PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/02809

22 January 1998 (22.01.98)

(21) International Application Number: PCT/US97/11879

(22) International Filing Date: 10 July 1997 (10.07.97)

(30) Priority Data:

08/680,202 11 July 1996 (11.07.96) us

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(71) Applicant: TANDEM COMPUTERS INCORPORATED
[US/US}; 10435 N. Tantau Avenue, LOC. 200-16, Cuper-
tino, CA 95014 (US).

(72) Inventor: SCHOFIELD, Andrew; Lindenbuehl 27, CH-6330
Cham (CH).

(74) Agents: GRANATELLI, Lawrence, W, ct al.; Graham & James
LLP, 600 Hansen Way, Palo Alto, CA 94304 (US).

(54) Title: METHOD AND APPARATUS FOR ASYNCHRONOUSLY CALLING AND IMPLEMENTING OBJECTS

(57) Abstract

A method and apparatus for asynchronously calling and implementing objects
is disclosed. Object calls to perform an operation are performed asynchronously by
calling the appropriate stub function from the client application and passing in the object
reference, input parameters, and a pointer to a completion routine. The object reference,
input parameters, and completion routine address are provided to a client-side execution
environment. The client-side execution environment stores the completion routine address
and transmits the input parameters to a server-side execution environment. The server-side
execution environment calls a method in the server application that implements the requested
operation. The server application performs the requested operation. Once the call has been
responded to, the client-side execution environment calls the completion routine and passes
it the output parameters to the requested operation. The client application can continue
performing other asynchronous operations before the completion routine is called. To
asynchronously implement an object that has been called, the appropriate method function
in the server application is called which, in turn, calls an asynchronous operation. Once the
asynchronous operation returns, the application responds to the client application.

CLIENT CALLS OBJECT

_~ 801

!

CLIENT CEE TRANSMITS
REQUEST 10 SERVER

!

SCRVER CEC
CALLS ORIGINAL METHOD

T

ORICINAL METHOD STORES
CALL IDENTIFIER IN
CONTEXT STRUCTURE

1

ORIGINAL METHOD CALLS
ASYNCHRONOUS METHOD
WITH CALL IDENTFIER

r

ASYNCHRONOUS METHOD CALLS
RESPONSE FUNCTION WITH
CALL IDENTIFIER AND
OUTPUT PARAMETERS

ylll

r

RESPONSE FUNCTION CALLS
RESPONSE STUB_ FUNCTION
(OR CFE_RESPONSE DIRECILY)

813

!

SERVER CEE SENDS RESPONSE
T

-85

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY

CF
CcG
CH
ClI
CcM
CN
Cu
cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1E
IL
18
IT
JP
KE
KG
KP

KR
KZ
LC
L1

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

haly

Japan

Kenya

Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
s5G

Lesotho

Lithnania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK
SN
Sz
™D
TG
T
™
TR
TT
UA
UG
us
vz
VYN
YU
w

Slovenia

Slovakia

Senegal

Swazitand

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/02809 PCT/US97/11879

METHOD AND APPARATUS FOR
ASYNCHRONOUSLY CALLING AND IMPLEMENTING OBJECTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus for making asynchronous object
calls and asynchronous object implementations in client applications and server applications,

respectively.

2. Background
Distributed object computing combines the concepts of distributed computing and object-

oriented computing. Distributed computing consists of two or more pieces of software sharing
information with each other. These two pieces of software could be running on the same
computer or on different computers connected to a common network. Most distributed
computing is based on a client/server model. With the client/server model, two major types of
software are used: client software, which requests the information or service, and server
software, which provides or implements the information or service.

Object-oriented computing is based upon the object model where pieces of code called
“objects”--often abstracted from real objects in the real world--contain data (called “attributes” in
object-oriented programming parlance) and may have actions (also known as “operations™)
performed on it. An object is defined by its interface (or “class” in C++ parlance). The
interface defines the characteristics and behavior of a kind of object, including the operations that
can be performed on objects of that interface and the parameters to that operation. A specific
instance of an object is identified within a distributed object system by a unique identifier called
an object reference.

In a distributed object system, a client application sends a request (or “object call”) to a
server application. The request contains an indication of the operation to be performed on a
specific object, the parameters to that operation, the object reference for that object, and a

mechanism to return error information (or “exception information”) about the success or failure

1

10

15

20

25

30

WO 98/02809 PCT/US97/11879

of a request. The server application receives the request and carries out the request via a server
“implementation.” The implementation satisfies the client's request for an operation on a
specific object. The implementation includes one or more methods, which are the portions of
code in the server application that actually do the work requested of the implementation. If the
implementation is carried out successfully, the server application returns a response to the client,
if necessary. The server application may also return exception information.

To standardize distributed object systems, the Object Management Group (“OMG”), a
consortium of computer software companies, proposed the Common Object Request Broker
Architecture (“CORBA™). Under the CORBA standard, an Object Request Broker (“ORB”)
provides a communication hub for all objects in the system passing the request to the server and
returning the response to the client. Commercial ORB’s are known in the art and a common type
is IBM’s System Object Model (“SOM”). On the client side, the ORB handles requests for the
implementation of a method and the related selection of servers and methods. When a client
application sends a request to the ORB for a method to be performed on an object, the ORB
validates the arguments contained in the request against the interface for that object and
dispatches the request to the server application, starting the server application if necessary. On
the server side, the ORB uses information in the request to determine the best implementation to
satisfy the request. This information includes the operation the client is requesting, what type of
object the operation is being performed on, and any additional information stored for the request.
In addition, the server-side ORB validates each request and its arguments. The ORB is also
responsible for transmitting the response back to the client.

Both the client application and the server application must have information about the
available interfaces, including the objects and operations that can be performed on those objects.
To facilitate the common sharing of interface definitions, OMG proposed the Interface Definition
Language (“IDL”). IDL is a definitional language (not a programming language) that is used to
describe an object’s interface; that is, the characteristics and behavior of a kind of object,
including the operations that can be performed on those objects and the parameters to those
operations.

IDL is designed to be used in distributed object systems implementing OMG’s CORBA

Revision 2.0 specification. In a typical system implementing the CORBA specification, interface

2

10

15

20

25

30

WO 98/02809 PCT/US97/11879

definitions are written in an IDL-defined source file (also known as a “translation unit”). The
source file is compiled by an IDL compiler that generates programming-language-specific files,
including client stub files, server stub files, and header files. Client stub files are language-
specific mappings of IDL operation definitions for an object type into procedural routines, one
for each operation. When compiled by a language-specific compiler and linked into a client
application, the stub routines may be called by the client application, for example, to formulate a
request. Similarly, the server stub files are language-specific mappings of IDL operation
definitions for an object type (defined by an interface) into procedural routines. When compiled
and linked into a server application, the server application can call these routines when a
corresponding request arrives. Header files are compiled and linked into client and server
applications and are used to define common data types and structures.

In general, computer systems use one of three communication styles: (1) One-way
communication; (2) Synchronous Communication; and (3) Asynchronous communication. If a
client application in a distributed object system invokes a one-way request, the application sends
the request and continues with other work without checking to see if the request was completed.
The request truly would go only one way; the application sends the request to the server, but
nothing ever returns from the server. If a client application invokes a synchronous
communication request, the application transfers control to the ORB and cannot do anything until
the request completed or failed. Synchronous communication are most appropriate when an
application needed to send and complete requests in a certain order and the operations were of
short duration. If an application invokes an asynchronous object call, the application does not
wait for the request to complete before it continued with other work. In time-critical situations,
asynchronous communication is the preferred style for object calls. Similarly, the
implementations of objects in server applications could benefit if asynchronous communication
were efficiently supported.

Unfortunately, conventional distributed object systems do not support true asynchronous
communication for object calls from a client application. For instance, the CORBA specification
offers “deferred synchronous communication.” In deferred synchronous communication, a
requesting application periodically checks to see if the request has completed by continuously

polling using the CORBA_Request_get_response operation or the CORBA_get next_response

3

10

15

20

25

30

WO 98/02809 PCT/US97/11879

routine. This process is time-consuming and lacks the benefits of true asynchronous
communication.

Moreover, conventional distributed object systems support “threads” which are streams
of execution that branch off from a process to handle asynchronous operations. Threaded
execution, however, has its own disadvantages such as the inconvenience of having to
synchronize access to common data, overall performance loss, and platform dependence.

Accordingly, there is a need for a method and apparatus for performing true
asynchronous object calls within a distributed object system.

Moreover, there is a need for a method and apparatus for performing asynchronous object

implementations without the use of threaded execution.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for performing asynchronous
object calls. The present invention also satisfies the need for a method and apparatus for
performing non-threaded asynchronous object implementations.

In a preferred embodiment, the method for performing asynchronous object calls of the
present invention involves invoking an operation on an object by calling a stub function from a
client application. The client application provides the stub function with the input parameters to
the operation along with a pointer to a completion routine. The invocation is sent to a server
application using an execution environment common to the client and server application. The
server application implements the operation on the object and provides a response to the
execution environment. Once the operation has been implemented by the server application, the
execution environment calls the completion routine with the operation’s output parameters. The
completion routine should also determine whether or not the object call was successful.

Implementations can be performed asynchronously as well. During an asynchronous
implementation, a client application requests that an operation be performed on an object (the
request may be made synchronously or asynchronously as stated above). The request is
transmitted to a server application by an execution environment accessible by both the client and
the server applications. When the request is transmitted, the server application associates the call

with a call identifier. If an asynchronous method is called from the server application, the server

4

10

15

20

25

30

WO 98/02809 PCT/US97/11879

application passes the call identifier and the address to a response function to the asynchronous
method. The asynchronous operation completes and calls the response function which, in turn,
responds to the caller.

