AMBIENT PRESSURE RESPONSIVE SAFETY VALVE

Inventor: David E. Young, Friendswood, Tex.

Assignee: Schlumberger Technology Corporation, New York, N.Y.

Filed: Dec. 29, 1972

Appl. No.: 319,183

U.S. Cl. 166/224 S, 137/484.6, 137/494
Int. Cl. E21b 43/12
Field of Search ... 166/224 S, 137/484.2, 484.6, 137/484.8, 494, 505

Primary Examiner—James A. Leppink
Attorney, Agent, or Firm—David L. Moseley; Stewart F. Moore; William R. Sherman

ABSTRACT

A safety valve apparatus for wells producing well fluid by formation pressure and including a valve mechanism that is normally maintained in the open or flowing position by an urging means and is closed responsive to a predetermined differential pressure developed between flowing pressure, within the valve apparatus and ambient pressure, externally of the valve apparatus. A predetermined differential pressure develops a force overcoming the bias of the urging means and moves the valve mechanism to the closed position thereof. The valve apparatus is provided with means for modifying the effective size of the inlet orifice of the valve mechanism responsive to a predetermined decrease in ambient pressure from a normal operating range, thereby developing the predetermined pressure differential for achieving automatic closure of the safety valve apparatus.

19 Claims, 8 Drawing Figures
AMBIENT PRESSURE RESPONSIVE SAFETY VALVE

FIELD OF THE INVENTION

This invention relates generally to safety valve apparatus for downhole environment in wells having a formation pressure for producing well fluid, and more specifically concerns the provision of a safety valve apparatus adapted for positive closure of a safety valve mechanism in the event ambient pressure at the level of the safety valve should decrease below a predetermined minimum.

BACKGROUND OF THE INVENTION

In the early stages of development of the petroleum industry it was typically the practice to tap a pressurized source or reservoir of petroleum products by drilling and to allow any gas pressure that might be contained therein to dissipate to a controllable level or to a level at which the petroleum products might be recovered by pumping. The gas during this particular period was substantially unusable and was generally wasted. Where oil was blown from the well along with the escaping gas, it was the practice to collect the oil in surface ditches constructed about the well site. As the petroleum industry rapidly developed, it was discovered that the pressurized gas within production formations could be efficiently utilized to produce other petroleum products contained therein and the gas itself could be efficiently marketed in its natural state or in other physical states, such as the liquid state, for example. Various developments have been made to ensure against the loss of gas pressure within petroleum reservoirs, but most of the early developments were related to surface control valves and the like that might be manipulated manually or mechanically for flow control purposes.

Although wells may now be effectively controlled to prevent unnecessary escape of gas from the reservoir, occasionally an unforeseen circumstance will develop that may cause a well to blow wild. Surface production control equipment may be damaged by mechanical apparatus operating in the vicinity of the well site and the surface equipment of the well may be otherwise subject to various hazards of the surface environment that could result in blow-out of the well.

When the well is being produced through an offshore facility such as a production platform, the occurrence of an explosion or fire and the like is extremely hazardous to lives of personnel because of the difficulty of escape from the production facility. Offshore explosions and fires are also extremely expensive from a property damage standpoint because of the extremely expensive nature of offshore production facilities. Moreover, an oil spill that might be caused by damage to surface production flow control equipment, located on an offshore production facility, may result in pollution of an extremely large area of the shoreline thereby resulting in extensive damage to wildlife sanctuaries and the like.

Explosions, both at surface flow control equipment and within the well bore below the surface equipment, may result in sufficient damage to allow a particular well to blow wild.

Wells may also blow-out due to shifting of earth stratum through which the well bore passes and likewise, may blow-out due to insufficient structural interconnection between well cement within the well bore and the earth stratum through which the well bore passes, thereby allowing pressurized production fluid to flow around the exterior of the well casing to the surface.

When a well blows wild for any reason whatever, the expense thereof to well drilling and producing companies can be extremely great. Such expense may be caused by loss of production during the time the well is blowing wild and due to the loss of field reservoir pressure which may prevent future production of petroleum products in situ. Loss of reservoir pressure may also substantially slow the production of petroleum products or may make the production of such products extremely expensive by requiring gas lifting operations and secondary recovery operations for effective production.

It is obviously necessary to provide subsurface production flow control mechanisms that may be controllable automatically or selectively as desired to prevent well blow-outs even though surface flow control equipment may be damaged or rendered inoperative. Subsurface production flow control apparatus of this nature may be capable of preventing explosion and fires that otherwise might occur in the event of damage or malfunction that surface flow control systems. Moreover, subsurface flow control safety equipment may effectively prevent the pollution of the surface environment that might otherwise occur if an offshore well is allowed to blow wild. Since subsurface safety valve mechanisms may effectively present a great majority of well blow-outs and since pollution control is so extremely important from the standpoint of conservation, it is obvious that subsurface safety mechanisms are necessary to efficient functioning of the petroleum industry.

