PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/14880
HO04K 1/02 A2

(43) International Publication Date: 25 March 1999 (25.03.99)

(21) International Application Number: PCT/IB98/01255 | (81) Designated States: JP, European patent (AT, BE, CH, CY, DE,

(22) International Filing Date: 17 August 1998 (17.08.98)

(30) Priority Data:

97202855.9 16 September 1997 (16.09.97) EP

(71) Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
[NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven
(NL).

(71) Applicant (for SE only): PHILIPS AB [SE/SE}; Kottbygatan 7,
Kista, S—-164 85 Stockholm (SE).

(72) Inventors: HOLLMANN, Hendrik, Dirk, Lodewijk; Prof.
Holstlaan 6, NL-5656 AA Eindhoven (NL). VAN DIJK,
Marten, Erik; Prof. Holstlaan 6, NI.-5656 AA Eindhoven
(NL). LENOIR, Petrus, Johannes; Prof. Holstlaan 6,
NL-5656 AA Eindhoven (NL).

(74) Agent: GROENENDAAL, Antonius, W., M.; Internationaal
Octrooibureau B.V., P.O. Box 220, NL-5600 AE Eindhoven
(NL).

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: A METHOD AND DEVICE FOR EXECUTING A DECRYPTING MECHANISM THROUGH CALCULATING A
STANDARDIZED MODULAR EXPONENTIATION FOR THWARTING TIMING ATTACKS

(57) Abstract

An encrypting exponentiation modulo M is effected
by a modular multiplication X*YmodM, where M is a
temporally steady but instance-wise non-uniform modulus.
The method involves an iterative series of steps. Each step
executes one or two first multiplications to produce a first
result, and a trim—down reduction of the size of the first
result by one or more second multiplications to produce a
second result. The method furthermore takes a distinctive
measure for keeping the final result of each step below a
predetermined multiplicity of the modulus. In particular,
the method postpones substantially any subtraction of the
modulus as pertaining to the measure to a terminal phase
of the modular exponentiation. This is possible through
choosing in an appropriate manner one or more parameters
figuring in the method. This further maintains overall
temporal performance.

26 3{)

2% N PR AP -
)] 1
_— |
|
|
(CIIIT I !
I
» |
21—/*i

A

|
ES]IﬁIL‘_I !
» 220 22 :
|
|
|
|
|

L

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
Cl
CM
CN
CuU
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
US
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/14880 PCT/IB98/01255

A method and device for executing a decrypting mechanism through calculating a

standardized modular exponentiation for thwarting timing attacks.

BACKGROUND OF THE INVENTION

The invention relates to a method according to the preamble of Claim 1.
Encrypting by executing a standardized modular exponentiation is used in the environment of
a smart card and elsewhere, such as for supporting financial operations, through blocking
opportunity for falsifying the control or contents of such operations. Encryption can be
expressed as y= <x°>,, wherein x is a message, e is an encryption key, and M a modulus.
Likewise, decryption is effected as D(y)= <y®>,;, wherein d is the decryption key, and
retrieving x from D is straightforward. For a particular device, the values of M and e are
known and fixed, the content of x to be encrypted is naturally unknown and variable, and the
value of d is fixed but unknown. For certain operations, such as the providing of an encoded
signature, the first encoding also operates with a secret key along similar lines. For the
present description, such encoding is also called "decrypting”. Now, the decrypting is
effected digit-wise. For each digit of D, one or two first multiplications X*Y mod M
produce a first result. The attaining of such first result is followed by an addition. After
attaining a second result, the next digit of D is processed. Prior technology has kept the size
of the second result down by, in operation, subtracting an appropriate multiplicity (zero, one,
or more) of the quantity M, because the register width of available hardware is adapted to
the digit length, that is generally much less than the size of the overall quantities used in the
multiplication.

It has been found that the sequential pattern of the above multiplicity may
depend on the values of X, Y, and M. Further, the use of temporal statistics on a great
number of mutually unrelated decryption operations with arbitrary messages allows to derive
a value for d. This renders the protection by the encryption illusory. Therefore, a need exists

to mask these statistical variations by some additional affecting of the calculation procedure.