By using these “callback” functions (“completion routine” and “response function”), both
the client and server applications can continue doing other work without waiting within a
particular function. Moreover, by permitting both client and server to execute asynchronously,
different invocation styles may be used to suit a particular task. For instance, an object call may
be performed asynchronously while its implementation is performed synchronously, and vice-
versa, thus providing greater flexibility to the developer.

A more complete understanding of the method and apparatus for asynchronously calling
objects will be afforded to those skilled in the art, as well as a realization of additional advantages
and objects thereof, by a consideration of the following detailed description of the preferred
embodiment. Reference will be made to the appended sheets of drawings which will first be

described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a client/server computing system utilizing the method of the
present invention.

Figs. 2a and 2b are diagrams of alternative configurations for Common Execution
Environment capsules.

Fig. 3 is a diagram of a Common Execution Environment capsule and its core
components.

Fig. 4 is a diagram of the compilation and linking of IDL source code into client and
server applications.

Fig. 5 is a flow chart describing the steps involved in a synchronous object call

Fig. 6 is a flow chart describing the steps involved in an asynchronous object call.

Fig. 7 is a section of programming code performing an asynchronous object call.

Fig. 8 is a flow chart describing the steps involved in an asynchronous invocation of an
object.

Fig. 9 is a section of programming code performing an asynchronous object

5

10

15

20

25

30

WO 98/02809 PCT/US97/11879

implementation.

Fig. 10 is a flow chart describing a second embodiment of the method of the present
invention.

Fig. 11 is a flow chart describing the steps involved in the method of the present
invention.

Fig. 12 is a flow chart describing the steps involved in an alternative embodiment of the
method of the present invention.

Fig. 13 is a diagram showing a PIF data structure.

Fig. 14 is a diagram showing an entry data structure.

Fig. 15 is a diagram showing an operation data structure.

Fig. 16 is a diagram showing a union data structure.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Reference will now be made in detail to the preferred embodiments of the invention,
examples of which are illustrated in the accompanying drawings. Wherever possible, the same

reference numbers will be used throughout the drawings to refer to the same or like parts.

I. System Overview

As illustrated in Figure 1, the method of the present invention is designed for use in a
distributed (client/server) computing environment 10. The client and server systems are
connected by network connections 12, such as Internet connections or the connections of a local
area network. A server computer 11 communicates over a bus or I/O channel 20 with an
associated disk storage subsystem 13. The server system 11 includes a CPU 15 and a memory
17 for storing current state information about program execution. A portion of the memory 17 is
dedicated to storing the states and variables associated with each function of the program which is
currently executing on the server computer. A client computer 21 similarly includes a CPU 27
and associated memory 23, and an input device 29, such as a keyboard, or a mouse 31 and a
display device 33, such as a video display terminal (“VDT”). The client CPU 27 communicates
over a bus or I/O channel 40 with a disk storage subsystem 33 and via I/O channel 41 with the
keyboard 29, VDT 33 and mouse 31.

10

15

20

25

30

WO 98/02809 PCT/US97/11879

The client memory 23, preferably, includes a client application 77 that is linked to client
stubs 79 (as discussed below) and loaded therein. Similarly, the server memory 17 includes a
server application 87 linked to server stubs 89. In addition, both the client memory and the server
memory include an execution environment (“CEE”) 75, 85 (as discussed below).

The client/server model as shown in Figure 1 is merely demonstrative of a typical
client/server system. Within the context of the present invention, the “client” is an application
that requests that operations be performed on an object while the “server” is an application that
implements the operation on the object. Indeed, both the client and server application may reside
on the same computer and within a common capsule, as discussed below. Most likely, however,
the client and server application will reside on separate computers using different operating
systems. The method of the present invention will be discussed with reference to two capsules

running on separate machines.

II. Distributed Computing Environment

The method and apparatus of the present invention may be utilized within any distributed
computing environment. In a preferred embodiment, the Common Execution Environment
(“CEE™) 75, 85, which is a component of the Tandem Message Switching Facility (“MSF”)
Architecture, is used. The CEE activates and deactivates objects and is used to pass messages
between client and server applications loaded in CEE capsules. The CEE may be stored in the
memory of a single machine. More likely, however, the CEE and client and server applications
will be loaded on multiple machines across a network as shown in Figure 1. The client-side CEE
75 is stored in the client memory 23. The server-side CEE 85 is stored in server memory 17.

The CEE uses a “capsule” infrastructure. A capsule encapsulates memory space and one
or more execution streams. A capsule may be implemented differently on different systems
depending upon the operating system used by the system. For instance, on certain systems, a
capsule may be implemented as a process. On other systems, the capsule may be implemented as
a thread. Moreover, client and server applications may be configured within different capsules
contained on different machines as shown in Figure 1. Alternatively, the different capsules may
be configured as shown in Figure 2. Figure 2a shows a client application 77 loaded in a single

capsule 81 and a server application 87 may be loaded in a separate capsule 85. Both capsules,

7

10

15

20

25

30

WO 98/02809 PCT/US97/11879

however, are stored on the same machine 21. Both the client and server applications may also be
loaded within a single capsule 81 on the same machine 21 as shown in Figure 2b. As stated
above, the method of the present invention will be described with reference to the multiple
capsule, multiple machine case. Accordingly, the client 12 and server machine 11 include a
client-side CEE 75 and a server-side CEE 85 loaded in their respective memories.

Figure 3 shows a CEE capsule 70 contained, for example, in a client computer memory
27 (not shown) that includes the CEE 75 and certain of the core CEE components and
implementations of objects contained within Implementation Libraries 71. The Implementation
Libraries 71 include the client application 79 (or the server application in the case of the server
capsule) and client stubs 77 (or server stubs) generated from the IDL specification of the object’s
interface, as described below. The Implementation Libraries 71 and the CEE 75 interact through
the down-calling of dynamically-accessible routines supplied by the CEE and the up-calling of
routines contained in the Implementation Library. The CEE 75 can also receive object calls 82
from other capsules within the same machine and requests 84 from other CEE’s. The client-side
CEE 75 and the server-side CEE 85 may communicate using any known networking protocol.

Objects implemented in a CEE capsule may be configured or dynamic. Configured
objects have their implementation details stored in a repository (such as the MSF Warehouse 85)
or in initialization scripts. Given a request for a specific object reference, the CEE 75 starts the
appropriate capsule based on this configuration data. The capsule uses the configuration data to
determine which Implementation Library to load and which object initialization routine to call.
The object initialization routine then creates the object. Dynamic objects are created and
destroyed dynamically within the same capsule. Dynamic objects lack repository-stored or
scripted configuration information.

The following paragraphs describe a system-level view of how the Implementation
Libraries interact with the CEE 75. The CEE 75 implements requests to activate and deactivate
objects within a capsule. In addition, the CEE facilitates inter-capsule object calls 82 as well as
requests from other CEE’s 84, as discussed above. Object activation requests arise when an
object call from a client or server application must be satisfied. To activate an object, the CEE
75 loads the appropriate Implementation Library (if not already loaded) containing the object's

methods and then calls a configured object initialization routine contained in the Implementation

8

10

15

20

25

30

WO 98/02809 PCT/US97/11879

Libraries, as discussed below. The initialization routine specifies which interface the
Implementation Libraries support and registers the entry points of the object's methods to be
called by the CEE at a later time.

When the client and server systems start, both the client-side and server-side CEE’s run
their own initialization. This initialization tells client and server CEE’s where to locate the
various Implementation Libraries. Once located by the CEE, the CEE calls the initialization
routines in the client and server applications. The initialization routines contained in the client
and server applications must first carry out any required application-specific initialization. Next,
both the client and server initialization routines call a generated stub function which, in turn,
down-calls a CEE function (contained in a dynamic library as stated above) called
CEE _INTERFACE_CREATE to specify the object’s interface. An interface may be specified
for each object. The interface description is normally generated from an IDL description of the
interface, as discussed below. CEE INTERFACE CREATE creates an interface and returns an
“interface handle” to the newly created interface. The handle is a unique identifier that specifies
the interface. The server application initialization routine then uses the interface handle to down-
call CEE_IMPLEMENTATION CREATE. CEE IMPLEMENTATION CREATE creates an
implementation description that can be used by one or more objects.
CEE_IMPLEMENTATION CREATE returns an “implementation handle” that is a unique
identifier specifying the implementation for each operation in the interface. Finally, the server
application initialization routine uses the implementation handle to call a stub function which
down-calls CEE_SET METHOD. CEE_SET METHOD specifies the actual addresses of
specific method routines of the implementation as contained in the server application. The CEE
then has sufficient information to connect object calls in the client application to specific methods

in the server application.

III. Compiling and Linking IDL Source Files

Figure 4 shows how IDL source files are compiled and linked into client and server
applications that will utilize the method and apparatus of the present invention. First, an IDL
source file 101 is prepared containing IDL interface definitions. An IDL compiler 103 compiles

the source file 101. The IDL compiler 103 parses the code 101 to produce an intermediate

S

10

15

20

25

30

WO 98/02809 PCT/US97/11879

Pickled IDL file (“PIF”) file 105 for storage of the original source file. The generation of a PIF
file is described below in Section VIII. A code generator 111 then parses the PIF file.

Preferably, however, the IDL compiler and code generator are combined to generate code
directly from the source file. The code generator 111 generates files in the language of the client
and server applications. If the client and server applications are in different languages, different
code generators 111 are used. Alternatively, the code generator 111 and the IDL compiler 103
may be combined in a single application to produce language-specific code. The code generator
111 produces a client stub file 77 containing client stub functions and a server stub file 87
containing definitions for object implementations. The client stub file 77 and the server stub file
87 are compiled by programming language-specific compilers 121, 123 to produce compiled
client stub object code and compiled server stub object code. Similarly, a client application 79
and a server application 89 are compiled by programming-language-specific compilers to produce
compiled client application object code and compiled server application object code. The client
application 79 and the server application 89 also include a header file 119 generated by the code
generator 111, The header file 119 contains common definitions and declarations. Finally, a
language compiler 121 links the client application object code and the client stub object code to
produce an implementation library 71. Similarly, a second language compiler 123 links the
server application object code and the server stub object code to produce another implementation

library 81.

