo prevede che su ciascuna regione di nastro (8) vengano eseguiti ulteriormente un settimo taglio (27) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la seconda ala di rinforzo (52) in due parti, vale a dire una nona ala di rinforzo (59) ed una decima ala di rinforzo (60); un ottavo taglio (28) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la quarta ala di rinforzo (54) in due parti, vale a dire una undicesima ala di rinforzo (99) ed una dodicesima ala di rinforzo (100); la nona ala di rinforzo (59) risultando contrapposta alla undicesima ala di rinforzo (99) e la decima ala di rinforzo (60) risultando contrapposta alla dodicesima ala di rinforzo (100); le posizioni del settimo taglio (27) e dell'ottavo taglio (28) essendo scelte in modo che le estensioni della nona ala di rinforzo (59) e della undicesima ala di rinforzo (99), misurate lungo la direzione di sviluppo, siano in relazione con l'altezza del quarto fianco (44) dell'articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il quarto fianco (44) essendo esposto verso il tratto di settore centrale (3) (precedentemente riferito come seconda porzione (102) del settore centrale (3)) cui sono articolati, tramite la prima linea di cordonatura (11) e la seconda linea di cordonatura (12), la nona ala di rinforzo (59), la decima ala di rinforzo (60), la undicesima ala di rinforzo (99) e la dodicesima ala di rinforzo (100).

Preferibilmente, il settimo taglio (27) è allineato con l'ottavo taglio (28).

Preferibilmente, le estensioni della nona ala di rinforzo (59) e della undicesima ala di rinforzo (99), misurate lungo la direzione di sviluppo, sono maggiori od uguali (preferibilmente uguali) all'altezza del quarto fianco (44) dell'articolo (9) da imballare.

Il secondo complesso di sovrapposizione (18) comprende pertanto: un terzo insieme (79) formato dalla decima ala di rinforzo (60) e dalla dodicesima ala di rinforzo (100) sovrapposte fra loro e dalla porzione di settore centrale (3) a cui si sovrappongono la decima ala di rinforzo (60) e la dodicesima ala di rinforzo (100); ed un quarto insieme (80) formato dalla nona ala di rinforzo (59) e dalla undicesima ala di rinforzo (99) sovrapposte fra loro e dalla porzione di settore centrale (3) a cui si sovrappongono la nona ala di rinforzo (59) e la undicesima ala di rinforzo (99).

Il settimo taglio (27) e l'ottavo taglio (28) agevolano la piegatura del secondo complesso di sovrapposizione (18) per avvolgere il quarto fianco (44) e la seconda parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3); in particolare, il quarto insieme (80) si dispone ad un angolo, preferibilmente di novanta gradi, rispetto alla porzione di settore centrale (3) su cui è in appoggio l'articolo (9) ed il terzo insieme (79) si dispone ad un angolo, preferibilmente di novanta gradi, rispetto al quarto insieme (80) per coprire la seconda parte del lato superiore dell'articolo (9).

Preferibilmente, su ciascuna regione di nastro (8) il settimo taglio (27) e l'ottavo taglio (28) provocano ciascuno l'eliminazione di una corrispondente striscia di materiale della stessa regione di nastro (8), cosicché restino individuate rispettivamente una settima finestra (37) ed una ottava finestra (38); sia la settima finestra (37) che la ottava finestra (38) conformano una corrispondente un'apertura rettangolare.

Come conseguenza, sul settore centrale (3), tra il terzo insieme (79) ed il quarto insieme (80), resta definita una quarta striscia di piegatura (64) avente una lunghezza, misurata perpendicolarmente alla direzione di sviluppo, che è pari alla

larghezza del settore centrale (3) ed una larghezza, misurata parallelamente alla direzione di sviluppo, che è pari alla larghezza della settima finestra (37) e della ottava finestra (38); questa quarta striscia di piegatura (64) è interposta fra il terzo insieme (79) ed il quarto insieme (80) e rappresenta equivalentemente una linea di cordonatura trasversale per il terzo insieme (79), il quale ruota rispetto al quarto insieme (80) (figg.15, 16) quando il secondo complesso di sovrapposizione (18) viene piegato contro il quarto fianco (44) e la seconda parte del lato superiore dell'articolo (9). Il terzo insieme (79) ruota agevolmente rispetto al quarto insieme (80) in quanto la quarta striscia di piegatura (64) che separa il terzo insieme (79) dal quarto insieme (80) è formata da un solo strato di cartone, a differenza degli stessi terzo insieme (79) e quarto insieme (80) che invece hanno ciascuno almeno due strati di cartone.

Preferibilmente, per formare il settimo taglio (27) (che può avere la forma della settima finestra (37)), i primi mezzi di taglio comprendono una settima forbice (97) che agisce dalla parte della prima estremità laterale (6) del nastro di cartone (2) e che è affiancata alla seconda forbice (92); preferibilmente, per formare l'ottavo taglio (28) (che può avere la forma della ottava finestra (38)), i primi mezzi di taglio comprendono una ottava forbice (98) che agisce dalla parte della seconda estremità laterale (7) del nastro di cartone (2) e che è affiancata alla quarta forbice (94).

La settima forbice (97) e la ottava forbice (98) possono avere le medesime caratteristiche e funzionalità della prima forbice (91), della seconda forbice (92), della terza forbice (93), della quarta forbice (94), della quinta forbice (95) e della sesta forbice (96) già discusse sopra.

Preferibilmente il metodo comprende le ulteriori fasi di: praticare una terza linea di

cordonatura (13) sul primo settore laterale (4) del nastro, che sia parallela alla direzione di sviluppo cosicché nella prima ala di chiusura (49) resti individuata una prima porzione (101) di nastro compresa fra la prima linea di cordonatura (11) e la terza linea di cordonatura (13) ed una seconda porzione (102) di nastro compresa fra la terza linea di cordonatura (13) e la estremità libera della prima ala di chiusura (49), la posizione della terza linea di cordonatura (13) essendo scelta in modo che la estensione della prima porzione (101) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, sia in relazione con l'altezza del primo fianco (41) dell'articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il primo fianco (41) essendo esposto verso la prima ala di chiusura (49); praticare una quarta linea di cordonatura (14) sul secondo settore laterale (5) del nastro che sia parallela alla direzione di sviluppo, cosicché nella seconda ala di chiusura (50) resti individuata una terza porzione (103) di nastro compresa fra la seconda linea di cordonatura (12) e la quarta linea di cordonatura (14) ed una quarta porzione (104) di nastro compresa fra la quarta linea di cordonatura (14) e la estremità libera della seconda ala di chiusura (50), la posizione della quarta linea di cordonatura (14) essendo scelta in modo che la estensione della terza porzione (103) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, sia in relazione con l'altezza del secondo fianco (42) dell'articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il secondo fianco (42) essendo esposto verso la seconda ala di chiusura (50).

Preferibilmente, l'estensione della prima porzione (101) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, è maggiore od uguale (preferibilmente uguale) all'altezza del primo fianco (41) dell'articolo (9) da imballare; preferibilmente, l'estensione della terza porzione (103) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, è maggiore od uguale (preferibilmente uguale) all'altezza del secondo fianco (42) dell'articolo (9) da imballare.

