PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/30420
GO6T 3/00 Al

(43) International Publication Date: 21 August 1997 (21.08.97)

(21) International Application Number: PCT/US97/02290 | (81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY,

(22) International Filing Date: 13 February 1997 (13.02.97)

(30) Priority Data:

08/601,596 14 February 1996 (14.02.96) Us

(71) Applicant: DIGITAL MEDIA INTERACTIVE {US/US]; Suite
215, 1730 South Amphlett Boulevard, San Mateo, CA 94402
(US).

(72) Inventor: SEGAL, Gerald, M.; 1119 Royal Lane, San Carlos,
CA 94070 (US).

(74) Agents: MORRIS, Francis, E. et al.; Pennie & Edmonds L.L.P.,
1155 Avenue of the Americas, New York, NY 10036 (US).

Published

CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ,
LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ,
PL, RO, RU, SG, SI, SK, TJ, T™M, TR, TT, UA, UZ, VN,
YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

With international search report.

(54) Title: METHOD AND SYSTEM FOR THE CREATION OF AND NAVIGATION THROUGH A MULTIDIMENSIONAL SPACE

USING ENCODED DIGITAL VIDEO

2
iy - 10
DISPLAY DEVICE
)
18
Lo 4
DIGTAL VIDEO' DECODER VIDEO ENCODER ;
K of
14 _|
PROCESSOR UNIT
- NAVIGATIONAL
MOTION VECTOR CONTROLLER
DATABASE

(57) Abstract

The present invention provides a method and system for the creation of, and navigation through, a multidimensional virtua! space
(50) using digital video encoding (18) and decoding (20) technique. Specifically,
pre-rendered short video sequences associated with a set of predefined "motion vectors" (14) allows a user or operator to navigate smoothly

through a highly realistic virtual space.

the use of a novel database of randomly accessible,

applications under the PCT.

AM

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Treland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

Malawi

Mexico

Niger

Netherlands
Norway

New Zcealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan

‘Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

METHOD AND SYSTEM FOR THE CREATION OF AND NAVIGATION
THROUGH A MULTIDIMENSIONAL SPACE USING
ENCODED DIGITAL VIDEO

FIELD OF THE INVENTION

The present invention relates generally to computer
graphics, and more particularly to a method and system for
the creation and navigation of a multidimensional space using
encoded digitél video.

BACKGROUND

Most currently available virtual reality or
interactive computer systems (such as video games) create
images by generating, or "rendering" a plurality of polygons
in real time. These rendered polygons are displayed on a
screen, and together form a "scene".

Such systems typically allow the user or operator
to "move" through the scene and to view various scenes by
manipulating a pointing or positioning device such as a
joystick or track ball. Input from the pointing or
positioning device causes the computer system to calculate
the appropriate change in position and, using a three-
dimensional mathematical model (often called a "parametric"
model) of the objects in the virtual space, render a new
scene in real time. An illusion of motion is created by
sequentially displaying a series of images that change
approbriately in accordance with the inputs from the pointing
or positioning device. An example of a commercially

available virtual reality package incorporating parametric

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

models is the Virtual Reality Development System manufactured

by VREAM, Inc. of Chicago, Illinois.

Typical virtual reality or interactive computer
systems are limited in the amount of detail or realism they
can display because of the large amount of computing power
required to render a realistic scene in real time. The vast
majority of such systems can only display VGA or slightly
better than VGA graphics. Specular highlights, texture
mapping, shadows, and other rendering technigues associated
with the better rendering and 3D modeling packages (such as
3D Studio®, manufactured by AutoDesk Corporation of Novato,
California) are not currently possible in real time on
desktop systems, even those incorporating graphics
accelerator chips. Moreover, even very powerful and
expensive systems, such as supercomputers or very high-end
graphics workstations, face limitations in delivering highly
realistic scenes in real time because of the computational
requirements of rendering such complex scenes.

Although more powerful rendering engines, and more
efficient rendering and modeling software are introduced with
some fregquency, the computational requirements for real time,
highly realistic virtual reality or interactive computer
applications are still too great for most commonly available
computers.

In an attempt to overcome the problems with real
time rendering, photographic technologies have been proposed
and created that use digitally altered photographs. These

technologies, such as QuickTime VR, manufactured by Apple

- 2 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

Computer, Inc. of Cupertino, California, allow the viewer to
experience a sense of panorama in viewing a scene. However,
most such systems place severe limitations on the size,
aspect ratio, and color palette that can be supported for
real-time playback.

Recently, great advances have been made in the
implementation and standardization of certain digital video
compression techniques. The Moving Picture Experts Group
(MPEG) was chartered by the International Standards
Organization (ISO) to standardize a coded representation of
video (and associated audio) suitable for digital storage and
transmission media. Digital storage media include magnetic
computer disks, optical compact disk read-only-memory (CD-
ROM), digital audio tape (DAT), etc. Transmission media
include telecommunications networks, home coaxial cable TV
(CATV), over-the-air digital video, and other media. The
goal of MPEG has been to develop a generic coding standard
that can be used in many digital video implementations. MPEG
has so far produced two standards, known colloquially as
MPEG-1 and MPEG-2.

MPEG-1 (officially known as ISO/IEC 11172) is an
international standard for coded representation of digital
video and associated audio at bit-rates up to about 1.5
Mbits/s. MPEG-1 can typically provide video compression
ratios of between 140:1 and 200:1; it is currently used in
relatively limited bandwidth devices, such as CD-ROM players.
The ISO/IEC 11172 (MPEG-1) standard is incorporated herein by

reference.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

MPEG-2 (officially known as ISO/IEC 13818) is a
standard for coded representation of digital video and
associated audio at bit-rates above 2 Mbits/s. MPEG-2 can
typically provide video coﬁpression ratios of between 40:1
and 60:1; it is intended for use in relatively high bandwidth
devices and broadcast television. The ISO/IEC 13138 (MPEG-2)
standard is also incorporated herein by reference.

The MPEG compression techniques are based in part
on the fact that in most motion picture or video scenes, the
background remains relatively stable while much of the action
takes place in the foreground; hence, consecutive frames in a
video sequence often contain some identical or very similar
image information.

MPEG compression generally begins by the creation
of a reference frame or picture called an "I" or "“intra"
frame. Intra frames provide entry points into an MPEG video
sequence file for random access, but can only be moderately
compressed. I frames are typically placed every 10 to 15
frames in a video sequence. MPEG compression takes advantage
of the redundancy often found in sequential frames of video
by capturing, compressing, and storing the differences
between a set of sequential frames. The other two types of
frames in an MPEG sequence are predicted (P) frames; and bi-
directional interpolated (B) frames. Predicted frames are
encoded with reference to a past frame (I or previous P
frame), and, in general, are used as a reference for future
predicted frames. Predicted frames receive a fairly high

amount of compression. Bi-directional interpolated frames

4

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

provide the highest amount of compression, but require both a
past and a future reference in order to be encoded. B frames
are never used as references.

The MPEG video standards specify the syntax and
semantics of the compressed bit-stream produced by an MPEG
video encoder. The standards also specify how this bit-
stream is to be parsed and decoded to produce a decompressed
video signal. The overall syntax of an MPEG bit-stream is
constructed in a hierarchy of several headers, each of which
performs a different logical function. For the purposes of
this invention, the most important MPEG video bit-stream
syntax header is the "“Group Of Pictures" (GOP) header. The
GOP header provides support for random access, fast search,
and editing. A sequence of video frames, or "pictures" is
divided into a series of GOPs, where each GOP contains an I
frame followed by an arrangement of P frames and B frames.
Figure 1 shows the basic structure of a GOP. Random access
and fast search are enabled by the availability of the T
frames, which can be decoded independently and serve as
starting points for further decoding. The MPEG video
standards allow GOPs to be of arbitrary structure and length,
and the GOP header is a basic unit for editing an MPEG video
bit stream.

Prior systems such as the video game entitled "7th
Guest" by the Spectrum Holobyte and Philips Corporation, have
used the random access capabilities of MPEG to provide
"branching". That is, at a predefined point in the game, an

operator may choose from two or more options as to where to

- 5 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

go, or what to do next. However, such prior systems do not
allow continuous interactive input to be made by the
operator, and thus do not provide a highly realistic virtual
reality or interactive computer environment. Accordingly,
there remains a need in the art for a highly realistic,
relatively low cost virtual reality or interactive computer
system that allows for the generation of and real time

navigation through a virtual space.

SUMMARY OF THE INVENTION

The present invention meets these needs by
providing a method and system for the creation of, and
navigation through, a multidimensional virtual space using
digital video encoding and decoding techniques.
Specifically, the use of a novel database of randomly
accessible, pre-rendered short video seguences associated
with a set of predefined "motion vectors" allows a user or
operator to navigate smoothly through a highly realistic
virtual space.

In a preferred embodiment, a three dimensional
model of the virtual space is generated (using a three
dimensional rendering package, such as 3D Studio®) and
imported into the system. A coordinate system, including a
plurality of fixed points, is defined and imposed on the
three dimensional model. The number of degrees of freedom an

operator may have, and the areas constrained from navigation

may also be defined.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

Based on the coordinate system chosen and the
geometry of the virtual space, the system creates a database
of motion vectors. These motion vectors represent the
virtual path followed by an operator when moving from point
to point, or when rotating about a fixed point in the virtual
Space. A separate motion vector is generated for each
allowed movement (that is, translation or rotation) within
the virtual space.

Each motion vector is associated with a prerendered
video sequence which shows the translation or rotation
represented by that motion vector. After the translation or
rotation represented by each motion vector has been stored in
the database, the video sequences associated with the motion
vectors are rendered, encoded, and stored. In a preferred
embodiment, the system automatically generates instructions
for a renderer as to the position and movement of a “virtual
camera" through the virtual space. These instructions,
Called "camera path data", indicate to the renderer which
Viewpoints and video sequences (associated with the
previously defined motion vectors) should be rendered and
encoded. Each video sequence associated with a motion vector
is preferably a relatively short (for example, eight to
fifteen frame) sequence which corresponds to an encoded MPEG
Group of Pictures (GOP).

To allow navigation through the virtual space, a
state machine is created which keeps track of the position,
direction, and motion of an operator navigating through the

virtual space. Based upon the position and direction of the

- 7 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

operator in the virtual space, the state machine dictates
which motion vector (more specifically, which video sequence
associated with a particular motion vector) should be
displayed. The state machine reflects the number of degrees
of freedom an operator may have, and the navigational
characteristics of the controller device (such as a joystick
or track ball) used to navigate through the virtual space.

As an operator moves through the virtual space, the
state machine is used to play the appropriate prererdered
video sequences through a "virtual projector". The virtual
projector cues and plays the prerendered video seguences
according to the instructions of the state machine,
overlapping in time the video sequence boundaries in such a
manner that the displayed video sequences approximate smooth
linear motion. In a preferred embodiment, the last frame of
a video seguence associated with a particular motion vector
is identical to the first frame in a video sequence

associated with an adjoining motion vector.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representational diagram showing the
general organization of frames in an MPEG video seguence.

Figure 2 is a block diagram showing a system for
generating a database of motion vectors and their associated
video sequences according to a preferred embodiment.

Figure 3 shows a sample reference grid within a
virtual space according to a preferred embodiment.

Figure 4 is a representation of a motion vector in
a reference grid according to a preferred embodiment.

Figure 5 is a sample listing of camera path data
according to a preferred embodiment.

Figures 6A -~ 6D are illustrative diagrams showing
possible orientations and motions of an operator at a
particular point in a virtual space.

Figures 7A - 7D are examples of state tables as
used by a state machine to determine the motion and
orientation of an operator navigating through a virtual
space.

Figure 8 is a block diagram of a playback system
according to a preferred embodiment.

Figure 9 is a diagram conceptually illustrating the
use of virtual projectors according to a preferred
embodiment.

Figure 10 is a diagram conceptually illustrating a

motion vector probability envelope.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

Figure 11 is a diagram showing the control and
operation of virtual projectors according to a preferred

embodiment.

DETAILED DESCRIPTION

The structure and function of the preferred
embodiments can best be understood by reference to the
drawings. The reader will note that the same reference
numerals appear in multiple figures. Where this is the case,
the numerals refer to the same or corresponding structure in
those figures.

The preferred embodiments of the present invention
include a method and system for the creation of and
navigation through a multidimensional space using encoded
digital video. A concatenated series of prerendered video
sequences (which are associated with predefined "motion
vectors") allow navigation through the space. The video
sequences are preferably encoded according to the MPEG-1 or
MPEG-2 standards discussed above, although other randomly
accessible, digital video encoding techniques develcoped
either now or in the future could also be used to encode the
video seguences.

The following discussion will be divided generally
into two parts: (1) the methods and systems used to create a
multidimensional virtual space and the framework needed to
navigate within that space, including the use of a coordinate
system and the creation of a database of motion vectors and

their associated video sequences; and (2) the methods and

- 10 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

systems used by an operator to navigate through the virtual

space.

Development of the Virtual Space and the Navigational
Framework

The first step in creating a navigational system
and framework for a virtual space is the creation of the
space itself. The virtual space is preferably created using
a general purpose computer, such as an IBM-compatible
personal computer. The operation and architecture of such
computers is well known in the art, and is explained in
several references, including The Winn L. Rosch Hardware
Bible (second edition), which is incorporated herein by
reference. If desired, the virtual space could also be
Created using more powerful general purpose computers or
workstations, or using dedicated computers.

In a preferred embodiment, the general purpose
computer used to create the virtual space runs a three
dimensional rendering package such as 3D Studio®,
manufactured by Autodesk Corporation. Such commercially
available rendering packages allow the creation and rendering
of highly realistic three dimensional spaces. A virtual
space is created by defining the shape and layout of the
Space, and by defining the shape and location of objects

within the virtual space. 1In a preferred embodiment, the

actual rendering (that is, the creation of full images) of

the virtual space takes place in a later step, which will be

discussed below.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

In an alternative embodiment, a real space (such as
a building, racetrack, etc.), could be chosen as the basis
for the virtual space navigated by an operator. In this
alternative embodiment, which will be discussed further
below, real video footage (instead of computer rendered
images) could be used to show portions of or scenes within
the virtual space.

After the virtual space itself has been generated,
it is preferably imported into a development system 10 as
shown in Figure 2. Development system 10 includes a
processor unit 12, a motion vector array or database 14, a
navigational controller 16, a digital video encoder 18, a
digital video decoder 20, and a display device 22. The
interaction between the components of development system 10
is controlled by processor unit 12, which preferably is or
includes a general purpose computer, such as an IBM-
compatible personal computer. Again, the operation and
architecture of such computers is well known in the art.

Since processor 12 may include a general purpose
computer, the rendering package used to generate the three
dimensional virtual space may be run on development system 10
if desired. Video encoder 18 and video decoder 20 are
preferably MPEG-1 or MPEG-2 type devices, the operation of
which are known to those skilled in the art. Navigztional
controller 16 may be any type of input device, such as a
joystick, track ball, keyboard, etc. Display device 22 may
be any type cf video monitor or video display device. The

motion vector database 14 is preferably constructed according

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

to a network node model that allows motion vectors to be
located very gquickly.