THE PRIOR ART

Various well safety systems have been developed, involving both surface and subsurface safety equipment, that may be actuated to a safe position in response to the development of an adverse well condition, to stop the flow of production fluid, until the production equipment may be made safe for further operation. Actuation of safety valves may be automatically controlled by pilot mechanisms, responsive to remote sensing, or in the alternative, safety valves may be actuated to the safe position by a force developed responsive to an adverse well condition. Offshore wells may include production equipment provided with a "safe-mode" that may allow production of the well or may cause the well to shut in the event of storms or other hazardous conditions that might otherwise adversely affect production operations.

Surface and subsurface safety valve equipment may be developed that effectively achieves shut-in of surface or subsurface production flow control equipment to terminate the flow of production fluid in an event excessive well pressures should develop and in the event the flow control equipment may be subjected to excessive flow of production fluid. For the most part, presently available downhole safety valve equipment is solely velocity sensitive and remains open to allow the flow of production fluid during periods of normal or low velocity flow. Such valves are typically actuated by forces developed during high velocity flow to move the valve structure to the closed position and stop the flow of production fluid.
Where a well is being produced and a failure occurs in the production system of the well, it is desirable that the well shut in automatically. One typical device for serving this purpose is a so-called velocity sensitive valve that includes a spring operator piston which is sealingly slideable within a housing and carries a flow restriction, typically referred to as a flow beam, through which the flowing well fluid passes. The pressure drop across the restriction of the flow beam acts on an area defined generally by the piston seal diameter and the bore diameter of the flow restriction to produce an upward resultant force that is related to the flow rate or velocity. When the flow rate increases to a value sufficient to compress the spring by a predetermined amount, the valve closes to shut off the flow.

One of the more commonly employed valve elements is a poppet valve device that includes an enlarged head around which the flowing fluid passes immediately before it flows through lateral ports in the valve actuator sleeve. In the closed position, the head engages an annular valve seat with a metal-to-metal seal. This type of closure presents a number of difficulties, however. It is likely to leak where there are small manufacturing imperfections in the respective seal surfaces. Abrasives such as sand grains in the well fluids, scale and the like, tends to erode away the metal seat and cause a tiny leak which, in very short order, may be enlarged by cavitation and result in the failure of the valve. Moreover, if the valve element does not move directly into a tight sealing position and is allowed to oscillate or to develop a throttling function for any period of time before closing, the throttling condition will likely result in cavitation of the sealing parts, thereby rendering the valve inoperative.

Another commonly employed valve system utilizes a ball valve element, where closure is effected by metal-to-metal contact between the ball and a companion seat or by a bonded seal ring that seats against the metal surface of the ball. A condition of throttling can occur if the valve ball is not moved directly and firmly to its fully closed position upon immediate sensing of the adverse well condition. If a leak should occur in the surface flow equipment of the well, and if the leak is initially small and increases due to erosion or cavitation of the flow control equipment, the differential pressure condition that causes automatic closure in a velocity sensitive well safety system may cause a throttling condition to occur and, therefore, may cause cavitation of the safety valve mechanism, rendering the safety valve inoperable. It is, therefore, a primary object of the present invention to provide a novel safety valve mechanism that is capable of pressure responsive to a predetermined pressure differential but is not subject to erosion by well fluid due to the development of a throttling condition.

It is an even further object of the present invention to provide a novel safety valve mechanism capable of moving directly and efficiently into closed position responsive to the sensing of an adverse well condition that might otherwise develop excessive flow in a well production system.

Among the several objects of the present invention is noted the contemplation of a novel downhole safety valve mechanism for a well that is responsive to a predetermined decrease in ambient pressure in a well bore externally of a safety valve mechanism for developing a pressure drop that causes closure of the safety valve.

It is another object of the present invention to provide a novel safety valve mechanism for a downhole well environment including means, separate from the valve mechanism, that functions to develop a pressure drop that causes closure of the valve element.

Another important object of the present invention contemplates the provision of a novel downhole safety valve mechanism that is not subjected to a condition of pressure differential that functions directly to achieve closure of the valve assembly.

