01/78036 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

18 October 2001 (18.10.2001)

(10) International Publication Number

WO 01/78036 Al

(51) International Patent Classification’: GO08C 25/02,
HO4L 1/18
(21) International Application Number: PCT/US01/10214

(22) International Filing Date: 30 March 2001 (30.03.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

09/545,641 7 April 2000 (07.04.2000) US

(71) Applicant: MOTOROLA INC. [US/US]; 1303 East Al-
gonquin Road, Schaumburg, IL 60196 (US).

(72) Inventor: HERSHEY, Stephen; 124 South Poteet Road,
Palatine, IL 60067 (US).

(74) Agents: SANTEMA, Steven, R. et al.; Motorola Inc.,
Intellectual Property Dept., 1303 East Algonquin Road,
Schaumburg, IL 60196 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: JOINT RANGE REJECT AUTOMATIC REPEAT REQUEST PROTOCOL

SENDING RECEIVING
DEVICE 100 DEVICE
102 / 104
r—————————————— '(' ————— r———="=-"="="==== (______ il
I		
}	n !	
	contRoLLeR	16 I
	MEMoRY ’33 ! g Ry :	
122

|| OPERATING oot rnTERFACE f—r—>{ COMINICATION “)a—put INTERFACE Je—n{ OErATN0 ||

12 | LINK | 7
| [7SEND ARQ ! ! RECEIVE ARG [74 |
	PROCESS		PROCESS
	l		
I | | |
Lo o o o o e e e e e e e e) L e e e e e e e e — — — ad

(57) Abstract: ARQ protocol useful for transferring delay-sensitive data blocks between sending and receiving devices (102, 104)
over an error-prone communication link (116). The ARQ protocol allows either the sender or receiver to initiate termination of the
transfer from sender to receiver of one or more blocks. Blocks eligible for negative acknowledgement by a receiving device are
determined by a reception determination procedure performed by the sending device. Negative acknowledgement of eligible blocks
is based on a number of consecutive blocks reported as corrupt, which number may include an allowable number of non-corrupt
blocks. The allowable number of non-corrupt blocks is based on a Minimum Corruption Density (MCD) parameter that may be
adjusted by a receiving device depending on available bandwidth for retransmission of blocks or other criteria.

10

15

20

25

30

WO 01/78036 PCT/US01/10214

JOINT RANGE REJECT
AUTOMATIC REPEAT REQUEST PROTOCOL

FIELD OF THE INVENTION

This invention relates generally to communication systems, and more
particularly to an Automatic Repeat Request (ARQ) protocol useful for transferring
delay-sensitive data between sending and receiving devices over error-prone

communication links.

BACKGROUND OF THE INVENTION

Historically, communication systems have employed separate protocols for
the transfer of delay-insensitive data and delay-sensitive data from a sender to
receiver. Delay-insensitive data transfer services have used Automatic Repeat
Request (ARQ) protocols that allow for reliable transfer of the data stream
regardless of delay. ARQ protocols permit the receiver of a stream of data blocks to
request the retransmission of data blocks that were either not received or received
corrupted from the sender. ARQ protocols are often accompanied with forward
error correction (FEC) to reduce the number of required retransmissions.

Examples of known ARQ protocols include Stop-and-Wait, Go-Back-N, and
Selective Repeat. In Stop-and-Wait ARQ, a receiver sends an acknowledge (ACK)
message to a transmitter after a given block is received successfully. The transmitter
waits until the ACK message is received for a given block before it proceeds with
transmitting the next block in a sequence of blocks. If the receiver detects an error in
a given block, it sends a negative acknowledgement (NACK) message to the
transmitter, and the transmitter then retransmits the given block. In Go-Back-N and
Select Repeat ARQ, the transmitter is sending message data and the receiver is
sending acknowledgment data simultaneously. After transmitting a given block, the
transmitter continues to transmit additional blocks in the sequence even though an
ACK has not yet been received for that given block. In Go-Back-N ARQ, if the
receiver sends a NACK message indicating that the given block needs to be
retransmitted, the transmitter will retransmit the given block and all subsequent

blocks that were transmitted prior to receiving the NACK message. In Selective

10

15

20

25

30

WO 01/78036 PCT/US01/10214

Repeat ARQ, the transmitter retransmits the given block, but then resumes the
transmission sequence where it left off prior to receiving the NACK message. A
block subsequent to the erroneous block is not retransmitted unless it is specifically
identified as erroneous by a NACK message.

The Stop-and-Wait, Go-Back-N, and Selective Repeat ARQ protocols were
developed to transfer delay-insensitive blocks from transmitter to receiver. For
example, these protocols are well-suited to transferring a data file over an error-
prone link, where the file must be transferred perfectly but the time required to
perform the file transfer is of secondary importance. However, the known ARQ
procedures are not well suited for transferring delay-sensitive data over error-prone
communication links. For example, in packetized voice and video applications,
transfer time is of primary importance. After a certain elapsed time the packet is of
no value to the receiver. In these delay-sensitive applications, the transmitter and
receiver should stop attempting to transfer blocks from a packet which is no longer
of value to the receiver. Historically, delay-sensitive services did not use an ARQ
protocol, but rather used forward error correction (FEC) techniques to accomplish
error correction. Recent improvements in bandwidth management algorithms and
physical layer data transfer technologies now permit limited retransmission of
blocks within delay-sensitive data streams. However, the known art does not feature
an ARQ protocol capable of handling the demands of both delay-sensitive and
delay-insensitive data streams over a high transfer rate, high transfer delay data link.
Furthermore, there does not exist an ARQ protoéol sufficiently flexible to
dynamically adapt to changes in data stream delay sensitivity.

An ARQ protocol capable of transferring delay-sensitive blocks must include
a mechanism by which a transmitter (or receiver) can inform its peer entity that
attempts to retransmit a particular block are no longer useful and will be (or should
be) terminated.

The known art employs two methods by which a transmitter can inform a receiver
that it no longer wishes to transfer a particular block or blocks (i.e., prematurely
terminate block transfer). In the first method, a field is added to the block transfer
request message indicating that a particular block or blocks will not be transferred.

For example, the block transfer request message might indicate that the block with

2

10

15

20

25

30

WO 01/78036 PCT/US01/10214

sequence number 22 is being transferred and that further transmission attempts for
the block with sequence number 19 will be halted. In the second method, a separate
ﬁlessage is sent from transmitter or receiver indicating which block or blocks will
not be transferred. The Europban Telecommunications Standards Institute (ETSI)
HIPERLAN/2 ARQ protocol employs this method.

These two block transfer termination methods share a serious drawback. If

the message specifying which block or blocks will not be transferred is lost, then the

transmitter must detect by some mechanism that this has occurred and retransmit the
request. These additional termination request messages increase the bandwidth
consumption and block transfer delay of the ARQ protocol. Also, the ARQ protocol
becomes much more complex.