Quando la prima ala di chiusura (49) viene piegata verso il settore centrale (3) per avvolgere il primo fianco (41) e la terza parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3), allora la prima porzione (101) di nastro, che è articolata alla prima linea di cordonatura (11), ruota di un angolo (preferibilmente di novanta gradi) rispetto al settore centrale (3) su cui si trova in appoggio l'articolo (9), mentre la seconda porzione (102) di nastro, che è articolata alla terza linea di cordonatura (13), ruota di un angolo (preferibilmente di novanta gradi) rispetto alla prima porzione (101) di nastro per coprire la terza parte del lato superiore dell'articolo (9).

Pertanto, la terza linea di cordonatura (13) agevola la piegatura della prima ala di chiusura (49) per avvolgere il primo fianco (41) e la terza parte del lato superiore dell'articolo (9) da imballare, in appoggio sul settore centrale (3) tra la prima ala di chiusura (49) e la seconda ala di chiusura (50).

Quando la seconda ala di chiusura (50) viene piegata verso il settore centrale (3) per avvolgere il secondo fianco (42) e la quarta parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3), allora la terza porzione (103) di nastro, che è articolata alla seconda linea di cordonatura (12), ruota di un angolo (preferibilmente di novanta gradi) rispetto al settore centrale (3) su cui si trova in appoggio l'articolo (9), mentre la quarta porzione (104) di nastro, che è articolata alla quarta linea di cordonatura (14), ruota di un angolo (preferibilmente di novanta

gradi) rispetto alla terza porzione (103) di nastro per coprire la quarta parte del lato superiore dell'articolo (9).

Pertanto, la quarta linea di cordonatura (14) agevola la piegatura della seconda ala di chiusura (50) per avvolgere il secondo fianco (42) e la quarta parte del lato superiore dell'articolo (9) da imballare, in appoggio sul settore centrale (3) tra la prima ala di chiusura (49) e la seconda ala di chiusura (50).

Preferibilmente, i mezzi di cordonatura comprendono inoltre: una terza ruota di cordonatura (73) preferibilmente portata dal primo albero (70), la quale terza ruota di cordonatura (73) è girevole rispetto al proprio asse per realizzare la terza linea di cordonatura (13); una quarta ruota di cordonatura (74) preferibilmente portata dal primo albero (70), la quale quarta ruota di cordonatura (74) è girevole rispetto al proprio asse per realizzare la quarta linea di cordonatura (14). Il primo albero (70), la terza ruota di cordonatura (73) e la quarta ruota di cordonatura (74) sono disposti rispetto al sottostante nastro di cartone (2) in avanzamento per realizzare la terza linea di cordonatura (13) e la quarta linea di cordonatura (14).

I mezzi di cordonatura possono comprendere, inoltre: un quinto supporto (85) che è vincolato al primo albero (70) e che porta a sua volta la terza ruota di cordonatura (73); un sesto supporto (86) che è vincolato al primo albero (70) e che porta a sua volta la quarta ruota di cordonatura (74).

La terza ruota di cordonatura (73) e la quarta ruota di cordonatura (74) sono preferibilmente trascinate in rotazione da attuatori non illustrati.

È possibile regolare la posizione della terza linea di cordonatura (13) e della quarta linea di cordonatura (14) in funzione delle dimensioni dell'articolo (9) da imballare; a tal fine, è possibile regolare le posizioni della terza ruota di cordonatura (73) e della quarta ruota di cordonatura (74) lungo il primo albero

(70).

Il quinto supporto (85) ed il sesto supporto (86) possono pertanto essere carrelli in grado di scorrere lungo il primo albero (70) (che funge da guida di scorrimento) cosicché la terza ruota di cordonatura (73) e la quarta ruota di cordonatura (74) possano agevolmente traslare lungo il primo albero (70) permettendo di regolare le posizioni della terza linea di cordonatura (13) e della quarta linea di cordonatura (14) in funzione delle dimensioni dell'articolo (9) da imballare.

Nel caso in cui occorra variare le posizioni della terza linea di cordonatura (13) e della quarta linea di cordonatura (14) nel passare da una prima regione di nastro (8) (R1) ad una successiva seconda regione di nastro (8) (R2) (fig.2) allora si può traslare il primo albero (70), la terza ruota di cordonatura (73) e la quarta ruota di cordonatura (74) quando il nastro è fermo.

Preferibilmente, il metodo comprende le ulteriori fasi di: praticare una quinta linea di cordonatura (15) sul primo settore laterale (4) del nastro che sia parallela alla direzione di sviluppo e compresa fra la prima linea di cordonatura (11) e la terza linea di cordonatura (13), cosicché nella prima porzione (101) di nastro resti individuata una quinta porzione (105) di nastro compresa fra la prima linea di cordonatura (11) e la quinta linea di cordonatura (15) ed una sesta porzione (106) di nastro compresa fra la quinta linea di cordonatura (15) e la terza linea di cordonatura (13), le posizioni della terza linea di cordonatura (13) e della quinta linea di cordonatura (15) essendo scelte in modo che sia in particolare la estensione della sesta porzione (106) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, ad essere in relazione con l'altezza del primo fianco (41) dell'articolo (9) da imballare; praticare una sesta linea di cordonatura (16) sul secondo settore laterale (5) del nastro che sia parallela alla

direzione di sviluppo e compresa fra la seconda linea di cordonatura (12) e la quarta linea di cordonatura (14), cosicché nella terza porzione (103) di nastro resti individuata una settima porzione (107) di nastro compresa fra la seconda linea di cordonatura (12) e la sesta linea di cordonatura (16) ed una ottava porzione (108) di nastro compresa fra la sesta linea di cordonatura (16) e la quarta linea di cordonatura (14), le posizioni della quarta linea di cordonatura (14) e della sesta linea di cordonatura (16) essendo scelte in modo che sia in particolare la estensione della ottava porzione (108) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, ad essere in relazione con l'altezza del secondo fianco (42) dell'articolo (9) da imballare.

Preferibilmente, la prima ala di chiusura (49) è piegabile per avvolgere il primo fianco (41) e la terza parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3), fra la stessa prima ala di chiusura (49) e la seconda ala di chiusura (50), in modo che: la quinta porzione (105) di nastro, articolata alla prima linea di cordonatura (11), ruoti di un angolo, preferibilmente di centottanta gradi, per aderire al settore centrale (3); la sesta porzione (106) di nastro, articolata alla quinta linea di cordonatura (15), ruoti di un angolo, preferibilmente di novanta gradi, rispetto al settore centrale (3) ed alla quinta porzione (105) di nastro per avvolgere il primo fianco (41) dell'articolo (9); la seconda porzione (102) di nastro, articolata alla terza linea di cordonatura (13), ruoti di un angolo, preferibilmente di novanta gradi, rispetto alla sesta porzione (106) di nastro per avvolgere la terza parte del lato superiore dell'articolo (9) da imballare.

Pertanto, la quinta porzione (105) di nastro si sovrappone al settore centrale (3) disponendosi parallelamente ad esso e formando un primo bordo rinforzato (89) (figg. 13A, 13B, 14, 15, 16, 17A, 17B) che protegge ulteriormente l'articolo (9), una

volta che l'imballaggio è stato completato, dagli urti e dalle cadute accidentali.