Brief Summary of the Invention

A downhole safety valve mechanism, according to the present invention, may include a housing structure adapted for connection to a production tubing within a well system within which housing may be disposed a safety valve assembly capable of terminating the flow of production fluid responsive to the development of an adverse pressure condition within the well. A valve seat may be provided within the housing against which may be seated a valve element that is movable between open and closed positions relative to the seat. The valve element may be connected to an actuating sleeve movably disposed within the housing and urged to the open position thereof by a spring element to allow flow of fluid through the valve mechanism. The movable sleeve may constitute a piston against which a force is developed by differential pressure to cause closure of the valve element, the pressure differential being defined by the difference in flowing pressure within a flow passage defined in the sleeve and ambient pressure within the well bore externally of the safety valve mechanism.

Sufficient pressure differential may be developed to cause automatic closure of the safety valve mechanism responsive to a predetermined decrease in ambient pressure that causes a movable element to modify the effective size of the inlet opening of the valve mechanism in direct proportion to the amount of decrease in ambient pressure. A plunger, carried by a pressure dome portion of the valve housing, and movable responsive to pressure differential developed between ambient pressure and pressure within a variable volume gas charged chamber, functions to restrict the effective size of the inlet opening of the valve if excessive flow of production fluid through the valve structure, which
might be caused by failure of surface equipment, decreases ambient pressure within the well bore below a predetermined minimum operating level. The plunger causes a pressure differential to occur at the inlet opening of the valve assembly to which pressure differential, the actuating sleeve is responsive to move the valve element to the closed condition thereof. An urging means such as a compression spring may be utilized to assist movement of the plunger element toward a position restricting the effective size of the inlet opening.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features, advantages and objects of the present invention, as well as others, which will become apparent, are attained and can be understood in detail, more particular description of the invention, briefly summarized above, may be had be reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification.

It is to be noted, however, that the appended drawings illustrate only a typical embodiment of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. In the drawings:

FIGS. 2A, 2B and 2C are longitudinal sectional views forming the upper intermediate and lower portions, respectively, of a safety valve mechanism constructed in accordance with the present invention.

FIG. 3A is an enlarged cross-sectional view of the valve seal assembly of the safety valve mechanism of the present invention.

FIG. 3B is an enlarged cross-sectional view of an adjacent pressure sensitive valve inlet opening controller constructed in accordance with the present invention.

FIG. 4A is a cross-sectional view of the valve seal assembly and valve inlet opening controlling mechanism of the present invention showing the parts thereof in the open or normal operating position.

FIG. 4B is a cross-sectional view of the valve seal and valve inlet opening controlling mechanism of this invention, illustrating the movable parts thereof in the closed position which occurs responsive to predetermined decrease in ambient pressure.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Now referring to the drawings and first to FIG. 1, an earth formation is illustrated generally at 10 having a well bore 12 drilled therein which bore is lined with a well conduit 14 that may be cemented in place in conventional manner and traverses the earth formation being produced. A production string of tubing 16 extends from the surface downwardly through a typical production packer 18 having a packing element 20 that seals off the production interval from the well casing thereabove. Well fluid enters the casing 14 through perforations (not shown) disposed below the packer 18 and passes upwardly through the tubing string 16.

At a suitable downhole location in the tubing string, usually above the packer 18, a safety valve 22, constructed in accordance with the present invention, is shown to be attached to the lower extremity of a conventional wire line setting a retrieving mandrel 24 that is seated in a landing nipple 26. The retrieving mandrel 24 is provided with locking dogs 28 and locator keys 30, disposed on either side of seal packing rings 32, and the upper extremity of the mandrel 24 is provided with a running and retrieving neck 34. The details of construction of the setting mandrel assembly, as well as the procedures for running and retrieving the assembly on wire line, are well known to those skilled in the art and form no part of the present invention.

With reference now to FIGS. 2A, 2B and 2C, which depict the upper, intermediate and lower portions, respectively, of the safety valve, generally illustrated at 22, a valve housing, generally illustrated at 36, may comprise an upper sub 38 having an internally threaded upper extremity 40 for establishing threaded connection with the lower extremity of the setting mandrel 24.

The housing 36 may be defined by separate upper and lower sections 42 and 44, respectively, that are joined by a coupling 46 having an intermediate thickened wall section defining abutments 48 and 50 for engagement by the upper and lower housing sections 42 and 44 respectively. The coupling 46 may be also provided with upper and lower externally threaded portions 52 and 54, respectively, adapted to receive the internal threads of the upper and lower housing sections.

The housing 36 of the safety valve may also be provided with a valve section 56, provided with internal threads 58 at the upper extremity thereof for threaded connection to a lower externally threaded portion 60 of the lower housing section 44. The valve section may also be provided with internal threads 62 at the lower extremity thereof for connection to the upper externally threaded portion 64 of a support coupling 66. The lower extremity of the lower housing section 44 may define an annular abutment 68 providing support for a seat element 70 that is retained in engagement with the abutment surface 68 by an annular seat support flange 72 defined within the valve section 56 of the housing. The seat element 70 may be provided with a sealing element 74, such as an O-ring or the like, retained within a circumferential groove for establishment of a sealed relationship between the seat element 70 and the internal wall 76 of the seal pocket defined between the abutment shoulder 68 and the internal flange 72. The seat ring 70 presents an inclined stop surface 78 located just above an inwardly facing seal surface 80.