After a three dimensional model of a virtual space
is imported into (or generated by) development system 10, a
coordinate system is defined and imposed on the three
dimensional model. Alternatively, a coordinate system may
have been imposed on the three dimensional model by the
rendering package used to generate the model.

For the purposes of explanation here, a
rectangular, or cartesian coordinate system is used.

However, it will be understood that a spherical, cylindrical,
polar, or any other type of coordinate system may be used
with the present invention. 1In a preferred embodiment, the
coordinate system is divided into a plurality of discrete
node points, which may be regularly or irregularly spaced.
Each point in the virtual space has one or more associated
"view" or "current position" vectors which represent the view
an operator would have when located at that point and when
oriented to face a particular direction.

At each point in the virtual space, an operator
navigating through the space may have a number of
navigational options, or "degrees of freedom". For example,
from any given point the operator may have the option to move
forward, move backward, rotate left, rotate right, move up,
or move down.

For each option at each point in the coordinate
system, a motion vector is stored in motion vector database

14. The motion vectors represent the virtual path followed

- 13 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

by an operator when moving or translating from point to
point, or when rotating about a fixed point in the virtual
space. A separate motion vector is generated for each
allowed movement (that is, translation or rotation) within
the virtual space. The process by which motion vectors are
generated, and the process by which the associated video
sequences are rendered and encoded will be explained later.

Referring now to Figure 3, a sample reference grid
50 representing a rectangular coordinate system within a
virtual space is shown. Grid 50 is a rectilinear grid
extending in the X and Y directions as shown in Figure 3.
Grid 50 may also extend into the Z direction, which is normal
to the X-Y plane. The virtual space included in grid 50 may
include a number of massing objects 52 which may, for
example, represent stationary objects within a room. As
discussed above, each point in grid 50 may have one or more
associated "view" or “current position" vectors 54 which
represent the view an operator would have when positioned at
a particular point, and when looking in a particular
direction. Each view or current position vector 54 has an
associated field-of-view or frame-of-view 56, which
represents the extent of vision that an operator can have in
any one direction, and describes the extent of peripheral
vision available.

As can be seen in Figure 4, each node point P(x,y)
in reference grid 50 preferably has associated with it
several possible motion vectors 60 which, as discussed above,

represent a translation to a different point in the virtual

_14.—

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

space, or a rotation about a fixed point in the virtual
space. Each motion vector may be a pair of vectors, one in
the main direction and one in the return direction. There
are preferably vectors for rotate right, rotate left, move
forward, look up, and look down. Reciprocal vectors can be
used to add motion options not specifically identified. For
example, the motion backwards from the node point P(x,y) is
the reciprocal of the motion forward to the point P(x-dx, y-
dy), where dx and dy are incremental, arbitrarily chosen
units of distance in the x and y directions, respectively.
Alternatively, separate motion vectors for each possible
translation and rotation (including reciprocal motions) could
be generated and stored in motion vector database 14.

The method by which a complete set of motion
vectors can be created and stored in a motion vector database
will now be described. Since motion vectors represent the
virtual path followed by an operator when translating from
point to point, or when rotating about a fixed point in the
virtual space, a separate motion vector is generated for each
allowed translation or rotation within the virtual space.
Thus, the size of the motion vector database is proportional
to the number of points in the virtual space, and the number
of degrees of freedom an operator has when navigating through
the virtual space. However, in many cases it will be
possible to simplify the task of generating a database of
motion vectors by constraining movement to certain portions
of the virtual space. For example, most virtual spaces will

have areas in which an operator will not need or expect to be

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

able to go, such as through solid objects, or to the
underside of a table. By prohibiting movement in such areas,
the total number of motion vectors required can be reduced.

Once it has been decided which areas in the virtual
space can be traversed by the operator, a set of mction
vectors can be calculated for each point in those areas. In
a preferred embodiment, the motion vectors are generated
automatically by development system 10 (See Figure 2).
Appendix A includes a preferred computer program which is
used to generate a motion vector database. As can be seen in
Appendix A, routines are used to calculate all allowed
translation and rotation paths from all allowed points in the
virtual space.

After the translation and rotation paths
represented by each motion vector have been stored in the
database, the video sequences associated with those motion
vectors are rendered, encoded, and stored in the database.
The rendering is preferably performed using the same
rendering package used to create the virtual space. Sihce
rendering takes place "off-line" (that is, before an operator
can navigate through the virtual space), the speed of
rendering is irrelevant. Accordingly, extremely detailed
images (which may take considerable time to render) can be
used to show portions of or scenes within the virtual space.

In a preferred embodiment, system 10 automatically
generates instructions used by the rendering package to
dictate the position and movement of a “virtual camera"
through the virtual space. Again, an appropriate rendering

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

package may be installed in and run by system 10, or the
rendering package may be installed in and run by a separate
computer system. The use of virtual cameras in three
dimensional rendering packages is known to those skilled in
the art.

The virtual camera instructions, called "camera
path data", indicate to the rendering package which view
points and video sequences (associated with the previously
defined motion vectors) should be rendered. As or after a
video sequence has been rendered, the video sequence is
encoded by video encoder 18 (see Figure 2) and stored in the
motion vector database 14 linked to its associated motion
vector.

The computer program included in Appendix A also
contains routines which are used to generate camera path
data. Figure 5 is an example of camera path data as
generated according to a preferred embodiment. The exemplary
camera path data of Figure 5 shows the movement instructions
for a virtual camera (called "DCAM2") in the Y direction
only, with no motion in the X and Z directions. Similar
camera path data can be generated to record movement with
components along the X and Z axes, and to represent rotation
about a fixed point. Of course, any motion in any direction
could be included in the camera path data.

The first row of Figure 5 shows that the virtual
camera DCAM2 begins at an X position of 156, a v position of
24, and a Z position of 72. Recording of the video seguence

begins at Frame 0. As can be seen in the subsequent rows,

- 17 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

DCAM2 moves in the Y direction in increments of 24 units for
every 15 frames recorded. So in this example, the video
sequence associated with a motion vector representing
translation in the Y direction (from one point to another)
would be 15 frames long, and would cover a distance of 24
units in the Y direction. The number of units moved in any
direction depends upon the spacing (that is, distance)
between points within the wvirtual space.

In an alternative embodiment, where the virtual
space to be navigated through is based upon a real physical
space, the camera path data could be used to control real
automated cameras (sometimes called "motion controlled
cameras'") which move through and record images of the real
space.

As discussed above, the video sequences may be
encoded (using video encoder 18) either while they are being
rendered, or after they have been rendered. Each video
seguence begins with a "key frame", which is a frame from
which the video sequence can be accessed after it has been
stored in the database. Each video sequence preferably also
ends with a key frame which is the first frame of a possible
subsequent video sequence.

In a preferred embodiment which incorporates MPEG
encoding, each video sequence associated with a motion vector
includes an MPEG Group of Pictures (GOP) which begins with an
I frame (See Figure 1). Thus, in an embodiment incorporating
MPEG encoding, the "key frames" correspond to the MPEG I

frames. Each encoded video seguence associated with a motion

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

vector also ends with an I frame from a next possible video
sequence. By always starting and ending an encoded video
stream with an I frame (or other key frame), the appearance
of smooth motion can be achieved when navigating through the
virtual space. Again, I frames are typically placed in every
8 to 15 frames (i.e., every 1/4 to 1/2 second) of video
footage. However, I frames could be rlaced closer together
if dictated by the location or spacing of reference points
within the virtual space, or by other factors.

After the motion vector database (including the
associated encoded video sequences) is complete, a state
machine is automatically created. This state machine keeps
track of the position, orientation, and motion of an operator
navigating through the virtual space; and based upon the
position, orientation and motion of the operator in the
virtual space, the state machine dictates which motion vector
(more specifically, which video sequence associated with a
particular motion vector) should be displayed at any given
time. The state machine reflects the number of degrees of
freedom an operator may have, and the navigational
characteristics of the navigational controller 16 (see
Figures 2 and 8) used to navigate through the virtual space.
The use of state machines is well known in the art, and there
are many different types of state machines that could be used
with 'the present invention. Accordingly, the specific
techniques used to generate a preferred state machine will

not be described in detail.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

Figures 6A - 6D contain graphical representations of
selected motion vector node geometries according to a
preferred embodiment. Figures 6A - 6D represent motion and
orientation in two dimensions (here, the X-Y plane) only.
However, it will be understood that similar figures could be
used to represent motion and orientation in more than two
dimensions.

Figure 6A represents the possible orientations and
motions of an operator when facing or moving away from a node
point in the virtual space. Each labeled arrow (A, through
A..,) represents a possible orientation (or direction of
motion) when an operator is positioned at a particular node
point P(x,y) in the virtual space. By way of analogy, each
of the labeled arrows could be equated with the directions
shown on a compass. For example, A, could represent due
north, A, could represent due south, A, . could represent
southwest, etc. Similarly, Figure 6B represents the possible
orientations or directions of motion when moving into a
particular node point P(x,y).

Figure 6C represents the motion of an operator when
rotating to the right about a particular node point. P(x,y).
Here, the various motions (labeled C, through C,,,) represent
one-eighth turns around the node point P(x,y). For example,
C, represents a one-eighth turn around a node point beginning
facing in the "due north" direction, and ending facing in the
"northeast" direction. Similarly, Figure 6D represents a
left rotation about a fixed node point P(X,y). For example,

the motion labeled D,,, represents a one-eighth turn about a

- 20 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

node point beginning facing in the "due east" direction, and
ending facing in the "northeast" direction.

Figures 7A - 7D are exemplary state tables which show
beginning and end states for particular motions in the
virtual space. Here, only the move forward, move backward,
rotate left, and rotate right substates are shown. However,
it will be understood that other substates, such as move up,
move down, look up, and look down could also be included in
the present invention.

The state tables shown in Figures 72 - 7D each
include four columns. The first column includes the CPV, or
current position vector. The current position vector shows
the orientation of an operator at a particular point P(x,y)
in the virtual space. For example, the first entry in the
CPV column of Figure 7A shows an orientation in the A,
direction (see also Figure 6A).

The second column includes the MV (motion vector)
representing a rotation about, or translation from, that
point P(x,y). The third column includes the NPV, or next
position vector. The next position vector represents the
orientation of an operator after the rotation or translation
represented by the motion vector has taken place. 1In Figure
72, the NPV is always the current position vector since after
moving backwards, the operator remains oriented in the same
direction. The fourth column includes the NPCC, or next
position change coordinate. The next position change
coordinate here represents the change in the position of the

operator when making a particular movement in the virtual

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

space. The NPCC code, as shown in Figures 7a - 7D,
represents the type and direction of motion in the x and y
directions caused by the execution of a motion vector. The
normalized stepwise factor k represents an arbitrary unit of
distance between points in the coordinate system, where x is
defined as positive going to the right, and y is defined as
positive going up. The operation of the state machine will
be explained further in connection with the discussion of

navigation through the virtual space.

NAVIGATION THROUGH THE VIRTUAL SPACE

After the motion vector database has been completed
and the desired state machine established, a player program
or "shell" can be used to play the video seguences associated
with the stored motion vectors as the operator navigates
through the virtual space. A preferred player program is
included in Appendix A.

The player program preferably runs on a playback
system 10A as shown in Figure 8. System 10A is nearly
identical to the system 10 shown in Figure 2, except that a
video encoder is not required in system 10A. Also, the
processor unit 12 in system 10A (which again, may be a
general purpose computer) need not be able to run or
interface with a rendering package.

The player program operates the state machine
discussed above to obtain the appropriate motion vector based
on the current operator position, orientation, and motion.

So when an operator navigating through the virtual space

- 22 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

changes his or her position by means of navigational
controller 16, the appropriate motion vector is selected from
database 14, and the encoded video sequence associated with
it is decoded by decoder 20, and displayed on display device
22.

To produce a smooth transition from one video
sequence to another, a preferred embodiment includes the
concept of "virtual projectors'". Such virtual projectors,
shown conceptually in Figure 9, are used in the caching,
gueuing, and running of video seguences to be displayed on
display device 22.

Figure 11 is a block diagram showing a virtual
projector system 80 according to a preferred embodiment.
Virtual projector system 80 may be implemented in software or
hardware to manage the caching, queuing, and running of video
sequences. Virtual projector system 80 preferably includes a
virtual projector control interface 82, one or more source
control elements 84, and one or more surface control elements
86. Virtual projector control interface 82 interacts with
the state machine operated by the player program to determine
which motion vectors (or more specifically, which associated
video sequences) should be extracted from database 14, and
which extracted video sequences should actually be displayed
on display device 22. Virtual projector control interface 82
controls source control elements 84, which are used to
extract from motion vector database 14 the desired video
sequences. Surface control elements 86, which correspond to

the individual projectors shown in Figure 9, are also

- 23 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

controlled by virtual projector control interface 82 and
receive video sequehce information from source control
elements 84. More specifically, virtual projector control
interface 82 controls the timing and output of surface
control elements 86.

The outputs of surface control elements 86 are
"displayed" on logical display surface 88, which may include
one or more virtual surfaces 88a through 88n. Surface
control elements 86 may generate an output which is displayed
on more than one virtual surface, and more than one surface
control element 86 may project onto the same surface. Each
surface 88a - 88n may be assigned a specific priority of
display. For example, the images displayed on surface 88a
may be made to appear in front of images displayed on surface
88c. Such display techniques are commonly used, for example,
in personal computers running a Microsoft Windows or Apple
MacIntosh type user interface. The number of surfaces used
is dependent upon the capabilities of the hardware and
operation environment of playback system 10A (see Figureée 8).
Using techniques known to those skilled in the art, the
images displayed on surfaces 88a - 88n may then be fed to and
shown on display device 22 so as to be visible to the
operator.

To seamlessly concatenate (or "string together") a
series of video sequences, surface control elements 86
preferably function in a way similar to that of synchronized
movie theater projectors. In a movie stored on several

separate reels of film, the last few frames of film on one

_24...

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

reel are typically duplicated on a subsequent reel. By
synchronizing the projectors, these identical frames can be
projected simultaneously from both reels. When the film in
one projector runs out, the second projector continues,
creating a seamless transition between film reels.

The preferred virtual projector system 80 similarly
uses the concepts of synchronization and frame overlap to
allow a smooth transition between concatenated video
sequences. As was discussed above, each video sequence
associated with a motion vector begins with a "keyframe",
which is an MPEG I frame in a preferred embodiment. Each
video sequence also ends with a keyframe (preferably an MPEG
I frame) that is identical to the first frame in a next
possible video sequence. Thus, when a first surface control
element 86 displays the last frame in a video sequence on a
particular surface (for example, surface 88a), a second
surface control element 86 simultaneously displays the
identical first frame in a subsequent sequence on that same
surface. The second surface control element 86 then
continues to display the remaining frames in that subsequent
video sequence. This process is repeated for each .video
Ssequence displayed. Again, virtual projector control
interface 82 controls the timing and output of each surface
control element 86. Of course, if the operator ceases to
move through the virtual space, then the last frame of the
last video sequence may be continuously displayed on display

device 22.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

In addition t6 permitting the seamless
concatenation of video sequences, independently controllable
surface control elements 86 could also be used to provide
picture-in-picture effects. For example, one surface control
element could be used to display the scene outside a car’s
windshield, and another surface'control element could be used
to display the scene shown in a car’s rear view mirror.

