0 02/50675 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

27 June 2002 (27.06.2002)

(10) International Publication Number

WO 02/50675 Al

(51) International Patent Classification’: GO6F 9/45

(21) International Application Number: PCT/US01/48788
(22) International Filing Date:
18 December 2001 (18.12.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/741,201 19 December 2000 (19.12.2000) US
(71) Applicant: TAJEA CORP. [US/US]; 147 Rock Road

West, Lambertville, NJ 08530 (US).

(72) Inventor: HILLS, Theodore, S.; 147 Rock Road West,
Lambertville, NJ 08530 (US).

(74) Agent: COLBURN, Philmore, H., II.; Cantor Colburn
LLP, 55 Griffin Road South, Bloomfield, CT 06002 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
T1, ™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR ENABLING A COMPILER OR INTERPRETER TO USE RUN TIME IDENTIFIERS IN A MAP

CONTAINER OBJECT

(57) Abstract: A method for enabling a compiler or interpreter to use identifiers found at run time in a map container object in a
manner similar or identical to identifiers declared at compile time is presented. More specifically, names defined in a map container
object during the execution of a program are treated in a manner similar or identical to names defined in a programming namespace
at compilation (or interpretation) time. The map container is applied to encapsulate a non-programming namespace application
programming interface (API), so that names defined in a non-programming namespace can be treated in a manner similar or identical
to names defined in a programming namespace at compilation (or interpretation) time.

WO 02/50675 PCT/US01/48788

10

15

20

25

Method for Enabling a Compiler or Interpreter

to use Run Time Identifiers in a Map Container Object

Backeround of the Invention:

This invention relates generally to programming of digital computers, and,
more particularly, to a method for enabling compilers or interpreters to use identifiers
found at run time in a map container object in a manner similar or identical to
identifiers declared at compile time.

In the abstract, a namespace is a space within which names are defined, can be
differentiated from each other, and have unique identity. Programming languages
always define at least one namespace, allowing names to be defined which are
differentiated from each other, and which are used to identify nameable entities in the
namespace. Many programming languages, including C++ and Java®, support
multiple namespaces, either explicitly or implicitly, or both. (Java® is a registered
trademark of Sun Microsystems, Inc.) For instance, C++ treats every class as its own
namespace, and additionally includes a namespace definition declaration, allowing the
definition of previously non-existent namespaces, in which new unique names may be
defined.

Various systems and subsystems implemented in computers, other than
programming languages, support namespaces, which identify by (typically human-
readable) character strings objects of classes supported by those subsystems. For
example, a hierarchical filesystem provided by an operating system supplies a
namespace where each name identifies either a file (a sequence of bytes on a storage
medium) or a directory containing files and other directories. As another example,
the IEEE POSIX® operating system specification, as defined by “IEEE/ANSI Std
1003.1, 1996 Edition: Information Technology--Portable Operating System Interface
(POSIX&)--Part 1: System Application: Program Interface (API) [C Language]”,

which is incorporated herein by reference, defines an “environment” that supplies a

WO 02/50675 PCT/US01/48788

10

15

20

25

30

namespace where each name identifies an arbitrary string of characters of any length.
(POSIX® is a registered trademark of The Institute of Electrical and Electronic
Engineers, Inc.) As a further example, Uniform Resource Identifiers (URIs) defined
by “IEC RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax”, which is
incorporated herein by reference, define a namespace encompassing the entire
Internet, such that any object reachable via the Internet may be named. As a further
example, CORBA?®, as defined by Object Management Group, “The Common Object
Request Broker: Architecture and Specification, Minor revision 2.3.17, Needham,
Mass., Object Management Group, October 1999, which is incorporated herein by
reference, defines an Interface Repository, containing named definitions of interfaces
and other related objects, which are named by human-readable identifiers. (CORBA®
is a registered trademark of Object Management Group, Inc.) These namespaces
hereinafter will be referred to as “non-programming namespaces’ .

It is desirable that computer programs can access objects in these non-
programming namespaces, in order to find objects by name, to read and write the
objects, to create and delete named objects, and to invoke methods defined on the
objects. To this end, it is customary that for a given computer programming language
(such as C++ or Pascal), and a given kind of non-programming namespace (such as a
filesystem), an application programming interface (API) to that namespace is defined.
Such an API typically defines a function for each of the aforementioned operations.
The functions that locate named objects in a non-programming namespace often
accept as arguments strings of characters which are the names of objects sought.
These strings are not considered names in the source programming language used to
program the function calls. Therefore, objects defined in non-programming
namespaces are named, created, deleted, and manipulated using function calls the
meaning of which is defined entirely outside the source programming language. By
contrast, objects defined using the source programming language are named, created,
deleted, and manipulated using statements defined by the language itself, and those
statements are interpreted by a compiler or interpreter of the language. As a result,
much of the expressiveness of a programming language cannot be employed by

program source code which manipulates objects in a non-programming namespace.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

Additionally, no uniformity exists in referencing by name objects defined using a
programming language versus objects defined outside a programming language.