Preferibilmente, la seconda ala di chiusura (50) è piegabile per avvolgere il secondo fianco (42) e la quarta parte del lato superiore dell'articolo (9) in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la stessa seconda ala di chiusura (50), in modo che: la settima porzione (107) di nastro, articolata alla seconda linea di cordonatura (12), ruoti di un angolo, preferibilmente di centottanta gradi, per aderire al settore centrale (3); la ottava porzione (108) di nastro, articolata alla sesta linea di cordonatura (16), ruoti di un angolo, preferibilmente di novanta gradi, rispetto al settore centrale (3) ed alla settima porzione (107) di nastro per avvolgere il secondo fianco (42) dell'articolo (9); la quarta porzione (104) di nastro, articolata alla quarta linea di cordonatura (14), ruoti di un angolo, preferibilmente di novanta gradi, rispetto alla ottava porzione (108) di nastro per avvolgere la quarta parte del lato superiore dell'articolo (9) da imballare.

Pertanto, la settima porzione (107) di nastro si sovrappone al settore centrale (3) disponendosi parallelamente ad esso e formando un secondo bordo rinforzato (90) (figg. 13A, 13B, 14, 15, 16, 17A, 17B) che protegge ulteriormente l'articolo (9), una volta che l'imballaggio è stato completato, dagli urti e dalle cadute accidentali.

Preferibilmente, i mezzi di cordonatura comprendono inoltre: una quinta ruota di cordonatura (75) preferibilmente portata dal primo albero (70), la quale quinta ruota di cordonatura (75) è girevole rispetto al proprio asse per realizzare la quinta linea di cordonatura (15); una sesta ruota di cordonatura (76) preferibilmente portata dal primo albero (70), la quale sesta ruota di cordonatura (76) è girevole rispetto al proprio asse per realizzare la sesta linea di cordonatura (16). Il primo albero (70), la quinta ruota di cordonatura (75) e la sesta ruota di cordonatura (76)

sono disposti rispetto al sottostante nastro di cartone (2) in avanzamento per realizzare la quinta linea di cordonatura (15) e la sesta linea di cordonatura (16).

I mezzi di cordonatura possono comprendere, inoltre: un settimo supporto (87) che è vincolato al primo albero (70) e che porta a sua volta la quinta ruota di cordonatura (75); un ottavo supporto (88) che è vincolato al primo albero (70) e che porta a sua volta la sesta ruota di cordonatura (76).

La quinta ruota di cordonatura (75) e la sesta ruota di cordonatura (76) sono preferibilmente trascinate in rotazione da attuatori non illustrati.

È possibile regolare la posizione della quinta linea di cordonatura (15) e della sesta linea di cordonatura (16) in funzione delle dimensioni dell'articolo (9) da imballare; a tal fine, è possibile regolare le posizioni della quinta ruota di cordonatura (75) e della sesta ruota di cordonatura (76) lungo il primo albero (70). Il settimo supporto (87) e l'ottavo supporto (88) possono pertanto essere carrelli in grado di scorrere lungo il primo albero (70) (che funge da guida di scorrimento) cosicché la quinta ruota di cordonatura (75) e la sesta ruota di cordonatura (76) possano agevolmente traslare lungo il primo albero (70) permettendo di regolare le posizioni della quinta linea di cordonatura (15) e della sesta linea di cordonatura (16) in funzione delle dimensioni dell'articolo (9) da imballare.

Nel caso in cui occorra variare le posizioni della quinta linea di cordonatura (15) e della sesta linea di cordonatura (16) nel passare da una prima regione di nastro (8) (R1) ad una successiva seconda regione di nastro (8) (R2) allora si può traslare il primo albero (70), la quinta ruota di cordonatura (75) e la sesta ruota di cordonatura (76) quando il nastro è fermo.

L'apparato (10) può comprendere mezzi per l'applicazione di collante (48) che sono disposti in corrispondenza dei secondi mezzi di taglio (39), i quali rilasciano

due strisce di collante (109) sul settore centrale (3), in prossimità rispettivamente della prima linea di cordonatura (11) e della seconda linea di cordonatura (12). Le due strisce di collante (109) provocano l'incollaggio: della quinta ala di rinforzo (55), della sesta ala di rinforzo (56), della settima ala di rinforzo (57), della ottava ala di rinforzo (58), della nona ala di rinforzo (59), della decima ala di rinforzo (60), della undicesima ala di rinforzo (99), della dodicesima ala di rinforzo (100), della quinta porzione (105) di nastro e della settima porzione (107) di nastro al settore centrale (3).

L'apparato (10) fa parte di un sistema, illustrato in figura 1, per imballare articoli (9).

Si intende che quanto sopra è stato descritto a titolo esemplificativo e non limitativo, per cui eventuali varianti costruttive si intendono rientranti nell'ambito protettivo della presente soluzione tecnica, come nel seguito rivendicata.

RIVENDICAZIONI

- 1) Metodo per realizzare cartoni (1) per imballaggi, caratterizzato dal fatto di comprendere le seguenti fasi:
 - alimentare un nastro di cartone (2) per imballaggi lungo una direzione di avanzamento (A) che è parallela alla direzione di sviluppo del nastro di cartone (2);

praticare una prima linea di cordonatura (11) ed una seconda linea di cordonatura (12) sul nastro di cartone (2), in modo che la prima linea di cordonatura (11) e la seconda linea di cordonatura (12) siano parallele alla direzione di sviluppo e che restino individuati: un settore centrale (3) compreso fra la prima linea di cordonatura (11) e la seconda linea di cordonatura (12); un primo settore laterale (4) compreso fra la prima linea di cordonatura (11) ed una prima estremità laterale (6) del nastro di cartone (2); ed un secondo settore laterale (5) compreso fra la seconda linea di cordonatura (12) ed una seconda estremità laterale (7) del nastro di cartone (2) che è opposta alla prima estremità laterale (6);

individuare sul nastro di cartone (2) delle regioni di nastro (8) consecutive fra loro; eseguire su ciascuna regione di nastro (8) almeno un primo taglio (21), un secondo taglio (22), un terzo taglio (23) ed un quarto taglio (24) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) in modo che: il primo taglio (21) ed il secondo taglio (22) siano eseguiti sul primo settore laterale (4) e si estendano sino alla prima linea di cordonatura (11), cosicché nel primo settore laterale (4) restino definiti una prima ala di chiusura (49), una prima ala di rinforzo (51) ed una seconda ala di rinforzo (52), la prima ala di chiusura (49) essendo interposta fra la prima ala di rinforzo (51) e la seconda ala di rinforzo (52); il terzo taglio (23) ed il quarto taglio (24) siano eseguiti sul secondo settore laterale (5) e

si estendano sino alla seconda linea di cordonatura (12), cosicché sul secondo settore laterale (5) restino definiti una seconda ala di chiusura (50), una terza ala di rinforzo (53) ed una quarta ala di rinforzo (54), la seconda ala di chiusura (50) essendo interposta fra la terza ala di rinforzo (53) e la quarta ala di rinforzo (54); la prima ala di chiusura (49) sia contrapposta alla seconda ala di chiusura (50), la prima ala di rinforzo (51) sia contrapposta alla terza ala di rinforzo (53), la seconda ala di rinforzo (52) sia contrapposta alla quarta ala di rinforzo (54);