SUMMARY TO THE INVENTION
In consequence, amongst other things, it is an object of the present
invention to suppress the relation between the value of the decryption key and the temporal

structure of the calculating steps, through a masking mechanism that does not appreciably

10

15

20

25

30

WO 99/14880 2 PCT/IB98/01255

lengthen the calculations, nor would necessitate inordinate hardware facilities. Now
therefore, according to one of its aspects, the invention is. characterized by the characterizing
part of Claim 1. In particular, the inventors have recognized that present day
microcontrollers, even those that are used in the constraining environment of a smart card,
can allow the use of longer storage registers than before, and in particular, a few bits longer
than the digits used in the calculation. Such registers would provide the extra freedom that
the present invention is .in need of.

Advantageously, the procedure executes the exponentiation along the
Quisquater or Barrett prescriptions. These are methods commonly in use, and the amending
of their prosecution for adhering to the invention is minimal. The pattern of the calculation
procedure no longer depends on the decryption key. This takes away any method for so
deciphering the value of the decrypting key.

The invention also relates to a device arranged to implement the method
of the invention. Further advantageous aspects of the invention are recited in dependent

Claims.

BRIEF DESCRIPTION OF THE DRAWING
These and further aspects and advantages of the invention will be
discussed more in detail hereinafter with reference to the disclosure of preferred
embodiments, and in parficular with reference to the appended Figures that show:
Figure 1, a hardware block diagram of the invention;

Figure 2, a flow chart of the invention.

DETAILED DISCLOSURE OF PREFERRED EMBODIMENTS

The so-called "timing attack" follows the recognizing that for various
implementations of the modular exponentiation, the computation times of successive
encryptions will vary slightly from one message to another. With knowledge of the
implementation, precise measuring of computation times for a large number of messages may
lead to obtaining the secret key. Experiments have demonstrated that such is feasible indeed.
To understand the nature of the attack and possible countermeasures, we give the main
elements of the RSA encryption/decryption method and some common implementations.

Messages are encoded by integers x in a range 0 <x <M, for some fixed
number M. For integers y, z, and N, y=z mod N indicates that N divides y-z. Also, <y>y

denotes the remainder of y after division by N, that is the unique number r with 0 <r<N

10

15

20

25

30

WO 99/14880 3 PCT/IB98/01255

such that y=r+q.N for some integer q. If « is a real number, then La] denotes the largest
integer k <o (truncating).

The RSA scheme is based on the difficulty to factor large numbers, as
follows. Two communicating parties may agree on a number M, which typically is an
(m=>512)-bit number, and is the product M=p.q of two prime numbers p and q that are
kept secret, and each have approximately m/2 bits. The parties also agree on a private key
number d and a public key number e. The numbers M and e are made public, while the
number d may be put into a tamper-resistant module of a smart card that is given to the user
party. The private key d must remain unknown to the user. Instructions to change the
account of the user are sent in encrypted form to the smart card which then uses the private
key d to decrypt the instructions to amend the account. The smart card is considered
"hacked" if a user obtains the private key d, and might so for instance instruct the card to

increase the account. The numbers d and e must satisfy
d.e=1 mod lcm(p-1,q-1),

where lem(a,b) is the least common multiple of a and b, the smallest positive integer
divisible by both a and b. Given a modulus N and an integer ¢ for which ged(c,N)=1, that
is, with ¢ and N relatively prime (without a common divisor), it is easy to compute a number
¢’ such that c.c’=1 mod N. To transfer a secret message x, 0 <x<M, to a user, the
number E(x)= <x*>,, is sent instead. From an encoded message y, the card computes
D(y)= <y*>,,. Note that if y= <x*>,, then D(y) = (x9°=x"*=x mod M. This equality
follows from the fact that y'=y mod M holds for all y if and only if f=1 mod lem(p-1,q-
1).

The security of the RSA scheme depends on the difficulty to recover
<x>, from <x°*>,; without knowing the private key d. For arbitrary x this problem
appears as difficult as inverting e modulo lem(p-1,g-1), i.e. finding d without knowing p

and q, which is as difficult as factoring M.