IV. Asynchronous Client and Server Stub Files

The code generator 111 generates both synchronous and asynchronous client stub
functions in the client stub file 77 for each operation in each interface defined in the IDL source
file 101. Each stub function corresponds to a particular operation in the interface(s) defined in
the IDL source file 101. The client application 79 calls these stub functions to request that an
operation be performed on an object. The synchronous client stub functions receive the
operation’s input parameters, and a reference to the object (in the form of a proxy handle). The
synchronous client stub function, in turn, contains a call to CEE_OBJECT CALL (discussed
below) which is used to make an object call through the client-side CEE. The asynchronous

client stub functions receive the input parameters to a requested operation, the proxy handle, and

10

10

15

20

25

30

WO 98/02809 PCT/US97/11879

a pointer to a completion routine address. These parameters are, in turn, passed to a CEE
function, CEE_OBJECT CALL POST, which is also discussed in greater detail below.

The code generator 111 similarly generates synchronous and asynchronous server stub
functions in the server stub file 87. Each stub function corresponds to a particular operation in
the interface(s) defined in the IDL source file 101. The server application calls these stub
functions to notify the CEE of which methods to up-call in order to implement the interface
operation that corresponds to the stub. The synchronous server stub function for each operation
receives an implementation handle (returned from the call to
CEE IMPLEMENTATION CREATE) and the address of a method in the server application.
The synchronous server stub function, when called in the server application, calls
CEE_SET_METHOD to connect the server application method to the operation specified by the
stub. When requests for particular operations arrive at the server-side CEE, the CEE up-calls the
appropriate method in the server application based upon the address that has been set for the
requested operation. When the server application method returns, the server-side CEE will
transmit a response back to the client.

The code generator 111 generates a stub function to handle asynchronous object
implementation. The asynchronous server stub function is similar to the synchronous stub
function, in that the asynchronous stub function receives (from the server application) the
implementation handle and the address of a method to up-call from the server application. The
asynchronous stub function, in turn, calls CEE SET METHOD, which connects the server
application method to the operation corresponding to the stub. This call to CEE_SET_METHOD
also notifies the CEE (via a parameter to CEE_SET METHOD) that the method is to be
implemented asynchronously. Since the up-called server application method is asynchronous, the
CEE will respond to the client upon a call to a generated response stub function also contained in
the server stub file 87. The generated response stub function receives the operation’s output
parameters and a call identifier. These parameters are passed to a CEE function,

CEE_RESPOND (described below), which responds to the client application.

V. Synchronous and Asynchronous Calls and Implementations

A. Synchronous Call/Synchronous Implementation

11

10

15

20

25

30

WO 98/02809 PCT/US97/11879

Now, with reference to Figures 5-10, the method of the present invention will be
described. This example assumes that a server object to be called was previously activated by the
server-sidle CEE. As stated above, object calls may be performed synchronously or
asynchronously through generated synchronous and asynchronous client stubs. Stmilarly, object
implementations in the server application may be performed synchronously or asynchronously.
The method and apparatus described herein involves separate capsules loaded on separate
machines.

First, a synchronous object call combined with a synchronous object implementation will
be described. Figure 5 shows a flow chart describing the steps involved in a synchronous call to
an object and a synchronous implementation of the object. In a first step 501, an object reference
for the desired object must be obtained by the client application. The object reference may be
obtained in a number of ways. Client applications usually receive the reference from
configuration data, directories or invocations on other objects to which they have object
references. An object reference can be converted to a string name that can be stored in files to be
accessed later.

The object call is initiated in step 503 by first obtaining a “proxy handle” to the object
reference from the CEE. The proxy handle is a structure containing the object reference along
with information regarding calls made to the same object. The proxy handle is designed to
facilitate multiple calls to the same object without incurring the overhead that can occur in calling
the object each time. By creating a proxy handle via which object calls can be made, certain
initialization routines may be performed once through the proxy handle while allowing multiple
simultaneous calls to the proxied object. A proxy handle is created in CEE 75 by down-calling
the CEE function CEE_PROXY_CREATE from the client application. That function is defined
in the C programming language as follows:

CEE_PROXY CREATE (

const char *objref,
const char *intf _handle,
char *proxy handle);

The function receives the object reference, objref, and an interface handle, intf handle returned

12

10

15

20

25

30

WO 98/62809 PCT/US97/11879

by CEE_INTERFACE CREATE (described above), and returns a proxy handle identifying the
newly created proxy object. The details of proxy creation and a description of the proxy handle
structure returned by CEE_PROXY_CREATE are described below in Sections VI and VII.

The proxy handle returned by CEE_PROXY_CREATE is a structure containing a pointer
to the object if the object is in the same capsule or a pointer to a client port if the object is not in
the same capsule. The client-side CEE also uses the proxy to store a completion routine address
that is used in an asynchronous object call (discussed below). The completion routine will be
discussed below with reference to asynchronous calls from the client application. In a
synchronous object call, the address of a completion routine is not stored in the proxy handle
structure.

In step 505, the client calls the object. Specifically, the client application requests that an
operation of an object’s interface be performed on the object by calling the appropriate generated
synchronous stub function which, in turn, contains a down-call to CEE _OBJECT CALL.
CEE_OBJECT_CALL is defined in C as follows:

CEE_OBJECT CALL (

const char *proxy handle,
long *operation_idx,

void *param_vector);

The stub function receives the proxy handle and the input parameters to the operation. The stub
function provides CEE_OBJECT CALL with three parameters. The first parameter is the
proxy_handle. This parameter specifies the object to be called and will be used to respond to the
call. The second parameter, operation idx, is an integer that specifies which of the object's
methods is to be called. The identifier is used locally by the client to specify a particular
operation. The identifier saves the client the trouble of repeatedly performing string comparisons
on the operation name. Similarly, on the server side, the server specifies operations using its
own operation identifier. The param vector is an array containing the addresses of the object
call's input parameters, output parameters and exception structure. The address of the exception
structure preferably is the first element in the array. If the operation is not of type void, then the

following element in the array contains the address of the variable to receive the operation's

13

10

15

20

25

30

WO 98/02809 PCT/US97/11879

result. The remaining elements contain the address of the operation's input and output
parameters in the same order as they were defined in IDL.

In step 507, the request for the operation to be performed, including the input parameters,
operation identifier, and object reference (as determined by the proxy handle), is transmitted
from the client-side CEE to the server-side CEE via the CEE interface 84. As stated above, the
CEE’s may utilize any method of data transfer to transfer the call across systems or networks.

To implement the object synchronously, the server-side CEE 85 calls the appropriate
method in the server application (as specified by the initialization routine’s call to a server stub
function which, in turn, called CEE_SET METHOD). Preferably, the server-side CEE 85
provides three parameters to the method in the server application: (1) An optional call identifier
that is used by the server application method to allocate and deallocate memory for the call; (2)
An exception identifier to hold error information that can be returned to the caller; and (3) The
input parameters to the requested operation in the order as they were originally defined in IDL.
The method uses the input parameters and carries out the request in step 509. The call identifier
can be used to call other CEE functions which automatically allocate and deallocate memory
within the server application method, as described below in connection with Figure 10.

If the operation requested by the client includes an output parameter, the method in the
server application will initialize and modify this output parameter (if necessary) within the body
of the method. Once the method completes, it returns the output parameter to the server-side
CEE in step 511. The server-side CEE automatically sends the response to the calling function
in the client application in step 513. The response message contains the output parameters (if
any) along with optional server-side-CEE-generated exception information regarding the success

or failure of the operation. The object call is then complete.

B. Asynchronous Call/Synchronous Implementation

Figure 6 shows the steps necessary to perform an asynchronous object call from the client
application combined with a synchronous implementation. The first few steps are similar to the
steps involved in the synchronous case. In step 601, the client application obtains an object
reference. In step 603, the client application creates a proxy handle for the object reference using
CEE_PROXY CREATE.

14

10

15

20

25

30

WO 98/02809 PCT/US97/11879

Next, in step 605, the object is called using a generated asynchronous client stub function.
This generated asynchronous stub function receives the object’s proxy handle, the input
parameters to the operation, a call tag (described below) and the address to a “completion
routine” within the client application. The completion routine will be called by the client-side
CEE when a response to the object call has returned. The asynchronous stub function, in turn,
down-calls a client-side CEE function, CEE_OBJECT CALL POST, which calls the object.
CEE_OBJECT_CALL POST is defined in C as follows:

CEE_OBJECT_CALL POST (

const char *proxy handle,

long operation_idx,

const void *const *param_vector,
void completion_routine,
char call_tagl);

The stub function provides the proxy handle for the requested object and an operation index that
specifies which of the object’s operations is to be performed. The param_vector parameter
supplied here is an array containing the addresses of the object call's input parameters only. The
input parameters are stored in the array in the same order as they were defined in IDL to permit
object calls across multiple platforms. The call_tagl parameter is a constant used to identify this
call to the object

The asynchronous client stub function and CEE_OBJECT CALL_POST also receive the
address of a “completion routine” in the client application that will be called by the client-side
CEE 75 when a response to the object is returned to the client application or an error condition
(or other exception) has been received by the client-side CEE. In step 607, the client-side CEE
stores the completion routine address in the proxy handle for later use. When the call returns for
a particular proxy handle, the client-side CEE will extract the completion routine address from
the proxy structure and call the completion routine. The completion routine will be discussed
below. If multiple calls are made requiring the same completion routine, the call_tagl parameter
may be used to identify a particular call within the completion routine. The call tagl parameter

is also stored in the proxy structure in step 607.