- recidere il nastro di cartone (2) in senso trasversale per separare le succitate regioni di nastro (8) fra loro, ottenendo così dei cartoni (1) per imballaggi.
- 2) Metodo secondo la rivendicazione precedente, comprendente le fasi di regolare selettivamente, in funzione delle dimensioni dell'articolo (9) da imballare: la posizione della prima linea di cordonatura (11);
 - la posizione della seconda linea di cordonatura (12);
 - le estensioni di ciascuna regione di nastro (8), misurate in una direzione parallela alla direzione di sviluppo, e di conseguenza le posizioni in cui recidere trasversalmente il nastro di cartone (2) per separare le regioni di nastro (8) fra loro;
 - la posizione del primo taglio (21), del secondo taglio (22), del terzo taglio (23) e del quarto taglio (24) all'interno di ciascuna regione di nastro (8).
- 3) Metodo secondo una qualsiasi delle rivendicazioni precedenti, comprendente la fase, o le fasi, di recidere una striscia di bordo del nastro di cartone (2) che è localizzata in corrispondenza della prima estremità laterale (6) del nastro di cartone (2) e/o in corrispondenza della seconda estremità laterale (7) del nastro di cartone (2) in funzione delle dimensioni dell'articolo (9) da imballare.
- 4) Metodo secondo una qualsiasi delle rivendicazioni precedenti, in cui su ciascuna

regione di nastro (8) vengono eseguiti ulteriormente: un quinto taglio (25) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la prima ala di rinforzo (51) in due parti, vale a dire una quinta ala di rinforzo (55) ed una sesta ala di rinforzo (56); un sesto taglio (26) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la terza ala di rinforzo (53) in due parti, vale a dire una settima ala di rinforzo (57) ed una ottava ala di rinforzo (58); la quinta ala di rinforzo (55) risultando contrapposta alla settima ala di rinforzo (57) e la sesta ala di rinforzo (56) risultando contrapposta alla ottava ala di rinforzo (58); le posizioni del quinto taglio (25) e del sesto taglio (26) essendo scelte in modo che le estensioni della sesta ala di rinforzo (56) e della ottava ala di rinforzo (58), misurate lungo la direzione di sviluppo, siano in relazione con l'altezza di un terzo fianco (43) di un articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il terzo fianco (43) essendo esposto verso il tratto di settore centrale (3) cui sono articolati, tramite la prima linea di cordonatura (11) e la seconda linea di cordonatura (12), la quinta ala di rinforzo (55), la sesta ala di rinforzo (56), la settima ala di rinforzo (57) e la ottava ala di rinforzo (58).

5) Metodo secondo una qualsiasi delle rivendicazioni precedenti, in cui su ciascuna regione di nastro (8) vengono eseguiti ulteriormente: un settimo taglio (27) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la seconda ala di rinforzo (52) in due parti, vale a dire una nona ala di rinforzo (59) ed una decima ala di rinforzo (60); un ottavo taglio (28) praticato in senso trasversale alla direzione di sviluppo del nastro di cartone (2) per dividere la quarta ala di rinforzo (54) in due parti, vale a dire una undicesima ala di rinforzo (99) ed una dodicesima ala di rinforzo (100); la nona ala di rinforzo (59) risultando

contrapposta alla undicesima ala di rinforzo (99) e la decima ala di rinforzo (60) risultando contrapposta alla dodicesima ala di rinforzo (100); le posizioni del settimo taglio (27) e dell'ottavo taglio (28) essendo scelte in modo che le estensioni della nona ala di rinforzo (59) e della undicesima ala di rinforzo (99), misurate lungo la direzione di sviluppo, siano in relazione con l'altezza di un quarto fianco (44) di un articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il quarto fianco (44) essendo esposto verso il tratto di settore centrale (3) cui sono articolati, tramite la prima linea di cordonatura (11) e la seconda linea di cordonatura (12), la nona ala di rinforzo (59), la decima ala di rinforzo (60), la undicesima ala di rinforzo (99) e la dodicesima ala di rinforzo (100).

6) Metodo secondo una qualsiasi delle rivendicazioni precedenti, comprendente le ulteriori fasi di: praticare una terza linea di cordonatura (13) sul primo settore laterale (4) del nastro che sia parallela alla direzione di sviluppo, cosicché nella prima ala di chiusura (49) resti individuata una prima porzione (101) di nastro compresa fra la prima linea di cordonatura (11) e la terza linea di cordonatura (13) ed una seconda porzione (102) di nastro compresa fra la terza linea di cordonatura (13) e la estremità libera della prima ala di chiusura (49), la posizione della terza linea di cordonatura (13) essendo scelta in modo che la estensione della prima porzione (101) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, sia in relazione con l'altezza di un primo fianco (41) di un articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il primo fianco (41) essendo esposto verso la prima ala di chiusura (49); praticare una quarta linea di cordonatura (14) sul secondo settore laterale (5) del nastro che sia parallela alla

direzione di sviluppo, cosicché nella seconda ala di chiusura (50) resti individuata una terza porzione (103) di nastro compresa fra la seconda linea di cordonatura (12) e la quarta linea di cordonatura (14) ed una quarta porzione (104) di nastro compresa fra la quarta linea di cordonatura (14) e la estremità libera della seconda ala di chiusura (50), la posizione della quarta linea di cordonatura (14) essendo scelta in modo che la estensione della terza porzione (103) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, sia in relazione con l'altezza di un secondo fianco (42) dell'articolo (9) da imballare che è in appoggio sul settore centrale (3), fra la prima ala di chiusura (49) e la seconda ala di chiusura (50), il secondo fianco (42) essendo esposto verso la seconda ala di chiusura (50).

7) Metodo secondo la rivendicazione precedente, comprendente ulteriormente le fasi di: praticare una quinta linea di cordonatura (15) sul primo settore laterale (4) del nastro che sia parallela alla direzione di sviluppo e compresa fra la prima linea di cordonatura (11) e la terza linea di cordonatura (13), cosicché nella prima porzione (101) di nastro resti individuata una quinta porzione (105) di nastro compresa fra la prima linea di cordonatura (11) e la quinta linea di cordonatura (15) ed una sesta porzione (106) di nastro compresa fra la quinta linea di cordonatura (15) e la terza linea di cordonatura (13), le posizioni della terza linea di cordonatura (13) e della quinta linea di cordonatura (15) essendo scelte in modo che sia in particolare la estensione della sesta porzione (106) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, ad essere in relazione con l'altezza del primo fianco (41) dell'articolo (9) da imballare; praticare una sesta linea di cordonatura (16) sul secondo settore laterale (5) del nastro che sia parallela alla direzione di sviluppo e compresa fra la seconda linea di

cordonatura (12) e la quarta linea di cordonatura (14), cosicché nella terza porzione (103) di nastro resti individuata una settima porzione (107) di nastro compresa fra la seconda linea di cordonatura (12) e la sesta linea di cordonatura (16) ed una ottava porzione (108) di nastro compresa fra la sesta linea di cordonatura (16) e la quarta linea di cordonatura (14), le posizioni della quarta linea di cordonatura (14) e della sesta linea di cordonatura (16) essendo scelte in modo che sia in particolare la estensione della ottava porzione (108) di nastro, misurata lungo una direzione perpendicolare alla direzione di sviluppo, ad essere in relazione con l'altezza del secondo fianco (42) dell'articolo (9) da imballare.