Modular exponentiation

The main operation in an RSA scheme is modular exponentiation,

y-x= <y?>,. Often, this operation is implemented as follows. Write

10

15

20

25

WO 99/14880 PCT/IB98/01255

4
m-1
d=Y d;2*,
i=0
where d,e{0,1}, the binary representation of d. Put xX™=1, and compute x™", x™2, .,
d
x®, x© recursively as x¥= < < (x**V)2> .y ¥> . (1)

We now have x=x©. The original message x is computed from the
received encrypted message y in m steps, each step consisting of a squaring modulo M
followed by a multiplication modulo M if the corresponding key-bit is 1. From (1) we see
that exponentiation is done through repeated modular multiplications, that is, the operation

(%,¥)>2= <Xy >y)

Most systems simplify this muitiplication by grouping m bits of the
number y into digits of b bits, wherein b may arbitrarily range from b=1 to b=32. Thus, y

is written as

infbl-1 ‘
y =Y 2"

i=0

where 0 <y, <2". Formula (2) is calculated recursively by putting z,,,,; =0, and

computing Z |, --+1Zy SUccessively by z;= < <XV > Mtz 2" > 3)

It is not attractive to implement the operation
X, ¥)=><x.y;>m (4)
"as is", for the following reason. The number u=x.y; is an (m+b)-bit number.

The number <u>,, is obtained as

(W), =u - {—J - M. (5)

This computation needs a multiplication and a division of u by the m-bit
number M. However, normal division of large numbers is much more complex than
mulitiplication. Therefore, various methods have replaced the direct implementation of (5) by

implementations that use a few (typically, two or three) multiplications, possibly followed by

10

15

20

25

30

WO 99/14880 5 PCT/IB98/01255

a few (typically, one or two) subtractions of M.

Several methods use spécial representations for numbers modulo M. This
needs converting from ordinary representation to special representation and back. The
converting is done only once at the start and once at the end of a modular exponentiation. In
between, many modular multiplications are computed, so the extra overhead is negligible.
We will give two such methods in detail.

The additional subtractions that sometimes must follow a modular
multiplication make timing attacks feasible. In such attack, the smart card must decrypt a
large number of messages, and a statistical analysis of the decryption times enables an
attacker to recover the bits of the private key d. The invention adapts known methods for

modular multiplication so that these extra subtractions are no longer needed.

TWO METHODS FOR MODULAR MULTIPLICATION

In the Quisquater method, all reduction is done modulo some multiple N
of M, where the first p most significant bits of N are éll equal to 1, that is, the modulus N is
an n-bit number for which

2"-2"P<N<2" 7

At the end of the exponentiation modulo N, the result is reduced modulo
M to get the desired answer. To compute a modular multiplication
(x,y)=z= <X.y >y, (8)
the n-bit number y is partitioned into blocks of b <p-1 bits and z is found recursively by

multiplying x.y; similarly to (3). Expression (5) is replaced by the "Quisquater-reduction”:

Qw) =u - | X|.N. ©)

211

Remark 1: Note that Q(u) = <u>, mod N. Only, we cannot guarantee
that Q(u) <N. For large u the number Q(u) can indeed be bigger than N. However, we can
show that Q(u) < ON if u <2P(0-1)N, so the Quisquater-reduction is "almost as good" as the
required residue-operation.

Now, the result z of the multiplication is computed recursively by putting

zl;/b | =0 and

z = Qy, + 242" (10)

10

15

20

WO 99/14880 PCT/1B98/01255

Note that z':=z0* =x.y mod N holds. We may show that for b<p-1 and

0<x<N, we have 0< zi* <3N for all i. So the result z= <x.y >y is obtained from z" by

subtracting N at most twice. We will prove this later.

The Barrett method uses the given modulus M itself. The modular reduction <x>, of a

number X is estimated by

B(x) = x - b:'l . bil . M, (11)
where

2n
R=-|2

M

and n is chosen such that b™' <M <b". The product z=xy of two numbers x
and y is calculated as follows:

(@) z, = xy;

(i) z = z, = B(z,).
We will prove that if 0 <x,y <M, the result z obeys 0 <z<3M, so that we need at most two
extra reductions to obtain <xy>,,. For b >3 the computation of B(z,) may be simplified.