15

10

15

20

25

30

WO 98/02809 PCT/US97/11879

In step 609, the request for an operation to be performed on an object is transmitted from
the client-side CEE to the server-side CEE using any transport mechanism. Once the object call
has been made, the client can continue performing other functions. It need not wait for a
response as in the synchronous case. Moreover, the client application is not required to
continuously poll the server for a response.

On the server side, the object is implemented synchronously as described above. The
server-side CEE selects the appropriate method in the server application to perform the
operation. The method implements the operation on the requested object in step 611 and
responds to the client application in step 613. The server-side CEE transmits the response
containing any output parameters and exception information to the client-side CEE in step 615.

The client-side CEE locates the proxy handle structure for the transmitted response in the
client CEE capsule. In step 617, the client-side CEE extracts the completion routine address and
call_tagl identifier from the proxy structure. The client-side CEE calls the completion routine
in the client application, in step 619. The client-side CEE provides the completion routine with
the exception information, the output parameters of the object’s methods and an optional
identifier tag (as specified above by call_tagl) to identify which asynchronous call has completed
(if multiple calls use the same completion routine). The completion routine in the client
application can then use these parameters as necessary.

Figure 7 shows sample code in a client application 77 that uses the method of the present
invention. The client application is written in the C programming language. In this example, the
client obtains the current time from an object of the Time interface (the “Time object”). The
client obtains the time by requesting the performance of the Tim_Now operation on the Time
object. The Tim_Now operation takes a constant (LOCAL or GMT) as an input parameter and
returns the local time or Greenwich Mean Time.

At line 701, the client application includes the header file 119 generated by the code
generator from an IDL source file containing the Time interface definition. The header file 119
includes the synchronous and asynchronous client (and server) stub functions for each operation
in the Time interface, including the Tim_Now stub functions.

The client initialization routine is up-called by the client-side CEE 75 at line 702. The

client registers the Time interface with the client-side CEE 75 at line 703 by calling an interface

16

10

15

20

25

30

WO 98/02809 PCT/US97/11879

stub function which will call CEE_INTERFACE CREATE. The CEE returns an interface
handle, intf, to the client. (The variable sts (status) is a dummy variable that allows the function
return value to be examined when debugging.)

At line 703, the client obtains an object reference from a configuration file previously
registered with the CEE. The reference, objref, refers to an object of the Time interface.
Because the client application plaﬁs to call TIM_Now twice and simultaneously, the client uses
the object reference to create two proxy handles at lines 705 and 706. The client calls
CEE_PROXY_CREATE which returns proxy and proxyl.

At line 707, the client calls the Time object using the asynchronous stub function,
Tim_Now_pst. The client provides the first proxy handle (proxy), a completion routine tag
(LOCAL_TIME TAG), and an input parameter (LOCAL). At line 708, the client continues to
perform other asynchronous work by making another call to the same object using a different
proxy handle (proxyl), completion routine tag (GMT TAG), and input parameter (GMT). If the
first call were made synchronously, the client application would be required to wait until the first
call to Tim_Now returned before making the second call to Tim Now.

For both calls, the client-side CEE stores the completion routine address and completion
routine tag in the proxy structure. The client-side CEE 75 transmits both requests to the server-
side CEE 85. The server application contains an implementation for the Tim Now operation.
This implementation (not shown) provides the local or GMT time. The time is inserted into an
output parameter and the output parameter and any exception information are transmitted back to
the client-side CEE 75.

The client-side CEE determines which call has returned and calls the completion routine
for the returning call. The completion routine of the example is shown beginning at line 709. A
switch statement at line 710 receives the optional completion routine tag parameter. If the tag
value is LOCAL, the function will print the local time as shown at line 711-712. If the tag value
is GMT, the function prints the GMT time as shown at line 713-714. Another example of a
completion routine tag would be that the CEE assigns sequential tag numbers each time it makes

a new function call to an object.

B. Asynchronous Implementation

17

10

15

20

25

30

WO 98/02809 PCT/US97/11879

Next, with reference to Figure 8, the asynchronous implementation of an object by the
server application will be described. Asynchronous implementation involves an original method
in the server application calling a second asynchronous method. The original method may be
called by the client synchronously or asynchronously. The method described herein allows an
object to support more than one concurrent request. In a first step 801, the client calls the object
and requests that an operation be performed on the object. The object call, as discussed above,
may, itself, be synchronous or asynchronous. If the call is synchronous and the implementation
of the object is asynchronous, however, the client and the object must be running in different
capsules in an MSF system. This discussion assumes that the client application and server
applications are running in separate capsules on different machines. In step 803, the call is
transmitted from the client-side CEE to the server-side CEE via interface 84 using any known
transport mechanism.

On the server side, the CEE calls the appropriate server application method for the
requested operation in step 805. This method (hereinafter called the “original method”) was
specified as the appropriate method for the requested operation by a call to an asynchronous stub
function from the initialization routine, as discussed above., The CEE provides the original
method in the server application with the same parameters as in the synchronous case: (1) A
call_id parameter; (2) An exception parameter used to track errors in implementing the object;
and (3) The input parameters to the operation. In the asynchronous case, however, the call
identifier provided to the server application method is stored by the server-side CEE in the server
computer memory 17. Since the server-side CEE will respond to the client-side CEE upon a call
to CEE_RESPOND (rather than automatically upon a return from the original method), the
server-side CEE will track each call with a different call identifier. Accordingly, the original
method, any asynchronous methods that are called from the original method, and the response
function (discussed below) must also keep track of the call identifier. Within the original
method, in step 807 a context variable is preferably used to store the call identifier passed to the
original method. The context variable is also used to store the output parameters containing the
result of any operations performed by the method. The context variable will be passed to the
asynchronous method called from the original method. Each time, the CEE up-calls the original

method, a new context variable is created.

18

10

15

20

25

30

WO 98/02809 PCT/US97/11879

In step 809, the original method calls an asynchronous method to carry out another
function. For example, the original method may need to perform an asynchronous input/output
operation such as opening or closing a disk file. Alternatively, the original method may make an
asynchronous object call, itself, to carry out some function. If the original method calls an
asynchronous method, the original method preferably provides the asynchronous method with the
address of a response function in the server application. When the asynchronous method
completes, the asynchronous method will call the response function. In addition, the
asynchronous method receives the context variable containing the call identifier and the result of
any operations performed in the original method. The conrext parameter will ultimately be used
by the response function in order to associate the response to a particular object call.

The asynchronous method performs its designated function. When completed, the
asynchronous method calls a response function in step 811. The asynchronous method passes the
context parameter containing the call identifier and output parameters (as well as any other
context that may be useful) to the response function. The response function, in turn, calls the
asynchronous response stub function in the server application in step 813. As discussed above,
the response stub function contains a down-call to CEE RESPOND. If the original method had
not called an asynchronous method, but was specified as an asynchronous method in the
initialization routine, the original method could have called the asynchronous response stub
function directly. Alternatively, any method in the server application can call CEE_RESPOND.

CEE_RESPOND is defined in C as follows:

CEE RESPOND (

const char *call_id,

const void *const *param_vector),

The response function transmits the call identifier to the stub function by extracting the call
identifier from the context. The stub function transmits the identifier to CEE_RESPOND. The
server-side CEE locates the call identifier in the server computer memory and responds to the
appropriate call based upon the call identifier. The response contains the param_vector
parameter which is an array containing pointers to the object call's output parameters and

exception structure. The first element of the array is the address of the exception structure. If

19

10

15

20

25

30

WO 98/02809 PCT/US97/11879

the operation is not of type void, then the next element contains the address of the variable
containing the operation's result. Subsequent elements contain the addresses of the operation's
output parameters in the same order as they were defined in IDL.

In step 815, the response is sent back to the client-side CEE via interface 84. The client-
side CEE up-calls the appropriate method in the client application and provides the output
parameters and exception information from the call to CEE RESPOND.

Figure 9 shows sample code in a C-language server application that implements objects
asynchronously. This example contains a possible implementation for the object call shown in
Figure 7. This code contains an asynchronous implementation of a Tim_Now operation on an
object of the Time interface. (Data type definitions have been omitted).

The server-side CEE 85 calls the server application’s initialization routine when the
implementation libraries are loaded. The routine, beginning at line 901, obtains an interface
handle by calling a server stub function at line 902. The interface handle is used to create an
implementation handle at line 903 which, in turn, is passed to a server stub for setting the address
for a method in the server application. At line 904, the address for the server method,
NowMethod, is specified as the method to be up-called by the server-side CEE for the Tim_Now
operation. Moreover, by calling an asynchronous stub function to set the address, server
application notifies the server-sidle CEE that a call to CEE_RESPOND is required before
responding to the client (rather than responding automatically upon exiting the up-called method).
Further, the server-side CEE 85 will pass a call identifier into the method to identify the call.

When a call for TIM Now arrives at the server-side CEE, the CEE up-calls
NowMethod(the original method) in the server application. At line 905, NowMethod converts
the time to the requested time zone and stores it in a variable, timeptr. At lines 906-907, the
method stores the result in a predefined context structure. At line 908, this structure is also used
to store the call identifier passed into the method at line 920.

At line 909, the original method (NowMethod) calls an asynchronous method. In this
example, the asynchronous method is a trivial down-call to a CEE timer function. The CEE
timer method receives the context structure and the address of a response function,
TimerExpired, in the server application. The CEE will call the response function when the timer

“pops” after one second. Execution on the server side continues after the call of line 909 without

20

10

15

20

25

30

WO 98/02809 PCT/US97/11879

waiting for control to return from CEE_TIMER _CREATE.

When the timer pops, the CEE calls the response function, TimerExpired.
TimerExpired, at line 910, contains a single call to a server stub response function. The server
stub response function, preferably, calls CEE_RESPOND. The call to the server stub response
function extracts the call identifier and the output parameter, timestr. The server-side CEE
transmits the output parameter (and exception information, if any) back to the client-side CEE
75, in a manner dependent on whether the original call was made synchronously or

asynchronously.