A valve element, illustrated generally at 82, may be disposed for reciprocation within the valve section 56 of the housing and may include a tubular portion 84 provided with an upper threaded extremity 86 for threaded connection to a lower internally threaded portion 88 of a valve actuating sleeve element 90, also disposed for reciprocation within the housing 36. The tubular portion 84 of the valve element may be provided with a closed lower extremity 92 which may be stepped down to define an annular abutment portion 94 providing support for an annular seal retainer ring 96. A seal support end cap 98 may be provided with internal threads 100 for threaded connection with external threads 102 of the valve element, and together with
the retainer ring 96 may serve to retain an annular sealing element 104 that may be compressed to some degree by the retainer ring or compression ring 96 to increase the degree of sealing engagement between the sealing element 104 and the seal surface 80, when the valve element is in its closed position.

As the valve element 82 is moved upwardly to its closed position, the outer periphery of the sealing element 104 will slide into sealing engagement with the generally cylindrical sealing surface 80 of the seal element 70 and a tapered surface 106 of the compression ring 96 will move into abutment with the tapered surface 78 of the seal element. As the valve element 82 is urged by pressure differential in an upwardly direction, the compression ring 96 will be forced away from the abutment portion 94 and will deform the sealing element 104, thereby causing the sealing element to increase the pressure of its sealing contact with the annular sealing surface 80. The sealing ability of the valve is therefore increased directly proportional to increase in pressure differential across the closed valve.

In the open position of the valve element 82, as shown in FIG. 2B, fluid being produced through the safety valve mechanism will flow around the lower extremity of the valve element and will enter the tubular portion 84 through at least one and preferably a plurality of apertures 108. The production fluid will then continue upwardly through a flow passage 110 defined by cooperating tubular portions of the valve element and valve actuating sleeve and into the tubing string to which the safety valve mechanism is connected by the upper sub 38.

It will be desirable to provide a mechanism for retaining the valve element 82 in the open or FIG. 2B position thereof as long as ambient pressure within the well casing and externally of the safety valve mechanism is within a proper operating range and to achieve closure of the valve element to stop the flow of production fluid in the event ambient pressure should fall below a predetermined minimum level for any reason whatever. Means for achieving pressure responsive control on the valve element 82 may conveniently take the form illustrated in FIG. 2A where an urging means, such as a compression spring 112 may be interposed between abutment shoulders 114 and 116 defined respectively by the lower extremities of the coupling 46 and by a thickened wall portion 120 of the valve actuating sleeve element 90. The compression spring 112, under normal conditions, will urge the valve actuating sleeve element 90 downwardly until an annular tapered shoulder 122, defined thereon, moves into abutment with a tapered support shoulder 124, defined internally of the lower housing section 44 where further downward movement of the valve element 82 will be restrained by the stop surface 124.

It will be necessary to develop a force, acting upwardly in the valve actuating sleeve 90, that is capable of overcoming the bias of the compression spring 112 in order to cause upward movement of the actuating sleeve to a position moving the valve element to its closed position. In accordance with the present invention, an annular sealing element 126 may be retained within an annular groove defined within an inwardly projecting portion 128 of the coupling element 46, which sealing element may establish sealing contact with a generally cylindrical sealing surface 130 defined on the valve actuating sleeve 90. A second annular sealing element 32 may be retained within an annular groove defined in a piston element 134 having a lower internally threaded extremity 136 receiving external threads 138 defined at the upper extremity of the sleeve element 90. The sealing element 132 may be disposed in sealing engagement with an internal sealing surface 140 defined within the upper housing section 42. The piston element 134, together with the sleeve 90 and sealing element 132, cooperate with the upper housing section 42, the coupling element 46 and sealing element 126 to define a valve actuating chamber 142 that is communicated with ambient pressure by at least one and preferably a plurality of orifices 144 formed in the upper housing section 42. Above the piston element 134 may be provided a thin walled sleeve 135 cooperating with a sleeve 137 depending from the upper sub 38 to define a barrier for sand and other abrasive matter produced along with the well fluid. The sleeves 135 and 137 define a dead space therebetween that prevents sand from accumulating above the O-ring seal 132, thereby protecting the seal from abrasive wear.