In practice to date, among APIs to a number of non-programming namespaces
defined for a single programming language, there is little or no commonality between
the functions of distinct APIs intended to perform similar or identical operations on
the objects of their respective non-programming namespaces.

Accordingly, there is a need for a mechanism that provides access to objects
and their names defined in non-programming namespaces, which is integrated with
access to objects and their names defined in programming namespaces, and which is

uniform across disparate kinds of namespaces.

Brief Summary of the Invention:

The above-discussed and other drawbacks and deficiencies of the prior art are
overcome or alleviated by the method of the present invention for enabling a compiler
or interpreter to use identifiers found at run time in a map container object in a
manner similar or identical to identifiers declared at compile time. In accordance with
the present invention, names defined in a map container object during the execution of
a program can be treated in a manner similar of identical to names defined in a
programming namespace at compilation (or interpretation) time.

More specifically, when a compiler (or interpreter) incorporating the present
invention encounters a locally scoped identifier, it applies static name resolution rules
as defined in the programming language definition. If it does not resolve the
identifier statically, and one or more map object container objects have been
incorporated into the current scope through “namespace using directives”, the
compiler generates code as follows. Firstly, the compiler regards the identifier as a
reference to an object which is to be discovered at execution time. When generating
object code for source code referencing the identiﬁ'er, the compiler generates code
that accesses the referenced object indirectly, through a reference object associated
with the identifier, whose value can be set at run time. Secondly, the compiler
generates code to search at run time the map containers incorporated into the current
scope through “namespace using directives” for a key whose value is a string equal to

the identifier string. If the generated code finds a matching key in the container, it

WO 02/50675 PCT/US01/48788

10

15

20

25

sets the reference variable associated with the identifier to reference the object
corresponding to the key found. If a match is not found, an exception is thrown.
After successful assignment to the reference variable, the identifier may be used to
reference the object found through its associated reference variable, just as if the
identified object had been known at compile time.

Additionally, the compiler may interpret a “namespace using declaration” that
explicitly references a map container object, by generating code as described above,
searching only the explicitly referenced map container object for the identifier
appearing in the “namespace using declaration”.

The present invention contemplates immediate useful application to
encapsulating access to non-programming namespaces such as filesystems,
environment variables, Internet URISs, run-time object name resolution schemes, etc.

The above-discussed and other features and advantages of the present
invention will be appreciated and understood by those skilled in the art from the

following detailed description and drawings.

Brief Description of the Drawings:

The FIGURE is a static structure chart in the Unified Modeling Language
(UML) for a filesystem directory defined as a special kind of file which is also a map

container object in accordance with the present invention.

Description of the Preferred Embodiment:

An embodiment of the invention may be described with respect to any
traditional object-oriented programming language. For the purpose of describing the
invention herein, a new programming language, hereinafter called “D”, will be used.
The “D” programming language is the subject of a related application entitled
“COMPUTER PROGRAMMING LANGUAGE TO DESCRIBE AND
ENCAPSULATE A COMPUTER AS A SET OF CLASSES AND OBJECTS” which
is being filed concurrently herein, and which is incorporated herein by reference

(Attorney Docket No. TAJ-0001). This language has syntax similar to that of C++.

WO 02/50675 PCT/US01/48788

10

15

20

25

Preferably the D language compiler allows reference at run time to objects in a
map container, such objects found in the map container with string keys conformant
to the compiler’s source language lexical requirements for identifiers, such string keys
supplied in the source code to the compiler as identifiers.

An embodiment of the invention may be described with respect to any non-
programming namespace. For the purpose of describing the invention herein, a
POSIX-compliant filesystem is used herein as an exemplary embodiment.

As an aid to understanding the teaching in this document, in the following
sections characters enclosed in single quotation marks, as in ‘this text’, are to be
interpreted as characters which could appear in the source code of a D language

program exactly as shown in this text, without the enclosing single quotation marks.

Map Container Objects

A container object is an object which can contain other objects. There can be
many kinds of container objects, distinguished primarily by how the objects are
organized inside the container—whether as a sequential list, a set of unique values, or
some other means. The container object of interest here is called a “maﬁ”. Thisis a
container of pairs of objects. The first object of each pair is called the “key”, and the
second object is called the “value”. Within a single map container, each key is
guaranteed to be unique, so that a key uniquely identifies an object in the map.

In an object-oriented implementation of a map container, all keys are
constrained to be of a single class (or its substitutable subclasses), and likewise all
values are constrained to be of a single class (or its substitutable subclasses). The key
and value classes do not necessarily have any relation to each other: they can be the

same class or different classes.

WO 02/50675 PCT/US01/48788

Table 1 below shows source code in the D language for an interface to a class
implementing a map container. The interface itself has two parameters: ‘Key_c’ and
‘class_c’. Both of these are of class ‘class_c’, the meta-class of classes. ‘Key_c’

and ‘class_c’ supply the map’s key class and value class, respectively.