8) Apparato (10), in attuazione del metodo secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto di comprendere:

mezzi di alimentazione per alimentare un nastro di cartone (2) per imballaggi lungo una direzione di avanzamento (A) che è parallela alla direzione di sviluppo del nastro di cartone (2);

mezzi di cordonatura per praticare una prima linea di cordonatura (11) ed una seconda linea di cordonatura (12) sul nastro di cartone (2), in modo che la prima linea di cordonatura (11) e la seconda linea di cordonatura (12) siano parallele alla direzione di sviluppo e che restino individuati: un settore centrale (3) compreso fra la prima linea di cordonatura (11) e la seconda linea di cordonatura (12); un primo settore laterale (4) compreso fra la prima linea di cordonatura (11) ed una prima estremità laterale (6) del nastro di cartone (2); ed un secondo settore laterale (5) compreso fra la seconda linea di cordonatura (12) ed una seconda estremità laterale (7) del nastro di cartone (2) che è opposta alla prima estremità laterale (6); mezzi per individuare sul nastro di cartone (2) delle regioni di nastro (8) consecutive fra loro;

primi mezzi di taglio per eseguire su ciascuna regione di nastro (8) almeno un primo taglio (21), un secondo taglio (22), un terzo taglio (23) ed un quarto taglio (24) in senso trasversale alla direzione di sviluppo del nastro di cartone (2) in modo che: il primo taglio (21) ed il secondo taglio (22) siano eseguiti sul primo settore laterale (4) e si estendano sino alla prima linea di cordonatura (11), cosicché nel primo settore laterale (4) restino definiti una prima ala di chiusura (49), una prima ala di rinforzo (51) ed una seconda ala di rinforzo (52), la prima ala di chiusura (49) essendo interposta fra la prima ala di rinforzo (51) e la seconda ala di rinforzo (52); il terzo taglio (23) ed il quarto taglio (24) siano eseguiti sul secondo settore laterale (5) e si estendano sino alla seconda linea di cordonatura (12), cosicché sul secondo settore laterale (5) restino definiti una seconda ala di chiusura (50), una terza ala di rinforzo (53) ed una quarta ala di rinforzo (54), la seconda ala di chiusura (50) essendo interposta fra la terza ala di rinforzo (53) e la quarta ala di rinforzo (54); la prima ala di chiusura (49) sia contrapposta alla seconda ala di chiusura (50), la prima ala di rinforzo (51) sia contrapposta alla terza ala di rinforzo (53), la seconda ala di rinforzo (52) sia contrapposta alla quarta ala di rinforzo (54);

- secondi mezzi di taglio (39) per recidere il nastro di cartone (2) in senso trasversale e separare le regioni di nastro (8) fra loro, ottenendo così dei cartoni (1) per imballaggi.
- 9) Apparato (10) secondo la rivendicazione precedente, in cui i mezzi di cordonatura comprendono: un primo albero (70) disposto al disopra del nastro di cartone (2) in avanzamento; una prima ruota di cordonatura (71) portata dal primo albero (70), la quale prima ruota di cordonatura (71) è girevole rispetto al proprio asse per realizzare la prima linea di cordonatura (11); una seconda ruota di cordonatura

- (72) portata dal primo albero (70), la quale seconda ruota di cordonatura (72) è girevole rispetto al proprio asse per realizzare la seconda linea di cordonatura (12).
- 10) Apparato (10) secondo la rivendicazione precedente, in cui il primo albero (70) è portato dal telaio (67) ed è mobile in avvicinamento ed allontanamento rispetto al nastro in avanzamento, ed in cui le posizioni della prima ruota di cordonatura (71) e della seconda ruota di cordonatura (72) sono regolabili lungo il primo albero (70) in funzione delle dimensioni dell'articolo (9) da imballare.
- 11) Apparato (10) secondo la rivendicazione precedente, comprendente una ruota di recisione (68, 69) portata dal primo albero (70), per recidere una striscia di bordo (46, 47) del nastro di cartone (2) in funzione delle dimensioni dell'articolo (9) da imballare, la striscia di bordo (46, 47) essendo localizzata in corrispondenza della prima estremità laterale (6) del nastro di cartone (2) od in corrispondenza della seconda estremità laterale (7) del nastro di cartone (2); la posizione della ruota di recisione (68, 69) essendo regolabile lungo il primo albero (70) in funzione delle dimensioni della striscia di bordo (46, 47) da recidere.
- 12) Apparato (10) secondo la rivendicazione 10 o 11, in cui i mezzi di cordonatura comprendono ulteriormente: una terza ruota di cordonatura (73) portata dal primo albero (70), la quale terza ruota di cordonatura (73) è girevole rispetto al proprio asse per realizzare una terza linea di cordonatura (13) sul primo settore laterale (4) del nastro di cartone (2); una quarta ruota di cordonatura (74) portata dal primo albero (70), la quale quarta ruota di cordonatura (74) è girevole rispetto al proprio asse per realizzare una quarta linea di cordonatura (14) sul secondo settore laterale (5) del nastro di cartone (2); le posizioni della terza ruota di cordonatura (73) e della quarta ruota di cordonatura (74) essendo regolabili lungo il primo

- albero (70) per variare rispettivamente le posizioni della terza linea di cordonatura (13) sul primo settore laterale (4) del nastro di cartone (2) e della quarta linea di cordonatura (14) sul secondo settore laterale (5) del nastro di cartone (2).
- 13) Apparato (10) secondo la rivendicazione precedente, in cui i mezzi di cordonatura comprendono ulteriormente: una quinta ruota di cordonatura (75) portata dal primo albero (70), la quale quinta ruota di cordonatura (75) è girevole rispetto al proprio asse per realizzare una quinta linea di cordonatura (15) sul primo settore laterale (4) del nastro di cartone (2); una sesta ruota di cordonatura (76) portata dal primo albero (70), la quale sesta ruota di cordonatura (76) è girevole rispetto al proprio asse per realizzare una sesta linea di cordonatura (16) sul secondo settore laterale (5) del nastro di cartone (2); le posizioni della quinta ruota di cordonatura (75) e della sesta ruota di cordonatura (76) essendo regolabili lungo il primo albero (70) per variare rispettivamente le posizioni della quinta linea di cordonatura (15) sul primo settore laterale (4) del nastro di cartone (2) e della sesta linea di cordonatura (16) sul secondo settore laterale (5) del nastro di cartone (2).
- 14) Apparato (10) secondo una qualsiasi delle rivendicazioni da 8 a 13, in cui i primi mezzi di taglio sono disposti a valle dei mezzi di cordonatura ed in cui i secondi mezzi di taglio (39) sono disposti a valle dei primi mezzi di taglio. Bologna, 31/08/2012

Il Mandatario
Ing. Daniele Dall'Olio
(Albo Prot. 967BM)

CLAIMS

- 1). A method for realising cartons (1) for packing, characterised in that it comprises the following steps:
- feeding a cardboard band (2) for packing along an advancement direction (A) which is parallel to the development direction of the cardboard band (2);

5

10

20

- making a first score line (11) and a second score line (12) on the cardboard band (2), such that the first score line (11) and the second score line (12) are parallel to the development direction and the following are identified: a central sector (3) comprised between the first score line (11) and the second score line (12); a first lateral sector (4) comprised between the first score line (11) and a first lateral end (6) of the cardboard band (2); and a second lateral sector (5) comprised between the second score line (12) and a second lateral end (7) of the cardboard band (2) which is opposite the first lateral end (6);
- identifying on the cardboard band (2) band regions (8) that are consecutive to one another;
 - carrying out, on each band region (8), at least a first cut (21), a second cut (22), a third cut (23) and a fourth cut (24) made in a transversal direction to the development direction of the cardboard band (2) such that: the first cut (21) and the second cut (22) are performed on the first lateral sector (4) and extend up to the first score line (11), such that a first closing wing (49), a first reinforcing wing (51) and a second reinforcing wing (52) are defined in first lateral sector (4), the first closing wing (49) being interposed between the first reinforcing wing (51) and the second reinforcing wing (52); the third cut (23) and the fourth cut (24) are performed on the second lateral sector (5) and extend up to the second score line (12), such that a second closing wing (50), a third reinforcing wing (53) and a

fourth reinforcing wing (54) are defined on the second lateral sector (5), the second closing wing (50) being interposed between the third reinforcing wing (53) and the fourth reinforcing wing (54); the first closing wing (49) is opposite the second closing wing (50), the first reinforcing ring (51) is opposite the third reinforcing wing (53), the second reinforcing wing (52) is opposite the fourth reinforcing wing (54);

cutting the cardboard band (2) transversally such as to separate the above-cited band regions (8) from one another, thus obtaining cartons (1) for packing.