In addition, short MPEG video sequences (called
Dynamic Motion Kernels, or DMKs) representing kinetic
segments or effects within a larger scene (such as the motion
of an object across a room) can be stored and indexed in the
motion vector database 14, and displayed using virtual

projector system 80.

FURTHER DETAILS OF STATE MACHINE OPERATION

As was discussed above with respect to Figures 6a -
6D and 7A - 7D, a preferred embodiment incorporates a player
program running a state machine to permit navigation through
a virtual space. These Figures will be used explain below
further details of state machine operation in a preferred
embodiment, and the manner in which motion vectors are
retrieved and queued.

When navigating through a virtual space, an
operator is always at some point P(x,y) which may have
several possible motion vectors associated with it. The
state machine is used to keep track of which particular
motion vector should be accessed next. For example, Figure

7A represents the state table for the "move backward"

- 26 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

substate. When an operator is at a node point P(x,y) facing
the A, direction (see Figure 6A) and attempts to move
backward (for example, by pulling back on a joystick), the
motion vector retrieved will be a B,.. type motion vector (see
Figure 6B). The video sequence associated with that
particular motion vector will be queued and played by a
virtual projector. The next position vector will be the
previous current position vector (which is A,,,), and the next
position change coordinate will be X-k,y. That is, the
operator begins the move at a particular point P(x,y) facing
in the A_,, direction, which is directly along the positive X
direction. The operator moves backwards while facing the 2a_,
direction, and thus ends at a point P(x~-k,y) still facing the
A,,, direction. The B,,, type motion vector representing that
particular backwards move is retrieved, and the associatead
video segment displayed.

The state table for the "“move forward" substate shown in
Figure 7B is similar. For example, when an operator is at a
node point P(x,y) facing the A,,, direction and attempts ‘to
move forward (for example, by pushing forward on a joystick),
the motion vector retrieved will be an A, type motion
vector. The video sequence associated with that particular
motion vector will be queued and played by a virtual
projector. The next position vector (i.e., the position
vector when the next point is reached) remains A, ., and the
next position change coordinate is x+k, y+k. That is, the
operator begins at a node point P(x,y) facing in the A

direction, moves in the A,,, direction, and ends up at a node

- 27 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

point P(x+k, y+k) still facing in the A,,, direction. The 2,
type motion vector associated with that particular forward
move is retrieved, and the associated video segment
displayed.

The state tables for rotation about a fixed point
P(x,y) are shown in Figures 7C and 7D. For example, the
first line of the table shown in Figure 7C specifies the turn
right substate where an operator is at a point P(x,y) facing
the A, direction. If an operator attempts to rotaté right
about that point (for example, by pushing a joystick to the
right), the motion vector retrieved will be a C, type motion
vector which represents a one-eighth rotation to the right.
The video sequence associated with that particular motion
vector will be queued and displayed. The next position
vector is A,,;, and the next position change coordinate is x,y
(which is represented by the code 0). That is, an operator
begins at a point P(x,y) facing the A, direction. The
operator then makes a one-eighth turn around the point and
remains at point P(x,y), but now faces the A, , direction.
The C, type motion vector representing that particular
rotation is retrieved, and the associated video segment
displayed.

The operation of the state table representing a
left rotation is analogous to the operation of the right

rotation state table, and will not be discussed here.

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

EFFICIENT RETRIEVAL OF MOTION VECTORS

The motion vectors are preferably arranged in
database 14 with a specific schema designed to optimize the
relationship between the motion vectors’ geometrical
relationship in the virtual space, and the representation of
those vectors in the layout of the database (which is
preferably on a recorded magnetic and/or optical disk). For
example, the overall speed and responsiveness of the system
could be enhanced by locating the data for motion vectors
likely to be played close together in time physically close
together on the disk or other storage medium. Other
retrieval time optimization techniques know to those skilled
in the art could also be used.

To further increase the speed of motion vector
retrieval, a set of motion vectors can also be characterized
mathematically as a set of "probability vectors" (see Figure
10). Taken as a whole, this set is equivalent to a
"probability envelope". That is, at any given point P(x,y,z)
in the virtual space there may be several possible motion
vectors (shown in Figure 10 as Mv0 - Mvm) representing
possible translations or rotations in the virtual space. The
probability that motion vectors associated with that point
(or with nearby points) will be required soon is relatively
high. The probability that a motion vector associated with a
more distant point will be needed soon is lower. So the
probability that a particular vector will be used to generate

the next video sequence displayed is determined by the

29

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

position and direction of the operator traveling through the
virtual space, and by any rules that may apply.

Computer programs can be used to include any
particular factors in determining motion vector
probabilities. The database engine can also be optimized for
particular constraints or probability-determining factors.
The factors used in determining which motion vector in the
envelope is most likely to be needed next can include
position, direction, velocity, and higher order factors.

By using virtual projector system 80 (see Figure
11) to cache and queue the next possible motion vectors
according to their probability of being called (such that the
ones most likely to be called are queued most rapidly for
display), the overall speed and responsiveness of the system
can be enhanced. For example, a point P(x,y,z) within the
virtual space may have five possible motion vectors
associated with it. So when an operator arrives at or near
the point P(x,vy,z), the five video sequences associated with
those five possible motion vectors could be cached and gueued
in five surface control elements 86. After the operator
indicates (through navigational controller 16 (see Figure 8))
which motion vector is appropriate, the virtual projector
control interface 82 commands the surface control element 86
containing the video sequence associated with that motion
vector to display the sequence in the manner discussed above.
Unplayed video sequences cached in surface control elements

86 are simply discarded, ignored, or erased.

.30

10

15

20

25

30

35

WO 97/30420 | PCT/US97/02290

Object Constraint Systems

Each scene observed by the operator of a virtual
reality or interactive computer system has three kinds of
objects: stationary scene objects which form the background,
constrained objects that exhibit a limited ability to move
against the background, and free-floating or unconstrained
objects. In most cases, the largest number of objects in a
given scene are of the stationary category, followed next by
constrained and then free-floating objects. Regardless of

the type of object, current virtual reality or interactive

computer systems require each object to be fully rendered for

each frame in which it is displayed. The present invention
reduces the number of calculations required to present
scenes. However, the number of motion vectors available may
be limited by the size of the motion vector database.
Accordingly, storing a large number of scenes including
different possible positions for free-floating objects may
not be practical.

The virtual projector of the preferred embodirient
can also be used advantageously in this situation. In a
preferred embodiment, free-floating objects (which are
rendered in real time) can be projected on a second video
display plane, which would overlay the video planes of the
stationary and constrained motion prerendered objects. This
allows untonstrained manipulation of free-floating objects
using standard input or operator interface devices. And

since free-floating objects tend to be small, the rendering

i 31 -—

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

of these objects in real time can be performed with fairly

high resolution.

Representing Velocity Changes

Changes in an operator’s apparent translational or
rotational velocity in the virtual space can be controlled
through the use of a variable speed video decoder 20 (see
Figure 8). If video decoder 20 is not a variable speed video
decoder, realistic motion vector simulation of acceieration
and deceleration can be achieved by duplication of frame
data, and by frame "jumping". That is, the more duplicated
frames there are in a video seguence, the slower the
operator’s apparent velocity. Conversely, by skipping frames
in a video sequence, the operator’s apparent velocity through
the virtual space can be increased.

The present invention has been described in terms
of a preferred embodiment. However, the scope of the

invention is defined by the appended claims.

WO 97/30420 PCT/US97/02290

Appendix A

U.S. Patent Application Serial No.: Not yet assigned

Filing Date: February 14, 1996 (filed concurrently herewith)

For: METHOD AND SYSTEM FOR THE CREATION OF AND NAVIGATION THROUGH
A MULTIDIMENSIONAL SPACE USING ENCODED DIGITAL VIDEO

By: Geraid M. Segal

Atty. Docket No.: 8680-003-999

- 33 -

WO 97/30420

1

Global X1 As Integer

Global X2 As Integer

Global X3 As Integer

Global X4 As Integer

Global Y1 As Integer

Global Y2 As Integer

Global Y3 As Integer

Global Y4 As Integer

Global Z1 As Integer

Global Z2 As Integer

Global KeyScale As Integer
Global FrameGroup As Integer
Global ObjectName As String
Global FileNameDir As String
Global XAsend As integer
Global YAsend As Integer
Global XReturn As Integer
Global YReturn As Integer
Global PitchFlag As Integer
Global RevMode As Integer
Global RollFlag As Integer
Global YawFlag As Integer
Global SkewFlag As Integer
Global AutoFileMode As Integer
Global ZSingleSlopeFunction As Integer
Global ZStepFunction As integer
Global ZConstantFunction As Integer
Global ZEValue As Integer
Global ZFValue As Integer
Global ZAValue As Integer
Global ZBValue As Integer
Global RootFN As String

Global SeqNum As Integer
Global KeyNum As Integer
Global MPGIndex As Integer
Global QuadNum As Integer

PCT/US97/02290

Function GetMPGFilename () // This Gets the next filename of a motion vector no dups.

MPGIndex = MPGindex + 1

KeySeq$ = Format$(MPGindex, “0000")

GetMPGFilename = RootFN + KeySeq$ + ".MPG"

End Function

Function GetNextFileString () // Get directory string

WO 97/30420 PCT/US97/02290

SeqNum = SegqNum + 1

Seq$ = Format$(SegNum, "0000")

GetNextFileString = FileNameDir + RootFN + Seq$ + ".ASC"
End Function

Sub RotateMultiY () // calculates a series of right rotational motion vectors
RootFN = "ROTR"
! db
Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"
Form3.Data1.RecordSource = "Quadrant”
Form3.Data1.Refresh
If Form3.Data1.Recordset.BOF = False Then

Form3.Datal.Recordset.MoveLast

End If

e end db ------mmeeeceeee

For YValue = Y1 To Y2 Step KeyScale
XValue = X2

ZF1Value = (YValue - Y1} / KeyScale
If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If

If ZConstantFunction = True Then
ZValue = Z1

End Iif

If ZSingleSlopeFunction = True Then
ZValue = 21 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

Fnumb = 0O

FnumbEnd = FrameGroup * 8
AngleStart = O

AngleEnd = 360

Do Until XValue > X3

RVector = 21

ASCFileName$ = GetNextFileString()

Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$

Open ASCFileName$ For Append As #1

Print #1, Header$

'Debug.Print Header$

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + “, " +
Str$(YValue) + ", " + Format${ZValue, "###.00") + ", " + Str$(Fnumb)

Print #1, OutStrNext$

‘Debug.Print OutStrNext$

OutStrRotate$ = "Rotate, " + ObjectName + ", " + "0, 0, 1, " + Str$(AngleStart)
+ ", " + Str${Fnumb)

Print #1, OutStrRotate$

‘Debug.Print QutStrRotate$

OutStrRotate$ = "Rotate, " + ObjectName + ", " + "0, 0, 1, " + Str$(AngleEnd) +
", " 4+ Str${FnumbEnd)

Print #1, OutStrRotate$

‘Debug.Print OutStrRotate$

OutSrrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25, 0, 0, " + Str$(Fnumb)

- 35 -

WO 97/30420

Print #1, OutStrCBTF$

Fnumb1 = Fnumb

ForN =1To 8

’ db
Form3.Data1.Recordset.AddNew

Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YVaiue
Form3.Data1.Recordset("Zcoord") = ZVaiue
Form3.Data1.Recordset("Direction_Vector") = RVector
Form3.Data1.Recordset{"QuadNo"} = QuadNum

Form3.Datal.Recordset("Frame#"}) = Fnumb1

PCT/US97/02290

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"

Form3.Datat.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()

Form3.Data1.Recordset("Stream_File") = Mpgfilename$

Form3.Datat.Recordset.Update
RVector = RVector + 2

Fnumbi1 = Fnumb1 + FrameGroup

KeyNum = KeyNum + 1

OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1,1, 0"

----- --- end db
Next N
XValue = XValue + KeyScale
Print #1, OutStrScale$
Print #1, "End"
‘Debug.Print "End”
Close #1
Loop
Next YValue
L e [0 P —
form3.Data1.Recordset.Close
e db end ------------
End Sub

‘M

Sub RotateMultiYB () ‘// Calculates a series of Left rotational motion vectors

RootFN = "ROTL"
' db

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Data1.RecordSource = "Quadrant”

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then

Form3.Data1.Recordset.MoveLast

------------------ end db ------e--remmnem-
For YValue = Y1 To Y2 Step KeyScale
XValue = X2
ZF1Value = (YValue - Y1) / KeyScale
If ZStepFunction = True Then

ZValue = ZAValue + ZBVaiue

- 36 -

WO 97/30420 PCT/US97/02290

End If

If ZConstantFunction = True Then
ZValue = 21

End i

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAValue / ZBValue) * {ZF1Value * KeyScale))

End If

Fnumb = 0

FnumbEnd = FrameGroup * 8
AngleStart = O

AngleEnd = 360

Do Until XValue > X3

RVector = 36

ASCFileName$ = GetNextFileString()

Fnumb1 = Fnumb

ForN=1T08

! db
Form3.Data1.Recordset. AddNew
Form3.Data1.Recordset("KeyNo") = KeyNum

Form3.Datal.Recordset("Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset{"Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = RVector
Form3.Datat.Recordset("QuadNo") = QuadNum
Form3.Datal.Recordset{"Frame#") = Fnumb1

Form3.Datal.Recordset("ASC_Filename”) = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$
Form3.Data1.Recordset.Update

RVector = RVector - 2

Fnumb1 = Fnumb1 + FrameGroup

KeyNum = KeyNum + 1

end db -------

Next N
XValue = XValue + KeyScale

Loop

Next YValue

! db
Form3.Data1.Recordset.Close

e db end ------------

End Sub

Sub SkewNEMulti () * // builds NE oriented Vectors = =
RootFN = "SKNE"

DY = Y2 -VY1
DX = X3 - X2
Fnumb = O

If ZStepFunction = True Then

- 37 -

WO 97/30420 PCT/US97/02290

ZValue = ZAValue + ZBValue

End if .
If ZConstantFunction = True Then
ZValue = 21

End If

! db

Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Data1.RecordSource = "Quadrant”

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Datal1.Recordset.MovelLast

For N = 1 To (DX / KeyScale)
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$

Fnumb = 0
XValue = X1
YValue = Y2 - (N * KeyScale)

YLast = YValue
ZF1Value = ZFValue - N
Do Until (XValue > X1 + (N * KeyScale))

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * {ZF1Value * KeyScale))

End If

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str${Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25, 0,0, " +
Str$(Fnumb)

Print #1, OutStrNext$

‘Debug.Print OutStrNext$

Print #1, OutStrCBTF$

db

Form3.Datal.Recordset("KeyNo"} = KeyNum
Form3.Data1.Recordset{"Xcoord"} = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset{"Direction_Vector") = 13
Form3.Data1.Recordset{"QuadNo"} = QuadNum
Form3.Datal.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset{"ASC_Filename") = Right${ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset{"VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File”) = Mpgfilename$