Ambient pressure, communicated through orifices 144 into the annular valve actuating chamber 142, will act upon a surface area of the valve actuating sleeve element 90 defined by the piston element 134, and referred to as area A1, while fluid pressure within the valve housing downstream of the valve element, also referred to as flowing pressure, acts upon a surface area of the valve actuating sleeve referred to as A2. Under normal operating conditions ambient pressure acting upwardly upon the sleeve 90 will be slightly overbalanced by flowing pressure acting downwardly upon the sleeve and the net downward pressure responsive force will be added to the downward force developed by the compression spring 112, thereby maintaining the sleeve, and the valve element connected thereto, in the lowermost or open position thereof. If, for some reason, the pressure of the flowing fluid within the valve mechanism should decrease substantially relative to ambient pressure externally of the safety valve, the differential pressure acting upon the sleeve 90 will be such that a resultant force of substantial magnitude will be developed acting upwardly upon the sleeve 90 through the piston element 134 that overcomes the compression of spring 112 and urges the valve actuating sleeve 90 to the upper position thereof, thereby causing the valve element 82 to seat against the seal element 70 and stop the flow of fluid through the apertures 108.

If the flow control equipment of a well should become damaged, such as by rupture of a flow line, failure of a well control valve, etc. and uncontrolled flow of well fluid is allowed to occur, the pressure of flowing fluid within the tubing of the well will obviously decrease. The decrease in flowing pressure will be reflected throughout the production system of the well to or beyond the casing perforations through which pressurized fluid flows from the production formation. Uncontrolled flow therefore causes a decrease in ambient pressure at all levels within the well casing. It is desirable, therefore, to provide a safety valve mechanism with means for effecting closure of a safety valve responsive to a predetermined decrease in ambient pressure. According to the present invention, one suitable means for achieving valve closure, where the valve is actuated to the closed position thereof by a condition of predetermined pressure differential, may conve-
niently take the form illustrated particularly in FIG. 2C where a combination inlet adapter and support sleeve 146 is shown to be provided with upper and lower internally threaded extremities 148 and 150, respectively, for connection to externally threaded portions 152 of coupling element 66 and 154 of a coupling element 156. The coupling element 156, in turn, may be provided with an externally threaded lower portion 158 adapted to receive internal threads 160 defined within the upper extremity of a pressure dome housing 162. The housing 162 may be closed at its lower extremity by a closure plug 164 having an externally threaded portion 166 disposed in threaded connection with the lower internally threaded portion 168 of the housing 162. The closure plug 164 cooperates with the housing 162 and a coupling element 156 to define an internal pressure chamber or dome, within which may be introduced a gaseous medium at any suitable pressure, depending upon the desired operational characteristics of the safety valve mechanism.

For the purpose of introducing the pressurized gaseous medium into the pressure chamber 170, the closure plug 164 may be manufactured to define a gas inlet passage 172 communicated with a closure bore 174 and an internally threaded gas supply connector receptacle 176. The closure bore 174 may have an internally threaded outer extremity 178 for threaded connection of a closure element 180 within the bore 174. Sealing elements 182, carried within an annular groove 184 defined in the closure element 180, serve to establish sealing engagement between the closure plug and a sealing surface defined by the cylindrical wall of the bore 174. Within an annular groove defined at the upper extremity of enclosure element 180 may be disposed a sealing element 186 that may be urged into sealed engagement with a frusto-conical sealing surface 188 defined about the inlet passage 172.

When it is desired to introduce pressurized gaseous medium into the pressure chamber 170, the closure element 180 may be unthreaded sufficiently to move the sealing element 186 away from the sealing surface 188 and allow communication between the passage 172 and the gas supply receptacle 176. The gas supply conduit may be threaded connected to the receptacle 176 and gas may be introduced through the passage 172 until the pressure chamber 170 has reached an operating pressure. The closure element 180 then may be threaded fully into the bore 174, thereby urging the seal element 186 into tight sealing engagement against the sealing surface 188. After this has been accomplished, the gas supply conduit may be unthreaded from the threaded receptacle 176 and, if desired, the receptacle may be suitably plugged.

The upper extremity of the coupling 156 may be provided with a plunger bore 190 through which a generally cylindrical portion 192 of a plunger element 194 may extend. An annular sealing element 196, such as an O-ring or the like, may be retained within an annular groove 197 defined within the bore 190 and may establish sealing engagement with the cylindrical surface 198 defined by the cylindrical portion of the plunger. An annular rigid seal carrier 200 may be retained in fixed relation to the housing 162 by an inwardly extending shoulder 202 defined at the lower extremity of the coupling 156 and may be sealed relative to the housing by an annular sealing element 204 retained within an external groove defined in the seal carrier. A sealing element 206 may be retained within an internal annular seal groove defined in the seal carrier and may establish sealing engagement with the cylindrical surface 198 of the plunger 194. The seal carrier 200, the sealing element 196, the coupling 156 and the seal ring 196 cooperate to define sealed passages through which the plunger 194 may extend. Moreover, the bores through the seal carrier and coupling also serve effectively as guiding surfaces to maintain alignment of the plunger with the inlet aperture 112 during linear movement thereof.

