

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2005274948 B2

(54) Title
Vaccines against aids comprising CMV/R-nucleic acid constructs

(51) International Patent Classification(s)
C07K 14/16 (2006.01) **A61P 31/00** (2006.01)
A61K 39/21 (2006.01)

(21) Application No: **2005274948** (22) Date of Filing: **2005.07.15**

(87) WIPO No: **WO06/020071**

(30) Priority Data

(31) Number PCT/US2004/030284	(32) Date 2004.09.15	(33) Country US
60/588,378	2004.07.16	US
PCT/US2005/012291	2005.04.12	US

(43) Publication Date: **2006.02.23**
(44) Accepted Journal Date: **2011.09.22**

(71) Applicant(s)
The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services;GenVec, Inc.

(72) Inventor(s)
Chakrabarti, Bimal;King, C. Richter;Yang, Zhi-Yong;Huang, Yue;Xu, Ling;Wu, Lan;Nabel, Gary J.;Gall, Jason G. D.

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
WO 2002/32943
WO 2003/076591
WO 1997/27311
LEMIALE FRANCK et al Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector HIV vaccine and localisation in the CNS. Journal of Virology 77/18
WO 2003/028632
WO 2005/034992 cited in ISR
KONH WING PUI et al Immunogenicity of multiple gene and clade HIV-1 vaccines Journal of Virology Vol 77/23
RUBENSTEIN et al Immunologic responses of HIV-1 infected study subjects to immunisation with a mixture of peptide protein derivative V3 loop peptide conjugates Journal of Acquired immune deficiency syndromes Vol 22/5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 February 2006 (23.02.2006)

PCT

(10) International Publication Number
WO 2006/020071 A3

(51) International Patent Classification:
C07K 14/16 (2006.01) *A61P 31/00* (2006.01)
A61K 39/21 (2006.01)

(74) Agent: WARREN, Gwynedd; Klarquist Sparkman, LLP,
One World Trade Center, Suite 1600, 121 SW Salmon
Street, Portland, OR 97204 (US).

(21) International Application Number:
PCT/US2005/025219

(22) International Filing Date: 15 July 2005 (15.07.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/588,378 16 July 2004 (16.07.2004) US
PCT/US2004/030284
15 September 2004 (15.09.2004) US
PCT/US2005/012291

12 April 2005 (12.04.2005) US

(71) Applicants (for all designated States except US): THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852-3804 (US). GENVEC, INC. [US/US]; 65 West Watkins Mill Road, Gaithersburg, Maryland 20878 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NABEL, Gary, J. [US/US]; 2520 30th Street N.W., Washington, DC 20008 (US). HUANG, Yue [CA/US]; 1907 Gatewood Place, Silver Spring, MD 20903 (US). XU, Ling [CN/US]; 10004 Penfold Court, Potomac, MD 20854 (US). CHAKRABARTI, Bimal [IN/US]; 1147 McIntyre Drive, Ann Arbor, MI 48105 (US). WU, Lan [CN/US]; c/o NIH/WRC, Building 40, 9000 Rockville Pike, Bethesda, MD 20892 (US). YANG, Zhi-yong [CN/US]; 10004 Penfold Court, Potomac, MD 20854 (US). GALL, Jason, G., D. [US/US]; 31 Bronco Court, Germantown, MD 20874 (US). KING, C., Richter [US/US]; c/o GenVec, Inc., 65 West Watkins Mill Road, Gaithersburg, MD 20878 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
18 May 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VACCINES AGAINST AIDS COMPRISING CMV/R-NUCLEIC ACID CONSTRUCTS

(57) Abstract: The present disclosure provides compositions for eliciting an immune response, including a prophylactic immune response, against human immunodeficiency virus. The composition includes nucleic acid constructs encoding HIV antigenic polypeptides of multiple clades or strains. Methods for eliciting an immune response by administering the composition to a subject are also provided.

WO 2006/020071 A3

03 May 2011

2005274948

**VACCINE CONSTRUCTS AND COMBINATIONS OF VACCINES
DESIGNED TO IMPROVE THE BREADTH OF THE IMMUNE
RESPONSE TO DIVERSE STRAINS AND CLADES OF HIV**

CROSS REFERENCE TO RELATED APPLICATION

[001] This application is an Australian national phase filing of International Patent Application No. PCT/US2005/025219 (publication No. WO 2006/020071) filed on July 15, 2005, which claims priority from USSN 60/588,378, filed July 16, 2004, PCT/US2004/030284, filed September 15, 2004 and PCT/US2005/12291, filed April 12, 2005. The contents of which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

[002] This application relates to the field of vaccines. More specifically, this application relates to a multi-plasmid vaccine for the prevention of human immunodeficiency virus (HIV).