5 new Interface c<? Class_c Key_c, Class_c Value c ?> Map_i

(

interface

{

function Subr c<? returns Nat32_t nItems ?> size;

10
function Subr_c<? Key_c Key, returns ptrTo(Value_c) pValue ?>
find;
method Subr_c<? ?> clear;
15
method Subr_c<? Key c Key, Value_c Value ?> insert;
method Subr_c<? Key c Key ?> remove;
}
20)

Table 1
The function ‘size’ returns the number of objects in the container. The

function ‘£ind’ returns a pointer to an object found in the container with key equal to
25 the argument ‘key’. If no object in the container is associated with a key equal to

‘Key’, the pointer is set to null. The method ‘clear’ removes all objects from the

container. The method ‘insert’ inserts a new object in the container in association

with key value ‘Key’. The method ‘remove’ removes from the container the object

associated with key value ‘Key’.

30

WO 02/50675 PCT/US01/48788

10

15

20

25

In the present invention, the class of key used is a string of characters, and the
class of value is any arbitrary class. Table 2 below shows source code in the D
language for a specialized version of interface ‘Map_i’ that specifies the key class as a

string. The specialized version is identified as ‘SymbolTable_i’.
new Interface_c<? Class_c Value_c ?> SymbolTable_i

(

interface extends (Map_i(String c, Value_c))

{

method Subr c<? Value c Value, String_c Key(Value'Name) ?> insert

({ insert (Key, Value); });

method Subr_c<? Value_c Value, String_c Key(Value'Name) ?> remove

({ remove(Key); });

Table 2

Class ‘string_c’ is a predefined class of the D programming language, and is
the class of a string of characters. Class ‘value c’ is any class. By virtue of the
declaration ‘extends Map i (String c, Value_c)’, the interface ‘SymbolTable_i’
is established as a specialized interface to a general map container, where the key
class is always a string class. The interface literal for ‘symbolTable_i’ provides
overloaded versions of member methods ‘insert’ and ‘remove’ that depend on this
fact. Both of these methods take two arguments, but the second argument has a
default value, which is the name of the first actual argument in string form. This
makes possible a shorthand form of invocation, where only a single argument is
supplied to ‘insert’ or ‘remove’, and the identifier of the actual argument is taken to

be the key value. Examples of the use of this shorthand form are presented below.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

Inserting Objects into a Map Container

It is ordinary for a program to define a map container, whose keys are strings,
and to insert named objects into the container. Table 3 below shows source code in
the D programming language that defines a map container, whose keys are strings,

and inserts named objects into the container.
new SymbolTable_ i (Descriptor_c) aMap(); ##

line 1
new Descriptor_c di();
aMap.insert ("d1", d1); ##

line 4

new Descriptor_c d2();

aMap.insert (d2) ; ##
line 7
aMap .remove (d1) ; ##
line 9

Table 3

Line 1 in Table 3 defines a symbol table object called ‘aMap’. As has been
seen in Table 2 above, a symbol table object is a map object having <key, value>
pairs where the key class is ‘string_c’. Online 1 of Table 3, the value class is
declared to be ‘Descriptor c’. The empty parentheses at the end of the line invoke
the map object’s default constructor, which initializes the map to be an empty
container. Likewise, the empty parentheses at the ends of lines 3 and 6 in Table 3
invoke the default initializers for those objects. They do not denote that these objects
are functions, as similar syntactical usage would do in the C++ programming
language.

Note the difference between the call to method ‘insert’ on line 4 vs. the call
on line 7 in Table 3. On line 4 in Table 3, it is clearly seen that a <key, value> pair is
being inserted into the map container object identified as ‘aMap’. The identifier of the

value, ‘d1°, is redundantly specified in the form of a string literal as the key to be

WO 02/50675 PCT/US01/48788

10

15

20

associated with the object itself. This is an invocation of the ‘insert’ method
defined in the interface literal for ‘Map_i’.

On line 7 in Table 3, a version of the ‘insert’ method is invoked with only
one argument, an instance of the map container’s value class. This matches the
overloaded version of the ‘insert’ method defined in the interface literal for
‘symbolTable i’. This version of the ‘insert’ method receives not only the object
referenced by the identifier ‘a2’, but also the identifier ‘a2’ itself as a string object,
through the method’s second, default argument. Since this overloaded ‘insert’
method is implemented in terms of the ‘insert’ method in ‘Map_i’, the two methods
are known to be semantically equivalent.

The call in line 7 in Table 3 is not only more convenient for a programmer to
write, but it also eliminates the possibility that the programmer will mistakenly use a

different string as key than the actual identifier of the object.

Symbol Table as Map

Within every compiler is a symbol table, which is a table of the identifiers
declared in the source code being compiled, and the definitions attached to those
identifiers. Such a symbol table is a kind of map, where the key is the identifier string
itself, and the value is the compiler’s internal representation of the definition attached

to the identifier.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

10

Referencing Objects in a Map Container
Table 4 below is an example of two different, though equivalent, ways of

referring to the named contents of the map object ‘aMap’.

new Subr_c<? SymbolTable_ i (Descriptor_c) aMap ?> M6

({

new ptrTo (Descriptor_c)@ d2(aMap.find("d2")); ##
line 3

using aMap::dl; ##
line 5

using aNamespace: :0bj; ##
line 7
I3

Table 4

Line 1 in Table 4 shows the definition of a new subroutine named ‘me’, with a
single argument, which is any map container of the same class as that declared in
Table 3. For convenience of explanation, the name of the formal argument has been
chosen to be the same as the name of the actual map container object in Table 3; that
is, ‘aMap’.