A popular technique for increasing the efficiency of Selective Repeat ARQ
protocols is to utilize a single message to negatively acknowledge multiple blocks.
The known art employs a bit field, where each bit in the field provides the reception
status of a single block. For example, if a bit within the bit field is 1, the
corresponding block has been received successfully (ACK). If a bit within the bit
field is 0, the corresponding block has not been received successfully (NACK).
However, a problem with the bit field approach is that as data transfer rates and data
transfer delays increase, the number of bits within the bit field must become quite
large in order to provide useful negative acknowledgement information to the
sender. This ié because the receiver may have a large number of consecutive blocks
to negatively acknowledge, but a limited number of bits with which to do it. This is
a particular problem on high data rate wireless links during fading conditions. A
large bit field requires a large negative acknowledgement message, which can
prevent piggy-backing. In piggybacking, a data transfer request message for a stream
flowing in one direction is packaged with a data transfer response message (ACK
and/or NACK) for a stream flowing in the other direction. A data link supporting
ARQ message piggybacking is usually much more efficient than a corresponding
data link without piggybacking.

Moreover, existing ARQ protocols do not have a means by which an external
entity (such as a bandwidth manager) can dynamically alter key aspects of ARQ

protocol performance in response to changes in link operating conditions. Instead,

10

15

20

25

30

WO 01/78036 PCT/US01/10214

ARQ protocol performance is rigidly fixed by the particular procedures incorporatéd
into the protocol. However, such flexibility would be useful to engineers desi gning
advanced scheduling algorithms for managing the transfer of multiple, simultaneous,
independent delay-sensitive data streams over error-prone links. For example, the
ability to dynamically change the bandwidth consumption and aggregate block
transfer delay performance of an ARQ protocol would allow a link bandwidth
manager to tailor the performance of the ARQ protocol to the current link load. If
the link is lightly loaded, ARQ bandwidth ‘consumption could be increased with a
corresponding decrease in aggregate block transfer delay. If the link becomes
congested, the bandwidth manager could scale back the ARQ bandwidth
consumption with a corresponding increase in aggregate block transfer delay.

The foregoing discussion indicates that there is a need for an ARQ protocol
that is capable of handling the demands of both delay-sensitive and delay-insensitive
data transfers over a high transfer rate, high transfer delay data link subject to burst
errors. Furthermore, there is a need for an ARQ protocol with data transfer
reliability, delay, and bandwidth consumption performance that can be adapted
dynamically by the transmitter or receiver to compensate for changes in link
operating conditions. The present invention is directed to satisfying or at least

partially satisfying these needs.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent
upon reading the following detailed description and upon reference to the drawings
in which:

FIG. 1 is a diagram of a communication system using an ARQ protocol in
accordance with the present invention;

FIG. 2 is an illustration of an ARQ protocol according to the present
invention operating on block management arrays managed by sending and receiving
devices;

FIG. 3A shows the structure of a Send ARQ message sent from a sending

device to a receiving device according to the present invention;

10

15

20

25

30

WO 01/78036 PCT/US01/10214

FIG. 3B shows the structure of a Receive ARQ message sent from a
receiving device to a sending device according to the present invention;

FIG. 4 illustrates a procedure for a receiving device to process an ARQ
message from a sending device according to the present invention;

FIG. 5 is a message sequence chart associated with termination of a block
transfer attempt initiated by a sending device using the ARQ protocol according to
the present invention;

FIG. 6 is a message sequence chart associated with termination of a block
transfer attempt initiated by a receiving device using the ARQ protocol according to
the present invention;

FIG. 7 illustrates a procedure for a sending device to process an ARQ
message from a receiving device according to the present invention;

FIG. 8 is a message sequence chart associated with an Implicit NACK
procedure using the ARQ protocol according to the present invention;

FIG. 9 is a message sequence chart associated with an Explicit NACK
procedure using the ARQ protocol according to the present invention; and

FIG. 10 is a message sequence chart associated with a Minimum Corruption

Density feature of the ARQ protocol of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS
The following describes an ARQ protocol with the following characteristics:

1. Allows a transmitter to unilaterally terminate an attempt to transfer one or more
blocks, and communicate this event to a receiver in a straightforward and robust
fashion;

2. Allows a receiver to unilaterally terminate an attempt to receive one or more
blocks, and communicate this event to the sender in a straightforward and robust
fashion,;

3. Can be operated with any data transfer reliability / data transfer delay
performance characteristic, ranging from perfect reliability / maximum potential
delay to maximum potential unreliability / minimum delay. The performance is

dynamically changeable by either the transmitter or receiver.

10

15

20

25

30

WO 01/78036 PCT/US01/10214

4. Provides mechanisms by which the transmitter and receiver can dyﬁamically
increase bandwidth consumption and decrease aggregate block transfer delay
(and vice-versa).

Supports continuous transmission of data blocks by the transmitter.
Facilitates ARQ message piggybacking.

Efficiently supports block transfer over high transfer rate, high delay links.

O N w

Efficiently supports links subject to burst errors.

In one embodiment of the present invention, there is provided a method of
sending a plurality of blocks comprising data. The method comprises generating a
first message comprising at least one block of the plurality of blocks, an
identification of the at least one block, and an identification of a first active send
block of the plurality of blocks, wherein the at least one block appears in the
plurality of blocks no earlier than the first active send block; and sending the first
message from a sending device to a receiving device.

In another embodiment of the pfesent invention, there is provided a method
including steps of maintaining a send block transfer window associated with a
sending device and maintaining a receive block transfer window associated with a
receiving device. The send block transfer window identifies a plurality of blocks
adapted to be transferred from the sending device to a receiving device and the
receive block transfer window identifies a plurality of blocks adapted to be received
by the receiving device. The sending device forms a Send ARQ message field
including a send anchor field and a send sequence number field. The send anchor
field identifies a most delayed block of the plurality of blocks identified in the send
block transfer window and the send sequence number field identifies a current block
of the pluralify of blocks identified in the send block transfer window that is to be
sent from the sending device to the receiving device. The sending device forms a
data transfer request message including, in sequence, the send anchor field, the send
sequence number field, and a block data field including data associated with the
current block and then sends the data transfer message to the receiving device.

In still another embodiment of the present invention, there is provided a
method wherein a sending device attempts transfer of a plurality of blocks of data to

areceiving device. The receiving device designates at least a first block of the

10

15

20

25

30

WO 01/78036 PCT/US01/10214

plurality of blocks as corrupt and reports a number of consecutive blocks of the
plurality of blocks as corrupt, commencing with the first block. The number of
consecutive blocks reported as corrupt inélude an allowable number of non-corrupt
blocks based on a predefined parameter.