- 38 -

WO 97/30420 PCT/US97/02290

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update

' end db ---
XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, O"
OutStrRotate$ = "Rotate, " + ObjectName + ", * + "1, 0, O, 0, O"

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
'Debug.Print "End"
Close #1

--------------------- 1st 3rd --------m-eeemaee-
ZF1Value = ZEValue - 1
NS = (DY - DX) / KeyScale
For N = 1 To NS
YVaiue = Ylast - (N * KeyScale)
XValue X1
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$
Fnumb = O
Do Until XValue > X3

o

Form3.Data1.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25,0, 0, " +
Str$(Fnumb)

Print #1, OutStrNext$

"Debug.Print OutStrNext$

Print #1, OutStrCBTF$

db
Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Datal.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 13
Form3.Data1.Recordset{"QuadNo"}) = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Datat1.Recordset("ASC_Filename”} = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

-39 -

WO 97/30420 PCT/US97/02290

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File”) = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Datal.Recordset.Update
! end db

XValue = XValue + KeyScale

Fnumb = FrameGroup + Fnumb

YValue = YValue + KeyScale

ZF1Value = ZF1Value + 1
Loop :
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1,1, O"
QutStrRotate$ = "Rotate, " + ObjectName + “, " + "1, 0, 0, 0, O"

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
‘Debug.Print "End"

Close #1

2F1Value = ZEValue - 1
Next N
B et Next 3rd --------------=v--
YVaiue = Y1

YEndValue = Y3 - KeyScale
For N = 1 To (DX / KeyScale) - 1
XValue = X1 + (N * KeyScale)
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header $
Fnumb = O
Do Until XValue > X4

Form3.Datal.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + {(ZAValue / ZBValue) * {ZF1Value * KeyScale))

End if

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Stré$(YValue) + ", " + Format$({ZValue, "###.00") + ", " + Str$(Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25, 0,0, " +
Str$(Fnumb)

Print #1, OutStrNext$

Debug.Print OutStrNext$

Print #1, OutStrCBTF$

‘ db

Form3.Data1.Recordset{"KeyNo") = KeyNum

Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue

Form3.Data1.Recordset("Direction_Vector"} = 13

- 40 -

WO 97/30420

Form3.Data1.Recordset("OuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

PCT/US97/02290

Form3.Data1.Recordset("ASC_Filename") = Rights(ASCFileNames, 12)

ST1$ = Right$(ASCFiIeName$, 12)
ST2$ = Left$(ST16, 8) + " VUE"

Form3.Data1.Recordset("VUE_Filename“) = ST2$

Mpgfilename$ = GetMPGFilenamel()

Form3.Datal _Recordset("Stream_File”) = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Datal .Recordset.Update
! --—-end db
XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

Loop
OutStrScale$ = “Scale, " + ObjectName + ", " + "1.1,1,0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1,0,0,0,0"

Print #1, OutStrScale$

Print #1, OutStrRotate$

Print #1, "End”

‘Debug.Print "End”

Close #1

YValue = Y1

ZF1Value = ZEValue - 1
XValue = XValue + KeyScale

Next N

e db -mmmmmememmmnmees

Form3.Datal .Recordset.Close

ettt db end ------=-----
End Sub

Sub SkewNEMultiB () “// Builds NE oriented vectors with a backward direction

RootFN = "NEBK"

DY = Y2-Y1
DX = X3 - X2
Fnumb = O

If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
I1f ZConstantFunction = True Then
ZValue = Z1

End If

L db

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Fform3.Datal.RecordSource = "Quadrant”

Form3.Datal.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Datal _Recordset.Movelast

End If

T end db ------m-moemmemmmms

For N = 1 To (DX / KeyScale)

- 41 -

WO 97/30420 PCT/US97/02290

ASCFileName$ = GetNextFileString()
Fnumb = O)
XValue X1 + (N * KeyScale)
YValue = Y2

ZF1Value = ZFValue

Do Until (XValue < X1)

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End

! db
Form3.Datal.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset{("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector”) = 14
Form3.Datal.Recordset{"QuadNo") = QuadNum
Form3.Data1l.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right${ASCFileName$, 12)
ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal1.Recordset("VUE_Filename”) = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! end db -
XVaiue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1
Loop
Next N
ZF1Value = ZFValue
NS = (DY - DX) / KeyScale
For N = 1 To NS
XValue = X3
YVaiue = Y3 - (N * KeyScale}
Ylast = YVaiue
ASCFileName$ = GetNextFileString()
Fnumb = O
Do Until XValue < X1

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAValue / ZBValue) * {ZF1Value * KeyScale))

End if
! db --mmeeeeneeee-

Form3.Datal.Recordset{"KeyNo") = KeyNum

- 42 -

WO 97/30420 PCT/US97/02290

Form3.Datal.Recordset{"Xcoord") = XValue
Form3.Datal.Recordset{"Ycoord"}) = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue
Form3.Datal.Recordset("Direction_Vector") = 14
Form3.Datal.Recordset("QuadNo") = QuadNum
Form3.Datal.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$% = Right$(ASCFileName$, 12)
ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFiiename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
' end db
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Vaiue - 1
Loop
ZF1Value = ZFValue
Next N
XValue = X4
For N = 1 To (DX / KeyScale) - 1
YValue = YLast - (N * KeyScale)
ZF1Value = ZFValue - 1
ASCFileName$ = GetNextFileString(}
Fnumb = O
Do Until YVaiue < Y1

Form3.Data1.Recordset. AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = 21 + ((ZAValue / ZBValue) * (ZF1Vaiue * KeyScale))

End If

! db
Form3.Datal.Recordset("KeyNo") = KeyNum
Form3.Datal.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 14
Form3.Data1.Recordset{"QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset{"VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Datat.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1

Form3.Datal.Recordset.Update

T T ERR R end db -

- 43 -

WO 97/30420 PCT/US97/02290

XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

Loop

ZF1Value = ZFValue - (N + 1)

XValue = X4

Next N

e dD ~eemmemeammmmnen

Form3.Data1.Recordset.Close

R db end ------------
End Sub

Sub SkewNWMulti () "\\------- builds NW motionvectors forward.
RootFN = "SKNW"

DY = Y2 - Y1
DX = X4 - X1
Fnumb = 0

If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = Z1
End If
! db
Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"
Form3.Data1.RecordSource = "Quadrant”

Form3.Data1.Refresh
1f Form3.Data1.Recordset.BOF = False Then
Form3.Data1.Recordset.Movelast

For N = 1 To (DX / KeyScale)
ASCFiteName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, * + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
'Debug.Print Header$

Fnumb = 0
XVaiue = X1 + (N * KeyScale)
YValue = Y1

ZF1Value = ZEValue - 1
Do Until (XValue < X1)

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If
QutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YValue) + ", * + Format$(ZValue, "###.00") + ", " + Str${Fnumb)

QutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25,0, 0, " +

- 44 -

WO 97/30420 PCT/US97/02290

’

Str$(Fnumb)
Print #1, OutStrNext$
Print #1, OutStrCBTF$
'Debug.Print OutStrNext$
Print #1, OutStrCBTF$

! db
Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Datal.Recordset("Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Datal.Recordset("Zcoord") = ZValue
Form3.Data1l.Recordset("Direction_Vector") = 19
Form3.Datal1.Recordset{"QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Datal1.Recordset("ASC_Filename") = Right${ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename™”)} = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! - end db --

XVaiue

= XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1
Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, 0"

OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0, 0, 0, O"
Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
‘Debug.Print "End"
Print #1, OutStrCBTF$
Close #1
Next N
NS = DX / KeyScale
For N = 1 To NS
XVaiue = X4
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
'Debug.Print Header$
ZF1Value = ZEValue - 1
YValue = (N * KeyScale) + KeyScale
YLast = YVaiue
Fnumb = 0
Do Until XValue < X1

Form3.Data1.Recordset.AddNew

- 45 -

WO 97/30420 PCT/US97/02290

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

OutStrNext$ = "Move, " + ObjectName + ", " + Str${XValue) + ", " +
Str${YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)

OutStrCBTF$ = "CBTFT, * + ObjectName + ", 0, 0, 25, 25, 0,0, " +
Str$(Fnumb)

Print #1, OutStrNext$
Print #1, OutStrCBTF$
‘Debug.Print OutStrNext$

db

Form3.Datat.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector”) = 19
Form3.Data1.Recordset("QuadNo"} = QuadNum
Form3.Datat.Recordset("Frame#") = Fnumb

Form3.Datal.Recordset{"ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename(}
Form3.Datal.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db -
XValue XValue - KeyScale

Fnumb = FrameGroup + Fnumb

YValue = YValue + KeyScale

ZF1Value = ZF1Vaiue + 1

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, O"
OutStrRotate$ = "Rotate, " + ObjectName + “, " + "1, 0, 0, O, O"

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
"Debug.Print "End”
Close #1
ZF1Value = ZF1Value + 1
Next N
NYs = ((DX - KeyScale) / KeyScale) + 1
YValue = YlLast + KeyScale
XValue = X4
ZF1Value = ZEValue
For N = 1 To NYs
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
'Debug.Print Header$

- 46 -

WO 97/30420

Fnumb = O
Do Until YValue > Y3

Form3.Datal.Recordset. AddNew

Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str${Fnumb)

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0,00 0"

If ZSingleSlopeFunction = True Then

ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

PCT/US97/02290

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25, O, o, " +
Str$(Fnumb)

Print #1, OutStrNext$
Print #1, OutStrCBTF$
‘Debug.Print QutStrNext$
! db
Form3.Data1.Recordset("KeyNo") = KeyNum

Form3.Datal.Recordset("Xcoord") = XValue
Form3.Datal.Recordset("Ycoord") = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 19
Form3.Datal.Recordset{"QuadNo") = QuadNum
Form3.Datal.Recordset("Frame#"} = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)

ST1$ = Right${ASCFileName$, 12)

ST2$ = Left$(ST1%, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Vaiue = ZF1Value + 1

Print #1, OutStrScale$

Print #1, OutStrRotate$

Print #1, "End"

‘Debug.Print "End"

Ciose #1

YValue = YLast + (N * KeyScale) + KeyScale
ZF1Value = ZEValue + N

XValue = X4

Next N

--db

Form3.Data1.Recordset.Close

End Sub

- 47 -

WO 97/30420 PCT/US97/02290

o< >

|

Sub SkewNWMUItiB () * \\Builds NW oriented Motion Vectors Backwards
RootFN = "NWBK" ’

DY = Y2 -Y1
DX = X3 - X2
Fnumb = 0

If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = Z1
End if
! db
Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"
Form3.Data1.RecordSource = "Quadrant”

Form3.Data1.Refresh
If Form3.Data1.Recordset.BOF = False Then
Form3.Data1.Recordset.Movel ast

End If
e end db -------ceceereeeene
For N = 1 To (DX / KeyScale) '--- 1 ---
ASCFileName$ = GetNextFileString()
Fnumb = 0O
XValue = X1
YValue = Y1 + {N * KeyScale)

LastY = YValue
ZF1Value = ZEValue + (N - 1)
Do Until YValue < Y1

Form3.Datal.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({(ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

’ db
Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset{"Zcoord") = ZValue
Form3.Datal.Recordset("Direction_Vector”) = 20
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset{"Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1

Form3.Datal.Recordset.Update

L e EEEE P end db -----mmmemmeee

XValue = XValue + KeyScale

- 48 -

WO 97/30420 PCT/US97/02290

Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1
Loop
Next N
NS = (DY - DX) / KeyScale
For N = 1 To NS
XValue = X1
ZF1Value = ZFValue
YValue = LastY + KeyScale
Fnumb = O
ASCFileName$ = GetNextFileString()
LastY = YValue
Do Until XValue > X3

Form3.Data1.Recordset.AddNew
If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

- db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Datal.Recordset("Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Datal.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 20
Form3.Data1.Recordset{"QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename”) = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db -
XValue = XValue + KeyScale

Fnumb = FrameGroup + Fnumb

YValue = YValue - KeyScale

ZF1Value = ZF1Value - 1

Loop

ZF1Value = ZFValue
Next N
YValue = Y2

For N = 1 To (DX / KeyScale) - 1
XValue = X1 + (N * KeyScale)
ZF1Value = ZFValue - 1
Fnumb = O
ASCFileName$ = GetNextFileString()
Do Until XValue > X4

- 49 -

WO 97/30420 PCT/US97/02290

Form3.Data1.Recordset. AddNew

if ZSingleSlopeFunction = True Then
ZValue = 21 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

! db
Form3.Datal.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YVaiue
Form3.Data1.Recordset("Zcoord") = ZValue

Form3.Data1.Recordset("Direction_Vector") = 20
Form3.Data1.Recordset{"QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb
Form3.Data1.Recordset("ASC_Filename") = Right${ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)
ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
' - end db ----emeemeeeee e
XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

Loop

YValue = Y3

ZF1Value = ZFValue - (N + 1)

XVaiue = X4 - DY + {(N + 1) * KeyScale)

Next N
! db
Form3.Datal.Recordset.Close
e db end --------e-en-
End Sub
P >

Sub SkewSEMulti () *// = Builds SE Oriented Motion Vectors
RootFN = "SKSE"

DY = Y2 -Y1
DX = X3 - X2
Fnumb = O

If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = Z1

End if
! db

Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"
Form3.Datal.RecordSource = "Quadrant”
Form3.Datal.Refresh

If Form3.Data1.Recordset.BOF = False Then

- 50 -

WO 97/30420 PCT/US97/02290
Form3.Datal.Recordset.Movelast

For N = 1 To (DX / KeyScale} '~ 1 ---
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$
Fnumb = O
XValue = X1
YValue Y1 + (N * KeyScale)
LastY = YVaiue
ZF1Value = ZEValue + (N - 1)
Do Until YValue < Y1

{

Form3.Data1.Recordset. AddNew

.

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAVaiue / ZBVaiue) * (ZF1Value * KeyScale})

End If

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " 4+ Str$(Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, O, 25, 25,0,0," +
Str$(Fnumb)

Print #1, OutStrNext$

‘Debug.Print OutStrNext$

Print #1, OutStrCBTF$

db
Form3.Datal.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset("Ycoord”) = YValue

Form3.Data1.Recordset{"Zcoord") = ZValue

Form3.Data1.Recordset("Direction_Vector") = 15
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename”) = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, B) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db
XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YVaiue - KeyScale
ZF1Value = ZF1Value - 1

Loop
OutStrScale$ = "Scale, " + ObjectName + “, " + "1, 1, 1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, O, 0,0, 0"

- 51 .