Line 3 in Table 4 declares a reference object called ‘d2’. In the D language, a
reference object is a pointer object declared with the suffix ‘@’ on the expression
giving the class of the pointer object. Every reference to an identifier of a pointer
object, except an initializing reference, is implicitly a reference to the object which
the pointer signifies. The D language definition prohibits initialization of a reference
object with anull pointer. The D language compiler always generates code for
initializing a reference object which tests if the object is being initialized with a null
pointer and, if so, throws an exception.

Line 3 in Table 4 initializes reference object ‘d2’ to refer to the object found
by the call to the ‘find’ method of the ‘aMap’ container. If the ‘find’ method fails to
find an object in ‘aMap’ whose associated key is the character string ‘d2’, it returns a

null pointer. As explained above, this causes an exception to be thrown. The

WO 02/50675 PCT/US01/48788

10

15

20

25

30

11

throwing of an exception terminates the forward execution of statements, so no
statements after line 3 in Table 4 will be executed in this exceptional situation. This
is good, since if execution could proceed, ‘d2’ would identify a reference object with
a null value, which violates the language definition. Throwing an exception
safeguards code which assumes that the program adheres to the language definition.

Line 5 in Table 4 is a “namespace using declaration”. It declares the identifier
‘a1’ as a locally scoped identifier which references an object found in ‘aMap’ with key
value equal to the identifier string. Line 5 in Table 4 is semantically equivalent to line
3 in Table 4 (other than the use of ‘a1’ instead of ‘d2"). The differences are purely
syntactic. In fact, in compiling line 5 in Table 4, the compiler generates the code on
line 3 in Table 4. Line S in Table 4 has the same advantage over line 3 in Table 4 as
does line 7 in Table 3 over line 4 in Table 3, because of the avoidance of redundant
specification of the object identifier.

Except for the fact that they identify different objects, the identifiers ‘a1’ and
‘32’ are semantically and syntactically equivalent. Each references an object found in

a map container by its name. Each can be used to manipulate the object it references,

"in the manner usual in an object-oriented program. Code following each of these

lines is protected by the fact that it will not be reached, due to an exception being
thrown, if the identifier is not properly initialized to reference an object, as required
by the D language definition. This protection is important, since the compiler cannot
guarantee at the time it sees the source code whether the map container object will
contain the identifiers referenced at run time.

Line 7 is included in Table 4 to illustrate that the syntax for referencing a
name in a program namespace is identical to the syntax used on line 5 in Table 4 for
referencing a name in a map container object. This sameness is an important feature
of the present invention. The syntax of line 7 in Table 4 happens to be identical to the
syntax of a “using declaration” in the C++ programming language. This information
is provided not as an essential aspect of the invention, but to include as an illustration
the similar use of the syntax of line 7 in Table 4 in another programming language, to

aid in understanding the entire example.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

12

Map as Symbol Table
Table 5 below is an example of another way in which the contents of the

exemplary map container can be referenced.

new Subr_c<? SymbolTable_i (Descriptor_c) aMap ?> M7

{

using namespace aMap; ##
line 3
d2:= di; #4
line 5
1)
Table S

The statement on line 3 in Table 5 (called a “using directive” in the C++
programming language and a UsingStatement in the D programming language) allows
the names in ‘aMap’ to be used without qualification in any statement following line 3
in Table 5, in the scope of the statement.

When the compiler processes line 5 in Table 5 to resolve the identity of the
identifiers ‘d1’ and ‘a2’, it searches its symbol table for identifiers available
according to the rules of the language. For instance, the compiler will search for any
or all of the following: locally-declared identifiers; identifiers which are members of
the enclosing class, if there is an enclosing class; identifiers in any namespaces
included via using directives; and the global namespace.

The present invention enables a compiler to also search for identifiers in a map
container object. When generating code for line 5 in Table 5, the compiler first
determines that the names ‘d1’ and ‘d2’ are not statically defined in any of the above-
mentioned places. It determines this in the traditional way, by searching its symbol
table. Assuming that the compiler has not found definitions in any of those places, it
generates code which, at execution time, for each of ‘d1” and ‘d2’, searches the map
container mentioned in the using directive in line 3 in Table 5 (‘aMap’), and initializes
a reference object for each found, as described earlier. If one or both are not found,

the generated code throws an exception.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

13

Thus, the present invention enables the use of names defined in a map
container object at execution time to be treated equivalently to names defined
statically at compile time.

Note, in all of the above, that this aspect of the present invention is useful with
objects in map containers whose corresponding keys are strings which conform to the
lexical requirements of identifiers in the programming language in which the
invention is incorporated. If a map container contains keys not conforming to the
language’s lexical requirements, those keys can be found using string objects or string
literals as parameters to map ‘£ind’ methods, rather than using identifiers, and the

rest of the invention remains useful.