Turning now to the drawings and referring initially to FIG. 1, there is shown
a communication system 100 comprising a sending device 102 and a receiving
device 104. It is to be understood that in a typical data communication system, each
of the devices 102 and 104 may act either as sender, receiver, or both, depending on
whether they are sending and/or receiving data. Sending device 102 includes a
controller 106, which may comprise a Central Processor Unit (“CPU”),
microprocessor or other control means, memory 108, operating system 110, and
Send ARQ Process 112. Receiving device 104 includes a controller 118, which may
comprise a Central Processor Unit (“CPU”), microprocessor or other control means,
memory 120, operating system 122, and Receive ARQ Process 124.

The controller 106 runs the operating system 110 of the sending device 102.
In addition, the controller 106 runs the Send ARQ Process 112 to manage ARQ
error control for the sending device 102. Similarly, the controller 118 runs the
operating system 122 and the Receive ARQ Process 124 for the receiving device
104. The sending and receiving devices 102, 104 communicate via communication
link 116 which may comprise, for example, terrestrial wired or wireless links,
satellite links or a combination thereof. The communication link 116 may cause
errors in the information and status messages exchanged between the sending and
receiving devices 102, 104 but is otherwise adapted for the transfer of a delay-
sensitive data stream such as that generated by an audio or video source. The
sending and receiving devices 102 interface with the communication link 116
through respective communication interfaces 114, 126. The communication
interfaces 114, 126 may comprise, for example, modems or other means for
interfacing between the sending and receiving devices 102, 104 and the
communication link 116.

Generally, the sending and receiving devices 102, 104 may comprise sources
or recipients of control messages and/or payload, including delay-sensitive audio or

video payload. The communication devices 102, 104 may comprisé, for example,

10

15

20

25

30

WO 01/78036 PCT/US01/10214

wireline device(s), mobile or portable wireless radio units, base stations or repeaters,
dispatch consoles, site controller(s), comparator(s), telephone interconnect device(s),
internet protocol telephony device(s), call logger(s), scanner(s) and gateway(s).

The ARQ protocol assumes that the data flowing across the link 116 has
been divided into a sequence of afbitrarily sized chunks of data called blocks. The
Send and Receive ARQ Processes 112, 124 exchange ARQ messages to coordinate
the transfer of data blocks from sending device 102 to receiving device 104. In one
embodiment, the ARQ messages may be embedded within the data transfer request
messages and thereby sent along with one or more data blocks between the
communication devices 102, 104. There can be multiple, simultaneous, independent
ARQ Instances, each comprising a Send and Receive ARQ Process, active in each
direction. For convenience, messages generated by the Send ARQ Process 112 will
be termed Send ARQ messages and messages generated by the Receive ARQ
Process 124 will be termed Receive ARQ messages. The number of bits dedicated
to each of the fields within the Send and Receive ARQ messages 112, 124 is an
implementation decision and does not affect protocol operation. In a preferred
embodiment, the Send and Receive ARQ messages are implemented in a compact
form that permits piggybacking: a message carrying a Send ARQ message for a data
stream flowing in one direction can also carry a Receive ARQ message for a data
stream flowing in the other. This can lead to substantial gains in efficiency for full-
duplex applications.

Operation of the Send and Receive ARQ messages is best described with
reference to the block management arrays (BMAs) 202, 204 shown in FIG. 2. The
BMAs contain information used by a sending communication device (“Sender”) to
transfer blocks to a receiving communication device (“Receiver”). The Sender and
Receiver each maintain a BMA. The BMA used by the Sender is termed a “Send
BMA?” and the BMA used by the Receiver is termed a “Receive BMA.” Ina
preferred embodiment, the length of the Send and Receive BMAs 202, 204 is fixed
prior to operation of the ARQ protocol. Any BMA length can be selected depending
on the ARQ protocol performance goals and the nature of the operating

environment. The BMA length can be fixed by target system specification or can be

10

15

20

25

30

WO 01/78036 PCT/US01/10214

negotiated between Sender and Receiver by some other protocol independent of the
ARQ protocol.

As shown, the Send BMA 202 and Receive BMA 204 each include eight
elements. Send BMA 202 includes, in order, element 206, element 208, element
210, element 212, element 214, element 216, element 218 and element 220
corresponding to eight send sequence numbers “0” through “7.” Receive BMA 204
similarly includes, in order, element 222, element 224, element 226, element 228,
element 230, element 232, element 234 and element 236, corresponding to the eight
receive sequence numbers “0” through “7.” In one embodiment, each element in a
BMA contains a block state variable (BSV) indicating the current transfer status of a
block and possibly the data comprising the block. For example, in one embodiment
of the invention, the possible states for a send BSV can be “FREE”, “NOT SENT”,
”SENT”, "NACK?”, and “TERMINATED”. The FREE state indicates that there is
currently no block awaiting transfer to the Receiver. The NOT SENT state indicates
that a block is awaiting transfer but a transfer attempt has not yet occurred. The
SENT state indicates that a transfer attempt has occurred but no positive or negative
acknowledgement has yet been received. The NACK state indicates that an
unsuccessful transfer attempt has been made for the block. The TERMINATED
state indicates that no further attempts to transfer the block to the receiver should be
made. Likewise, in one embodiment of the.invention, the possible states for a
receive BSV can be “NOT RECEIVED”, ”CORRUPT”, “RECEIVED”, and
"TERMINATED”. The NOT RECEIVED state indicates that the block has been not
yet been received from the Sender. The CORRUPT state indicates that the Receiver
has detected that the Sender tried to transfer the block, but failed. The RECEIVED
state indicates that the block has been successfully received from the Sender.
Finally, the TERMINATED state indicates that further attempts to receive the block
from the Sender should not be made.

In one embodiment, the Send ARQ Process maintains two indices into the
Send BMA for managing the transfer of blocks to the Receive ARQ Process. The
first index, called the leading index, points to the element where the next block
received for transfer to the receiver should be inserted within the Send BMA 202.

When the ARQ protocol according to this invention is first instantiated, the leading

10

15

20

25

30

WO 01/78036 PCT/US01/10214

index points to Send BMA element 0 (FIG. 2, reference number 206). The Send
ARQ Process will insert a new block ready for transfer to the receiver into Send
BMA element 0, and then advance the leading index to the next element in the Send
BMA 202. Subsequent blocks obtained for transfer will be handled in a similar
manner. The Send BMA is a circular structure: the last element in the array relates to
the first element in the array in the same way that element N relates to element N+1.
Therefore, when the leading index advances past the last element of the Send BMA,
it will wrap around to the beginning. The second index, called the send anchor,
points to the element containing the oldest block obtained for transfer to the
receiver. When the ARQ protocol is first instantiated, the send anchor index points.
to Send BMA 202 element 0 (206 in Figure 2). As blocks are successfully
transferred to the receiver, or terminated without being successfully transferred, the
send anchor index advances. Like the leading index, when the send anchor index
advances past the last element of the Send BMA 202 it will wrap around to the first
element. The send anchor index and the leading index define a window into the Send
BMA 202 containing those blocks which are actively being transferred to the
receiver. This window is called the Send block transfer window (BTW). The
ordering of blocks within the Send BTW directly corresponds to the order in which
the blocks were obtained, with blocks obtained earlier appearing before blocks
obtained later. The send anchor index defines the first active block within the Send
BTW, and the block preceding the leading index defines the last active block within
the Send BTW.