C. Asynchronous Implementation With Memory Allocation

Because multiple calls can be made to the same method in the server application, the
method should preferably have some method for allocating and deallocating memory for
numerous calls. In an alternative embodiment of the method and apparatus of the present
invention, memory allocation and deallocation (“garbage collection”) during object
implementation is provided. Figure 10 shows this alternative method of the present invention.
Steps 1001-1005 are similar to the steps involved in Figure 6. Thus, in step 1001, the object is
called asynchronously or synchronously. Next, in step 1003, the request is transported from the
client-side CEE to the server-side CEE. The server-side CEE then up-calls the appropriate
method in the server application in step 1005.

In step 1007, the server application allocates memory for the call. This is accomplished
by calling an appropriate memory allocation function, such as MALLOC in C and C++. A
mechanism must also be provided to deallocate previously allocated resources. Preferably,
memory allocation and deallocation is performed by down-calling CEE TMP ALLOCATE,
defined in C as follows:

CEE_TMP_ALLOCATE (

const char *call_id
long len

void **ptr

The call_id parameter identifies the particular call so that the CEE can automatically deallocate

21

10

15

20

25

30

WO 98/02809 PCT/US97/11879

the memory upon completion of the call. The len parameter specifies the number of bytes to
allocate. The CEE returns the address of the allocated memory using the ptr parameter.

Next, the method is performed and the result and call_id are stored in the context variable
in step 1009. The method then calls an asynchronous method (or object call) in step 1011. The
asynchronous operation performs its functions and then calls the response function in step 1013.
The response function, in turn, calls a server stub response function in step 1015. The output
parameters to the operation along with any exception information indicating the success or failure

of the object call are sent back to the caller in step 1017.

VI Proxy Creation and Deletion

Now, with reference to Figures 11 and 12, the method of the present invention will be
described. The method of the present invention will be described with reference to a client
application executing in a capsule on a client computer and a server application executing in a
separate capsule on a server computer. Figure 11 is a flow chart depicting the steps involved in
utilizing a proxy handle to call an object. In a first step 1101, an object reference for the desired
object must be obtained. The object reference may be obtained in a number of ways. Client
applications usually receive the reference from configuration data, directories or invocations on
other objects to which they have object references. An object reference can be converted to a
string name that can be stored in files to be accessed later.

Once the object reference has been obtained, the object call may be performed. In the
method of the present invention, the object call is performed by first obtaining a “proxy handle”
to the object reference. The proxy handle is a unique identifying data structure (a “proxy
object”) for a particular object reference. The proxy structure contains information about an
object and calls to that object. Calls can be made to the specified object using the proxy handle.
The proxy handle facilitates calls to the same object and prevents overhead that occurs in multiple
calls to the same object. By creating a proxy handle via which object calls can be made, certain
initialization routines may be performed once through the proxy handle while allowing multiple
calls to the proxied object. In addition, the proxy handle facilitates the use of asynchronous calls
to an object (discussed below). In a preferred embodiment, a proxy handle is created in step
1103 by down-calling the client-side CEE function, CEE_PROXY CREATE, in the client

22

10

15

20

25

30

WO 98/02809 PCT/US97/11879

application. That function is defined in the C programming language as follows:
CEE_PROXY_ CREATE (

const char *objref,
const char *intf_handle,
char *proxy handle),

The function receives the object reference, objref, and an interface handle, intf handle, and
returns a proxy handle identifying the newly created proxy object. As discussed above, in
connection with Figure 3, an interface must be created for each object. An interface defines the
operations available for a collection of similar objects. The interface is defined in IDL and
compiled and linked into a client application. The client application calls
CEE_INTERFACE CREATE in its initialization routine to specify the interface. The client-side
CEE returns an interface handle that can be used to create any number of objects or proxies.

In a preferred embodiment of the present invention, the proxy object is represented by a
structure containing the following fields:

link;

call_link;

self;

nor,

state,

call_active;,

destroy;

lock_count;

*ntf,

call_compl_rtn;

call_compl _tagl,

call_complr tag2,

call_compl_sts;

operation_idx;

*client_allocated_params;

23

10

15

20

25

30

WO 98/02809 PCT/US97/11879

*server_allocated params;
*oby;

operation_idx_table,
max_response_size,
*req_area,

*rsp_area,
*rsp_param_buf,

ochan;

Each of the components of the proxy object data structure will now be discussed. The
addresses and values stored in each of these components is modified by the client-side CEE with
each call to the object referred to by the proxy structure. The client-side CEE maintains a linked
list of proxy structures. The link member of each proxy structure contains a pointer to the next
entry in this list of proxy structures.

In a preferred embodiment, object calls can be either synchronous (client application
requests that an operation be performed on an object and waits for a response) or asynchronous
(client application requests that an operation be performed on an object and continues to do other
work). When asynchronous object calls are dispatched in the same capsule, each call is queued
onto a linked list contained in an object structure that exists for every object when activated. The
call_link parameter is a link to the list of calls. The self member is the handle of this particular
proxy structure. This handle is returned to the client during CEE_PROXY CREATE.

The object reference passed to CEE_PROXY_CREATE is stored in the nor member.
The state parameter indicates whether the proxy structure includes a pointer to an internal object
structure, an external object (via a client port), or a non-existing object structure (is stale). If the
proxy is internal, a pointer to the object is contained in the obj parameter. If the object is in a
different capsule, the ochan parameter contains a pointer to a client port handle or other
information required to communicate with the object.

The call_active member holds a true/false value. The call_active member is set to true if
an object call is outstanding for this particular proxy handle. Only one object call can be

outstanding on a given proxy. The lock_count member is incremented to prevent the proxy

24

10

15

20

25

30

WO 98/02809 PCT/US97/11879

structure from being destroyed. It is decremented when the structure is no longer needed. The
destroy member is a true/false value that is set to true if this proxy structure should be destroyed
when lock_count drops to zero. The intf member is the address of the intf structure that describes
the interface (discussed above).

The next four structure members, call compl rtn, call compl _tagl, call_compl tag2,
call_compl sts, are used to implement asynchronous object calls. Asynchronous calls to an
object in a server application are made by passing the address of a completion routine to the
client stub function when called. The client stub function, in turn, calls the client-side CEE and
provides the completion function address. The client-side CEE stores the completion function
address in the proxy structure upon creation of the proxy handle. When the object call
completes, the client-side CEE calls the completion routine specified in the proxy handle. The
routine is called to notify the client application that the call has completed. While the object is
being implemented, the client application can continue performing other functions. The member
call_compl_rtn contains the address of the completion routine. Since multiple calls may be made
to the same proxied object, the client application can identify the call by using the
call compl tagl parameter when the object call is made. The call compl tagl identifier is
passed to the client stub function. These identifiers are specified in the proxy structure by the
members call_compl tagl and call compl tag2. The call compl sts indicates the call
completion status for asynchronous calls that could not be called.

The operation_idx member specifies which of the object’s operations is to be called.
Operation identifiers are generated by the code generator for each operation in the interface. The
allocared_params member is a pointer to the parent of temporarily allocated parameters (used for
unbounded types and the like). The deallocation of this member performs garbage collection on
the next call to the object referenced by this proxy structure. The operation_idx_table parameter
is a pointer to an operation index translation table that is used only if the object is contained in the
same capsule.

Memory allocation is performed utilizing the max_response_size, req area, rsp_area,
and rsp_param_buf members. The rsp_param_buf member points to a buffer containing the
response parameters. The next time that this proxy object is used, the buffer will be deallocated.

The max _response size member is the maximum expected response size. This is used to

25

10

15

20

25

30

WO 98/02809 PCT/US97/11879

allocate the rsp_area member. The req_area member points to an area structure that will be
used for the request. The rsp_area points to an area structure that will be used for the response
to the object call. The area structure contains the following fields, as defined in C:

desc;

*data;

curlen;

The area structure contains an object call area descriptor and a pointer to data and the current
length of that data.

The call by the client application to CEE_PROXY_CREATE causes the client-side CEE
to automatically allocate memory for the object call in step 1108. Memory in the client computer
is allocated along with any additional resources necessary for making the call. Once the proxy
handle is destroyed (through a down-call to CEE_PROXY_DESTROY, discussed below), the
memory and any allocated resources are freed. Memory allocated for variable-sized output
parameters from an object call are deallocated when the next object call is made using the same
proxy handle.

The proxy handle is used to make all subsequent calls to the object referred to by the
proxy. The object call is made in step 1111 by calling the appropriate stub function in the client
application and passing the proxy handle and input and output parameters along with exception
information to the function. The stub function, in turn, down-calls CEE_OBJECT CALL,
defined in C as follows:

CEE_OBIJECT_CALL (

const char *proxy handle,
long operation_idx,
void **param_vector),

The proxy handle is specified by the proxy handle parameter. The parameter operation_idx
specifies which of the object's methods is to be called. This parameter is an index to the required
method in the interface description that was supplied when the interface was created. Finally, the

param_vector parameter is an array of pointers to the object call’s input parameters, output

26

10

15

20

25

30

WO 98/02809 PCT/US97/11879

parameters, and exception structure. The address of the exception structure is the first element in
the array. If the operation is not of type void, then the following element contains the address of
the variable to receive the operation’s result. Subsequent elements contain the addresses of the
operation’s input and output parameters in the same order as they were defined in IDL.

The call is then transported to the server using any transport mechanism. In step 1115,
the server application implements the object. This is performed by the server-side CEE which
up-calls the appropriate method routine. The method routine is passed the param_vector
parameter containing the addresses of all the input and output parameters. When the method
exits, a response is sent to the caller in step 1119 and the object call is complete.

Once the first call has completed, the proxy handle may be used again to make further
calls to the same object. Each subsequent call to the object may be made without validating the
object or performing other start-up operations. Thus, the proxy creation step can be placed in a
non-time-critical portion of the client application and object calls can be made in a time-critical
portion of the application.