Application to Filesystem API

The application of the present invention is open to use in any kind of map,
containing any kind of value class. However, the present invention has particular
value when applied to certain commonly encountered non-programming namespaces,
including filesystems, so-called “environments” containing string variables, key
registry systems, etc. The useful application of the present invention to any and all
such non-programming namespaces is contemplated. For the sake of illustration of
such applications, the application of the present invention to a POSIX filesystem is
described, however it is not limited to such.

It is possible in an object-oriented programming language to write a class
which represents a filesystem, and which encapsulates the filesystem API so that the
filesystem appears to be a set of nested map containers. The map’s key class is a
string whose values are filenames in the filesystem, and the map’s value class is a
class representing a filesystem file. Significantly, a subclass of the value class is a
directory class. This precisely models the POSIX filesystem, where a directory is a
special kind of file. The directory class is also a map container class, whose key class
is a string whose values are filenames in the filesystem, and whose value class
represents a file. These classes and their relationships are expressed as a Unified
Modeling Language (UML) static structure chart of the FIGURE. The Unified
Modeling Language is defined in Rumbaugh, James, Ivar Jacobson, and Grady

WO 02/50675 PCT/US01/48788

10

15

20

14

Booch, “The Unified Modeling Language Reference Manual,” Reading, Mass.,
Addison-Wesley, 1999, which is incorporated herein by reference.

Referring to the FIGURE, box 303 is the UML symbol for a parameterized
class. This box 303 is labeled Map _i, and represents the interface to the map
container class of the example. The dashed box 304 overlapping box 303 shows its
two parameters, “key” and “value”. The parameter “key” is bound to the class
String_c 301, as indicated by the dashed arrow labeled with the UML stereotype
«bind» from box 301 to box 304. The parameter “value” is bound to the class File ¢
302, as indicated by the dashed arrow labeled with the UML stereotype «bind» from
box 302 to box 304. Class File ¢ 302 is the class of all files in the filesystem, and is
the ancestor class of Dir_c 305, the class of directories. Dir_c 305 is derived from
File_c 302 and also implements Map_i 303. These relationships describe a directory
as a subclass of file implementing a map from filenames to files. Dir_c 305 therefore
inherits and implements methods and attributes of both map containers and files. For
instance, objects in instances of Dir_c 305 can be found using the same operations as
used to find objects in instances of classes implementing Map_i 303. Likewise,
instances of Dir_c 305 can be copied using the same methods as uSed to copy
instances of File_c 302.

The design depicted in the FIGURE is described in the D language in Table 6
below. The names of classes in Table 6 are identical to their corresponding classes in
the FIGURE. The source code of Table 6 declares that class Dir_c implements the

named members inherited from interface ‘symbolTable_i (File_c)’.

WO 02/50675 PCT/US01/48788

15

new Class_c¢ Dir c

(
class extends (SymbolTable_i(File_c))

extends (File_c)
function Subr_c<? String c id, returns ptrTo(File_c) pF ?> find;

method Subr_c<? String ¢ id ?> insert;
method Subr _c<? File c¢ f, String c id(f'Name) ?> insert;

10
method Subr_c<? String ¢ id ?> remove;

method Subr c<? File c¢ f, String c id(f'Name) ?> remove;

15
Table 6

With this definition of class ‘Dir_c’, as both a map container class and a

subclass of file found in the filesystem, code such as that shown in Table 7 below is

possible.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

35

16

new Subr c<? Dir_c Root ?> Ml
({
Copy the file named "a" to the file named "b", both of which are
in Root.
using Root::a; ##
line §
using Root::b;

b:= a;

Concatenate file f to the end of file e.

using Root::e;

using Root::f;

f+= e; #4#
line 12

Copy the file named "d" in the root to the file named "h" in
sub-

directory "q".

using Root::d;’

using (Root::q as Dir_c)::h; ##
line 17

h:= 4;

I3

Table 7

In Table 7, the statement on line 5 causes the locally scoped identifier ‘a’ to
become a reference to the file named “a” in the directory which is passed into the
subroutine as argument ‘Root’. Line 6 in Table 7 defines ‘b’ in a similar fashion, and
line 7 in Table 7 uses object-oriented operator overloading to express a file copy
operation as a simple assignment statement.

Line 12 in Table 7 shows that file operations other than copying, such as
concatenation, can also be overloaded onto operators in the language. This is possible
because identifiers for file objects are treated identically to identifiers for other
objects, even though the namespace for file objects exists outside the programming

language.

WO 02/50675 PCT/US01/48788

10

15

20

17

Line 17 in Table 7 shows a reference to a file “h” in a subdirectory “q” of
directory “Root”. This is accomplished with a natural recursive extension of the
syntax for referencing named objects in a map container. The compiler interprets the
statement on line 17 in Table 7 as follows. For the expression ‘Root : :q’, it generates
code as described above to find a file object named “q” in the map container
identified by ‘root’, and bind a pointer to that file to a reference object also named
(in the source code) ‘q’. At this point, identifier ‘q’ identifies an object of class
‘File_c’. For the expression ‘Root::q as Dir_c’, the compiler generates code to
cast the class of identifier ‘g’ down the inheritance hierarchy from class ‘File_c’, its
statically known class, to class ‘Dir_c’. More specifically, the compiler generates
code to verify that the dynamic class of the object identified by ‘g’ is in fact ‘Dir_c’,
and to throw an exception if this is not true. The compiler considers the static class of
the expression (Root::q as Dir_c)’to beclass ‘Dir_c’.