WO 97/30420 PCT/US97/62290

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
‘Debug.Print "End”
Close #1
Next N
NS = (DY - DX} / KeyScale
For N = 1 To NS
XValue = X1
ZF1Value = ZFValue
YValue = LastY + KeyScale
Fnumb = O
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$
LastY = YValue
Do Until XValue > X3

Form3.Data1.Recordset.AddNew

‘

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBVaiue) * {ZF1Value * KeyScale))

End if

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Stré(Fnumb)

QutStrCBTF$ = "CBTFT, " + ObjectName + ", 0,0, 25, 25,0, 0, " +
Str$(Fnumb)

Print #1, OutStrNext$
‘Debug.Print OutStrNext$
Print #1, OutStrCBTF$

db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Datal.Recordset{"Ycoord"} = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 15
Form3.Datal.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Datal.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$
Mpagfitename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Datat.Recordset.Update

’ end db -—----eeeeeio e
XValue = XValue + KeyScale

Fnumb = FrameGroup + Fnumb

YValue = YValue - KeyScaie

- 52 -

WO 97/30420 PCT/US97/02290

ZF1Value = ZF1Value - 1

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0, 0, O, O"

Print #1, QutStrScale$
Print #1, OQutStrRotate$
Print #1, "End"
‘Debug.Print "End"
Ciose #1
ZF1Value = ZFValue
Next N
YVaiue = Y2
For N = 1 To (DX / KeyScale) - 1
XValue = X1 + (N * KeyScale)
ZF1Value = ZFValue - 1
Fnumb = O
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$
Do Until XValue > X4

Form3.Data1.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

OutStrNext$ = “Move, " + ObjectName + ", " + Str$(XValue) + "+
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)

QutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, O, 25, 25, 0, 0, " +
Str$(Fnumb)

Print #1, OutStrNext$

‘Debug.Print OutStrNext$

Print #1, OutSUCBTF$

db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Datal.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction Vector”") = 15

Form3.Data1.Recordset("QuadNo"} = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb
Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFiiename()
Form3.Data1.Recordset("Stream_File"} = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! ---- end db

- 53 -

WO 97/30420 PCT/US97/02290

XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

Loop

Print #1, OutStrScale$

Print #1, OutStrRotate$

Print #1, "End"

‘Debug.Print "End"

Close #1

YValue = Y3

ZF1Value = ZFValue - (N + 1)

XValue = X4 - DY + ((N + 1) * KeyScale)

Next N
T--- db
Form3.Data1.Recordset.Close
fmm e db end -------------
End Sub
Sub SkewSEMultiB () *// ------- Builds SE Motion Vectors Backwards
‘RootFN = "SEBK"
‘DY = Y2-Y1
‘DX = X3 - X2
‘Fnumb = 0

‘tf ZStepFunction = True Then
' ZValue = ZAValue + ZBValue

‘End If
‘If ZConstantFunction = True Then
" ZValue = Z1

"End If

db

‘Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"
'Form3.Data1.RecordSource = "Quadrant”
'Form3.Data1.Refresh

‘If Form3.Data1.Recordset.BOF = False Then

" Form3.Datal.Recordset.Movelast

------------------ end db ----en-mmmoeeoeooo-
"For N = 1 To (DX / KeyScale)
" ASCFileName$ = GetNextFileString()

"Fnumb = 0
" XValue = X1 + (N * KeyScale)
"YValue = Y2

" ZF1Value = ZFValue
"Do Until (XValue < X1)

' Form3.Datal.Recordset.AddNew

.

If ZSingleSlopeFunction = True Then
! ZValue = 21 + {{ZAValue / ZBValue) * {(ZF1Vaiue * KeyScale))
" EndIf

R PR db -

- 54 .

WO 97/30420 PCT/US97/02290

" Form3.Datal.Recordset("KeyNo") = KeyNum

‘ Form3.Data1.Recordset{"Xcoord") = XValue

‘" Form3.Datal.Recordset("Ycoord"}) = YValue

" Form3.Datal.Recordset({"Zcoord") = ZValue

" Form3.Datal.Recordset("Direction_Vector") = 16
' Form3.Datal.Recordset{"QuadNo") = QuadNum
" Form3.Data1.Recordset("Frame#") = Fnumb

" Form3.Datal.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
" ST1$ = Right$(ASCFileName$, 12)
" ST2$ = Left$(ST1$, 8) + ".VUE"
" Form3.Datal.Recordset("VUE_Filename") = ST2$
" Mpgfilename$ = GetMPGFilename()
" Form3.Datal.Recordset("Stream_File") = Mpgfilename$
" KeyNum = KeyNum + 1
' Form3.Datal.Recordset.Update
) end db
! XValue = XVaiue - KeyScale
Fnumb = FrameGroup + Fnumb
! YValue = YValue - KeyScale
! ZF1Value = ZF1Value - 1
" Loop
‘Next N
'ZF1Value = ZFValue
‘NS = (DY - DX) / KeyScale
‘For N = 1 To NS
' XValue = X3
" YValue = Y3 - (N * KeyScale)
" YLast = YValue
" ASCFileName$ = GetNextFileString()
"Fnumb = 0
" Do Until XValue < X1

" Form3.Datal.Recordset.AddNew

7

If ZSingleSlopeFunction = True Then
! ZValue = Z1 + {(ZAValue / ZBValue) * {ZF1Value * KeyScale))

' EndIf
' db

! Form3.Data1.Recordset("KeyNo") = KeyNum
! Form3.Data1.Recordset("Xcoord") = XValue
" Form3.Datat1.Recordset("Ycoord") = YVaiue
" Form3.Datal.Recordset("Zcoord") = ZValue
" Form3.Datal.Recordset("Direction_Vector”) = 16
" Form3.Datal.Recordset{"QuadNo”) = QuadNum
! Form3.Data1.Recordset("Frame#") = Fnumb

" Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
" ST1$ = Right$(ASCFileName$, 12)
" ST2$ = Left$(ST1$, 8) + ".VUE"
" Form3.Datal.Recordset("VUE_Filename"} = ST2$
" Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1

- 55 -

WO 97/30420 PCT/US97/02290

Form3.Datal.Recordset.Update
" - end db -
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
! YValue = YValue - KeyScale
! ZF1Value = ZF1Value - 1 -
" Loop
" ZF1Value = ZFValue
‘Next N
' XValue = X4
‘For N = 1 To (DX / KeyScale) - 1
‘YValue = Ylast - (N * KeyScale)
‘ZF1Value = ZFValue - 1
‘ASCFileName$ = GetNextFileString()
‘Fnumb = O
‘Do Until YValue < Y1

.

* Form3.Datatl.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + {{ZAValue / ZBValue) * (ZF1Value * KeyScale))

" End If

' Form3.Datal.Recordset("KeyNo") = KeyNum

' Form3.Datal.Recordset("Xcoord”) = XValue

‘" Form3.Datal.Recordset{"Ycoord") = YValue

' Form3.Datal.Recordset{"Zcoord") = ZValue

' Form3.Datal.Recordset("Direction_Vector”) = 16
’ Form3.Datal.Recordset{"QuadNo") = QuadNum
' Form3.Datal.Recordset{"Frame#") = Fnumb

* Form3.Datal.Recordset("ASC_Filename"} = Right$(ASCFileName$, 12)
" ST1$¢ = Right$(ASCFileName$, 12)

* ST2$% = Left$(ST1§, 8) + ".VUE"

* Form3.Datal.Recordset("VUE_Filename") = ST2$

* Mpgfilename$ = GetMPGFilename()

* Form3.Datal.Recordset("Stream_File") = Mpgfilename$

* KeyNum = KeyNum + 1

* Form3.Datal.Recordset.Update
’ - end db
' XValue = XValue - KeyScale
* Fnumb = FrameGroup + Fnumb
' YValue = YValue - KeyScale

' ZF1Vailue = ZF1Value - 1

'Loop

‘ZF1Value = ZFValue - (N + 1)
‘XValue = X4

_________________ P | s —.
‘Form3.Data1.Recordset.Close
[EEE R db end --------=----
' Begin New routine ----- sknw
RootFN = "SEBK"
DY = Y¥2-Y1

- 56 -

WO 97/30420 PCT/US97/02290

DX = X4 - X1

Fnumb = O

If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = 21

End If

! db

Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Data1.RecordSource = "Quadrant"

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Data1.Recordset.Movelast

------------------ end db ------oeseceemeeees
For N = 1 To (DX / KeyScale)
ASCFileName$ = GetNextFileString()

feereeee del ----- herg --------e-nev-
Fnumb = 0O
XValue = X1 + (N * KeyScale)
YValue = Y1

ZF1Value = ZEValue - 1
Do Until (XValue < X1)

Form3.Data1.Recordset. AddNew

If ZSingleSiopeFunction = True Then

ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))
End If
! db -
Form3.Data1.Recordset("KeyNo") = KeyNum

Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 16
Form3.Data1.Recordset{"QuadNo"} = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)
ST2$ = Left$(ST1$, 8) + “.VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
‘ end db ----eecee e

XValue = XValue - KeyScale

Fnumb = FrameGroup + Fnumb

YValue = YValue + KeyScale

ZF1Value = ZF1Vaiue + 1
Loop

- 57 -

WO 97/30420

Next N
NS = DX / KeyScale
For N = 1 To NS

XValue = X4
ASCFileName$ = GetNextFileStringl()
ZF1Value = ZEValue - 1

YValue = (N * KeyScale) + KeyScale
YLast = YValue

Fnumb = O

Do Until XValue < X1

’

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then

ZValue = Z1 + ((ZAValue / ZBValue) * {ZF1Value * KeyScale))

End If
! db

Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord"} = XValue

Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Datal.Recordset("Direction_Vector") = 16

Form3.Data1.Recordset{"QuadNo"”) = QuadNum

Form3.Data1.Recordset("Frame#") =

Fnumb

PCT/US97/02290

Form3.Data1.Recordset("ASC_Filename") = Right${ASCFileName$, 12)

ST1$ = Right$(ASCFileName$, 12)
ST2$ = Left$(ST1$, 8) + “.VUE"

Form3.Data1.Recordset(*"VUE_Filename™)

Mpgfilename$ = GetMPGFilename()

Form3.Data1.Recordset("Stream_File") =

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update

= ST2$

Mpgfilename$

end db ---
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

It

Loop
ZF1Value = ZF1Value + 1
Next N
NYs = ((DX - KeyScale) / KeyScale) + 1

YValue = YlLast + KeyScale

XValue = X4

ZF1Value = ZEValue

For N = 1 To NYs
ASCFileName$ = GetNextFileString()
Fnumb = O
Do Until YVaiue > Y3

Form3.Data1.Recordset. AddNew

If ZSingleSlopeFunction = True Then

- 58 -

WO 97/30420 PCT/US97/02290

ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))
End If

db

Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset({"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZVaiue
Form3.Data1.Recordset("Direction_Vector") = 16
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST23$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset{"Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! end db
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

Loop

YV

alue = Ylast + (N * KeyScale) + KeyScale

ZF1Value = ZEValue + N

XValue = X4
Next N
’ db
Form3.Data1.Recordset.Close
feome e db end ------------
End Sub
Sub SkewSWMulti {) *// Builds SW motion vectors.
RootFN = "SKSwW"
DY = Y2 -Y1
DX = X3-X2
Fnumb = O

It ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = 21

End If

db

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Data1.RecordSource = "Quadrant"

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Data1.Recordset.Movelast

- 59 -

WO 97/30420 PCT/US97/02290

For N = 1 To (DX / KeyScale)
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
Debug.Print Header$
Fnumb = O
XValue X1 + (N * KeyScale)
YVaiue Y2
ZF1Value = ZFValue
Do Until (XVaiue < X1)

o

Form3.Data1.Recordset.AddNew

.

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({(ZAValue / ZBValue) * (ZF1Value * KeyScale))

End if

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str${YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)

QutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25,0, 0, " +
Str$(Fnumb)

Print #1, OutStrNext$

‘Debug.Print OutStrNext$
Print #1, OutSuUCBTF$

----- db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Datal.Recordset{"Xcoord”) = XValue
Form3.Data1.Recordset{"Ycoord") = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue
Form3.Datat1.Recordset{"Direction_Vector") = 17
Form3.Datal.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#"} = Fnumb

Form3.Data1.Recordset{"ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right${ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! end db
XValue XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

Loop
OutStrScale$ = "Scaie, " + ObjectName + ", " + "1, 1,1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0,0, 0, 0"

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"
‘Debug.Print "End"

- 60 -

WO 97/30420 PCT/US97/02290

Close #1
Next N
ZF1Value = ZFValue
NS = (DY - DX) / KeyScale
For N = 1 To NS
XValue = X3
YValue = Y3 - (N * KeyScale)
YLast = YValue
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
"Debug.Print Header$
Fnumb = O
Do Until XValue < X1

Form3.Data1.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({ZAValue / ZBValue) * (ZF1Value * KeyScale))

End if

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + “, “* +
Stré(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25,0, 0, " +
Str$(Fnumb)

Print #1, OutStrNext$
‘Debug.Print OutStrNext$
Print #1, QutStrCBTF$

db

Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Datal.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 17
Form3.Datal.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8} + ".VUE"
Form3.Data1.Recordset{"VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
" end db
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1, 1, O"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, O, 0,0, 0"

- 61 -

WO 97/30420 PCT/US97/02290

Print #1, QutStrScale$
Print #1, OutStrRotate$

Print #1, "End"
Debug.Print "Engd"
Close #1
ZF1Value = ZFValue
Next N
XValue X4

For N = 1 To (DX / KeyScale) - 1
YValue = Ylast - (N * KeyScale)
ZF1Value = ZFValue - 1
ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1
Print #1, Header$
‘Debug.Print Header$
Fnumb = O
Do Until YValue < Y1

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = 21 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale})

End If

OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue} + ", " +
Str$(YValue) + ", " + Format$(ZValue, "###.00") + ", " + Str${Fnumb)

QutStrCBTF$ = "CBTFT, " + ObjectName + “, 0, 0, 25, 25,0, 0, " +
Str${Fnumb)

Print #1, OutStrNext$
‘Debug.Print OQutStrNext$
Print #1, QutStrCBTF$

db

Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Datal.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 17
Form3.Datal.Recordset{"QuadNo") = QuadNum
Form3.Datat1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename"} = ST2$

Mpgfilename$ = GetMPGFilenamel)
Form3.Data1.Recordset({"Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update

! end db -------
XValue = XValue - KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue - KeyScale
ZF1Value = ZF1Value - 1

- 62 -

WO 97/30420 PCT/US97/02290

Loop
OutStrScale$ = “"Scale, " + ObjectName + “, " + "1, 1,1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0, O, 0, O"

Print #1, OutStrScale$

Print #1, OutStrRotate$

Print #1, "End”

'Debug.Print "End"

Close #1

ZF1Value = ZFValue - (N + 1)
XValue = X4
Next N

’ db
Form3.Data1.Recordset.Ciose

End Sub

Sub SkewSWMultiB () * // ---sm-m-m--- SouthWest Skew motion vectors in backwards position
RootFN = "SWBK" ’
DY = Y2-Y1
DX = X3-X2
Fnumb = O
If ZStepFunction = True Then
ZValue = ZAValue + ZBValue

End if
If ZConstantFunction = True Then
ZValue = 21

End If

) db

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant”

Form3.Datal.Refresh

If Form3.Datal.Recordset.BOF = False Then
Form3.Data1.Recordset.Movelast

------------------ end db ~----e-mmeeemeeeeaes
For N = 1 To (DX / KeyScale)
ASCFileName$ = GetNextFileString()