Following the final object call for a specified proxy handle, the proxy handle is destroyed
in step 1121. This is accomplished by calling CEE PROXY DESTROY in the client
application, defined in C as follows:

CEE_PROXY_DESTROY (

const char *proxy handle);

The proxy handle is passed to the function. The client-side CEE destroys the proxy handle and
frees all previously-allocated resources for the proxy handle in step 1128. Alternatively, an
object call may be canceled and all of the resources associated with the call may be deallocated

by destroying the proxy while the call is outstanding.

VII. Proxy Creation And Memorv_ Allocation

Figure 12 shows an alternative embodiment of the object call method of the present
invention. In this embodiment, memory is allocated during the implementation of the object as
well as during the object call.

Steps 1201-1211 are similar to the steps described above. Thus, in step 1201, an object

27

10

15

20

25

30

WO 98/02809 PCT/US97/11879

reference is obtained. Next, a proxy handle is obtained by down-calling
CEE_PROXY_CREATE which returns the proxy handle. The object call is then made in step
1211 using CEE_OBJECT_CALL, which is passed the proxy handle of the referenced object.

In step 1213, the server-side CEE up-calls the appropriate method routine in the server
application. The method routine, in step 1216 when called, down-calls a server-side CEE
function to allocate memory. That function, CEE_TMP_ALLOCATE is defined in C as follows:

CEE_TMP_ALLOCATE (

const char *call_id,
long len,
void **ptr);

The function uses the call_id parameter to track a particular object call. Each call to the object is
given a unique call_id by the server application. Thus, once the call is made, the server
implementation provides an id for the call in the call_id parameter. The number of bytes to
allocate is specified in the len parameter. The function returns the address of the allocated
memory through the p¢r parameter.

The object’s method is performed by the server application in step 1219. The server
application responds to the caller in step 1215. Upon exiting the method function, the memory
allocated under the down-call to CEE_ TMP_ALLOCATE is freed in step 1220. The client
application then makes another object call in step 1211 or destroys the proxy handle in step 1225.
If the proxy handle is destroyed, the memory allocated in step 1209 is automatically deallocated
by the client-side CEE in step 1228.

Memory can be prematurely deallocated using CEE_TMP DEALLOCATE. That
function is defined as:

CEE_TMP_DEALLOCATE (

In void *ptr);

The function is passed the ptr parameter that was provided by CEE TMP _ALLOCATE. The
CEE frees the address pointed to by that parameter.

28

10

15

20

25

30

WO 98/02809 PCT/US97/11879

VIII. Creating a Pickled IDI. Format Data Structure
The Pickled IDL Format (“PIF”) data structure is designed to be used in conjunction with

IDL compilers and code generators loaded in the client memory 23 and server memory 17. The
data structure is based upon an IDL source file stored in memory 23 or in memory 17. The
source file may also be contained on a computer-readable medium, such as a disk. The data
structure of the present structure contains a parse tree representing the IDL source file. The data
structure can be stored in memory 23 or in memory 17 or on a computer-readable medium, such
as a disk. The data structure that represents the source file is referred to as a Pickled IDL
Format (“PIF”). The PIF file can be accessed at run-time by clients and servers that use the
interfaces defined in the source file. The parse tree contained in the PIF file is an array using
array indices rather than pointers. The use of array indices permits the resulting parse tree to be
language-independent. The first element of the array is unused. The second element of the array
(index 1) is the root of the parse tree that acts as an entry point to the rest of the parse tree.

The data structure, tu 1301, is shown in Figure 13, and defined in IDL as follows:

struct tu_def {

sequence <entry_def> entry,

sequence < string > source;

The data structure 1301 contains a sequence (a variable-sized array) of parse tree nodes 1305,
each of type entry_def (defined below) and a sequence of source file lines 1307. The sequence of
source file lines 1307 is a sequence of strings containing the actual source code lines from the
IDL source file.

Each parse tree node (or “entry”) 1305 consists of a fixed part containing the name of the
node and its properties as well as a variable portion that depends upon the node’s type. The
parse tree node is shown in Figure 14 and defined in IDL as follows:

struct entry _def {

unsigned long entry index;
string name,

string file_name;

29

WO 98/02809 PCT/US97/11879

unsigned long line nr;

boolean in_main_file;

union u_tag switch (entry_type_def) {
Case entry_argument: argument_def argument_entry;
Case entry_array: array def array_entry;
case entry_attr: attr_def attr_entry;
case entry_const: const_def const_entry;
case entry_enum: enum_def enum_entry;
case entry_enum_val: enum_val_def enum_val entry;
Case entry_except: except_def except_def entry;
case entry_field: field_def field_def entry;
case entry_interface: interface_def interface_entry;
case entry_interface_fwd: interface fwd_def interface_fwd_entry;
case entry_module: module_def module entry;
case entry_op: op_def op_entry;
case entry_pre_defined: pre_defined_def pre_defined_entry;
case entry_sequence: sequence_def sequence entry;
case entry_string: string_def string_entry;
case entry_struct: struct_def struct_entry;
case entry_typedef: typedef def typedef entry;
case entry_union: union_def union_entry;

case entry_union_branch: union_branch_def union_branch_entry;

Y

The fixed part of the parse tree node includes entry_index 1405, an unsigned long which
is the index for this particular entry in the parse tree. The unqualified name of the entry is
contained in the field name 1407. The name of the original IDL source file is contained in the
field file_name 1411. The field line_nr 1413 contains the line number in the IDL source file that

caused this parse tree node to be created. The boolean in_main_file 1415 indicates whether or

30

10

15

20

25

30

WO 98/02809 PCT/US97/11879

not the entry is made in the IDL source file specified on the command line or whether the entry is
part of an "include” file. Following these fields, the parse tree node includes a variable portion--
a union 1417 having a discriminator, entry type_def. The union discriminator, entry type_def,
specifies the type of node and which variant within entry _def is active. Entry type def is an
enumeration defined as follows:
enum entry_type def {

entry _unused,

entry_module,

entry_interface,

entry_interface_Fwd,

entry_const,

entry_except,

entry_attr,

entry_op,

entry_argument,

entry_union,

entry_union_branch,

entry_struct,

entry field,

entry_enum,

entry_enum_val,

entry_string,

entry_array,

entry_sequence,

entry_typedef,

entry_pre_defined

Entry type def includes a list of the various types of parse tree entries. Each parse tree entry

31

10

15

20

25

30

WO 98/02809 PCT/US97/11879

represents a constant integer that is used in the switch statement contained in entry def. For each
entry, the union u_tag will include a different type of structure. The first enumerated value
entry_unused corresponds to the value zero and is not used in determining the type of the union.

If the parse tree entry is a module (specified by the value entry _module) the variable
portion of the parse tree entry is a data structure including a sequence of module definitions.
Each module definition is an unsigned long acting as an index in the parse tree array.

If the parse tree entry is an interface, as specified by the value entry interface, the
variable portion of the parse tree is a data structure including a sequence of local definitions and a
sequence of base interfaces from which this interface inherits. If the parse tree entry is a forward
declaration of an interface (entry_interface_fwd), the union is an unsigned long containing the
index of the full definition.

Constants (entry_const) are represented in a parse tree node as a structure containing the
value of the constant. A union and switch/case statement are preferably used to discriminate
between the various base type constants (boolean constant, char constant, double constant, etc...)
that may be included in the source file.

Exceptions (entry_except) are represented in a parse tree node as a structure containing a
sequence of fields. An attributes (entry attr) is represented as a data structure containing a
boolean value that indicates whether the attribute is read-only and an unsigned long that indicates
the data type.

If the parse tree entry is an operation (op_def), the variable portion 1417 of the entry data
structure 1305 is a data structure as shown in Figure 15. The data structure 1417 contains a
boolean 1505 that indicates whether or not the operation has a one-way attribute, an unsigned
long 1307 that indicates the return type, a sequence of arguments 1509 to the operation, a
sequence of exceptions 1511 to the operation, and a sequence of strings 1513 that specify any
context included in the operation. If the parse tree entry is an argument to a particular operation
(entry_argument), the variable portion of the parse tree entry is a structure containing unsigned
longs that indicate the data type and direction of the argument.

If the parse tree entry is a union (entry_union), it is represented in the parse tree entry as
shown in Figure 16. The data structure 1417 contains an unsigned long specifying the

discriminator 1603 and an unsigned long specifying the type 1605. The type is preferably

32

10

15

20

25

30

WO 98/02809 PCT/US97/11879

specified using an enumerated list of base types. The structure 1417 further includes a sequence
of the union’s fields 1607. If the parse tree entry is a union branch (entry_branch), the variable
portion of the parse tree entry is a structure containing an unsigned long indicating the base type
of the branch, a boolean indicating whether or not the branch includes a case label, and the value
of the discriminator. Since the value is of a particular data type, preferably an enumerated list of
the various base types is used to specify the value within the structure used to represent the union
branch.

For data structures (entry_struct), the variable portion of the parse tree entry includes a
structure containing a sequence of the specified structure's fields. Enumerated values
(entry_enum) are represented by a structure containing a sequence of enumerated values.
Enumerations of an enumerated type (entry_enum_val) are represented in the parse tree entry by
a structure containing an unsigned long holding the enumeration's numerical value.

If the parse tree entry is a string (entry_string), the variable portion of the parse tree entry
is a structure containing the string's maximum size. A maximum size of zero implies an
unbounded string. An array (entry array) is represented in the parse tree entry by a structure
containing an unsigned long holding the array's base type and a sequence of longs holding the
array's dimensions. A sequence (entry_sequence) is represented by a structure containing
unsigned longs holding the sequence's base type and the sequence's maximum size.