Once the reference ‘g’ has been cast to a reference to an object of class
‘Dir_c’ as just described, the compiler uses the same method as already described to
generate code to find a file object named “h” in the map container identified by ‘q’,
and bind a pointer to that file to a reference object also named (in the source code) ‘n’.
Line 18 in Table 7 is then a file copy operation, from a file in the ‘Root’ directory, to
a file in subdirectory “q”.

The example of Table 7 can be written more simply, as shown in Table 8
below. In Table 8, each directory object is incorporated in its entirety as a namespace,

to be searched at execution time.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

35

18

new Subr_c<? Dir_c Root ?> M2

(f

Bring the root directory into the current namespace.
using namespace Root; ##

line 4

Now, names of files and directories in the root directory can be
used

without qualification.

b:= a; ##

line 8

f+= e; ##
line 10

using (g as Dir c)::h; #it
line 12

h:= d;
1

Table 8

Line 4 of Table 8 makes the directory object called “Root” available for
searching as a program namespace (at execution time) for any locally scoped
identifier not otherwise defined. It can clearly be seen by examining the remaining
lines of Table 8 that there is great notational advantage in the directive of line 4 in
Table 8.

The following lines of Table 8 are directly equivalent to lines of Table 7, i.e.,
Table 8, line 8 :: Table 7, line 7, Table 8, line 10 :: Table 7, line 12, Table 8, line 12 ::
Table 7, line 17, and Table 8, line 13 :: Table 7, line 18.

Thus, the combination of dynamically associating the contents of map objects
to source language identifiers, describing non-programming namespaces such as
filesystems as map containers, and the ability to overload operations in an object-
oriented programming language, leads to an expressive power which allows objects in
non-programming namespaces to be treated on a par with objects in programming

namespaces.

WO 02/50675 PCT/US01/48788

10

15

20

25

30

19

File Creation and Deletion

The present invention implemented with regard to filesystems allows the same
treatment to be accorded the creation and deletion of files as is used with regard to the
creation and deletion of objects in a program namespace. Consider the example D

language source code of Table 9.

new Subr_c<? Dir c Root ?> M3

({
new life(system) File c f; ##
line 3

Root.insert (f);

using Root::h; ##
line 6

Root .remove (h) ;

1)

Table 9

Line 3 of Table 9 shows the definition of a new object named ‘£’, of class
‘File_c’. This object is defined with a lifetime attribute of ‘system’, meaning that it
could exist as long as the system within which it is defined exists. The D language
defines the lifetime of a system to be longer than that of a process, thread, or
invocation of a subroutine.

Line 4 of Table 9 invokes the ‘insert’ method on ‘Root’, passing as an
identifier argument both the string form of the identifier ‘£’ and a reference to the
object identified by ‘£’. After execution of ‘insert’, the ‘Root’ object contains a
reference to the object identified by ‘£’, uniquely identified within the ‘rRoot’
container by the key equal to the string “f”. Assuming for this example that the
lifetime of ‘Root’ is also ‘system’, after the subroutine, thread, and process that
created ‘£’ cease to exist, ‘£’ continues to exist by virtue of the reference to it in
‘Root’.

In accordance with the foregoing specification, line 6 of Table 9 defines ‘h’ as
the identifier of an object in ‘Root’ with key equal to the string “h”. Line 7 of Table 9
invokes the ‘remove’ method on ‘Root’, passing a reference to the object identified by

‘h’ in the container ‘Root’. By virtue of the second argument of method ‘remove’ as

WO 02/50675 PCT/US01/48788

10

15

20

25

30

20

shown in Table 6 above, the ‘remove’ method also receives a string object equal to
‘h’. After execution of ‘remove’, no reference to the object identified by ‘h’ exists in
the container ‘Root’. However, the reference introduced by the using declaration of
line 6 of Table 9 continues to exist, and therefore so does the object identified by ‘n’.
When the scope of identifier ‘h’ is exited, the last reference to the object identified by
‘h’ ceases to exist, and the object has no references to it. The object is deleted
immediately or by garbage collection, depending orn the memory management
scheme. This behavior exactly simulates the treatment by POSIX-compliant
filesystems of files whose filesystem links are removed while the files themselves are
open in a program. Such files continue to exist until the programs which have them

open exit, at which point they are deleted.

Non-Conformant Filename Access
In order to access files whose names do not conform to the lexical
requirements of the source language being used, the common method of finding an

object in a map container may still be used. Table 10 below shows such access.

new Subr_c<? Dir_c Root ?> M10

{

new ptrTo(File_c)@ d2(Root.find("d2.txt")); ##
line 3

using Root::dl; #4#
line 5

di:= d2; ##
line 7
3

Table 10

Line 3 associates identifier ‘d2” with an object found in the map container
‘Root’ using the key string “d2.txt”. Identifiers in this source language may not
contain periods, as string “d2.txt” does, but this does not prevent source code from
being written in the form of line 3 of Table 10, where an object found is mapped to a

lexically acceptable identifier in the source language, using a string not conformant to

WO 02/50675 PCT/US01/48788

10

15

20

25

30

21

the lexical requirements of the source language for an identifier. Of course, this form
of binding an identifier to a file object can be used even if the filename is conformant
to the source language’s lexical requirements for an identifier.