- 2). The method of the preceding claim, comprising steps of selectively regulating, according to dimensions of the article (9) to be packed:
 - the position of the first score line (11);

5

15

- the position of the second score line (12);
- the extensions of each band region (8), measured in a parallel direction to the extension direction, and consequently the positions in which transversally cut the cardboard band (2) to separate the band regions (8) to one another;
- the position of the first cut (21), the second cut (22), the third cut (23) and the fourth cut (24) internally of each band region (8).
- 3). The method of any one of the preceding claims, comprising a step or steps of cutting an edge strip of the cardboard band (2) which is located at the first lateral
 20 end (6) of the cardboard band (2) and/or at the second lateral end (7) of the cardboard band (2) as a function of the dimensions of the article (9) to be packed.
 - 4). The method of any one of the preceding claims, wherein on each band regions (8) the following are further carried out: a fifth cut (25) made in a transversal direction to the extension direction of the cardboard band (2) such as to divide the first reinforcing wing (51) into two parts, i.e. a fifth reinforcing wing (55) and a sixth

reinforcing wing (56); a sixth cut (26) made in a transversal direction to the extension direction of the cardboard band (2) such as to divide the third reinforcing wing (53) into two parts, i.e. a seventh reinforcing wing (57) and an eighth reinforcing wing (58); the fifth reinforcing wing (55) being opposite the seventh reinforcing wing (57) and the sixth reinforcing wing (56) being opposite the eighth reinforcing wing (58); the positions of the fifth cut (25) and the sixth cut (26) being selected such that the extensions of the sixth reinforcing wing (56) and the eighth reinforcing wing (58), measured along the extension direction, are in relation to the height of a third flank (43) of an article (9) to be packed which is resting on the central sector (3), between the first closing wing (49) and the second closing wing (50), the third flank (43) being exposed towards the tract of central sector (3) to which are hinged, by the first score line (11) and the second score line (50), the fifth reinforcing wing (55), the sixth reinforcing wing (56), the seventh reinforcing wing (57) and the eighth reinforcing wing (58).

5

10

15 5). The method of any one of the preceding claims, wherein the following are further realised on each band region (8): a seventh cut (27) made transversally to the extension direction of the cardboard band (2) such as to divide the second reinforcing wing (52) into two parts, i.e. a ninth reinforcing wing (59) and a tenth reinforcing wing (60); an eighth cut (28) made in a transversal direction to the extension direction of the cardboard band (2) such as to divide the fourth reinforcing wing (54) into two parts, i.e. an eleventh reinforcing wing (99) and a twelfth reinforcing wing (100); the ninth reinforcing wing (59) being opposite the eleventh reinforcing wing (99) and the tenth reinforcing wing (60) being opposite the twelfth reinforcing wing (100); the positions of the seventh cut (27) and the eighth cut (28) being selected such that the extensions of the ninth reinforcing

wing (59) and the eleventh reinforcing wing (99), measured along the development direction, are in relation with the height of a fourth flank (44) of an article (9) to be packed which is resting on the central sector (3), between the first closing wing (49) and the second closing wing (50), the fourth flank (44) being exposed towards the tract of central sector (3) to which are hinged, by the first score line (11) and the second score line (12), the ninth reinforcing wing (59), the tenth reinforcing wing (60), the eleventh reinforcing wing (99) and the twelfth reinforcing wing (100).

5

10

15

20

25

6). The method of any one of the preceding claims, comprising further steps of: making a third score line (13) on the first lateral sector (4) of the band which is parallel to the extension direction, such that a first portion (101) of band is identified in the first closing wing (49), comprised between the first score line (11) and the third score line (13) and a second portion (102) of band is identified in the first closing wing (49), comprised between the third score line (13) and the free end of the first closing wing (49), the position of the third score line (13) being selected in such a way that the extension of the first portion (101) of band, measured along a perpendicular direction to the development direction, is in relation with the height of a first flank (41) of an article (9) to be packed which is resting on the central sector (3), between the first closing wing (49) and the second closing wing (50), the first flank (41) being exposed towards the first closing wing (49); realising a fourth score line (14) on the second lateral sector (5) of the band which is parallel to the extension direction, such that a third portion (103) of band is identified in the second closing wing (50) comprised between the second score line (12) and the fourth score line (14) and a fourth portion (104) of band is identified in the second closing wing (50) comprised between the fourth score line (14) and the free end of the second closing wing (50), the position of the

fourth score line (14) being selected such that the extension of the third portion (103) of band, measured along a perpendicular direction to the extension direction, is in height relation with a second flank (42) of the article (9) to be packed which is resting on the central sector (3) between the first closing wing (49) and the second closing wing (50), the second flank (42) being exposed towards the second closing wing (50).

5

7). The method of the preceding claim, further comprising steps of: realising a fifth score line (15) on the first lateral sector (4) of the band which is parallel to the extension direction and comprised between the first score line (11) and the third 10 score line (13), such that a fifth portion (105) of band is identified in the first portion (101) of band comprised between the first score line (11) and the fifth score line (15) and a sixth portion (106) of band is identified in the first portion (101) of band comprised between the fifth score line (15) and the third score line (13), the positions of the third score line (13) and the fifth score line (15) being selected 15 such that it is in particular the extension of the sixth portion (106) of band, measured along a perpendicular direction to the extension direction, that is in relation with the height of the first flank (41) of the article (9) to be packed; realising a sixth score line (16) on the second lateral sector (5) of the belt that is parallel to the extension direction and comprised between the second score line 20 (12) and the fourth score line (14), such that a seventh portion (107) of band is identified in the third portion (103) of band comprised between the second score line (12) and the sixth score line (16) and an eighth portion (108) of band is identified in the third portion (103) of band comprised between the sixth score line (16) and the fourth score line (14), the positions of the fourth score line (14) and 25 the sixth score line (16) being selected such that it is in particular the extension of the eighth portion (108) of band, measured along a perpendicular direction to the extension direction, that is in relation with the height of the second flank (42) of the article (9) to be packed.