For type definitions (entry typedef), the parse tree entry includes a structure containing
an unsigned long value indicating the type definition's base type. Predefined types
(entry_pre_defined) are represented by a structure containing the data type. To specify the type,
preferably an enumeration of the various base types are used.

Once the IDL source file has been described using the fu data structure, the data structure

may be transported to a file or database using any known methods.

Having thus described a preferred embodiment of a method for asynchronously calling
and invoking objects, it should be apparent to those skilled in the art that certain advantages of
the within system have been achieved. It should also be appreciated that various modifications,

adaptations, and alternative embodiments thereof may be made within the scope and spirit of the

33

WO 98/02809 PCT/US97/11879

present invention. For example, a method has been illustrated, but it should be apparent that the
inventive concepts described above would be equally applicable to a non-MSF environment. The

invention is further defined by the following claims.

34

10

15

20

25

30

WO 98/02809 PCT/US97/11879

CLAIMS

What is Claimed is:

1. A method for asynchronously performing an operation on an object, the operation
being requested by a client application to a server application, the method comprising the steps
of:

obtaining an object reference to the object in the client application;

requesting the operation with a stub function in the client application, the stub function
being passed the object reference, an input parameter of the operation, and a computer memory
address of a completion routine in the client application;

storing the completion routine memory address;

transmitting the input parameter to a method in the server application via an execution
environment accessible to the client application and the server application;;

implementing the operation on the object in the server application, the implementation
including a response to the client application;

transmitting the response to the client application via the execution environment;

calling the completion routine in the client application, the completion routine being

passed the response.

2. The method for performing an operation on an object, as recited in Claim 1, wherein

the object reference is obtained from a configuration file accessible to the client application.

3. The method for performing an operation on an object, as recited in Claim 1, wherein

the object reference is obtained from a disk file accessible to the client application.

4. The method for performing an operation on an object, as recited in Claim 1, wherein

the object reference is obtained from a previous object call by the client application.

35

10

15

20

25

WO 98/02809 PCT/US97/11879

5. The method for performing an operation on an object, as recited in Claim 1, wherein

the step of implementing the operation on the object is performed asynchronously.

6. The method for performing an operation on an object, as recited in Claim 5, wherein
the step of asynchronously implementing the operation on the object further comprises the steps
of:

calling an asynchronous function from within the server application method, the
asynchronous function being passed a call identifier and a memory address containing a response
function in the server application;

calling the response function from the asynchronous function, passing the call identifier to
the response function; and

responding to the object call based upon the identifier.

7. A method for asynchronously performing an operation on an object via a request by a
client computer application to a server computer application, the method comprising the steps of:

obtaining an object reference to represent the object;

calling the object with a stub function in the client application, the stub function being
passed the object reference, an input parameter of the operation, and a client computer memory
address of a completion routine in the client application;

transmitting the input parameter and object reference to a method in the server application
via an execution environment accessible to the client application and the server application;

calling an asynchronous function from within the method, passing a call identifier and a
server computer response function memory address to the asynchronous function;

calling the response function from the asynchronous function, passing the call identifier to
the response function;

responding to the object call based upon the identifier;

transmitting the response to the caller via the execution environment;

calling the completion routine, the completion routine being passed the response.

36

10

15

20

25

30

WO 98/02809 PCT/US97/11879

8. A method for asynchronously performing an operation on an object via a request by a
client computer application to a server computer application, the method comprising the steps of:

obtaining an object reference to represent the object;

creating a proxy handle to represent the object reference;

calling the object with a stub function in the client application, the stub function being
passed the proxy handle, an input parameter of the operation, and a client computer memory
address to a completion routine in the client application;

transmitting the input parameter to the server application via an execution environment

accessible to the client application and server application based upon the proxy handle;

implementing the operation on the object in the server application, the implementation
including a response to the client application;

transmitting the response to the client application via the execution environment,

calling the completion routine in the client application, the completion routine being

passed the response.

9. The method for performing an operation on an object, as recited in Claim 8, wherein

the object reference is obtained from an initialization routine in the client application.

10. The method for performing an operation on an object, as recited in Claim 8, wherein

the object reference is obtained from a disk file.

11. The method for performing an operation on an object, as recited in Claim 8, wherein

the object reference is obtained from a previous object call.

12. The method for performing an operation on an object, as recited in Claim 8, wherein

the step of implementing the operation on the object is performed asynchronously.

13. The method for performing an operation on an object, as recited in Claim 12,
wherein the step of asynchronously implementing the operation on the object further comprises

the steps of:

37

10

15

20

25

30

WO 98/02809 PCT/US97/11879

calling an asynchronous function from within the method, passing a call identifier and a
response function address to the asynchronous function;

calling the response function from the asynchronous function, passing the call identifier to
the response function; and

responding to the object call based upon the identifier.

14. A method for performing an operation on an object, the method comprising the steps
of:

calling a method function to perform the operation, the function being passed an identifier
to identify the object being called;

calling an asynchronous function from within the method function, passing the identifier
to the asynchronous function; and

responding to the object call based upon the identifier.

15. The method for performing an operation on an object, as recited in Claim 14, further
comprising the steps of:

allocating a portion of the server computer memory to handle the object call; and

deallocating the portion of the server computer memory after responding to the object

call.

16. A computer program product, comprising:

a computer useable medium having computer readable code means embodied therein for
performing an operation on an object via a request from a client computer application to a server
computer application, the computer readable program code means comprising:

software means for obtaining an object reference to represent the object;

software means for calling the object with a stub function in the client application, the
stub function being passed the object reference, an input parameter of the operation, and a client
computer memory address to a completion routine in the client application;

software means for transmitting the object reference, input parameter, and completion

routine address to an execution environment accessible to the client application and the server

38

10

15

WO 98/02809 PCT/US97/11879

application;

software means for transmitting the input parameter to a method in the server application
via the execution environment based upon the object reference;

software means for implementing the operation on the object in the server application, the
implementation including a response to the client application,;

software means for transmitting the response to the client application via the execution
environment;

software means for calling the completion routine in the client application, the completion

routine being passed the response.

17. The computer program product, as recited in Claim 17, wherein the software means
for causing one of the first computer and a second computer to implement the operation on the
object further comprises:

software means for calling an asynchronous function from within the server application
method, passing a call identifier and a response function address to the asynchronous function;

software means for calling the response function from the asynchronous function, passing
the call identifier to the response function; and

software means for responding to the object call based upon the identifier.

39

WO 98/02809

33

PCT/US97/11879

1/16
10
12\ e
21\§ 27 E /15 3/”
! CPU i cPU i
- a |
77 ! n ! 87 |
N i || (] el [
: ||| APPLICATION |
N N s
|| CUENT STUBS | 0231 1174 |SERVER STUBS | |
NiN | 691
: CEE N CEE |
| MEMORY | ;
0 B ' 20
o Cuewr b SRR J
— 41
< e
3
33\ MOUSE /29
DISPLAY
DRVICE KEYBOARD

FIG.

1

SUBSTITUTE SHEET (RULE 26)

13

PCT/US97/11879

WO 98/02809

2/16

/77

CEE

CLIENT
APPLICATION

CEE

SERVER
APPLICATION

lll

FIG. 2A

CEE

CLIENT
APPLICATION

SERVER
APPLICATION

FIG. 2B

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879

3/16

n

\ IMPLEMENTATION

LIBRARIES
(LOADED DYNAMICALLY)

70

\ /77 /79

CEE CAPSULE -

UPCALLS / CLIENT STUBS

DOWNCALLS /

‘ CLIENT
/—\ _—1 APPLICATION
]32 COMMON
EXECUTION
OBJECT CALLS ENVIRONMENT

TO/FROM OTHER
CAPSULES

(CEE)

85
/
MSF

/84 WAREHOUSE

CEE TO CEE
REQUESTS E.G.
+«GET INTERFACE

DEFINITION

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879
4/16
101
IDL SOURCE
] //103
(DL COMPILER
Y Ve 105
PIF FILE
\ Ve 11
CODE GENERATOR
1
77 119 87
Y Y
CLIENT STUB SERVER STUB
79 89
CLIENT SERVER
APPLICATION APPLICATION
121\\ ‘ ' v Y //123

COMPILER 1

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/02809

5/16

CLIENT OBTAINS
OBJECT REFERENCE

901
/

CLIENT OBTAINS
PROXY HANDLE

/503

y

CLIENT CALLS
OBJECT WITH
INPUT PARAMETERS

505
Ve

1

CLIENT CEE
TRANSMITS
REQUEST TO SERVER

1

SERVER IMPLEMENTS
OBUECT
SYNCHRONOUSLY

\

507
/

SERVER RESPONDS
T0 CALLER WITH
QUTPUT PARAMETERS

SERVER CEE
TRANSMITS
RESPONSE TO CLIENT

/513

FIG. 5

SUBSTITUTE SHEET (RULE 26)

SYNCHRONOUS OBJECT CALL/
SYNCHRONOUS IMPLEMENTATION

PCT/US97/11879

WO 98/02809

6/16

CLIENT OBTAINS
OBJECT REFERENCE

CLIENT OBTAINS
PROXY HANDLE

- 601

- 603

CLIENT CALLS OBJECT
WITH INPUT PARAMETERES AND

- 605

COMPLETION FUNCTION ADDRESS

CLIENT CEE STORES
COMPLETION FUNCTION ADDRESS

_—~ 607

INPROXY HANDLE

CLIENT CEE TRANSMITS
REQUEST TO SERVER

- 609

SERVER IMPLEMENTS
OBJECT SYNCHRONOUSLY

- 611

SERVER RESPONDS TO CALLER
WITH OUTPUT PARAMETERS

|~ 613

SERVER CEE TRANSMITS
RESPONSETO CLIENT CEE

- 615

CLIENT CEE EXTRACTS
COMPLETION FUNCTION ADDRESS
AND CALL TAG FROM
PROXY STUCTURE

_~ 617

CLIENT CEE CALLS
COMPLETION FUNCTION WITH
QUTPUT PARAMETERS

|- 619

ASYNHRONOUS OBJECT CALL
SYNCHRONOUS IMPLEMENTATION

SUBSTITUTE SHEET (RULE 26)