The Receive ARQ process maintains an index into the Receive BMA 204
called the receive anchor. The receive anchor points to the first element within the
Receive BTW that the Receive ARQ process is still interested in filling with a block
sent by the Send ARQ process. When the ARQ protocol according to this invention
is first instantiated, the receive anchor points to element 0 within the Receive BMA
204 (222 in Figure 2). As blocks are received from the Send ARQ process or
terminated without being received by either Sender or Receiver, the receive anchor
advances. When the receive anchor advances past the last element of the Receive

BMA 204, it will wrap around to the first element. The receive anchor defines a

10

10

15

20

25

30

WO 01/78036 PCT/US01/10214

window into the Receive BMA 204 called the Receive block transfer window
(BTW).

FIG. 3A shows the structure of a data transfer request message 302 according
to one embodiment of the invention. As shown, the data transfer request message
302 comprises a Send ARQ message field 304 and a block data field 306. The Send
ARQ message field 304 comprises a Send block transfer window arichor field 308
(hereinafter anchor send field 308) and a send sequence number field 310
(heremafter SSN field 310). The SSN field identifies which block is currently being
transferred from Sender to Receiver. In the example of FIG. 2, SSN = 5, thus
indicating that block 5 is currently being transferred from Sender to Receiver by the
data transfer request message 302.

FIG. 3B shows the structure of a Receive ARQ message 312 according to
one embodiment of the invention. As shown, the Receive ARQ message 312
comprises a Receive block transfer window anchor field 314 (hereinafter anchor
receive field 314) and a number of corrupt blocks field 316 (hereinafier number
corrupt field 316).

The number corrupt field specifies the number of blocks starting from the receive
anchor that the Receiver would like the Sender to mark as corrupt. In the example
of FIG. 2, number corrupt = 4, thus indicating that the Receiver would like blocks 3
to 6 of the Send BMA 202 to be marked as corrupt.

The ARQ procedure of the present invention may be characterized as a
“joint” procedure because the Send and Receive ARQ Processes have joint control
over the flow of blocks over the link. Neither the Send nor Receive ARQ Process is
entirely a “slave” to its peer process. The ARQ procedure is characterized as “range”
because it supports operation on a range of one or more blocks with a single
message.

FIG. 4 illustrates a procedure for a Receiver to process a Send ARQ
message received from a Sender. At step 401, the Receive ARQ Process of the
Receiver receives a Send ARQ message from the Send ARQ Process of the Sender.
At step 402, the Receive ARQ Process determines if the Send ARQ message
indicates a Sender-initiated termination of a block transfer attempt. The Sender may

wish to terminate a block transfer attempt, for example, if the transfer of a block or

11

10

15

20

25

30

WO 01/78036 PCT/US01/10214

blocks is excessively delayed due to link errors. In one embodiment of the present
invention, the Sender unilaterally initiates termination of a block transfer by simply
advancing the block identified in the anchor send field. For example, assume that
the Sender has previously sent an ARQ message with anchor send = 2. Suppose
now that the Sender wishes to terminate the transfer of block 2. The sender
“advances” or changes the block identified in the anchor send field to the next oldest
block that is not yet terminated or transferred successfully and generates another
ARQ message. For example, the Sender may now generate and send an ARQ
message with anchor send = 3. This indicates to the Receiver that block 3 is now
the first block of the Send BTW and block 2 is now “terminated.” It will be
appreciated that any number of blocks may be terminated in this fashion by
advancing the Send BTW and sending an ARQ message to the Receiver identifying
the new anchor send field. For example, the Sender might terminate the transfer of
blocks 2, 3 and 4 by advancing the anchor send field from 2 to 5, and so forth.

The Receive ARQ Process may make the determination at step 402 by
comparing the latest reported position of the Send BTW to the current position of
the Receive BTW. In one embodiment, the latest reported position of the Send
BTW can lead the current position of the Receive BTW only if the Sender has
unilaterally terminated a block or blocks and has advanced its Send BTW
accordingly. In response to a positive determination at step 402, the Receive ARQ
Process proceeds to Step 404 where it advances its Receive BTW in corresponding
fashion to match the Send BTW, thereby performing a “bilateral termination” of the
appropriate block or blocks.

An example message sequence chart associated with a bilateral termination
initiated by the Sender is shown at FIG. 5. The example assumes that Blocks 0to9
have already been transferred successfully and that the Sender has blocks 10 to 13
awaiting transfer to the Receiver. The following sequence of events is shown:

1. With the send anchor at block 10, the Sender attempts to transfer blocks
10 to 12, in sequence, to the Receiver via Send ARQ messages 502, 504, 506.
Blocks 10 and 12 are transferred successfully, as illustrated by a solid line for
message 502 and 506; block 11 transfer fails, as indicated by a dotted line for

message 504. The Receive ARQ Process advances its receive anchor to 11 after the

12

10

15

20

25

30

WO 01/78036 PCT/US01/10214

successful receipt of block 10. When block 12 is successfully received, Receive
ARQ Process marks block 11 as corrupt.

2. The Receive ARQ Process transfers a Receive ARQ message 508
indicating that block 11 is corrupt.

3. The Send ARQ Process advances the send anchor to block 11 based on
the new reported position of the receive anchor. The Send ARQ Process marks block
11 as negatively acknowledged. -

4. The Sender decides to abandon further block 11 transfer attempts after .
receiving the negative acknowledgement. The Send ARQ Process unilaterally
advances the send anchor to block 12, and transfers block 13 using a Send ARQ
message 510 carrying the advanced send anchor.

5. The Receive ARQ Process notes the advanced send anchor reported in
Send ARQ message 510 and advances the receive anchor to block 12. The
successful receipt of block 13 causes a further advance of the receive anchor to
block 14.

6. The Receiver transfers a Receive ARQ message 512 indicating the
updated position of the receive anchor.

7. The Send ARQ Process advances the send anchor to block 14 in response

to the newly reported position of the receive anchor.

Upon completing the bilateral termination, or in response to a negative
determination at step 402 (FIG. 4), the Receive ARQ Process proceeds to step 406 to
perform a “gap detection” procedure whereby any missing blocks that should have
been received are designated as corrupt. For example, the Receive ARQ process
may conclude that any missing blocks in the Receive BMA between anchor send
and SSN are corrupt. This is because, in one embodiment, the Send ARQ Process
must attempt to send all preceding blocks before sending the block indicated by
SSN, thus the Receive ARQ Process can conclude that any missing block(s) in the
Receive BMA is corrupt. Thus, for example, if the Receiver receives a Send ARQ
message with anchor send = 2 and SSN = 5, it will designate blocks 2, 3 and 4 as
corrupt if they were not previously received because the Receiver knows that blocks

2, 3 and 4 should have been received before block 5.