Lines 5 and 7 of Table 10 are of forms that have already been shown, and
illustrate that an identifier bound to an object found in a map container with a key not
lexically acceptable as an identifier, may nonetheless be treated in the same manner as

any object found or defined with a lexically acceptable identifier.

Traditional File Operations
All of the examples shown above treat file objects as units. Nothing herein
prevents file objects from being manipulated in a traditional manner. For example,

Table 11 below shows source code to open a file and read it character by character.

new Subr c<? Dir_c Root ?> MS

({

"Open" the file named "c" for reading, and count the number of
newline

characters in the file.

using Root::c;

new FilePtr_c fpC(c.open("r")); ~ #it
line 6

new Nat32 t nLinesC(0);

while (! fpC.eof ())

{

new BLatin_c ch(*fpC++);

if (ch == '\n') { ++nLinesC; }

Table 11
Line 6 of Table 11 shows the definition of new object ‘£pc’, a file pointer
object, initialized with the result of invoking the ‘open’ method on an object named
‘c’. ‘¢’ is declared on line 5 as an object to be found at run time in directory object
‘Root’, in accordance with the present invention in the manner described above. The

remaining lines of Table 11 define a counter, ‘nLinesc’, and execute a loop that reads

WO 02/50675 PCT/US01/48788

10

15

20

22

characters one at a time from the file identified by ‘c’, counting the number of
newline characters encountered.

As described above, the present invention can be embodied in the form of
computer-implemented processes and apparatuses for practicing those processes. The
present invention can also be embodied in the form of computer program code
containing instructions embodied in tangible media, such as floppy diskettes, CD-
ROM’s, hard drives, or any other computer-readable storage medium, wherein, when
the computer program code is loaded into and executed by a computer, the computer
becomes an apparatus for practicing the invention. The present invention can also be
embodied in the form of computer program code, for example, whether stored in a
storage medium, loaded into and/or executed by a computer, or transmitted over some
transmission medium (embodied in the form of a propagated signal propagated over a
propagation medium), such as over electrical wiring or cabling, through fiber optics,
or via electromagnetic radiation, wherein, when the computer program code is loaded
into and executed by a computer, the computer becomes an apparatus for practicing
the invention. When implemented on a general-purpose microprocessor, the
computer program code segments configure the microprocessor to create specific
logic circuits.

While preferred embodiments have been shown and described, various
modifications and substitutions may be made thereto without departing from the spirit
and scope of the invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not limitations.

What is claimed is:

WO 02/50675 PCT/US01/48788

23

Claim 1. A method of compiling or interpreting a source code comprising:

defining map container objects having keys, said keys comprising strings
conforming to requirements for identifiers;

using said keys of said map container objects as ordinary identifiers in the

5 source code, said keys identifying objects found as value objects in said map

container objects;

using said map container objects as namespaces; and

declaring values of said keys as names qualified by said map container

objects.
Claim 2. The method of claim 1 wherein said objects are in a filesystem.

Claim 3. The method of claim 1 wherein said objects are identified by

Uniform Resource Identifiers (URIs).

Claim 4. The method of claim 1 wherein said objects are identified by

environment variables.

Claim 5. The method of claim 1 wherein said objects are identified by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

24

Claim 6. A method of compiling or interpreting a source code comprising:
defining map container objects having keys, said keys comprising strings
conforming to requirements for identifiers;
using said keys of said map container objects as ordinary identifiers in the
5 source code, said keys identifying objects found as value objects in said map
container objects;
using said map container objects as namespaces; and
directing compilers or interpreters to search at least one of said map container

objects for a value of at least one of said keys used as an ordinary identifier.

Claim 7. The method of claim 6 wherein said objects are in a filesystem.

Claim 8. The method of claim 6 wherein said objects are identified by

Uniform Resource Identifiers (URIs).

Claim 9. The method of claim 6 wherein said objects are identified by

environment variables.

Claim 10. The method of claim 6 wherein said objects are identified by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

25

Claim 11. A storage medium encoded with machine-readable code, the code
including instructions for causing a computer to implement a method of compiling or
interpreting a source code comprising:

defining map container objects having keys, said keys comprising strings

5 conforming to requirements for identifiers;

using said keys of said map container objects as ordinary identifiers in the
source code, said keys identifying objects found as value objects in said map
container objects;

using said map container objects as namespaces; and

10 declaring values of said keys as names qualified by said map container

objects.

Claim 12. The storage medium of claim 11 wherein said objects are in a

filesystem.

Claim 13. The storage medium of claim 11 wherein said objects are identified

by

Uniform Resource Identifiers (URIs).

Claim 14. The storage medium of claim 11 wherein said objects are identified
by

environment variables.