Fnumb = 0
XValue = X1
YVaiue = Y2 - (N * KeyScale)

YLast = YValue
ZF1Value = ZFValue - N
Do Until (XValue > X1 + (N * KeyScale))

Form3.Data1.Recordset. AddNew

’

If ZSingleSiopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

' db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue

- 63 -

WO 97/30420 PCT/US97/02290

Form3.Data1.Recordset("Ycoord") = YValue
Form3.Datal.Recordset("Zcoord") = ZVaiue
Form3.Data1.Recordset{"Direction_Vector") = 18
Form3.Data1.Recordset({"QuadNo") = QuadNum

Form3.Data1.Recordset("Frame#") = Fnumb
Form3.Datal.Recordset("ASC_Filename”) = Right${ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

. ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset{"VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Datal.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
! end db
XValue = XVaiue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

Loop

--------------------- 1st 3rd ------------ -
ZF1Value = ZEValue - 1

NS = (DY - DX) / KeyScale

For N = 1 To NS

YValue = YlLast - (N * KeyScale)

XValue = X1
ASCFileName$ = GetNextFileString()
Fnumb = O

Do Until XValue > X3

Form3.Data1.Recordset. AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ({(ZAValue / ZBValue} * (ZF1Value * KeyScale))

End if

! db
Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset(" Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord”) = ZValue
Form3.Data1.Recordset("Direction_Vector") = 18
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Datal.Recordset("ASC Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left${ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset({"Stream_File"}) = Mpgfilename$

KeyNum = KeyNum + 1

Form3.Datatl.Recordset.Update

---- end db --------e-memeemeeees

WO 97/30420 PCT/US97/02290

XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1

Loop
ZF1Value = ZEValue - 1
Next N
e N34 GC] o IR ——
YValue = Y1

YEndValue = Y3 - KeyScale

For N = 1 To (DX / KeyScale) - 1
XValue = X1 + (N * KeyScale)
ASCFileName$ = GetNextFileString()
Fnumb = O
Do Until XValue > X4

Form3.Data1.Recordset.AddNew

’

If ZSingleSlopeFunction = True Then
ZValue = Z1 + ((ZAValue / ZBValue) * (ZF1Value * KeyScale))

End If

e r—————c——— - db -
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord"} = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZVaiue
Form3.Data1.Recordset{"Direction_Vector") = 18
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db

XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
YValue = YValue + KeyScale
ZF1Value = ZF1Value + 1
Loop
YValue = Y1

ZF1Vaiue = ZEValue - 1
XValue = XValue + KeyScale

Next N

! db

Form3.Data1.Recordset.Close

T db end -------eneee
End Sub

- 65 -

WO 97/30420

Sub XForwardProc () '/// Builds X forward motion vectors
XValue = X2
YValue = Y2
DY1 = Y3-Y4
ZF1Value = (DY1 - (Y3 - Y2)) / KeyScale
Fnumb = O
Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"
Form3.Datal.RecordSource = "Quadrant”
Form3.Data1.Refresh
if Form3.Data1.Recordset.BOF = False Then
Form3.Data1.Recordset.MovelLast
End If

If ZStepFunction = True Then
Z1 = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = 21

End If

ASCFileName$ = GetNextFileString()

Header$ = "Continue2, Auto-Generated Node Data, * + ASCFileName$

Open ASCFileName$ For Append As #1
Print #1, Header$
Do Until XValue > X3

Form3.Datat.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * (ZF1Value * KeyScale))

PCT/US97/02290

End If
QutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Str$(YVaiue) + ", " + Format$(ZValue, "###.00") + ", " + Str$(Fnumb)
QutStrCBTF$ = "CBTFT, " + ObjectName + ", O, O, 25, 25, 0, 0, " + Str$(Fnumb)
Form3.Data1.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YVaiue
Form3.Datal.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset{"Direction_Vector”} = 1
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset{"ASC_Filename") = Right$(ASCFileName$, 12)

ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilenamel()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1'-----db

XValue = XValue + KeyScale

Fnumb = FrameGroup + Fnumb

- 66 -

WO 97/30420 PCT/US97/02290

Print #1, OutStrNext$
Print #1, OutStrCBTF$ A
Form3.Data1.Recordset.Update

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1,1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0, 0, 0, O"

Print #1, OutStrScale$
Print #1, OutStrRotate$
Print #1, "End"

Close #1
Form3.Data1.Recordset.Close
End Sub
Sub XForwardProcB () * // ----- build X forward motion vectors in backward direction.
XValue = X2
YValue = Y2
DY1 = Y3-Y4
ZF1Value = (DY1 - (Y3 - Y2}) / KeyScale
Fnumb = O

.

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant"”

Form3.Data1.Refresh

If Form3.Datal.Recordset.BOF = False Then
Form3.Data1.Recordset.MovelLast

End If

If ZStepFunction = True Then
Z1 = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = 21

End If

ASCFileName$ = GetNextFileString|()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$

Do Unti! XValue > X3

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * (ZF1Value * KeyScale))

End If

Form3.Data1.Recordset{"KeyNo"} = KeyNum

Form3.Datal.Recordset({"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 4
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset("Frame#") = Fnumb

- 67 -

WO 97/30420

PCT/US97/02290

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)

ST1$ = Right$(ASCFileName$, 12)

ST2¢ = Left$(ST1$, 8) + “.VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$
Mpgfilename$ = GetMPGFilename()

Form3.Data1.Recordset("Stream File") = Mpgfilename$

KeyNum = KeyNum + 1'-—--- db
XValue = XValue + KeyScale
Fnumb = FrameGroup + Fnumb
Form3.Data1.Recordset.Update
Loop
Form3.Datal.Recordset.Close
End Sub

Sub XForwardProcMulti ()
DY = Y2 -Y1 + KeyScale
Do While DY > 0
Call XForwardProc
DY = DY - KeyScale
Y2 = Y2 - KeyScale
Loop
End Sub

Sub XForwardProcMultiB ()
DY = Y2 -Y1 + KeyScale
Do While DY > O
Call XReturnProcB
DY = DY - KeyScale
Y2 = Y2 - KeyScale

Loop
End Sub
Sub XReturnProc ()
XValue = X3
YValue = Y2
DY = Y3-Y4
ZF1Value = (DY - (Y3 - Y2)) / KeyScale
Fnumb = 0

If ZStepFunction = True Then
21 = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = 21

End If

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant"

Form3.Datal.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Datal.Recordset.Movelast

- 68 -

WO 97/30420 PCT/US97/02290

ASCFileName$ = GetNextFileString()

Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$
Open ASCFileName$ For Append As #1

Print #1, Header$

Do Until XValue < X2

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * (ZF1Value * KeyScale))

End If
OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + "+
Str$(YValue) + ", " + Format$(ZValue,

"###.00") + ", " + Str${Fhumb)
OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, 0, 25, 25,0, 0, " + Str$(Fnumb)

Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue

Form3.Datal1.Recordset({"Ycoord") YValue
Form3.Data1.Recordset{"Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 3
Form3.Datal.Recordset{"QuadNo") = QuadNum
Form3.Datal.Recordset("Frame#"} = Fnumb

Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename!()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

’

XValue = XValue - KeyScale
KeyNum = KeyNum + 1'---—-- db
Fnumb = FrameGroup + Fnumb
Print #1, OutStrNext$

Print #1, OutStrCBTF$
Form3.Data1.Recordset.Update

Loop
OutStrScale$ = "Scale, " + ObjectName + *, " + "1, 1, 1, O"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1,0,0,0,0"

Print #1, OutStrScale$

Print #1, OutStrRotate$

Print #1, "End"

Close #1

Form3.Data1.Recordset.Close
End Sub

Sub XReturnProcB ()
XValue = X3
YValue = Y2
DY = Y3-Y4
ZF1Value = (DY - (Y3 - Y2)) / KeyScale
Fnumb = 0

- 69 -

WO 97/30420 PCT/US97/02290

If ZStepFunction = True Then
Z1 = ZAValue + ZBValue

End if

If ZConstantFunction = True Then
ZValue = 21

End If

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant"

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = Faise Then
Form3.Data1.Recordset.Movel ast

End If

ASCFileName$ = GetNextFileString()
Do Until XValue < X2

Form3.Data1.Recordset.AddNew

If ZSingleSiopeFunction = True Then
ZValue = Z1 + {(ZAVaiue / ZBValue * (ZF1Value * KeyScale))

End If

Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset({"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset(" Direction_Vector"} = 2
Form3.Data1.Recordset("QuadNo") = QuadNum
Form3.Data1.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset("ASC_Filename™”) = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

XValue = XValue - KeyScale
KeyNum = KeyNum + 7'----- db
Fnumb = FrameGroup + Fnumb
Form3.Data1.Recordset.Update
Loop
Form3.Data1.Recordset.Close
End Sub

Sub XReturnProcMulti {} ‘// Build X in return motion vectors
RootFN = "XRTN"
DY = Y2 -Y1 + KeyScale
Do While DY > O
Call XReturnProc
DY = DY - KeyScale
Y2 = Y2 - KeyScale

- 70 -

WO 97/30420

Loop
End Sub

PCT/US97/02290

Sub XReturnProcMultiB (} // Build X in return motion vectors Backwards

DY = Y2 -Y1 + KeyScale
Do While DY > 0O
Call XForwardProcB
DY = DY - KeyScale
Y2 = Y2 - KeyScale

Loop
End Sub
Sub YForwardProc () * Y forward Motion Vectors
YValue = Y1
XValue = X3
Fnumb = O

If ZStepFunction = True Then
Z1 = ZAValue + ZBValue

End If
If ZConstantFunction = True Then
ZValue = Z1

End If

Form3.Data1.DatabaseName
Form3.Datal.RecordSource = "Quadrant"
Form3.Data1.Refresh

"D:\vb\mpgvr.mdb"

If Form3.Data1.Recordset.BOF = False Then

Form3.Data1.Recordset.MovelLast
End If

ASCFileName$ = GetNextFileString()

Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$

Open ASCFileName$ For Append As #1
Print #1, Header$
Do Until YValue > Y2

Form3.Data1.Recordset.AddNew

If ZSingleSlopeFunction = True Then

ZValue = Z1 + (ZAValue / ZBValue * (ZEValue * KeyScale))
End If
OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", "+
Str$(YValue) + ", " + Format${ZValue, "###.00") + " " + Str$(Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", 0, O, 25, 25, 0, 0, " + Str$(Fnumb)

-db
Form3.Datal.Recordset{"KeyNo") = KeyNum
Form3.Data1.Recordset{"Xcoord") = XValue
Form3.Data1.Recordset("Ycoord") = YValue
Form3.Datal.Recordset{"Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector”) = 5
Form3.Data1.Recordset{"QuadNo") = QuadNum
Form3.Datal.Recordset{"Frame#") = Fnumb

- 71 -

WO 97/30420 PCT/US97/02290

Form3.Data1.Recordset{"ASC_Filename”) = Right$(ASCFileName$, 12)
ST1$ = Right${ASCFileName$, 12)
ST2$ = Left$(ST1$¢, 8) + ".VUE"
Form3.Data1.Recordset("VUE_Filename”) = ST2$
Mpgfilename$ = GetMPGFilenamel)
Form3.Data1.Recordset("Stream_File") = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update
’ end db
YValue = YValue + KeyScale
ZEValue = ZEVaiue + 1
Fnumb = FrameGroup + Fnumb
Print #1, OutStrNext$
Print #1, OutStrCBTF$

Loop
OutStrScale$ = "Scale, " + ObjectName + ", " + "1, 1,1, 0"
OutStrRotate$ = "Rotate, " + ObjectName + ", " + "1, 0,0, 0, 0"

Print #1, OutStrScale$
Print #1, OutStrRotate$

Print #1, "End"
Close #1
! db
Form3.Data1.Recordset.Close
e db end -------------
End Sub
Sub YForwardProcB () ‘// --- Y forward motion vectors.
YValue = Y1
XValue = X3
Fnumb = 0

If ZStepFunction = True Then
Z1 = ZAValue + ZBVaiue

End If
If ZConstantFunction = True Then
ZValue = Z1

Form3.Datal.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Data1l.RecordSource = "Quadrant”

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = Faise Then
Form3.Datal.Recordset.Movelast

End If

ASCFileName$ = GetNextFileString()
Do Until YValue > Y2

Form3.Datal.Recordset.AddNew

If ZSingleSlopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * (ZEValue * KeyScale))

End If

- 72 -

WO 97/30420

’

db

Form3.Data1.Recordset("KeyNo")
Form3.Data1.Recordset{"Xcoord")
Form3.Data1.Recordset("Ycoord")
Form3.Datal.Recordset{"Zcoord")
Form3.Data1.Recordset("Direction_Vector"} = 8
Form3.Data1.Recordset("QuadNo") = QuadNum

KeyNum
XValue
YValue
ZValue

Form3.Data1.Recordset("Frame#") = Fnumb
Form3.Data1.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal.Recordset{"VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()

Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1

Form3.Data1.Recordset.Update

end db

YValue = YValue + KeyScale
ZEVaiue = ZEValue + 1
Fnumb = FrameGroup + Fnumb

Loop
' -db

Form3.Datal.Recordset.Close

e db end
End Sub

Sub YForwardProcMulti ()} ' Motion vectors for Y forward

DX = X3 - X2

Do UntilDX < O
RootFN = "YFWD"
Call YForwardProc
DX = DX - KeyScale
X3 = X3 - KeyScale

Loop

End Sub

Sub YForwardProcMultiB ()
DX = X3 - X2
Do Until DX < O
RootFN = "YBWD"
Call YReturnProcB
DX = DX - KeyScale
X3 = X3 - KeyScale

Loop

End Sub

Sub YReturnProc ()
YValue = Y2
XValue = X3
Fnumb = 0O

ZF1Value = ZEValue

If ZStepFunction = True Then

- 73 -

PCT/US97/02290

WO 97/30420
Z1 = ZAValue + ZBValue
End If
If ZConstantFunction = True Then
ZValue = Z1

End If

Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant”

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Datal.Recordset.MovelLast

End If

ASCFileName$ = GetNextFileString()
Header$ = "Continue2, Auto-Generated Node Data, " + ASCFileName$

Open
Print
Do U

ASCFileName$ For Append As #1
#1, Header$
ntil YValue < Y1

Form3.Data1.Recordset.AddNew

If ZSingleSiopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * ((ZFValue - ZF1Value) * KeyScale))

PCT/US97/02290

End If
OutStrNext$ = "Move, " + ObjectName + ", " + Str$(XValue) + ", " +
Stré(YValue) + ", " + Format$(ZValue, "###.00") + ", * + Str${Fnumb)

OutStrCBTF$ = "CBTFT, " + ObjectName + ", O, 0, 25, 25, 0, 0, " + Str${Fnumb)
! -db -
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Data1.Recordset("Xcoord") = XValue
Form3.Data1.Recordset{"Ycoord”) = YValue
Form3.Datal.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 7
Form3.Datal.Recordset("QuadNo") = QuadNum
Form3.Datal.Recordset{"Frame#") = Fnumb

Form3.Data1.Recordset{"ASC_Filename”) = Right$(ASCFileName$, 12’

ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Datal1.Recordset{"VUE_Filename”) = ST2$
Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset{"Stream_File"} = Mpgfilename$
KeyNum = KeyNum + 1
Form3.Data1.Recordset.Update

'- - end db ---e-ceeeenn-

YValue = YValue - KeyScale
ZF1Value = ZF1Value + 1
Fnumb = FrameGroup + Fnumb
Print #1, QutStrNext$

Print #1, QutStrCBTF$

Loop
QutS
QutS

trScale$ = "Scale, " + ObjectName + ", " + "1,1,1, O"

trRotate$ = "Rotate, " + ObjectName + ", " + "1, 0,0, O, O"

- 74 -

WO 97/30420 PCT/US97/02290

Print #1, OutStrScale$
Print #1, QutStrRotate $

Print #1, "End"
Close #1
! db
Form3.Data1.Recordset.Ciose
N db end -------------
End Sub
Sub YReturnProcB (}
YValue = Y2
XValue = X3
Fnumb = O

ZF1Value = ZEValue
If ZStepFunction = True Then
21 = ZAValue + ZBValue

End if
If ZConstantFunction = True Then
ZValue = Z1

End If

Form3.Data1.DatabaseName = "D:\vb\mpgvr.mdb"

Form3.Datal.RecordSource = "Quadrant”

Form3.Data1.Refresh

If Form3.Data1.Recordset.BOF = False Then
Form3.Datal.Recordset.Movelast

End Hf

ASCFileName$ = GetNextFileString()
Do Until YValue < Y1

Form3.Data1.Recordset.AddNew

If ZSingleSiopeFunction = True Then
ZValue = Z1 + (ZAValue / ZBValue * ({ZFValue - ZF1Value) * KeyScale))

End If

--db
Form3.Data1.Recordset("KeyNo") = KeyNum
Form3.Datal.Recordset("Xcoord") = XValue
Form3.Datal.Recordset{"Ycoord") = YValue
Form3.Data1.Recordset("Zcoord") = ZValue
Form3.Data1.Recordset("Direction_Vector") = 6
Form3.Data1.Recordset("QuadNo"} = QuadNum
Form3.Datal.Recordset{"Frame#") = Fnumb

Form3.Datal.Recordset("ASC_Filename") = Right$(ASCFileName$, 12)
ST1$ = Right$(ASCFileName$, 12)

ST2$ = Left$(ST1$, 8) + ".VUE"
Form3.Data1.Recordset{("VUE_Filename") = ST2$

Mpgfilename$ = GetMPGFilename()
Form3.Data1.Recordset("Stream_File") = Mpgfilename$

KeyNum = KeyNum + 1

Form3.Data1.Recordset.Update

-75 -

WO 97/30420

! end db

YValue = YValue - KeyScale
ZF1Value = ZF1Vaiue + 1
Fnumb = FrameGroup + Fnumb

Loop
! db --
Form3.Data1.Recordset.Close
R db end -------------
End Sub

Sub YReturnProcMulti ()
DX = X3 - X2
Do Until DX < O
RootFN = "YRTN"
Call YReturnProc
DX = DX - KeyScale
X3 = X3 - KeyScale

Loop
End Sub

Sub YReturnProcMultiB ()
DX = X3 - X2
Do UntiiDX < O
RootFN = "YBRT"
Call YForwardProcB
DX = DX - KeyScale
X3 = X3 - KeyScale

Loop
End Sub

- 76 -

PC7/US97/02290

WO 97/30420

'/} -- Player program main functions -----
Global Dir_Vec As Integer

Global XValue As Integer

Global YValue As Integer

Global RecPointerNum As Long

Global Tbino As Integer

Type StateTable ‘// Current state table structure

CPV As Integer

MV As Integer

NPV As Integer

NPCC As integer

TbiName As String * 2
End Type
Type StateRegister

CurXPos As Integer

CurYPos As Integer

CurZPos As Integer

CurPV As integer

Bounds As Integer

QuanNum As integer
End Type
Global StateMB(8) As StateTable
Global StateMF({8) As StateTable
Global StateTR(8) As StateTable
Global StateTL(8) As StateTable
Global StateVar(8) As StateTable
Global CurrentState As StateRegister

Sub LoadStateTables () // --~--=---- > Load state tables from file on HD

Dim Filenum, NumberSub As Integer
Dim RecordLen, Position As Long
RecordLen = Len{StateVar(1))
Filenum = FreeFile

Position = 1

PCT/US97/02290

Open "D:/VB/KEYFRAME/STATETBL.FIL" For Random As Filenum Len = RecordLen

ForM = 1To 4

Get #Filenum, Position, StateVar(1)
TableName$ = StateVar{1).TbIName

Select Case TableName$
Case "MB"
ForN = 1To 8

Get #Filenum, Position, StateMB(N})

Position = Position + 1

Next N
Case "MF"
ForN =170 8

Get #Filenum, Position, StateMF(N)

Position = Position + 1

Next N
Case "TL"
For N = 1To 8

WO 97/30420
Get #Filenum, Position, StateTL(N)
Position = Position + 1
Next N ’
Case "TR"
ForN = 1To8
Get #Filenum, Position, StateTR(N)
Position = Position + 1
Next N
End Select
Next M
Close #Filenum
End Sub

Sub PrintStateTbl () ’ // ---> Show state table information to table editor

Dim Filenum, NumberSub As Integer

Dim RecordLen, Position As Long

RecordlLen = Len(StateVar(1))

Filenum = FreeFile

Position = Val({StateBuild.Text2.Text) - 1) * 8

PCT/US97/62290

Open "D:/VB/KEYFRAME/STATETBL.FIL" For Random As Filenum Len = RecordLen

ForN = 1To 8
Position = Position + 1
Get #Filenum, Position, StateVar(N)
StateBuild.Grid1.Row = N
StateBuild.Grid1.Col = O
StateBuild.Grid1.Text = Str$(StateVar(N).CPV)
StateBuild.Grid1.Col = 1
StateBuild.Grid1.Text = Str$(StateVar(N).MV)
StateBuild.Grid1.Col = 2
StateBuild.Grid1.Text = Str$(StateVar(N).NPV)
StateBuild.Grid1.Col = 3
StateBuild.Grid1.Text = Str$(StateVar(N).NPCC)
NumberSub = N

Next N

StateBuild.Label3.Caption = "State Table = " + StateVar(NumberSub).TbiName

Close #Filenum
End Sub

Sub SaveTable () ' // Saves edited state table to file
Dim LastRecord As Long
Dim Filenum As Integer
Dim RecordLen As Long
RecordLen = Len{StateVar(1))
Filenum = FreeFile
LastRecord = {(Val(StateBuild.Text2.Text) - 1) * 8

Open "D:/VB/KEYFRAME/STATETBL.FIL" For Random As Filenum Len

StateName = Form2.Text1.Text
ForN = 1To8
LastRecord = LastRecord + 1
StateBuild.Grid1.Row = N
StateBuild.Grid1.Col = O

- 78 -

RecordlLen

WO 97/30420 PCT/US97/02290

StateVar(N).CPV = Val(StateBuild.Grid1.Text)
StateBuild.Grid1.Col = 1
StateVar(N}.MV = Val(StateBuild.Grid1.Text)
StateBuild.Grid1.Col = 2
StateVar(N).NPV = Val(StateBuild.Grid1.Text)
StateBuild.Grid1.Col = 3
StateVar(N).NPCC = Val(StateBuild.Grid1.Text)
StateVar(N).TbIName = StateName
Put #Filenum, LastRecord, StateVar(N)

Next N

Close #Filenum

End Sub

- 79 -

WO 97/30420 PCTUS97/02290

'/} --- Player Program Form functions --- > //
Declare Sub CWsensorThere Lib "d:\VB\VBWND\CWAND.DLL" (ByVal PORTNO %, HatCal
As Integer)
Declare Sub CWgetStatus Lib "d:\VB\VBWND\CWAND.DLL" (ByVal PORTNO %, HATVL As
Integer, BUTTONVL As Integer)
Global CalValOk As Integer
Global TestOk As Integer
Global Dir_Vec As Integer
Global XValue As Integer
Global YValue As Integer
Global RecPointerNum As Long
Global Tbino As Integer
Global EventState As Integer
Type StateTable

CPV As Integer

MV As integer

NPV As Integer

NPCC As Integer

TbIName As String * 2
End Type
Type StateRegister

CurXPos As integer

CurYPos As Integer

CurZPos As Integer

CurPV As Integer

Bounds As integer

QuanNum As integer
End Type
Global StateMB(8) As StateTable
Global StateMF(8) As StateTable
Global StateTR(8) As StateTable
Global StateTL(8) As StateTable
Global StateVar(B} As StateTable
Global CurrentState As StateRegister
Global XP1 As Integer
Global XP3 As integer
Global YP2 As Integer
Global YP1 As Integer
Global StateTabieName$
Global WandButtonState$
Global ProjectorState As Integer
Global MPGFILES$

Sub EventHandier {} ‘// ---> Simple event handler for eventual event editor
If EventState = True Then
Windname$ = Form1.hWnd
mcicomp$ = "WINDOW DWELL HANDLE " & Windname$

Form1.mkMci3.Send = mcicomp$
Form1.mkMci3.Send = "PUT DWELL DESTINATION AT 75 14 704 485"

"PLAY DWELL REPEAT"

il

Form1.mkMci3.Send
End If

- 80 -

WO 97/30420 PCT/US97/02290

If EventState = False Then
Form1.mkMci3.Send = "STOP DWELL"
End If
End Sub

Sub InitState () '// Initialize state to position 156, 24

Form1.Text6.Text = "156"
Form1.Text7.Text = "24"
Form1.Text8.Text = "5"
Form1.Text9.Text = "1"
ProjectorState = 1
End Sub
Sub LoadStateTables {) ’'// ---~----- > get operational state tables

Dim Filenum, NumberSub As Integer
Dim RecordlLen, Position As Long
Recordi.en = Len(StateVar(1))
Filenum = FreeFile
Position = 1
Open "D:/VB/NAVGATE/STATETBL.FIL" For Random As Filenum Len = RecordLen
ForM = 1To 4
Get #Filenum, Position, StateVar(1)
TableName$ = StateVar(1).TbiIName
Select Case TableName$
Case "MB"
ForN = 1To 8
Get #Filenum, Position, StateMB(N)
Position = Position + 1
Next N
Case "MF"
ForN = 1To 8
Get #Filenum, Position, StateMF(N)
Position = Position + 1
Next N
Case "TL"
ForN = 1To 8
Get #Filenum, Position, StateTL(N)
Position = Position + 1
Next N
Case "TR"
ForN =1To8
Get #Filenum, Position, StateTR(N)
Position = Position + 1
Next N
End Select
Next M
Close #Filenum
End Sub

Sub PiayVector1 () ' // Virtual projector1 player routine

FilePathName$ = "D:\VB\MPGS\" + Form1.Text1.Text
SendString$ = "OPEN " + FilePathName$ + " ALIAS MVEC STYLE POPUP"

- 81 -

WO 97/30420 PCT/US97/02290

Form1.mkMci1.Send = SendString$
Windname$ = Form1.hWnd .
mcicomp$ = "WINDOW MVEC HANDLE " & Windname$
Form1.mkMci1.Send = mcicomp$
Form1.mkMci1.Send = "PUT MVEC DESTINATION AT 75 14 704 485"
Form1.mkMci1.Send = "PLAY MVEC WAIT"
ProjectorState = 2
Windname1$ = Form3.hWhnd
mcicomp1$ = "WINDOW MVEC1 HANDLE " & Windname1$
Form1.mkMci1.Send = mcicomp1$
Form1.mkMci1.Send = "PUT MVEC1 DESTINATION AT 75 14 704 485"
Form1.mkMci1.Send = "CLOSE MVEC1"

End Sub

Sub PiayVector2 () ’// Virtual projector2 player routine
FilePathName$ = "D:\VB\MPGS\" + Form1.Text1.Text
SendString$ = "OPEN " + FilePathName$ + " ALIAS MVEC1 STYLE POPUP"
Form1.mkMci2.Send = SendString$
Windname$ = Form1.hWnd
mcicomp$ = "WINDOW MVEC1 HANDLE " & Windname$
Form1.mkMci2.Send = mcicomp$
Form1.mkMci2.Send = "PUT MVEC1 DESTINATION AT 75 14 704 485"
Form1.mkMci2.Send = "PLAY MVEC1 WAIT"
ProjectorState = 1
Windname1$ = Form3.hWnd
mcicomp1$ = "WINDOW MVEC HANDLE " & Windname1$
Form1.mkMci1.Send = mcicomp1$
Formt.mkMci1.Send = "PUT MVEC DESTINATION AT 75 14 704 485"
Form1.mkMci1.Send = "CLOSE MVEC"

End Sub

Sub PlayWand () ‘// Execute poll routine for Wand Controller.
PORTNO1% = 1
TestOk = False
HatValue% = 999
ButtonValue% = 999
HatCal% = O
Call CWgetStatus(PORTNO 1%, HatValue%, ButtonValue %)
Select Case ButtonValue%
Case 1
WandButtonState
Case 2
WandButtonState = "Top"
Case 4
WandButtonState = "Thumb"
Case 8
WandButtonState = "Pinky"
Case Eise
WandButtonState = "Button”
End Select
Select Case HatValue%
Case 1

"Trigger"

- 82 -

PCT/US97/02290

WO 97/30420
StateTableName$ = "MF"
Case 2
StateTableName$ = "MB"
Case 3
StateTableName$ = "TL"
Case 4
StateTableName$ = "TR"
Case Else
StateTableName$ = "CT"
End Select
End Sub

Sub TestWand () '// Diagnostic routine for wand controlier.