BACKGROUND

[004] More than 40 million people are infected worldwide with HIV-I and an estimated 14,000 new infections occur every day. Over 25 million people have died of HIV/AIDS since the first cases of AIDS were identified in 1981 (CDC5 MMWR Morb. Mortal Wkly. Rep., 52:1145-1148, 2003; UNAIDS, 2003 Report on the Global AIDS Epidemic Executive Summary, 2004). Development of a globally relevant HIV-I vaccine is critical for controlling the HIV/AIDS pandemic.

[005] The combination of a high transcriptional error rate and frequent recombination results in a remarkable amount of genetic diversity among HIV-I strains and presents a challenge for selecting viral antigens. The other potential

impact of HIV genetic variation is the high rate of mutation within each individual, which creates the opportunity for viral escape from epitope-specific immune responses and poses particular challenges for T cell based vaccine approaches (Altfeld et al., *J. Virol.*, 77:12764-12772, 2002; Bhardwaj et al., *Nat. Med.*, 9:13-14, 2003; Brander et al., *Curr. Opin. Immunol.*, 11:451-459, 1999; Letvin et al., *Nat. Med.*, 9:861-866, 2003). A variety of vaccine strategies to elicit effective immunity to HIV-1 have been explored. Among them, immunization by plasmid DNA encoding genes for HIV protein antigens is a promising vaccine approach (Mascola et al., *Curr. Opin. Immunol.*, 13:489-494, 2001; Nabel, G.J., *Nature*, 410:1002-1007, 2001). Gene-based immunization promotes host cell synthesis and expression of the viral antigen and physiologic post-translational processing and folding in the cell cytoplasm. Therefore, DNA immunization elicits both CD4⁺ and CD8⁺ T lymphocyte responses with a variety of immunogens in animal models (Graham, B.S., *Annu. Rev. Med.*, 53:207-221, 2002; Rollman et al., *Gene Ther.*, 11:1146-1154, 2004; Barouch et al., *Science*, 290:486-492, 2000; Subbramanian et al., *J. Virol.*, 77:10113-10118, 2003; Mascola et al., *J. Virol.*, 79:771-779, 2005).

[006] Delivering viral antigens by DNA plasmid vaccine vectors has potential advantages over other vector delivery systems, notably the lack of anti-vector immunity. However, DNA immunization has shown only limited immunogenicity in humans, despite many examples of vaccine-induced protection in mice and nonhuman primates (Rollman et al., *Gene Ther.*, 11:1146-1154, 2004; Donnelly et al., *Nat. Med.*, 1:583-587, 1995). The first DNA vaccine demonstrated to be immunogenic in antigen-naïve humans was a construct expressing the circumsporozoite antigen from *Plasmodium falciparum* delivered by Biojector®. In this study, CD8⁺ CTL responses were detected only after in vitro expansion of effectors (Wang et al., *Science*, 282:476-480, 1998). Another report described a DNA plasmid expressing the Hepatitis B surface antigen delivered by a different needleless injection device, Powderject™, induced antibody as well as vaccine-specific T cell responses in antigen-naïve humans (Roy et al., *Vaccine*, 19:764-778, 2000). A DNA plasmid vaccine expressing the HIV-1 Env and Rev proteins tested in both HIV-infected and HIV-uninfected subjects (MacGregor et al., *J. Infect. Dis.*,

178:92-100, 1998) was not associated with adverse events, but only sporadic lymphoproliferative and antibody responses were observed (MacGregor et al., *J. Infect. Dis.*, 181:406, 2000; MacGregor et al., *AIDS*, 16:2137-2143, 2002).

[007] This disclosure describes vaccine compositions that elicit broad spectrum immunity against HIV, by providing robust expression of HIV antigens corresponding to important immunogenic epitopes of multiple clades and strains of human immunodeficiency virus 1. The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.