Claim 15. The storage medium of claim 11 wherein said objects are identified
by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

10

26

Claim 16. A storage medium encoded with machine-readable code, the code
including instructions for causing a computer to implement a method of compiling or
interpreting a source code comprising:

defining map container objects having keys, said keys comprising strings
conforming to requirements for identifiers;

using said keys of said map container objects as ordinary identifiers in the
source code, said keys identifying objects found as value objects in said map
container objects;

using said map container objects as namespaces; and

directing compilers or interpreters to search at least one of said map container

objects for a value of at least one of said keys used as an ordinary identifier.

Claim 17. The storage medium of claim 16 wherein said objects are in a

filesystem.

Claim 18. The storage medium of claim 16 wherein said objects are identified

by

Uniform Resource Identifiers (URIs).

Claim 19. The storage medium of claim 16 wherein said objects are identified
by

environment variables.

Claim 20. The storage medium of claim 16 wherein said objects are identified
by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

10

27

Claim 21. A signal propagated over a propagation medium, the signal encoded
with code, the code including instructions for causing a computer to implement a
method of compiling or interpreting a source code comprising:

defining map container objects having keys, said keys comprising strings
conforming to requirements for identifiers;

using said keys of said map container objects as ordinary identifiers in the
source code, said keys identifying objects found as value objects in said map
container objects;

using said map container objects as namespaces; and

declaring values of said keys as names qualified by said map container

objects.

Claim 22. The signal propagated over the propagation medium of claim 21

wherein said objects are in a filesystem.

Claim 23. The signal propagated over the propagation medium of claim 21
wherein said objects are identified by
Uniform Resource Identifiers (URIs).

Claim 24. The signal propagated over the propagation medium of claim 21
wherein said objects are identified by

environment variables.

Claim 25. The signal propagated over the propagation medium of claim 21
wherein said objects are identified by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

10

28

Claim 26. A signal propagated over a propagation medium, the signal encoded
with code, the code including instructions for causing a computer to implement a
method of compiling or interpreting a source code comprising:

defining map container objects having keys, said keys comprising strings
conforming to requirements for identifiers;

using said keys of said map container objects as ordinary identifiers in the
source code, said keys identifying objects found as value objects in said map
container objects;

using said map container objects as namespaces; and

directing compilers or interpreters to search at least one of said map container

objects for a value of at least one of said keys used as an ordinary identifier.

Claim 27. The signal propagated over the propagation medium of claim 26

wherein said objects are in a filesystem.

Claim 28. The signal propagated over the propagation medium of claim 26
wherein said objects are identified by

Uniform Resource Identifiers (URIs).

Claim 29. The signal propagated over the propagation medium of claim 26
wherein said objects are identified by

environment variables.

Claim 30. The signal propagated over the propagation medium of claim 26
wherein said objects are identified by

run-time object name resolution schemes.

WO 02/50675 PCT/US01/48788

11

301 i 302
String_c {/ File_c /—

«bind»

é.__..,_________..____._.___

— 304

303 \ r_Lkey, value I

« interface>]
Map_i

305 -\
Dir_c

FIGURE

INTERNATIONAL SEARCH REPORT

Intermational application No.

PCT/US01/48788

IPC(7)
Us CL

A. CLASSIFICATION OF SUBJECT MATTER

:Go6F 9/45
1717/186, 189, 148

According to International Patent Classification (IPC) or to both national classification and 1IPC

B. FIELDS SEARCHED

uUs. :

717/186, 189, 148, 100, 114, 116, 117, 158, 162, 168, 164, 165

Minimum documentation searched (classification system followed by classification symbols)

searched

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

EAST

(EPO, JPO, DERWENT, IBM TDB)

Search terms: compiling, interpreting, map container object, key, value, dynamic resolution,

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

table, namespace

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

Fig. 4, block 402; Fig. 5; block 610

2, blocks 330-380

67; col. 7, lines 1-7

US 5,930,795 A (CHEN et al) 27 JULY 1999, col. 8, lines 15-59;

US 6,052,526 A (CHATT) 18 APRIL 2000, col. 3, lines 15-19, Fig.

US 5,857,197 A (MULLINS) 5 JANUARY 1999, col. 6, lines 46-

US 6,041,179 A (BACON et al) 21 MARCH 2000, col. 3, lines
34-67; col. 4, lines 1-31; col. 4, lines 60-67; col. 5, lines 1-26

1-30

1-30

1-30

1-30

D Further documents are listed in the continuation of Box C. D See patent family annex.

"

P

gories of cited d ta:

Special

document defining the general state of the art which is not considered
to be of particular relevance

earlier docament published on or after the international filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, nse, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

nrpe

D'd

ngn

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention canuot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention canuot be
considered to involve an inventive step when the document is combined
with one or more other such docnments, such combiunation being
obvions to a person skilled in the art

document member of the same pateut family

Date of the actual completion of the international search

05 MARCH 2002

Date of mailing of the international search report

01 APR 2002

Facsimile

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

No. (708) 305-3230

Authorized officer

Telephone No.

GREGORY MORSE

(708) 308-4789

Form PCT/ISA/210 (second sheet) (July 1998)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