It may be desirable to add, to the force created by the compressed gaseous medium acting upon the plunger, a mechanical force such as might be developed by a compression spring 208 or any other suitable urging means to develop a resultant force tending to urge an enlarged head portion 210 of the plunger into restricting relation with an inlet aperture 212 in the coupling element 66 to restrict the flow of production fluid through the coupling passage 114 and into the safety valve mechanism. The combined forces of gas pressure and the spring force acting upon the plunger, during normal operation of the safety valve mechanism, are overcome by a resultant downward force, acting upon the plunger, that is developed by ambient pressure and maintains the plunger in its FIG. 2C position thereof until ambient pressure decreases below a predetermined minimum level. The pressurized medium within the pressure chamber or dome 170 is always maintained at a lower pressure than the ambient pressure expected during normal operation of the flow system of the well and the combined forces developed by the gaseous medium within the pressure chamber and the force developed by the compression spring will be less than the downward force developed by ambient pressure during normal valve operation.

As an illustration of the foregoing, the pressure of the compressible medium in the pressure dome may be designated P_i, while the pressure of production fluid flowing through the safety valve mechanism may be P_p, the force exerted by the compression spring in the pressure dome may be P_s, and ambient pressure may be designated P_a. During normal operation of the flow system of the well $P_i + P_s$ is less than P_a and, therefore, the plunger will be retained in its lowermost position by the resultant force acting upon the plunger and the inlet aperture 212 will be unrestricted. Also during normal operation of the flow system, P_i will be less than P_a and the valve actuating mechanism will be maintained in the open position thereof by the resultant force created by pressure differential between P_i and P_a.

When an adverse well condition is developed, due to failure of the flow system that would otherwise cause excessive flow to occur in the well flow system, P_i will suddenly decrease and this pressure decrease will be reflected by a decrease in the ambient pressure P_a of the well. When this occurs $P_i + P_s$ will exert a force on the plunger that is greater than the opposing force caused by ambient pressure P_a acting on the plunger and the resultant force between these two opposing forces will cause the plunger to be moved upwardly causing the head portion of the plunger to extend the inlet opening 212. This will cause a pressure differential to be created across the inlet aperture between ambient pressure P_a and flowing pressure P_i which pressure differential will develop a resultant force acting on the piston 134 of the valve actuating sleeve element 90.
which urges the sleeve and the valve element 82 to the closed position thereof.

OPERATION

Assuming the safety valve mechanism of this invention to be connected to a tubing string in conventional manner and also assuming it to be disposed in the flowing condition thereof as shown in FIGS. 2A, 2B, 2C, 3A and 3B, production fluid will be entering the safety valve mechanism through the inlet slots 113 and will be flowing through the inlet aperture 212 and inlet passage 114 into the tubular valve housing and will flow through inlet apertures 108 into the flow passage 110 defined by the valve actuating sleeve element 90. The compression spring 112 will develop a force acting downwardly upon the annular shoulder 116 of the valve actuating sleeve and will overbalance a force developed by ambient pressure within the valve actuating chamber 142 acting upwardly upon the piston portion 134 of the sleeve element, thereby resulting in a net downward force which maintains the sleeve in its lowered position against the tapered stop shoulder 124. Under this condition the valve element will be open and production fluid will be produced in unrestricted manner through the safety valve mechanism and the tubing string. The flow of production fluid will be controlled elsewhere in the flow system, such as by a choke disposed in the surface flow control equipment.

Ambient pressure will act upon the plunger 194 and will develop a force that overbalances the combined forces developed by pressurized medium within the pressure chamber 170 and by the compression spring 208, thereby developing a net downward force maintaining the support shoulder 211 in engagement with the upper portion of the coupling 156.

If a failure occurs in the production system of the well and a substantial decrease in flowing pressure occurs, this decrease will be reflected through the safety valve mechanism thereby resulting in a decrease in ambient pressure within the well casing. As ambient pressure decreases, the net downward force acting upon the plunger 194 will be reduced and perhaps will be dissipated, thereby resulting in a net upward force acting upon the plunger due to the combined effects of the spring force and gas pressure force exerted upon the plunger from within the pressure chamber 170. When this occurs, the plunger will begin to move upwardly causing the head portion of the plunger to move into restricting relation with the inlet aperture 212, thereby causing a pressure drop to be developed across the inlet aperture. The pressure drop is of course reflected downstream from the aperture into the flow passage 110 and also causes the development of a greater pressure differential acting across the piston portion 134 of the valve actuating sleeve 90 which reduces the net downward force acting upon the sleeve.