SUMMARY

[008] This disclosure relates to nucleic acid constructs that encode HIV antigens. These nucleic acid constructs are capable of eliciting an immune response against multiple variants of HIV, and are suitable for therapeutic (for example, prophylactic) administration. In the context of an immunogenic composition, multiple nucleic acids are combined, each of which encodes an HIV antigenic polypeptide, for example different HIV antigenic polypeptides (such as Gag, Pol, and Nef). A single immunogenic composition includes nucleic acid constructs that encode antigenic polypeptides of multiple clades or strains of HIV for example multiple clades or strains of Gag, Pol or Nef, or multiple clades or strains on Gag, Pol and Nef.. Thus, when administered to a subject, the composition elicits an immune response against multiple clades or strains prevalent in human populations.

[009] Methods of using the compositions are also described. Such methods involve administering compositions including the disclosed nucleic acid constructs to a subject, for example, for the purpose of eliciting an immune response against multiple clades or strains of HIV. The compositions can be administered alone or in combination with additional immunogenic compositions.

[010] The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[011] FIG. 1 is a schematic representation of a multi-clade, multi-valent HIV vaccine composition.

[012] FIG. 2 is a schematic representation of the plasmid VRC 4401.

[013] FIG. 3 is a schematic representation of the plasmid VRC 4409.

[014] FIG. 4 is a schematic representation of the plasmid VRC 4404.

[015] FIG. 5 is a schematic representation of the plasmid VRC 5736.

[016] FIG. 6 is a schematic representation of the plasmid VRC 5737.

[017] FIG. 7 is a schematic representation of the plasmid VRC 5738.

[018] FIG. 8A schematically represents antigenic expression constructs with different transcription regulatory sequences. FIG. 8B is an image of a Western blot showing relative expression of the various constructs.

[019] FIGS. 9A and B are bar graphs illustrating CD4⁺ and CD8⁺ T cell responses in mice immunized with expression plasmids with different transcription regulatory sequences.

[020] FIGS. 10A, B and C are bar graphs illustrating relative immune responses against HIV Gag, Pol and Nef antigens in mice immunized with nucleic acid constructs having either a CMV/R transcription control sequence or a CMV IE transcription control sequence.

[021] FIGS. 11A, B and C are bar graphs illustrating relative immune responses against HIV Gag, Pol, Nef and Env antigens in cynomolgous macaques immunized with different vaccine compositions.

[022] FIGS. 12A, B and C are bar graphs illustrate the time course of development of the immune response against HIV antigens following immunization of cynomolgous macaques with different vaccine compositions.

[023] FIG. 13 is a series of bar graphs illustrating the cellular immune response measured by intracellular cytokine staining (ICS) in humans immunized with VRC-HIVDNA016-00-VP.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

[024] SEQ ID NOs:1-6 represent the VRC-HIVDNA016-00-VP plasmids 4401, 4409, 4404, 5736, 5737, and 5738, respectively. Each of these plasmids is a nucleic acid construct for expressing a single HIV antigenic polypeptide.

[025] SEQ ID NOs:7-15 represent chimeric Env plasmids.

[026] SEQ ID NOs:16-19 represent adenovirus vectors

[027] SEQ ID NOs:20-25 represent exemplary Gag, Pol, Nef, clade A Env, clade B Env and clade C Env polypeptides, respectively.

[028] SEQ ID NO:26 represents the CMV/R transcription regulatory sequence.

DETAILED DESCRIPTION

[029] The present disclosure relates to a nucleic acid constructs suitable for use as a preventive vaccine for HIV-1. Specific examples of compositions disclosed herein provide two significant advances with respect to prior HIV vaccine candidates. Such compositions exhibit increased expression and immunogenicity, and are capable of eliciting an immune response against multiple divergent strains of HIV. The vaccine includes a mixture of different nucleic acid constructs, and is designed to produce Gag, Pol, Nef and Env HIV-1 proteins to elicit broad immune responses against multiple HIV-1 subtypes isolated in human infections. Most typically, the nucleic acids are incorporated into a plasmid vector. An exemplary clinical embodiment of the multi-plasmid vaccine is designated VRC-HIVDNA016-00-VP.

[030] The rationale in development of the exemplary vaccine disclosed herein is to separate the *gag*, *pol* and *nef* genes into separate nucleic acid constructs, such as, plasmids, rather than having one construct that produces a fusion protein immunogen, as was the case with previously developed HIV vaccines. In exemplary embodiments, the nucleic acid construct has been modified to increase production of immunogenic protein products *in vivo*. The modifications include: 1) a change in the promoter incorporated into these plasmids and/or 2) a 68 amino acid addition to the *gag* gene (for example, in the VRC 4401 (Gag protein only) plasmid). Whereas previous HIV vaccine plasmids have most commonly utilized the cytomegalovirus (CMV) immediate early promoter to regulate transcription of the polynucleotide sequence encoding the antigenic polypeptide, in the nucleic acid constructs disclosed herein, the polynucleotide sequence encoding the immunogenic HIV polypeptides is operably linked to a promoter designated CMV/R. The CMV/R promoter was previously described in published US patent application no. 20040259825, the disclosure of which is incorporated herein in its entirety.