13

10

15

20

25

30

WO 01/78036 PCT/US01/10214

Next, at step 408, the Receive ARQ Process updates the Receive BSV. This
| is performed in one embodiment by identifying the block in the Receive BMA

specified by the Send ARQ message SSN field as either received or corrupt,
depending upon the condition of the block payload associated with the Send ARQ
message. For example, if the Receiver receives a Send ARQ message with SSN =5,
the Receive ARQ Process may identify block 5 as received if the data associated
with block 5 is received in good condition, or corrupt if the data is received in bad
‘condition. It will be appreciated, however, for impl‘ementations where the block
data is not protected separately from the Send ARQ message, the Receive ARQ
Process may only be able to identify the block as received in good condition.

At step 410, the Receive ARQ Process advances the Receive BTW. In one
embodiment, the Receive ARQ Process advances its Receive BTW past blocks that
are either received or terminated, such that the anchor receive field identifies the
first block in the Receive BMA that is either corrupt or .not received. Thus, for
example, where anchor receive = 3, if block 3 is received or terminated and block 4
1s corrupt or not yet received, the Receive ARQ Process will advance the anchor
receive field to block 4.

The Receive ARQ Process may initiate an optional, unilateral termination of
a block transfer attempt at any time. The Receiver may wish to unilaterally
terminate a block transfer attempt, for example, if the block or blocks are
excessively delayed due to transfer errors. In one embodiment of the present
invention, the Receiver initiates unilateral termination of a block transfer by simply
advancing its Receive BTW past the block to be terminated and generating a
Receive ARQ message With the anchor receive field indicating the new Receive
BTW position.. For example, with reference to FIG. 2, note that the anchor receive
block 3 differs from the anchor send block 2. This indicates that the Receiver has
advanced the anchor receive block from 2 to 3, perhaps because block 2 was already
received or that it was excessively delayed such that the Receiver no longer wishes
to receive it. The Receiver generates and sends an ARQ message with anchor
receive = 3. This indicates to the Sender that block 3 is now the first block of
interest to the Receiver. It will be appreciated that any number of blocks may be

terminated in this fashion by means of a single ARQ message. For example, the

14

10

15

20

25

30

WO 01/78036 PCT/US01/10214

Receiver might terminate the transfer of blocks 2, 3 and 4 by advancing the anchor
receive field from 2 to 5, and so forth. The Send ARQ Process, in turn, will advance
its Send BTW in corresponding fashion to match the Receive BTW, thereby
performing a bilateral termination of the appropriate block or blocks.

An example message sequence chart associated with a bilateral termination
initiated by the Receiver is shown at FIG. 6. The example assumes that blocks 0 to
9 have already been transferred successfully and that the Sender has blocks 10 to 13
awaiting transfer to the Receiver. The following sequence of events is shown:

1. With the send anchor at block 10, the Sender attempts to transfer blocks
10 to 12, in sequence, to the Receiver via Send ARQ messages 602, 604, 606.
Blocks 10 and 12 are transferred successfully, as illustrated by a solid line for
message 602 and 606; block 11 transfer fails, as indicated by a dotted line for
message 604. The Receive ARQ Process decides that it is no longer interested in
receiving block 11 and unilaterally advances the receive anchor to block 12. Since
block 12 has already been successfully received, the receive anchor is further
advanced to block 13.

2. The Receive ARQ Process transfers a Receive ARQ message 608
indicating the new position of the receive anchor and that no blocks are corrupt.

3. The Send ARQ Process advances the send anchor to block 13 based on
the new reported position of the receive anchor.

4. The Sender transfers block 13 using a Send ARQ message 610 carrying
the advanced send anchor. ‘

5. The Receiver acknowledges the successful receipt of block 13 by
advancing the receive anchor to block 14 and transferring a Receive ARQ message
612 indicating the updated position of the receive anchor.

6. The Send ARQ Process advances the send anchor to block 14, aligning it

with the updated receive anchor reported in the Receive ARQ message 612.
The process of FIG. 4 may be continued to process multiple Send ARQ

messages. If the process is continued at step 412, the process returns to step 401

where the Receive ARQ Process receives another Send ARQ message from the Send

15

10

15

20

25

30

WO 01/78036 PCT/US01/10214

ARQ Process, and so forth. Otherwise, if the process is not continued at step 412,
the process ends.

FIG. 7 illustrates a procedure for the Sender to process a Receive ARQ
message transferred from the Receiver. At step 702, the Send ARQ Process receives
a Receive ARQ message from the Receive ARQ Process. At step 704, the Send
ARQ Process determines whether the anchor receive field within the Receive ARQ
message has advanced. If the anchor receive field has advanced, the Send ARQ
Process advances its Send BTW at step 706. Thus, for example, with reference to
FIG. 2, where the anchor send field of the Send ARQ Process initially identifies
block 2 and a Receive ARQ message is received with anchor receive = 3, the Send
ARQ Process will advance the anchor send field to block 3.

Upon advancing the Send BTW, or in response to a negative determination at
step 704, the Send ARQ Process proceeds to step 708, where a reception
determination procedure is performed to decide which blocks in the Send BTW are
cligible to be negatively acknowledged by the Receive ARQ message. For example,
if a particular block is sent by the Send ARQ Process at time t=1000 over a link with
a propagation delay of d=200, then a Receive ARQ message received by the Send
ARQ Process at t=1050 cannot possibly reflect the reception status of this block.
There are a variety of methods by which Receive ARQ message coverage can be
determined. Example reception determination procedures that may be used are
shown at Appendix A, “Automatic Repeat Request (ARQ) Protocol; Reception
Determination Procedures,” by Stephen Hershey. Appendix A is appended to and is
incorporated in its entirety as a part of the present disclosure. It will be appreciated,
however, the ARQ protocol according to the present invention does not require any
particular method of reception determination.

If it is determined at step 710 that a certain block or blocks are eligible for
negative acknowledgement by the Receive ARQ message, the process proceedé to
step 712 and steps 714 or 716 to determine whether the Send ARQ Process should
negatively acknowledge (NACK) the eligible block or blocks. In one embodiment,
the ARQ protocol defines two methods for marking blocks as negatively
acknowledged: Explicit NACK and Implicit NACK. If it is determined at step 710

that a certain block or blocks are not eligible for negative acknowledgement, the

16

10

15

20

25

30

WO 01/78036 PCT/US01/10214

process returns to step 702 to receive additional Receive ARQ messages, advance
Send BTW, and so forth but block(s) are not negatively acknowledged until such
time that they are determined at step 710 to be eligible for negative
acknowledgement.

At step 712, the Send ARQ Process examines the number of corrupt blocks
reported in the Receive ARQ message. If the number corrupt = 0, an Implicit
NACK procedure is performed at step 714. In the Implicit NACK procedure, the
Send ARQ Process can negatively acknowledge block(s) even though it has not
received a Receive ARQ message indicating that those block(s) are corrupt. The
Implicit NACK procedure can provide significant efficiency gains when a long
sequence of consecutive blocks are corrupted, such as during fading over wireless
links. However, the Implicit NACK procedure relies upon a reception determination
procedure able to estimate which sent blocks should have been received and
positively acknowledged by the Receive ARQ Process.