8). An apparatus (10) for actuating the method according to any one of the preceding claims, characterised in that it comprises:

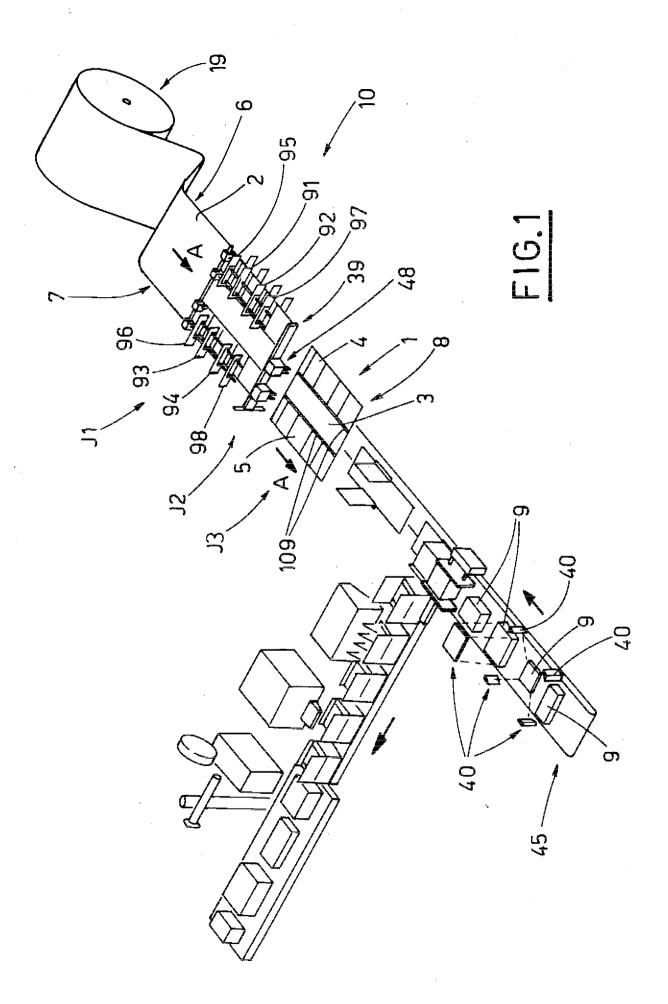
- supply means for feeding a cardboard band (2) for packaging along an advancement direction (A) which is parallel to the extension direction of the cardboard band (2);
- scoring means for making a first score line (11) and a second score line (12) on
 the cardboard band (2), such that the first score line (11) and the second score
 line (12) are parallel to the extension direction and the following are identified: a
 central sector (3) comprised between the first score line (11) and the second score
 line (12); a first lateral sector (4) comprised between the first score line (11) and a
 first lateral end (6) of the cardboard band (2); and a second lateral sector (5)
 comprised between the second score line (12) and a second lateral end (7) of the
 cardboard band (2) which is opposite the first lateral end (6);
 - identifying means for identifying band regions (8) on the cardboard band (2) that are consecutive to one another;
- first cutting means for realising, on each band region (8), at least a first cut (21), a second cut (22), a third cut (23) and a fourth cut (24) made in a transversal direction to the development direction of the cardboard band (2) such that: the first cut (21) and the second cut (22) are performed on the first lateral sector (4) and extend up to the first score line (11), such that a first closing wing (49), a first reinforcing wing (51) and a second reinforcing wing (52) are defined the in first lateral sector (4), the first closing wing (49) being interposed between the first

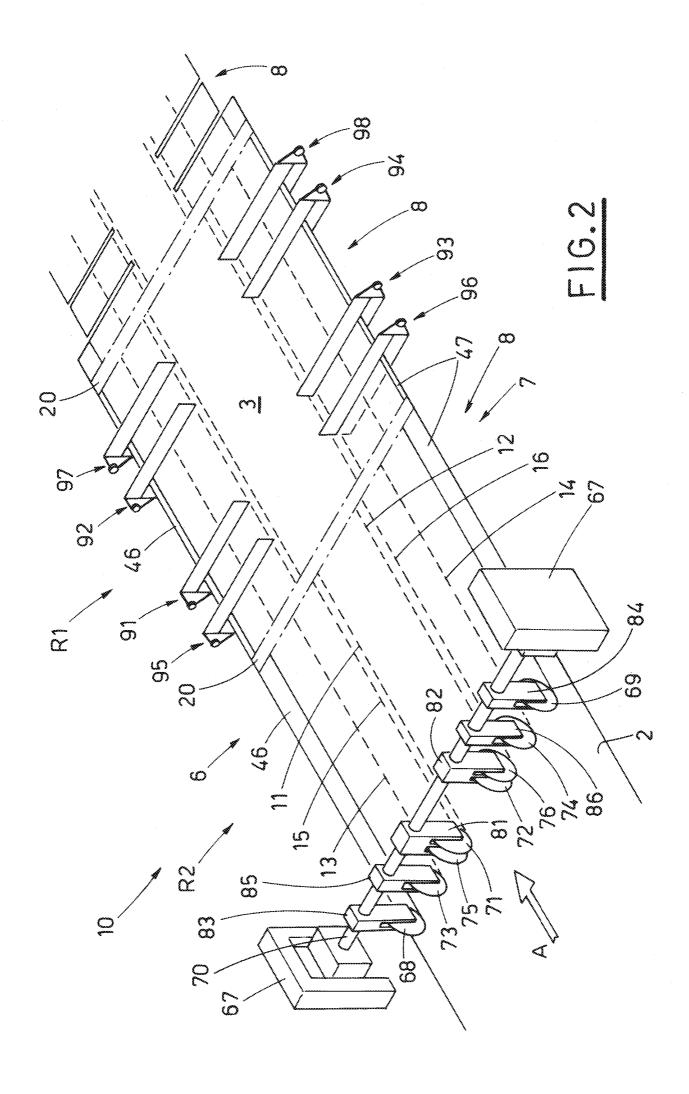
reinforcing wing (51) and the second reinforcing wing (52); the third cut (23) and the fourth cut (24) are performed on the second lateral sector (5) and extend up to the second score line (12), such that a second closing wing (50), a third reinforcing wing (53) and a fourth reinforcing wing (54) are defined on the second lateral sector (5), the second closing wing (50) being interposed between the third reinforcing wing (53) and the fourth reinforcing wing (54); the first closing wing (49) is opposite the second closing wing (50), the first reinforcing ring (51) is opposite the third reinforcing wing (53), the second reinforcing wing (52) being opposite the fourth reinforcing wing (54);