Let indeed

u=x.R.M

bn—l bn+1

so that z=x-u. By the above remark, z<3M <b"*!. From z=x-u mod b"*', we conclude

that

" <X>0a = <U>paay if this expression is > 0

n
z7=<z> .
b p*! & <X>,p1 = <U>paa otherwise.

10

15

20

25

WO 99/14880 7 PCT/IB98/01255

IMPROVEMENTS OF THE ALGORITHMS FOR MODULAR MULTIPLICATION

Timing attacks are feasible because the modular multiplication may or
may not require additional subtractions of the modulus. However, these additional reductions
may be avoided: by a slight change of the original assumptions, we can work throughout the
modular exponentiation with the unreduced results, and do any reduction only at the very end
of the modular exponentiation. To show that this works, we will provide upper bounds on
the intermediate results of our modular multiplications for each algorithm.

For the modified Quisquater method we assume that we have a modulus
M for which 2™ <M <2™. Now, we compute a number N=cM for which holds 2"-2™
P<N<2" This is always possible if n=m+ p. Because the admissible interval for N is 2™
P>2">M, some multiple of M must fall within this interval. All intermediate computations
are done modulo N, instead of modulo M, with a reduction modulo M at the very end. N is
a multiple of M, so no information is lost.

As before, to get the result z=xy of a modular multiplication of x and

_ bl
y =0

b
y;2", we use the following:
0D Zup =0
(i) For i=In/bl-1, ln/bl-2,..,0, we compute
Z,=X.y,+ zi:IZb and zi* =Q(z);

(iii) z=z,".
We will need the following facts about this algorithm.
Proposition 3.3. If 0 <x<aN and 2°+ @2 <(2*-2")0, then for all i
0<z <ON (12).

Proof: If 0<x<aN, N=2"-2",0< y,<2", and 0<Z;,; <6M, then

7, < aN2°+ ON2" = (a+ O)N2°,

hence

K]
Qi) - <z>pIN = [ﬁ { }

10

15

20

25

WO 99/14880 PCT/IB98/01255

=1+7,(2"N)/N2"
<1+ (a+0O)N2"2"P/N2"
=1+(a+0)2"?<0.

Now Q(z) =z,= <z,>, hence the number (Q(z)-<z>)/N is an integer; since according
to the above this number is < ©, we conclude that (Q(z)- <z > y)/N<06-1. Since also
<z >y <N by definition, it follows that: z,;=Q(z) <ON.

Obviously, condition (12) can only be satisfied if p=b+1. Further, if
p=b+1, then (12) is equivalent to the condition © 2 a+2. So if @=1, then the number z
resulting from the above algorithm always satisfies 0 <z <3N, so that at most two further
reductions are required, a result used hereabove.

If all results of modular multiplications must be less than aN, we need
O=q, and it is necessary and sufficient that

p=b+2, O=a=2.

So, provided that p=b+2, during modular exponentiation we may forego
additional reductions after each modular multiplication and still guarantee that all results are
non-negative and <2N. The result of the modular exponentiation is obtained by at most one
reduction at the very end, plus a reduction z—=<z> ;.

The Barrett method can be modified in a way similar to Quisquater’s.

Assume that modulus M obeys b™' <M <b". To compute the result z=xy of a modular

fri-1

multiplication of x and y= 0 yib " in b-ary notation, we use the following. Define

k+l
B, =u- ||| |2 s n.
b* M
(@) Zpypy = 0
(ii) For i= I_n/r_] -1,, 0, we compute

z,=x.y;+ zi:1 b’

10

15

20

WO 99/14880 9 PCT/1B98/01255
and
‘ z; =By,(z);
(iii) z=z, .
Proposition 3.4: If 0 <x<aM, Oszizl <BM, and
k=n-1, I=r+1, 2+a+B<0,
or
k=n, I=r+1, a=8=0, 6 =max (2b/(b-2),(1+b)b*/(b*2)),
or, for example,
b=4, k=n-1, I=r+2, a=8=0, 02>3,
or
b=4, k=n-2, I=r+4, =46, 6=>2,
then 0 < z” < OM.
Proof: If 0<x< oM, b™'<M<b", 0<y,<’, and Osziil <BM, then
z; < aMb"+ 8Mb’ = (a+ B)Mb",
hence
Z. Z. bk+l
B(z) - <z,>,)/M == -||= b!
M p¥| | M
z Z. k+l
R B) i
M Pkl M
Z. Z. bk+1
<1+ —= - (= - 1) - /b’
M bk M
b Z
= 1 + ——E + ! - —1-
M bk+1 bl
(a+P)/MB”