PCT/US97/11879

FIG. 6

WO 98/02809 PCT/US97/11879

7/16
". » 101
#include’intf.h S
702
Client Init(CClient Init parometers]) "~
{ 703

sts=CEE_CFG_GET(Objref &objref):” 704
sts=TIM_ifc_(&ntf); 4 205
sts=CEE_PROXY_CREATE (objref &intf,&proxy);”_ 706
sts=CEE_PROXY_CREATE (objref intf &proxy1);” 707
sts=TIM__NOW__pst_(&proxy,LOCAL_TIME_TAG_ CotTime,LOCALY,
sts=TIM_NOW_pst(&proxy1,GMT_TAG,GotTime,GMT); }~_

709
GotTime (-

In cmptag_
In xexception_
In timeStr)

{switch(cmptog)/710 1
caseLOCAL_TIME_TAG” 112
printf(" Local time is &%s\n" timeStr);
break: 713

case GMT_TAG: S

714
printfeaMT isZs\n” timeStr); -~
break;

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 98/02809

8/16

PCT/US97/11879

CLIENT CALLS OBJECT

CLIENT CEE TRANSMITS
REQUEST TO SERVER

SERVER CEE
CALLS ORIGINAL METHOD

ORIGINAL METHOD STORES
CALL IDENTIFIER IN
CONTEXT STRUCTURE

ORIGINAL METHOD CALLS
ASYNCHRONOUS METHOD
WITH CALL IDENTIFIER

!

ASYNCHRONOUS METHOD CALLS
RESPONSE FUNCTION WITH
CALL IDENTIFIER AND
QUTPUT PARAMETERS

RESPONSE FUNCTION CALLS
RESPONSE STUB FUNCTION
(OR CEE_RESPONSE DIRECTLY)

SERVER CEE SENDS RESPONSE
TO CLIENT

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879

{lmpllnit ([Implinit porometers])/901

sts=TIM_ifc_(&intf);~ 902 903
sts=CEE_IMPLEMENTATION_CREATE (&intf,impIementotionHondle);/
ssts=TIM_Now_ams_(implementationHandle, NowMethod); —904

NowMethod(
objtag,
call_id,
timeZone)

{

timeptr=(timeZone==GMT) ? gmtime (&t):Iocoltime(&t);f905
strftime(context—>timeStr,sizeof(context- >timestr),—906
"%H ZM:%S” timeptr); —907

context_callld=*call_id_;—908

) 909
sts=CEE _TIMER_CREATE(1,0, TimerE xpired,context,&timerHandle); S
}
TimerExpired(context)
{ _ , _ /910
sts=Tim_Now_Res_(&context->callld,&exeption,context->timestr);
}

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 98/02809

10/16

PCT/US97/11879

CLIENT CALLS OBJECT

CLIENT CEE TRANSMITS
REQUEST TO SERVER

SERVER CEE
CALLS ORIGINAL METHOD

ORIGINAL METHOD
ALLOCATES MEMORY FOR CALL

ORIGINAL METHOD STORES
CALL IDENTIFIER IN
CONTEXT STRUCTURE

l

ORIGINAL METHOD CALLS
ASYNCHRONQUS METHOD
WITH CALL IDENTIFIER

ASYNCHRONOUS METHOD CALLS
RESPONSE FUNCTION WITH
CALL IDENTIFIER AND
QUTPUT PARAMETERS

RESPONSE FUNCTION CALLS
RESPONSE STUB FUNCTION
(OR CEE_RESPONSE DIRECTLY)

1015

SERVER CEE SENDS RESPONSE
10 _CLIENT

/1017

MEMORY ALLOCATION

FIG. 10

ASYNCHRONOUS IMPLEMENTATION WITH

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879

1101
CLIENT OBTAINS L
OBJECT REFERENCE
1103
! Vi 1108
CLIENT CREATES MEMORY ALLOCATED
A PROXY HANDLE L FOR CALL
Y
111
CLIENT CALLS OBJECT
USING PROXY HANDLE
Y
115
SERVER IMPLEMENTS |~
OBJECT CALL
! 1119
SERVER REPLES |
TO CLIENT
121
DOES CLIENT PLAN
TO MAKE ANOTHER CALL TO
THE SAME OBJECT
?
NO
AN 1128
CLIENT DESTROYS == MEMORY IS DEALLOCATED |~
PROXY HANDLE . AND RESOURCES FREED

SUBSTITUTE SHEET (RULE 26)

WO 98/02809

12/16

CLIENT OBTAINS
OBJECT REFERENCE

CLIENT CREATES
A PROXY HANDLE

PCT/US97/11879

\

CLIENT CALLS OBJECT
USING PROXY HANDLE

Y

SERVER IMPLEMENTS
OBJECT CALL

MEMORY ALLOCATED
FOR CALL

Y

SERVER REPLIES
TO CLIENT

MEMORY IS ALLOCATED
FOR IMPLEMENTATION

1216
L~

YES

NO

DOES CLIENT PLAN
T0 MAKE ANOTHER CALL TO

THE SAME OBJECT
2

1221

1225

CLIENT DESTROYS
PROXY HANDLE

MEMORY IS DEALLOCATED
AND RESOURCER FREED

/1220

1228

Y

FIG. 12

MEMORY IS DEALLOCATED
AND RESOURCES FREED

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879
13/16
1301
1305
/S
(UNUSED) ENTRY ENTRY R ENTRY ENTRY
SOURCE SOURCE SOURCE .. SOURCE SOURCE
1307/

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 98/02809 PCT/US97/11879

14/16
1305
/
1405
ENTRY__INDEX
1407
NAME
A4
FILE_ NAME
1413
LINE__NR
1415
IN__MAIN_FILE
417
U (VARIABLE UNION)

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 98/02809

PCT/US97/11879

1417

ARG

EXCPT

15/16
| 1505

ATTRIBUTE
1507

RETURN TYPE
ARG ARG ARG
EXCPT EXCPT EXCPT
CONTEXT | CONTEXT | CONTEXT

CONTEXT

SUBSTITUTE SHEET (RULE 26)

FIG. 15

WO 98/02809 PCT/US97/11879

16/16
/1417
1603
DISCRIMINATOR
| 1605
TYPE
| -1607
FIELD 1| FIELD 2| FELD 3| « - « | FIELD N

FIG. 16

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Interna i Application No

PCT/US 97/11879

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/46

According to International Patent Classification (iPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foliowed by classification symbois)

Dooumentation searched other than minimum documentation to the axtent that such documents are included in the fieids searohed

Electronic data base consulted during the internationat search (name of data base and, where practical, searoh terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of d t, with indi

tion, where apprapriate, of the relevant passages

DYNAMIC PROXY UPDATES"

1 January 1994,
pages 82-91, XP002004310

Tine 45

PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
ON CONFIGURABLE DISTRIBUTED SYSTEMS,

see page 83, left-hand column, line 35 -
page 84, left-hand column,
see page 85, right-hand co]umn, line 25 -

last line

see page 86, left-hand column,
right-hand column, last line

Y MENON S ET AL: "OBJECT REPLACEMENT USING 1-17

line 12 -

_/--

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of oited documents :

A document defining the general state of the art which is not
considersd to be of particular relevance

E earlier document but pubiished on or after the intemational

filing date
"L document which may throw doubts on pnonty claimy(s) or
which is oited to establish the ate of another

citation or other special reason (as -peomed)
O document referring to an oral disolosure, use, exhibition or
other means

*P" document published prior to the international filing date but
|ater than the priority date claimed

T later dooument published after the international filing date
or priority date and nat in confiict with the application but
cited to understand the principie or theory underiying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" dooument of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such dosu-
fmﬂr:b..;uch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

25 November 1997

Date of mailing of the intemational search report

03129

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) {July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Intern \al Application No

PCT/US 97/11879

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of doocument, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

ANANDA A L ET AL: "ASTRA-AN ASYNCHRONOQUS
REMOTE PROCEDURE CALL FACILITY®
INTERNATIONAL CONFERENCE ON DISTRIBUTED
COMPUTING SYSTEMS, ARLINGTON, TEXAS, MAY
20 - 24, 1991,
no. CONF. 11, 20 May 1991, INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS,
pages 172-179, XP000221855
see the whole document
CHATTERJEE A: "FUTURES: A MECHANISM FOR
CONCURRENCY AMONG OBJECTS"
PROCEEDINGS OF THE SUPERCOMPUTING
CONFERENCE, RENO, NOV. 13 - 17, 1989,
no. CONF. 2, 13 November 1989, INSTITUTE
OF ELECTRICAL AND ELECTRONICS ENGINEERS,
pages 562-567, XP000090924
see the whole document
IBM: "SOMOBJECTS DEVELOPER TOOLKIT USER
GUIDE, VERSION 2.1 (CHAPTER 6)"
October 1994 , IBM , US XP002047926
see page 6-24, line 24 - line 30

see page 6-27, line 5 - page 6-30, line 22

see page 6-48, line 41 - line 58

see page 6-66, line 35 - page 6-67, line 5

see page 6-72, line 45 - page 6-73, line
12

US 5 247 676 A (OZUR MARK C ET AL) 21
September 1993

see the whole document

1-17

1-17

1-17

1,5-8,
12-14,
16,17

Form PCT/ISA/210 {centmualion of second sheet) {July 1992}

page 2 of 2

INTERNATIONAL SEARCH REPORT

Intert nal Application No

ntormation on patent family members P CT / U S 97 / 1 1 8 7 9
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5247676 A 21-09-93 US 5430876 A 04-07-95

P S SRS R et d R ol

Form PCT/ISA/210 (patent family annex) (July 1992}

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