An example message sequence chart associated with the Implicit NACK
procedure is shown at FIG. 8. The example assumes that blocks 0 to 9 have already
been transferred successfully. The following sequence of events is shown:

1. With the send anchor at block 10, the Sender attempts to transfer blocks
10 to 14, in sequence, to the Receiver via Send ARQ messages 802, 804, 806, 808,
810. Blocks 10, 11 and 12 are not transferred successfully, as illustrated by a dotted
line for messages 802, 804 and 806. However, the Receive ARQ Process cannot |
mark these blocks as corrupt until block 13 is successfully received.

2. After the hypothetical receipt time of block 12, the Receiver transfers a
Receive ARQ message 812 indicating that the receive anchor has not advanced and
that no blocks are corrupt. When block 13 is successfully received, Receive ARQ
Process Gap Detection marks blocks 10, 11, and 12 as corrupt. However, by the time
block 13 is received, the Receive ARQ message has already been generated and
transferred to the Sender. Block 14 is also successfully received.

3. The Send ARQ Process reception determination algorithm determines
which blocks are eligible for negative acknowledgement, and blocks 10, 11, and 12

are marked as negatively acknowledged.

17

10

15

20

25

30

WO 01/78036 PCT/US01/10214

4. The Send ARQ Process retransmits blocks 10, 11 and 12 to the Receiver,
via Send ARQ messages 814, 816, 818.

Returning to FIG. 7, if the number corrupt > 0, an Explicit NACK procedure
is performed at step 716. The Send ARQ Process examines the number of
consecutive blocks specified by number corrupt and starting at anchor receive.
Those blocks within the range of blocks reported as corrupt that are eligible for
negative acknowledgement by the Receive ARQ message are marked as such.

An example message sequence chart associated with an Explicit NACK
procedure is shown at FIG. 9. The example assumes that blocks 0 to 9 have already
been transferred successfully. The following sequence of events is shown:

1. With the send anchor at block 10, the Sender attempts to transfer blocks
10 to 12, in sequence, to the Receiver via Send ARQ messages 902, 904, 906.
Blocks 10 and 12 are transferred successfully, as illustrated by a solid line for
message 902 and 906; block 11 transfer fails, as indicated by a dotted line for
message 904. The Receive ARQ Process advances its receive anchor to block 11
after the successfull receipt of block 10. When block 12 is successfully rgceived, the
Receive ARQ Gap Detection Process marks block 11 as corrupt.

2. The Receive ARQ Process transfers a Receive ARQ message 908
indicating the new position of the receive anchor and that block 11 is corrupt.

3. The Send ARQ Process advances the send anchor to block 11 based on
the new reported position of the receive anchor. After reception determination, the
Send ARQ Process marks block 11 as negatively acknowledged and retransmits
block 11 via Send ARQ message 910 carrying the advanced send anchor. The Send
ARQ then transfers block 13 via Send ARQ message 912.

4. The Receive ARQ Process advances its receive anchor to 12 after the
successful receipt of block 11, and then further advances the receive anchor to block
13 since block 12 was already received. The successful receipt of block 13 causes
the receive anchor to advance to block 14.

5. The Receive ARQ Process transfers a Receive ARQ message 914

indicating the new position of the receive anchor and that no blocks are corrupt.

18

10

15

20

25

30

WO 01/78036 PCT/US01/10214

6. The Send ARQ Process advances the send anchor to block 14 based on

the new reported position of the receive anchor.

At step 718 (FIG. 7), the Send IARQ Process optionally attempts to
retransmit those block(s) that were negatively acknowledged by the Implicit NACK
or Explicit NACK procedure. The process of FIG. 7 may be continued for the
Sender to receive and process multiple Receive ARQ messages. If the process is
continued at step 720, the proc‘ess returns to step 702 where the Send ARQ Process
receives another Receive ARQ message from the Receive ARQ Process, and so
forth. Otherwise, if the process is not continued at step 720, the process ends at step
722.

ADJUSTABLE MINIMUM CORRUPTION DENSITY

The number corrupt field within the Receive ARQ message identifies the
number of consecutive blocks that are reported as corrupt, starting from the first
block within the receive BTW. According to one embodiment of the present
invention, the number of blocks reported as corrupt may include a percentage of
blocks that are not actually corrupt, based on a parameter called Minimum
Corruption Density (MCD). The MCD may vary from 0 to 1.0 and is dynamically
changeable by the Receiver depending on the desired bandwidth consumption /
block transfer delay performance characteristic. For example, if the MCD is 1.0,
then every block within the range of blocks specified by the number corrupt field is
actually corrupt. However, if the MCD is less than 1.0, then some of the blocks
reported as corrupt may not be corrupt, but rather may have been received or
terminated. For example, if the MCD is 0.8, then 80% or more of the blocks within
the range of blocks specified by the “number corrupt” field must be corrupt (thus
20% or less must have been received or terminated). If the MCD is 0.2, then only
20% or more of the blocks within the range of blocks specified by the “number
corrupt” field must be corrupt, and so forth. The Receive ARQ Process reports the
largest value for number corrupt that is consistent with the required MCD.

The Send ARQ Process, having received the Receive ARQ message with the

number corrupt field and the anchor receive field, will mark the appropriate number

19

10

15

20

25

30

WO 01/78036 PCT/US01/10214

of blocks as corrupt. For example, if the Receive ARQ message identifies anchor
receive =3 and number corrupt = 4, the Send ARQ Process may mark blocks 3 to 6
as corrupt after reception determination and subsequently attempt to retransmit those
blocks. If the MCD is 1.0, all of the blocks that were reported as corrupt (and thus
all of the blocks that are retransmitted) are actually corrupt. If the MCD is less than
1.0, some of the blocks that were reported as corrupt are not actually corrupt, thus
the Sender will retransmit some blocks that were already been received or
terminated, thereby increasing bandwidth consumption.

In general, if free excess bandwidth is available to absorb the increased
bandwidth demands resulting from an MCD less than 1.0, the transfer delay over the
link will decrease. This is because lower values of MCD often result in larger
values for number corrupt. Thus, one method by which the Receiver might manage
the MCD parameter is to set the MCD to 1.0 during periods of congestion to
minimize bandwidth consumption and to lower the MCD during less congested
periods to increase bandwidth consumption but decrease delay. In any event,
whatever MCD parameter is selected, it is preferred that the final block in the range
reported as corrupt (i.e., farthest from the receive anchor) should always be actually
corrupt, because including final blocks that were received successfully within the
reported corruption range merely leads to unnecessary retransmissions with no

corresponding reduction in aggregate block transfer delay.