R |-
o
=
X

(13)

(14)

(15)

(16)

10

15

20

25

30

WO 99/14880 10 PCT/1IB98/01255

<1 + max(b*"*! + (a+8)b™* 1 b*" + (a+B)b"*).

The last inequality follows from b™! <M <b", and from. the fact that the
convex function a/M+bM, a=0 becomes maximum when M is either minimal or maximal.
An interesting result needs k+1<n+r. To limit the size of the necessary multiplication to
compute B, ,, k should be as large and k+1 as small as possible. Each additional condition
(13), (14), (15), and (16) then implies this last expression to be at most equal to ©.

Now B(z)=z= <z,>, mod M, hence (B(z)-<z>,)/N is an integer;
since this number is less than O, it follows that (B(z)- <z;>,)/M <06-1. Since also
<Z,>, <M by definition, we conclude that z;=B(z) <OM.

The above is used in several ways. One way takes r=n, k=n-1, and
l=n+1. Then we compute z=B, ,(xy) =B(xy) in one step, so B=0. Proposition 3.4 states
that if x<M, then z<3M. This proves the earlier claim.

Alternatively, b is taken small, typically b=4, and k=n, I=r+1, and
a=B8=0. Since (1+b)b?/(b*2)=2b/(b-2) for b=3, the resuit in Proposition 3.4 states that
all intermediate results will be <©OM if © = (1+b)b?/(b*-2) and b =3, that is, <6M when
b=4. Similarly, for b=4, if we let k=n-2, I=r+4, a=B=0=2, then all intermediate
results will be <2M and if we let k=n-1, I=r+2, a=B8=0=3, then all intermediate results
will be <3M. Therefore, the modular exponentiation may forego additional reductions after
each modular multiplication and still guarantee that all intermediate results are non-negative
of size at most OM. Here O is a number between 2 to 6, depending on the choice for k and
1. The final result is obtained via only a few reductions at the very end of the modular
exponentiation.

By itself, a well-known third method for implementing modular
exponentiation is due to Montgomery. An improvement to this particular method has been
disclosed in M. Shand & J. Vuillemin, Fast Implementation of RSA Cryptography in Proc.
11th Symposion on Computer Arithmetic, IEEE 1993, p.252-259. In this reference, certain
normalizing proposals to the Montgomery method are done to obviate the need for repeated
normalizations after intermediate processing steps. The object of the reference was to
increase the overall speed of the processing. The present invention on the other hand, has
shown that timing attacks may be thwarted by initial operand conversions plus some minimal
hardware facilities for non-Montgomery algorithms. Such timing attacks have not figured in
the setting of the above citation. Furthermore, the Quisquater and Barrett methodologies have

been herein disclosed expressly by way of non-limiting embodiments only.

10

15

20

25

30

WO 99/14880 11 PCT/IB98/01255

Figure 1 is a hardware block diagram of a device according to the
invention. The operand memory 20 is as shown based on the modular storage of 8-bit digits.
Address sequencer 22 successively addresses the various digit locations for reading and
writing, as the case may be. Processing element 24 and address sequencer 22 operate in
mutual synchronism through interconnection 21. Processing element 24 has an input register
26 for a first digit that may be received as read from memory 20. Furthermore, it has an
input register 30 for a second digit through retrocoupling from its result register 28. The
latter has an enlarged length with respect to the digit length. A selecting register 32 allows
digit-based retrostorage into memory 20. The processing element may execute normalizing,
preprocessing and postprocessing as described earlier, and further the standard modular
multiplication of the Quisquater, Barrett, and similar non-Montgomery methods. The
particular operations are governed through control register 30.