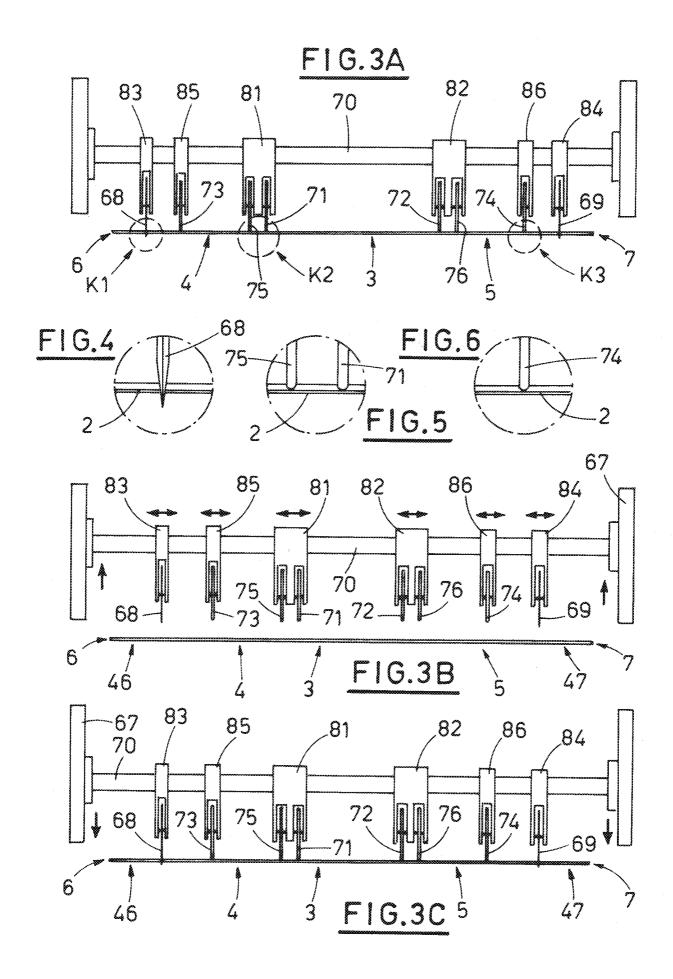
- second cutting means for cutting the cardboard band (2) transversally such as to separate the above-cited band regions (8) from one another, thus obtaining cartons (1) for packing.
- 9). The apparatus (10) of the preceding claim, wherein the scoring means comprise: a first shaft (70) arranged above the advancing cardboard band (2); a first scoring wheel (71) borne by the first shaft (70), which first scoring wheel (71) is rotatable with respect to an axis thereof such as to realise the first scoring wheel (11); a second scoring wheel (72) borne by the first shaft (70), which second scoring wheel (72) is rotatable with respect to an axis thereof such as to realise the second score line (12).
- 2010). The apparatus (10) of the preceding claim, wherein the first shaft (70) is borne by the frame (67) and is nearingly and distancingly mobile with respect to the advancing band, and wherein the positions of the first scoring wheel (71) and the second scoring wheel (72) are adjustable along the first shaft according to the dimensions of the article (9) to be packed.
- 25/11). The apparatus (10) of the preceding claim, comprising a cutting wheel (68, 69)

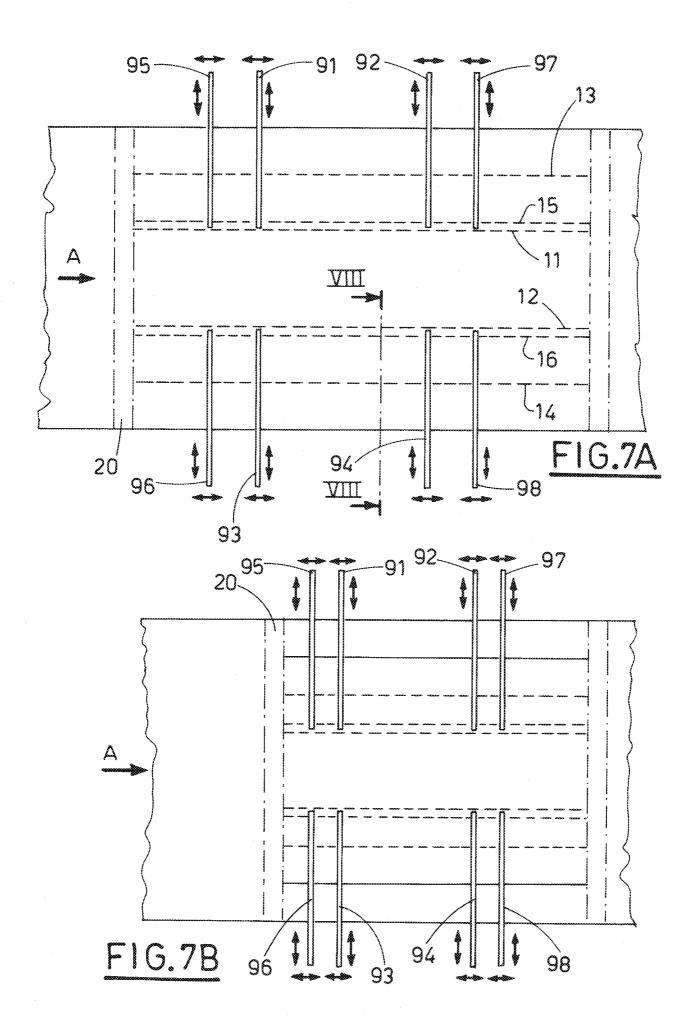
borne by the first shaft (70) for cutting an edge strip (46, 47) of the cardboard band (2) according to the dimensions of the article (9) to be packed, the edge strip (46, 47) being located at the first lateral end (6) of the cardboard band (2) or at the second lateral end (7) of the cardboard band (2); the position of the cutting wheel (68, 69) being adjustable along the first shaft (70) according to the dimensions of the edge strip (46, 47) to be cut.

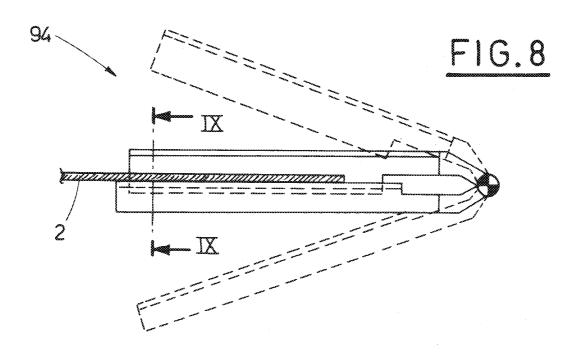
- 12). The apparatus (10) of claim 10 or 11, wherein the scoring means further comprise: a third scoring wheel (73) borne by the first shaft (70), which third scoring wheel (73) is rotatable with respect to an axis thereof such as to realise a third score line (13) on the first lateral sector (4) of the cardboard band (2); a fourth scoring wheel (74) borne by the first shaft (70), which fourth scoring wheel (74) is rotatable about an axis thereof such as to realise a fourth score line (14) on the second lateral sector (5) of the cardboard band (2); the positions of the third scoring wheel (73) and the fourth scoring wheel (74) being adjustable along the first shaft (70) in order respectively to vary the positions of the third score line (13) on the first lateral sector (4) of the cardboard band (2) and the fourth score line (14) on the second lateral sector (5) of the cardboard band (2).
- 13). The apparatus (10) of the preceding claim, wherein the scoring means further comprise: a fifth scoring wheel (75) borne by the first shaft (70), which fifth scoring
 20 wheel (75) is rotatable with respect to an axis thereof such as to realise a fifth score line (15) on the first lateral sector (4) of the cardboard band (2); a sixth scoring line (76) borne by the first shaft (70), which sixth scoring line (76) is rotatable with respect to an axis thereof such as to realise a sixth score line (16) on the second lateral sector (5) of the cardboard band (2); the positions of the fifth
 25 scoring wheel (75) and the sixth scoring line (76) being adjustable along the first


shaft (70) such as respectively to vary the positions of the fifth score line (15) on the first lateral sector (4) of the cardboard band (2) and of the sixth score line (16) on the second lateral sector (5) of the cardboard band (2).


14). The apparatus (10) of any one of claims from 8 to 13, wherein the first cutting
means are arranged downstream of the scoring means and wherein the second cutting means (39) are arranged downstream of the first cutting means.


The Patent Attorney Ing. Daniele Dall'Olio (Albo Prot. 967BM)


10


Bologna, 08/10/2012