If ambient pressure should decrease below a predetermined minimum operating level the head portion 210 of the plunger will be caused to move into juxtaposed relation with the inlet aperture 212, thereby developing a severe pressure differential to exist across the piston element 134, due to ambient pressure within the valve actuating chamber 142 acting upwardly on the piston which develops a force of sufficient magnitude to overcome the compression force of spring 112, and thereby urges the valve actuating sleeve 90 upwardly and moves the valve element 82 to its closed position as shown in FIGS. 4A and 4B.

As soon as the valve element 82 moves to its closed position and the sealing element 104 achieves sealing engagement with the sealing surface 80 of the valve seat element 70, flow of production fluid through the valve will be stopped and the valve element will remain closed due to the pressure differential acting upon the piston portion 134 of the valve actuating sleeve 90. When the flow of production fluid through the valve is stopped, pressure within the inlet passage 114 upstream of the valve element will quickly become balanced with ambient pressure. Moreover, because the valve element 82 has sealed the low pressure condition from the inlet passage, the reduced pressure condition will no longer be reflected below the safety valve. Ambient pressure within the well, therefore, will suddenly increase to the maximum well pressure and the increased ambient pressure, acting upon the plunger 194, will again develop a net downward force that will urge the plunger to the lowermost position thereof.

When it is desired to reopen the safety valve mechanism, after the production system of the well has been restored to proper operating condition, a pressurized medium may be injected into the tubing string above or downstream of the valve and, acting upon surface area A2 will develop a force which, when added to the force developed by compression spring 112, will overcome the force developed by ambient pressure acting on area A1 of the piston. A downward resultant force is thereby produced that will move the actuating sleeve and the valve element to the open position thereof, as shown in FIG. 2A. At this time, ambient pressure will be at its highest level and production flow may be initiated simply by bleeding off the injected pressure, such as by opening of a surface flow control valve of the well production system.

The safety valve mechanism of this invention provides a valve mechanism that will remain open, allowing normal unrestricted flow of production fluid as long as ambient pressure within the well remains within a predetermined operating range. A mechanism is provided for closure of the safety valve assembly responsive to development of a predetermined decrease in ambient pressure and means is also provided for developing a pressure differential capable of actuating the valve assembly to its closed position responsive to decrease in ambient pressure below a predetermined minimum pressure level. During normal operating conditions, the valve actuating sleeve and valve assembly of the present invention will be maintained in a static position and will not be allowed to reciprocate as is typically the case where a safety valve mechanism is maintained in its open position by force developed solely by pressure differential across a restriction provided in the flow path through the valve mechanism.

After becoming automatically closed responsive to predetermined decrease in ambient pressure, the valve assembly may be reopened and placed back in production by simple injection of pressure into the tubing string above the valve.

Since the valve closes automatically, responsive to decrease in ambient pressure below a predetermined operating level, the valve may be effectively tested simply by opening a surface control valve sufficiently to increase production flow and thereby reflect a prede-
determined decrease in pressure into the well casing. The valve will shut in as soon as ambient pressure decreases to a level allowing the plunger 194 to be urged, by the combined forces of the compression spring 208 and the fluid pressure within the pressure chamber 170, into restricting relation with the inlet aperture 112. If, during inspection or testing, the valve mechanism is found to be in need of servicing, the valve mechanism may be removed from the flow control system of the well without necessitating removal of the tubing string. A conventional wire line tool may be utilized to retrieve and replace the safety valve mechanism.

It is therefore seen that this invention is one well adapted to attain all of the objects and advantages, hereinabove set forth, together with other advantages, which will become obvious and inherent from a description of the apparatus itself. It will be understood that certain combinations and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the present invention.

As many possible embodiments may be made of this invention without departing from the spirit or scope thereof, it is to be understood that all matters, hereinabove set forth or shown in the accompanying drawings, are to be interpreted as illustrative and not in any limiting sense.

What is claimed is:

1. A safety valve apparatus comprising:
 valve means being supported by a well tubing and including co-engageable means being movable between open and closed positions responsive to a pressure differential of a predetermined magnitude; and
 flow restriction means being disposed upstream of said valve means and being responsive to a decrease in ambient pressure in the well bore for developing said pressure differential.

2. A safety valve apparatus as recited in claim 1, wherein:
 said flow restriction means includes a movable element that restricts the flow of production fluid toward said valve element.