FIG. 10 is a message sequence chart useful for illustrating the MCD feature '
of the present invention. The example assumes that blocks 0 to 9 have already been
transferred successfully. The following sequence of events is shown:

1. The Sender attempts to transfer blocks 10 to 13, in sequence, to the
Receiver via Send ARQ messages 1002, 1004, 1006, 1008. Blocks 10 and 12 were
not transferred successfully; blocks 11 and 13 were transferred successfully.

2. The Receive ARQ Process transfers a Receive ARQ message 1010
indicating a number of corrupt blocks, based on the minimum corruption density
(MCD). If the MCD is 1.0, then the Receive ARQ Process indicates only that block
10 is corrupt even though it knows that block 12 is also corrupt. This is because any

larger reported number corrupt would include at least one block (block 11) that is

20

WO 01/78036 PCT/US01/10214

not corrupt and therefore would be inconsistent with the MCD of 1.0. However, if
the MCD is 0.6 (thereby requiring that at least 60% of the blocks reported as corrupt
are indeed corrupt), the Receive ARQ Process can report the number of corrupt
blocks as 3 because two out of the three blocks (blocks 10 and 12) are indeed
corrupt. (The remaining message sequence assumes an MCD of 0.6).

3. The Sender retransmits blocks 10, 11, 12 that were reported as corrupt,
via Send ARQ messages 1012, 1014, 1016. Even though block 11 has been already
received correctly by the Receiver and would not be retransmitted if MCD = 1, the
advantage of lowering the MCD to 0.6 (and thereby reporting the number of corrupt
blocks as three) is that the Send ARQ Process is notified that block 12 is corrupt
earlier, and hence retransmits block 12 sooner than it otherwise would have if the
number of corrupt blocks was reported as one. This reduces the aggregate block
transfer delay. The tradeoff is the excess bandwidth consumption caused by
unnecessary retransmissions of correctly received blocks (in this example, block 11).
Thus, lowering the minimum corruption density can reduce aggregate block transfer
delay at the cost of greater bandwidth consumption.

The present invention may be embodied in other specific forms without departing from
its spirit or essential characteristics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of the invention is, therefore,
indicated by the appended claims rather than by the foregoing description. All changes that
come within the meaning and range of equivalency of the claims are to be embraced within
their scope.

APPENDIX A — Automatic Repeat Request (ARQ) Protocol; Reception Determination

Procedures

21

10

15

20

25

30

WO 01/78036 PCT/US01/10214

WHAT IS CLAIMED 1IS:

1. A method of sending a plurality of blocks comprising data, the method
comprising the steps of:

generating a first message comprising at least a first block of the plurality
of blocks, an identification of the first block, and an identification of a first active
send block of the plurality of blocks, wherein the first block appears in the plurality
of blocks no earlier than the first active send block; and

sending the first message from a sending device to a receiving device.

2. The method of claim 1, wherein the first block is identified as the first

active send block.

3. The method of claim 1, further comprising:

receiving, from the receiving device, a status message indicating a reception
status of the first message;

when the status message indicates successful receipt of the first message,
advancing the identification of the first active send block to a next block of the
plurality of blocks; and

when the status message indicates unsuccessful receipt of the first message,
maintaining the identification of the first active send block consistent with the

first message.

4. The method of claim 3, further comprising the step of resending the first
message to the receiving device when the status message indicates unsuccessful

receipt of the first message.

5. The method of claim 3, further comprising the step of sending, from the
sending device to the receiving device, a second message comprising the next block
of the plurality of blocks, an identiﬁcatiqn of the next block, and an identification of
the next block as the first active send block, when the status message indicates

successful receipt of the first message.

22

10

15

20

25

30

WO 01/78036 PCT/US01/10214

6. The method of claim 1, further comprising the step of the sending device

advancing the identification of the first active send block to a second block.

7. The method of claim 6, wherein the step of advancing the identification
of the first active send block to a second block is performed by the sending device
in response to receiving, from the receiving device, a status message instructing the

sending device to terminate sending of the first block.

8. The method of claim 6, wherein the step of advancing the identification
of the first active send block to a second block is performed in response to a decision,

by the sending device, to terminate sending of the first block.

9. The method of claim 1, wherein the first active send block comprises an

anchor block identified by the sending device, defining an anchor send block.

10. The method of claim 9, wherein the anchor send block comprises a most

delayed block identified by the sending device.

11. The method of claim 9, further comprising identifying, by the receiving

device, a first anchor receive block based on the identification of the anchor send block.

12. The method of claim 11, further comprising the steps of:
advancing, by the receiving device, the identification of the anchor receive
block;
“sending, to the sending device, a status message including the identification
of the advanced anchor receive block; and
advancing, by the sending device, the identification of the anchor send block

based on the identification of the advanced anchor receive block.

23

10

15

20

25

30

WO 01/78036 PCT/US01/10214

13. The method of claim 1, further comprising the steps of:

generating, at the receiving device, a status message incident to receiving the
first message from the sending device, the status message comprising an identification
of a first active receive block of the plurality of blocks; and

sending the status message from the receiving device to the sending device.
14. The method of claim 13, wherein the status message further comprises
a count of how many blocks were received in error commencing with the first

active receive block.

15. The method of claim 14, wherein the count of how many blocks were

received in error includes at least one block that was received successfully.

16. The method of claim 14, wherein the status message comprises a count

.of 0, and the method further comprises the step of assuming any messages transmitted

were not received successfully.

17. The method of claim 13, further comprising the steps of:

comparing, by the sending device, a first time at which the first message was
transmitted to a second time at which the status message was received;

determining a time differential between the first time and the second time;

when the time differential is greater than a predetermined threshold,

deeming the information within the first status message as applicable to the first message;

when the time differential is less than the predetermined threshold, deeming

the information within the first status message as inapplicable to the first message.

18. The method of claim 13, wherein the status message comprises the last

indication of transmission order successfully received by the receiver.

24

10

15

20

25

30

WO 01/78036 PCT/US01/10214

19. A method comprising the steps of:
maintaining a send block transfer window associated with a sending device,
the send block transfer window identifying a plurality of blocks adapted to be
transferred from the sending device to a receiving device;
maintaining a receive block transfer window associated with a receiving
device, the receive block transfer window identifying a plurality of blocks adapted to
be received by the receiving device;
forming, by the sending device, a Send ARQ message field including,
a send anchor field identifying a most delayed block of the plurality
of blocks identified in the send block transfer window; and
a send sequence number field identifying a current block of the
plurality of blocks identified in the send block transfer window that is to be sent
from the sending device to the receiving device;
forming, by the sending device, a data transfer request message including, in
sequence, the send anchor field, the send sequence number field, and a block data
field including data associated with the current block; and
sending the data transfer message from the sending device to a receiving

device.