Figure 2 is a flow chart of the invention. In block 50, the operation is
started, which may need claiming of various hardware and software facilities. In block 52,
the encrypted message is received. In block 54, the meésage is preprocessed in the manner
described for any applicable algorithm. In block 56, one turn of the inner loop is executed,
that calculates an intermediate result on the basis of two b-ary digits. In block 58, the system
detects whether the inner loop in question has been executed a sufficient number of times
(ready?). If no, the system reverts to block 56. If yes, the system proceeds to block 60 and
executes one turn of the outer loop. Subsequently, in block 62, the system detects whether
the outer inner loop in question has been executed a sufficient number of times (ready?). If
no, the system reverts to block 56 for further executing the inner loop. If yes, the system
proceeds to block 64 for postprocessing the final results, and subsequently to block 66 for
outputting the result to a user, such as the central processing facility of the smart card in
question. The combination of Figures 1, 2, in combination with the extensive further
disclosure, is deemed to give the skilled are practitioner sufficient teachings as to how to

implement the invention.
SUMMARY OF THE METHODS
Input: X, d, M, 0 < x, d, M < &". (Typically, @ = 2). x is the encrypted message.

Output: z = <x9>g. First, the standard methods are reviewed.

a. Preprocessing

Quisquater: X = X,n = n + p, M = cM, where p is some integer and ¢ is chosen such

10

15

20

25

30

WO 99/14880 12 PCT/IB98/01255

that a" - &

Barrett: n =

< N < ¢". This produces a unique choice for ¢. Also, a = 2.
nL,M=Mx=xX%.

b. Partitioning of d

Write d = E ,=(_)1 dB'. Typically, B = 2 and m =#bits of d.

¢. Outer loop

z<1

repeat fori = m-1-0:

z « Mult(z, z; M) (if B = 2; in general z « <z">.)
Z « Mult(z, xdi; M) (only needed if d; > 0).

endrepeat

d. Implementation of modular multiplication in operation Mult

The implementation of z < Mult(u, v; M) assumes 0 < u, v < M, and the result z satisfies

0 <z <M

e. Partitioning

-1

0 viBi, where B = o for some integer b. In other words, the n a-ary

Write v =

digits of v are grouped in n’ blocks of b digits each. (Son = n’b.)
Moreover, Quisquater assumes that b < p - 1; Barrett takes b = n,

n’ = 1.

f. Inner Loop
z<0

repeat for i:
hez.F+u.v
z < R(h)
endrepeat

whilez > Mdoz<«z-M. 17

Here, we have the following.

10

15

20

25

WO 99/14880 13

1. i = n’ -1 - 0 in Quisquater and Barrett,

2. F = {B=a” (Quisquater and Barrett)

3.
h ,

Q(h):=h-|— |.M, (Quisquater),

an

R(k) = |

a® -1

B(h):=B, , ,.,(H)=h~

The Barrett reduction operation B used here is a special case of the general Barrett reduction

h k+l
B, (h):=h- L"H ‘j‘l Puz M

4. In Quisquater and Barrett: 0 < w < 3M in all steps.

9. Postprocessing

Here z satisfies 0 < z < M.
Quisquater: 7« <2>p.

Barrett: z <« z.

RESUME OF CONDITIONS AND PROPERTIES IN "OLD" ALGORITHMS

Quisquater
p=b+1

Barrett : -

PCT/IB98/01255

a2n 1
| — " M, (Barrett)
M

10

15

20

25

30

WO 99/14880 14 PCT/IB98/01255

NEW METHODS
a. Preprocessing

As before, except that for Montgomery we now require more, €.g. that M
< R/4. (So n=n+2 if a=2).

b. Partitioning of d
As before.

c. Outer loop
As before, but the operation Mult is implemented slightly differently.

d/e. Implementation of modular multiplication in operation Mult

Partitioning

As before, but for Quisquater we now require that b < p-2.
f. Inner Loop

As before except that the last instruction "while z > M doz < z-M"is
removed.