3. A safety valve apparatus as recited in claim 1, wherein:
 said valve means includes an inlet opening; and
 said developing means comprises a piston having a force due to said ambient pressure applied to one side thereof and a substantially constant preselected opposing force applied to the other side thereof.

4. A valve apparatus as recited in claim 3, wherein:
 said piston defines a plunger cooperating with said inlet opening to restrict the size of said opening responsive to said decrease in ambient pressure.

5. A safety valve apparatus adapted to be positioned within a well casing of a well having formation pressure comprising:
 valve housing means adapted for connection to the production tubing of said well, said housing means having inlet and outlet apertures communicating said valve housing respectively with said casing and said production tubing;
 seat means disposed within said housing means;
 valve means disposed within a said housing means and being movable relative to said seat means for controlling the flow of fluid through said valve apparatus;
 means urging said valve means toward the open position thereof;
 valve actuator piston means being disposed in movable relation to said housing means and being movable relative to said valve housing responsive to predetermined pressure differential between ambient pressure and pressure within said valve housing means, said valve actuator means, upon being moved, inducing opening and closing movement to said valve means; and
 flow restricting means being supported within said well casing upstream of said valve means and being responsive to ambient pressure for controlling the flow of production fluid toward said valve means, said flow restricting means developing said predetermined pressure differential responsive to predetermined decrease in ambient pressure.

6. A safety valve apparatus as recited in claim 5, wherein said developing means comprises:
 piston means movable supported by said valve housing means and being movable between a position allowing unrestricted flow of fluid through said inlet aperture means and positions restricting the flow of fluid through said inlet aperture means;
 means urging said piston means toward said positions restricting the flow of fluid through said inlet aperture means; and
 ambient pressure acting upon said piston means and developing a force opposing said urging means and maintaining said piston means in the said position allowing unrestricted flow of fluid.

7. A safety valve apparatus as recited in claim 6:
 said housing defining a piston actuating chamber, said piston means being disposed in sealed relation relative to said piston actuating chamber; and
 a compressible medium disposed within said piston actuating chamber and urging said piston toward said second position thereof.

8. A safety valve apparatus as recited in claim 5:
 said housing defining pressure dome means;
 a piston movably carried by said pressure dome means and having a plunger portion thereof disposed for restricting relation with said inlet aperture means;
 means urging said piston toward a position restricting said inlet aperture means; and
 ambient pressure acting upon said piston and overcoming said urging means and maintaining said piston in a retracted position allowing unrestricted flow of fluid through said inlet aperture means, said urging means moving said plunger toward said restricting position upon decrease of said ambient pressure below a predetermined pressure level.

9. A safety valve apparatus as recited in claim 8:
 said means urging said piston toward said restricting position comprising a compression spring interposed between said housing means and said piston.

10. A safety valve apparatus as recited in claim 8:
 said means urging said piston toward said restricting position comprising a compressible medium disposed within said pressure dome and acting upon said piston, said compressible medium being normally of lower pressure than the normal operating range of said ambient pressure.

11. A safety valve apparatus as recited in claim 8:
15. A safety valve apparatus as recited in claim 14:
said moving means comprising first and second
urging means acting in combination; and
said ambient pressure normally developing a force
acting on said movable element overcoming both
of said urging means and retaining said movable
element in said position allowing full flow of production
fluid.

16. A safety valve apparatus as recited in claim 13:
said housing defining a piston carrier section; and
a piston carried by said piston carrier section and
being movable between a position allowing unrestricted
flow of production fluid through said inlet
aperture means and positions restricting flow of
production fluid through said inlet aperture, movement
of said piston being controlled by force differential
responsive to predetermined decrease in ambient
pressure.

17. A safety valve apparatus as recited in claim 16:
said force differential acting upon said piston being
defined by mechanically created force urging said
piston toward said positions restricting flow of pro-
duction fluid and a force created by ambient pres-
ure acting upon said plunger and urging said
plunger toward said position allowing unrestricted
flow of production fluid.

18. A safety valve apparatus as recited in claim 16:
said force differential acting upon said plunger being
defined by static pressure means acting upon said
plunger and creating a force urging said plunger
toward said positions restricting the flow of pro-
duction fluid and a force created by ambient pres-
ure acting upon said plunger and urging said
plunger toward said position allowing unrestricted
flow of production fluid.

19. A safety valve apparatus as recited in claim 17:
said force differential acting upon said plunger being
defined by a mechanically created force and a
force defined by static pressure acting together
upon said piston and urging said plunger toward
said positions restricting the flow of production
fluid and a force created by ambient pressure act-
ing upon said plunger and urging said plunger
toward said position allowing unrestricted flow of
production fluid.

* * * * *