20. The method of claim 19, further comprising:
forming, by the receiving device, a Receive ARQ message including, in
sequence,
areceive anchor field identifying a most delayed block of the
plurality of blocks identified in the receive block transfer window; and
a number corrupt field identifying a number of blocks of the plurality
of blocks identified in the receive block transfer window that are reported as corrupt;
and
sending the Receive ARQ message from the receiving device to the sending

device.

25

WO 01/78036 PCT/US01/10214

21. A method comprising:

attempting transfer, from a sending device to a receiving device, a plurality
of blocks of data;

designating as corrupt, by the receiving device, at least a first block of the

5 * plurality of blocks;

reporting as corrupt, by the receiving device, a number of consecutive blocks
of the plurality of blocks commencing with the first block, the number of
consecutive blocks reported as corrupt including an allowable number of non-

corrupt blocks based on a predefined parameter.

10
22. The method of claim 21, wherein the predefined parameter comprises a
minimum corruption density defining a ratio of corrupt blocks to the number of
blocks reported as corrupt.
15 ' 23. The method of claim 21, further comprising re-transmitting, from the

sending device to the receiving device, the number of consecutive blocks reported as

corrupt.

24. The method of claim 21, wherein the allowable number of non-corrupt

20 blocks is based on available bandwidth for re-transmission of blocks.

26

PCT/US01/10214

WO 01/78036

1/7

$53004d
OdY AT

\
vel

N3LSAS
INLLYY3d0

I
ael

r
0ci

AYONIN

i

43T1041NOY

IA
INIATIOHY

L O1.A

NI
NOILYJINNWKOD

$$3004d
o IS
m HAISAS
] PRI i BRI
| A ANONIH
| 8l
17 o] ¥m0¥IN0
!
I
|
|
|
I
_llllnvl lllllllllll
20
1IN0
INTON3S

WO 01/78036 PCT/US01/10214

217
SEND BMA RECEIVE BMA
0 |_206 0 _222
| _208 | 24
2 210 y\cHoR_seND=2 2 _226
3 212 ANCHOR_RECEIVE=3 —>3 —228
4 *’g‘; 4 —250 NMBER_CORRUPT=4
5 2D SEND SEQUENCE NUMBER=5—5 _232 (BLOCKS 3 T0 6)
b 218 b 234 |
7 _220 7 236
FIG. 2
202 204
308 30
SEND BTW | SEND SEQUENCE | BLOCK
ANCHOR NUMBER DATA
<
N — J 306
0 30
FIG. SA

RECEIVE BTW NUMBER OF
ANCHOR BLOCKS CORRUPT

J N
Ji4 31 J16

FIG. 3B

WO 01/78036 PCT/US01/10214

3/7

(START)

RECEIVE SEND | 49y
ARQ_ WESSAGE

402 404
SENDER
NITIATED TERMINATION™~_YES .| BILATERAL
OF BLOCK TRANSFER TERMINATION
9
NO

GAP DETECTION 406

\

UPDATE RECEIVE BSV [-408

ADVANCE RECEIVE BTW{-410

4
YEs“'lliIH!iiiil|"

NO

()
FIG. 4

PCT/US01/10214

WO 01/78036

4/7

9 O A
pi=y
ey 797 0RO =W
el=Sy
SI=8Y —597 0=0N 1=y
=4y —
097 71=41 ‘01=SV
=4V 09/ N=dl 0S5y T -
Ol=4y ; 0l=SV

g7l W0 i AT VR

.

<G LA

TN
Y 726 0=0N ‘fl=yV
R{EN
=5V
gis7 V=N Hl=yy
o
et S
TERTVRR (A TR TR ENS A
Ol=ay ; 0l=SY

¢ 2 10l -YKg AT A1 B)

WO 01/78036 PCT/US01/10214

57

(STRT)

>

RECEIVE
RECEIVE ARQ [—702
MESSAGE

706

ANCHOR
RECEIVE
ADVANCED
?

YES ADVANCE
SEND BTW

NO

RECEPTION
DETERMINATION 708

710

BLOCK(S)

ELIGIBLE FOR

NACK
?

NUMBER
CORRUPT
9

IMPLICIT EXPLICIT
Nk ="M ek 716

F__—T:__'l

| RETRANSMIT |
| opLocks) %

PCT/US01/10214

WO 01/78036

6/7

6 DOI.A
7l=SV
w=W ~ #6 0=ON -¥l=4V
067 =4 =5y =SV
906 =N M=u~_<
—
T mme e
n=yy 7067 p=dl fl=SyT T TS
Ol=4y ; 0l=Sy

AT O A ¢h IOl -YKe

E O

E

T~ u=L%
=il ‘01=Sy J/

0l=il a_%JN

0=dy ~ 0i=SY
vl ool Vi viogld o io0b -YWe

WO 01/78036

717

BMA: 10 11 12 13 BMA: 1011 12 13
=0 A0 TF=0 pggp ARSI

—
— —
— —
— —

—
— —
— —
— —

MCD=1.0: AR=10; NC=1
NCD=0.6: AR=10; Ne=3 1010

AS=10; TF=10 o0

W AR=12

AS=10; TF=12 06

— Ty

AR=14

FIG. 10

PCT/US01/10214

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/10214
A, CLASSIFICATION OF SUBJECT MATTER
1PC(6) GO8C 25/02; HO4L 1/18
US CL

714/748,790; 370/311,313,342,465,474,515,535; 340/7.22,7.43,7.46; 455/412,456,524; 375/265
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S.:

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

GSM-GPRS services
IEEE, 1 May 1996, Vol 2
pages 779-780

a MAC-RLP combined procedure for packet mode data over noninterleaved channel for

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,084,877 A (NETRAVALI et al) 28 January 1992 (28.01.1992), Figs. 2-7, and 1-24
column 6, lines 40-61
Y US 5,673,252 A (JOHNSON et al) 30 September 1997 (30.09.1997), column 35, line 32 - 1-24
column 73, line 61
Y US 5,642,365 A (MURAKAMI et al) 24 June 1997 (24.06.1997), column 15, lines 2-16 124
and column 3, lines 1-27
Y US 5,862,452 A (CUDAK et al) 19 January 1999 (19.01.1999), column 34, line 32 - 124
column 46, line 67
Y CHAKRABORTY. 8.S ET AL. The inhibit sense multiple access with polling (ISMA/P): 1-24

D Further documents are listed in the continuation of Box C.

See patent family annex.

priority date claimed

* Special categories of cited documents: “ later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“xX” document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“0" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the “&" document member of the same patent family

Date of the actual completion of the international search

01 June 2001 (01.06.2001)

Date of mailing of the international search report

OB SEP 2001/

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

A

Authorized c@e’%&(/%u—

— Albert De Cady
Telephone No. 703 305 9595

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US01/10214

Continuation of B. FIELDS SEARCHED Item3: WEST, IEEE
SEARCH TERMS: arq, dynamic arqg, reject arq, timeout, expiration, inhibit, prevent, refrain, delay-sensitive, delay-insensitive

Form PCT/ISA/210 (extra sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Drawings
	Search_Report