Also, for Barret, instead of taking b = n, n’ = 1 we allow other values
of b, and instead of the sbecial case B = B, ,,, we now take B = B, for other values of k
and 1. (For example k = n,1 = b + 1, or we choose « = 4 and takee.g. kK =n-1,1 =b
+2ork=n-2,1=>b + 4).

g. Postprocessing

Now we can only guarantee that z < © M for some 0, typically © = 2
or © = 3. So in case of Barrett, the while statement (17) which was removed from the
Loop-part of the operation Mult must now occur here:
whilez =2 Mdoz<«z-M.

For Quisquater, this same operation is also required, but can possibly be combined with the

other postprocessing (which does not change).

RESUME OF CONDITIONS AND PROPERTIES IN "NEW" ALGORITHMS

Quisquater
p=b + 2 (instead of b + 1)

10

15

20

WO 99/14880 PCT/IB98/01255

15

Barrett

Various possible values for the numbers k,l of the Barrett reduction operator By,. A good

condition may be found as follows.

To compute x.y mod M by Barrett:

Ify = (yo¥; --- yln/r]-l) each y; < b’ (b-ary digits) and given 0 < x < oM, 0 < 7',

<

BM, we have (z°, - <z, > WM = (B, - <z>/M < 1 + max b*"*' + (@ + B) b"™'*"

k1 R+ (a+ B)b"* ™) which we need to be < 0. Certainly needed k+1=n+R
Classical: R=n, k=n-1, I=n+1, then 8=0, a=1->2" < 3M (6=3).

New: R < n, @ = B = 0. The condition is 1 + max (b*"*! + 20 B™!**I Bxn 4+

20B"* ™Y < O to have all results < 6 M.

Better condition:

k r
M bk+1

for all allowable M.

k r
Example b=2 - 1 + 1. + M <
M 2k+l

0

2n-1 <M< 2'> (zk-n + 26 2n+r-k-l’ 2k-n+l + 20 2n-l+r-k-l) < 0.

Remark: In both algorithms, these new conditions translate in terms of hardware into the use

of slightly larger registers to store various intermediate variables.

10

15

20

WO 99/14880 16 PCT/IB98/01255

CLAIMS:

1. A method for executing a decrypting modular exponentiation modulo M,
by digit-wise calculating modular and looped multiplications X*Y mod M, according to a
non-Montgomery procedure, with M a temporally steady but instance-wise non-uniform
modulus, said method involving an iterative series of steps organized in an inner loop-out
loop hierarchy wherein each step is associated to executing one or two first multiplications to
produce a first result, and the hierarchy is associated to a trim-down reduction of the size of
the first result by one or more second multiplications to produce a second resuit,
said method furthermore taking a distinctive measure for keeping a final result of such step
below a predetermined multiplicity of said modulus,

said method being characterized by postponing substantially any
subtraction of the modulus as pertaining to said measure to a terminal phase of the modular
exponentiation, as being conditional to choosing in an appropriate manner one or more
preprocessing parameters figuring in the method whilst maintaining overall temporal
performance of the method, whereby intermediate results have a guaranteed upper bound.
2. A method as claimed in Claim 1, for executing the exponentiation along
the Quisquater prescription, whilst choosing the value of the integer p=n-n’ not less than
p=b+2.
3. A method as claimed in Claim 1, for executing the exponentiation along
the Barrett prescription, whilst choosing the value of the numbers Kk, 1, in a suitable manner
according to: 1+ (b*/M)+ (26Mb*/b**") < Q.
4. A device arranged for executing the method as claimed in Claim 1.
5. A device as claimed in Claim 4, and having enhanced register width for

therein storing intermediate results of the exponentiation.

WO 99/14880 PCT/IB98/01255

1/9

26 30
\ \
EEEEEEEN EREEEENE
24 —_—— e _—— —— —_——
' /If)
o |
|
|
[I»Illl [TITT] |
|
28 |
21——/*I
EEEEEEEN |
20 22 I
32
/ \
|
|
|
|
< |]
T I

FIG. 1

WO 99/14880

2/2

START 30

§

RECEVE |92

l

PREPROCESS |54

:

INNERLOOP {96

58
v w
Y
OUTERLOOP |—60

=
) %
(o]
N

POSTPROCESS |——64

l

OUTPUT |—66

)

STOP 68

PCT/IB98/01255

FIG. 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