PORTNO1% = 1
TestOk = False
HatValue% = 999
ButtonValue% = 999
HatCal% = O

Do Until TestOk = True

Call CWgetStatus(PORTNO 1%, HatValue %, ButtonValue %)

Select Case ButtonValue%

Case 1
Calibrate.ButtonPan.Caption

Case 2
Calibrate.ButtonPan.Caption

Case 4
Calibrate.ButtonPan.Caption

Case 8
Calibrate.ButtonPan.Caption

Case Else

"Trigger”
"Top"
"Thumb"

"Pinky"

Calibrate.ButtonPan.Caption = "BUTTON"

End Select
Select Case HatValue%
Case 1
Calibrate.Picture.Picture
Case 2
Calibrate.Picture1.Picture
Case 3
Calibrate.Picture1.Picture
Case 4
Calibrate.Picture1.Picture
Case Else
Calibrate.Picture1.Picture
End Select
DoEvents
Loop
End Sub

it

il

LoadPicture("d:\vb\vbwnd\fore.bmp")
LoadPicture("d:\vb\vbwnd\back.bmp")
LoadPicture("d:\vb\vbwnd\left. bmp*")
LoadPicture("d:\vb\vbwnd\right. bmp")

LoadPicture("d:\vb\vbwnd\center.bmp")

Sub UpdateStates () ‘// Update state table in memory based on new wand data

K = VallForm1.Text2.Text)
CPVaiue VallForm1.Text8.Text)

- 83 -

WO 97/30420 PCT/US97/02290

XP1 = Val{Form1.Text3.Text)
XP3 = Val(Form1.Text10.Text)
YP1 = Val(Form1.Text4.Text)
YP3 = Val(Form1.Text11.Text)

Select Case StateTableName$

Case "MB"

ForN =1To 8

If CPValue = StateMB(N).CPV Then
MoveVector = StateMB(N).MV
NextPV = StateMB(N).NPV
NextPOSC = StateMB(N).NPCC

End If

Next N

Case "MF"

ForN = 1To 8

If CPValue = StateMF(N).CPV Then
MoveVector = StateMF(N).MV
NextPV = StateMF(N).NPV
NextPOSC = StateMF(N).NPCC

End If

Next N

Case "TL"

ForN = 1To 8

If CPValue = StateTL{N).CPV Then
MoveVector = StateTL(N).MV
NextPV = StateTL(N).NPV
NextPOSC = StateTL{N).NPCC

End If

Next N

Case "TR"

ForN = 1To 8

If CPVaiue = StateTR(N).CPV Then
MoveVector = StateTR(N).MV
NextPV = StateTR(N).NPV
NextPOSC = StateTR(N).NPCC

End If

Next N

End Select

XNext = Val(Form1.Text6.Text)

YNext = Val{Form1.Text7.Text)

Setect Case NextPOSC

Case O
Case 1
XNext = Val(Form1.Text6.Text) + K
Case 2
XNext = Val{Form1.Text6.Text) - K
Case 3
XNext = Val{Form1.Text6.Text} + K
YNext = Val(Form1.Text7.Text) + K
Case 4
XNext = Val(Form1.Text6.Text) - K
YNext = Val{Form1.Text7.Text) - K

- 84 -

WO 97/30420 PCT/US97/02290

Case b
YNext = Val(Form1.Text7.Text) + K
Case 6 ’
YNext = Val{Form1.Text7.Text) - K
Case 7
XNext = Val(Form1.Text6.Text) + K
YNext = Val(Form1.Text7.Text) - K
Case 8
XNext = Val(Form1.Text6.Text) - K
YNext = Val(Form1.Text7.Text} + K
End Select
If XNext > XP3 Or XNext < XP1 Then
Beep
MPGFILE$ = "NO File"
Exit Sub
End if
If YNext > YP3 Or YNext < YP1 Then
Beep
MPGFILE$ = "NO File"
Exit Sub
End Hf

Form1.Text8.Text = Str$(NextPV)

Dir_Vector$ = Str$(MoveVector)

XC$ = Form1.Text6.Text

YC$ = Form1.Text7.Text

SQL1¢ = "Select Stream_File FROM QUADRANT where Direction_Vector = " +
Dir_Vector$

SQL2$ = " AND Xcoord = " + XC$ + "AND Ycoord = " + YC$

SQL3$ = sQL1$ + SAL2s$

Form1.Datal.RecordSource = SQL3$

Form1.Datat.Refresh

FX$ = Form1.Text1.Text

FN$ = "D:AVB\MPGS\" + FX$

On Error GoTo ERRORHandler

R = FileLen(FN$)

Form1.Text6.Text = Str$({XNext)
Form1.Text7.Text = Str$(YNext)
MPGFILES = ""

GetOUT: Exit Sub

ERRORHandler:

MPGFILES = "NO File"
Resume GetOUT
End Sub

- 85 -

10

15

20

25

30

35

WO 97/30420

CLAIMS

PCT/US9

What is claimed is:

7/02290

1. A method for generating a navigable virtual

space, comprising the steps of:

generating a three dimensional model of the

space;

imposing a coordinate system on the model, the

coordinate system including a plurality of discrete points;

generating one or more motion vectors

assoclated with e
translation to a
single point; and

re

ach point, each motion vector represen

different point, or a rotation about a

ndering and encoding a video seguence

assoclated with each motion vector, each video seguence

showing the trans

motion vector.

lation or rotation represented by each

ting a

2. In a computer system including a database of

motion vectors an
motion vector rep
translation withi

showing the trans

d assoclated encoded video sequences,
resenting a particular rotation or
n a virtual space, each video seguence

lation or rotation represented by its

éach

associated motion vector, and each video sequence having a

last frame identical to a first frame of a subsequent video

sequence,

a method for displaying a concatenated series of

video sequences,

comprising the steps of:

- 86 -

10

15

20

25

30

35

WO 97/30420 PCT/US97/02290

playing a first video sequence via a first
virtual projector;

queuing a subsequent video sequence with a
second virtual projector, the second virtual projector
synchronized with the first virtual projector;

beginning to play the first frame of the
subsequent video sequence via the second virtual projector
when the last frame of the first video sequence is played by

the first wvirtual projector.

3. In a computer system including a database of
motion vectors and associated encoded video sequences, each
motion vector representing a particular rotation or
translation within a virtual space, and each video sequence
showing the translation or rotation represented by its
assoclated motion vector,

a method for generating a navigational framework of
the virtual space, comprising the steps of:

defining the number of degrees of freedom
allowable for an operator navigating through the virtual
space, the operator having a position, orientation, and
velocity in the virtual space;

defining areas within the virtual space in
which an operator is permitted to navigate; and

generating a state machine for determining
which particular motion vector should be accessed from the
database at any given time, the determination of the state

machine based upon the number of degrees of freedom allowable

- 87 -

10

15

20

25

30

35

WO 97/30420

PCT/US97/02290

the operator navigating through the virtual space, the

position, orientation, and velocity of the operator in the

virtual space, and the definition of navigable areas within

the virtual space.

- 88 -

PCT/US97/02290

WO 97/30420

1/15

L

SNLIId 40 dNOY9
A

NOLLOIG3Yd TWNOLLO3YIQIE

P 1P 111

NOILOIQ3dd QuYMYO4

v

401J3A NOLON V HUM Q31vID0SSY
JON3nD3S 03QIA Q300N

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

2/15

YITIOUINOD
‘TVNOILYOIAWN

¢ Ol

e

1INN 40SS3204d

3Svavliva
40LI3A NOILOW

4300ON3 03QIA

4300330 03QA vL9Ia

81

/

o_\

cm.\

-

330 AV1dSIa

NN.\

el

14

SUBSTITUTE SHEET (RULE 26)

WO 97/30420

3/15

PCT/US97/02290

SUBSTITUTE SHEET (RULE 26)

FIG.3

WO 97/30420 PCT/US97/02290

415

_\‘\(MOTION VECTOR 60

P(xy)

o N - MOTION VECTOR—
! AN

REFERENCE GRID 50"

FIG.4

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

5715

GOld

0cl 00°¢L 91¢ 961 ZAvad 3AON
GOl 00°¢L 61 961 Chvad JAON
06 00°¢L 891 961 CAVI0 JAON

GL 00°¢L 124 961 ¢Avad 3AON

09 00°¢L 0cl 961 CRvad JAON

Gy 00°¢L 96 961 CAvad JAON

0¢ 00°¢L cL 961 ¢vad JAON

Gl 00°¢L 8y 9¢| ¢vad JAON

0 00°¢L 1£4 961 Cvad JAON
NV NOILISOd Z NOILSOd A NOILISOd X VY43IAVO NOILINYLSNI

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

6/15

497914

¢+uf y+ug
G+ug
ctug

9+ug

| +ug
L+ug

ug

3GON OINI Aﬂ

IR

pHuy

GHuy

Q+Uy

L+WY

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

7/15

d99i4

£+ug
v+ud
¢+ug

G+ug

| +ud ///r
9+ug

////I[! L+uq

ug

300N OLNI ?

397914

£+u) 9

A LN

u
" K 9+u)

SUBSTITUTE SHEET (RULE 26)

WO 97/30420

FIG.7A ~

PCT/US97/02290

8/15

STATE TABLE FOR MOVE BACKWARD SUBSTATE

CPV MV NPV NPCC
An+2 Bn+2 CPv 2
An Bn CPv 6
An+4 Bn+4 CPV)
An+6 Bn+6 CpPv 1
An+1 Bn+1 CPV 4
An+3 Bn+3 CpPV 8
An+5 Bn+5 Cpv 3
An+7 Bn+7 CPV 7
NPCC CODE X, Y POSITIONS

0 XY

1 X+K.Y

2 X-KY

3 X+K, Y+K

4 X-K, Y-K

5 Y4K,X

6 Y-K.X

7 X+K, Y-K

8 X-K, Y+K

SUBSTITUTE SHEET (RULE 26)

WO 97/30420

FIG.7B <

PCT/US97/02290

9/15

STATE TABLE FOR MOVE FORWARD SUBSTATE

CPV MV NPV NPCC
An+2 CPV cPv 1
An CPV CPV 5
An+4 CPV CPV 6
Ant7 CPV CPV 2
An+1 CPV CPV 3
An+3 CPV CPV 7
Ant5 CPV CPV 4
An+7 CPV CPV 8

KEY TO THE STATE TABLE AND TERMS:
CPV = CURRENT POSITION VECTOR
MV = MOTION VECTOR
NPV = NEXT POSITION VECTOR
NPCC = NEXT POSITION CHANGE COORDINATE
K = NORMALIZED STEPWISE FACTOR
X,Y — CARTESIAN COORDINATES OF QUADRANT
0 = NO OPERATION

SUBSTITUTE SHEET (RULE 26)

WO 97/30420

FIG.7C <

PCT/US97/02290

10/15

STATE TABLE FOR TURN RIGHT SUBSTATE

CPV MV NPV NPCC
An Cn An+1 0
An+1 Cn+i Ant2 0
An+2 Cn+2 An+3 0
An+3 Cn+3 An+4 0
Ant4 Cn+4 An+d 0
Ant5 Cn+5 Ant6 0
Ant6 Cn+6 Ant+7 0
An+7 Cn+7 An 0
NPCC CODE X, Y POSITIONS

0 X, Y

1 X+K,Y

2 X-KY

3 X+K, Y+K

4 X-K, Y-K

S Y+K,X

6 Y-K.X

7 X+K, Y-K

8 X-K, Y+K

SUBSTITUTE SHEET (RULE 26)

WO 97/30420

FIG.7D

PCT/US97/02290

11/15

STATE TABLE FOR TURN LEFT SUBSTATE

CPV MV NPV NPCC
An Dn+7 An+7 0
An+1 Dn An 0
An+2 Dn+1 An+1 0
An+3 Dn+2 An+2 0
An+4 Dn+3 An+3 0
Antd Dn+4 An+4 0
An+6 Dn+5 An+d 0
Ant7 Dn+6 Antb6 0

KEY TO THE STATE TABLE AND TERMS:
CPV = CURRENT POSITION VECTOR
MV = MOTION VECTOR
NPV = NEXT POSITION VECTOR
NPCC = NEXT POSITION CHANGE COORDINATE
K = NORMALIZED STEPWISE FACTOR
X,Y — CARTESIAN COORDINATES OF QUADRANT
0 = NO OPERATION

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

12/15

4ITIOYINOD
TYNOLLVOIAVN

8°9l4

e

YOI \

1LINN 40SS3004d

1Svaviva
d0123A NOILOW

4300030 03aIA LIOIO

0z~

-

30IA30 AVIdSIC

NN\

N

¢l

14!

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

13715

670l
¢ ¥0L03r0Nd

I ¥0103r0ud . v T
d .r..

VRNS AV1dSIa

SUBSTITUTE SHEET (RULE 26)

WO 97/30420 PCT/US97/02290

14/15
€ 14/15
— =
S
—e =
=
=
a ——@
=
———@ =
o
—
o
L
<
L e =
/::
>
£\
L
Q.
S 2 .
~N
=)
L =
=
=
oz
a.

SUBSTITUTE SHEET (RULE 26)

PCT/US97/02290

WO 97/30420

15/15

117014

JoIA30
AV1dSId

NN\

ugg q88
o83 ﬁ 0gg
/_ /_) \A 98 8
T0HINOD
JOVINS ._u&ﬁ—_”_%%
TOHINOD TOYINOD
0VINS 304N0S
mm\ em\
T04INOD JOHINOD
P 3OVAUNS 308N0S
88
om\ ¥8 J
VNS AVI4SId TVII1901

3Svaviva
d0133A NOLLOW

vl

Nm\

JOVAUIINI T0YINOD YOLO3rO¥d TVNLYIA

08

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/02290

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6T 3/00
US CL :Please Sce Extra Sheet.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/173, 174, 175, 806, 807, 119, 137, 138; 382/154, 236, 295, 296; 345/8, 121, 122; 348/39

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS
search terms: virtual reality, navigat?, frame?, walkthrough, MPEG, sequence? (2a) image?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,287,437 A (DEERING) 15 February 1994, col.2, line| 1-3
46; col.4, line 58; col.5, line 63 to col.6, line 19; col.7, line
53; col.8, lines 7-47; col.11, line 23; col.12, lines 31-64;
col.13, lines 4, 23.

AP US 5,499,146 A (DONAHUE et al) 12 March 1996. 1-3
A E US 5,615,132 A (HORTON et al) 25 March 1997. 1-3
A E US 5,617,334 A (TSENG et al) 01 April 1997. 1-3
A P US 5,677,981 A (JARVIK) 25 November 1996. 1-3
A US 5,130.794 A (RITCHEY) 14 July 1992. 1-3
A US 5,388,990 A (BECKMAN) 14 February 1995. 1-3

[E{] Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T Iater d published after the & jonal filing date or priority
A" 4 defining the atate of the art which & idered date and not in conflict with the application but cited to understand the
ocument defining the general of wi s not consid: gy ina the nvention
10 be part of € o~ priaciple or theory underlying the inv:
oL xX* d 'Of, = sl 1 'm,- o N ot be
E earlier document published oo or afier the international filing date cousidered novel or ¢ be dered to involve an i ivestep
L document which may throw doubts on priority clain(s) or which is when the document is taken alone
cited to blish the publication date of another citation or othes
special reason w"ﬁd & document of particular rel the claimed i i be
(-) idered to imvolve an i ive step when the document i
0o document referring 10 an oral disclosure, use, exhibition or other combined with one or more other such d such binats
means being obvious to a persoan skilled in the art
‘P document published prior to the international filing date but later than =5, of the i
rungmrerLarympre filing & document member same patont family
Date of the actual completion of the international search Date of mailing of the international search repornt
02 APRIL 1997 1 7 APR '997

Name and mailing address of the ISA/US Authorized o
Commissioner of Patents and Trademarks {
Box PCT S EN HONG

Washington, D.C. 20231
Facsimile No. (703) 305-3230 Telephone No. (703) 308-5465

Form PCT/ISA/210 (second sheet)(July 1992)w

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/02290
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
AP US 5,577,961 A (ADAMCZYK et al) 26 November 1996. 1-3
AP US 5,579,026 A (TABATA) 26 November 1996. 1-3
AP US 5,581,271 A (KRAEMER) 03 December 1996. 1-3

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/02290

A. CLASSIFICATION OF SUBJECT MATTER:
Us CL :

395/173, 174, 175, 806, 807, 119, 137, 138; 382/154, 236, 295, 296; 345/8, 121, 122, 348/39

Form PCT/ISA/210 (extra sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