[031] The nucleic acid constructs disclosed herein can incorporate polynucleotide sequences encoding essentially any HIV antigenic polypeptide, so long as antigens corresponding to multiple clades and/or strains are included. The compositions are described in detail with respect to a specific example of the nucleic acid constructs collectively designated the VRC-HIVDNA016-00-VP vaccine composition. This exemplary embodiment is illustrated in FIG. 1.

[032] The vaccine composition VRC-HIVDNA016-00-VP includes six closed circular plasmid DNA macromolecules, VRC 4401, VRC 4409, VRC 4404, VRC 5736, VRC 5737 and VRC 5738, which can, for example, be combined in equal concentrations (mg/mL). VRC 4401 encodes the clade B HIV-1 Gag structural core protein that encapsidates the viral RNA and exhibits highly conserved domains. VRC 4409 encodes for clade B polymerase (Pol), which is also highly conserved, and VRC 4404 encodes for clade B Nef, an accessory protein against which a vigorous T-cell response is mounted in natural infection. The DNA plasmid expressing HIV-1 Pol has been modified to reduce potential toxicity through the incorporation of changes in the regions affecting the protease, reverse transcriptase,

and integrase activities. Two amino acids in the myristylation site in the HIV-1 *nef* gene were deleted to abrogate MHC class I and CD4+ down-regulation by the Nef protein. No modifications were made to the amino acid sequence of Gag. The other three plasmids express synthetic versions of modified, truncated envelope glycoproteins (gp145) from three strains of HIV-1: VRC 5736 (clade A), VRC 5737 (clade B) and VRC 5738 (clade C). The sequences used to create the DNA plasmids encoding Env are derived from three HIV-1 CCR5-tropic strains of virus. These genes have been modified to improve immunogenicity, which has been demonstrated in mice and monkeys. The vaccine is designed to elicit immune responses to a broad range of HIV-1 strains.

[033] In particular examples, plasmids containing Gag, Pol, Nef and Env complementary DNAs (cDNAs) were used to subclone the relevant inserts into plasmid DNA expression vectors that use the CMV/R promoter and the bovine growth hormone polyadenylation sequence. All the plasmids expressing the HIV-1 genes were made synthetically with sequences designed to disrupt viral RNA structures that limit protein expression by using codons typically found in humans, thereby increasing gene expression. The translational enhancer region of the CMV immediate early region 1 enhancer was substituted with the 5'-untranslated HTLV-1 R-U5 region of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) to further optimize gene expression.

[034] The DNA plasmids are typically produced in bacterial cell cultures containing a kanamycin selection medium. In all such cases, bacterial cell growth is dependent upon the cellular expression of the kanamycin resistance protein encoded by a portion of the plasmid DNA. Following growth of bacterial cells harboring the plasmid, the plasmid DNA is purified from cellular components. In a particular example, the Gag plasmid (VRC 4401) is 5886 nucleotide pairs in length and has an approximate molecular weight of 3.9 MDa; the Pol plasmid (VRC 4409) is 7344 nucleotide pairs in length and has an approximate molecular weight of 4.8 MDa; the Nef plasmid (VRC 4404) is 5039 nucleotide pairs in length and has an approximate molecular weight of 3.3 MDa; the clade A, B, and C Env plasmids (VRC 5736,

5737, and 5738) are 6305, 6338 and 6298 nucleotides in length, respectively, and have an approximate molecular weight of 4.2 MDa.

[035] Thus, one aspect of the present disclosure relates to compositions capable of eliciting an immune response against HIV. For example, the compositions can be capable of eliciting a protective immune response against HIV when administered alone or in combination with at least one additional immunogenic compositions. It will be understood by those of skill in the art, the ability to produce an immune response after exposure to an antigen is a function of complex cellular and humoral processes, and that different subjects have varying capacity to respond to an immunological stimulus. Accordingly, the compositions disclosed herein are capable of eliciting an immune response in an immunocompetent subject, that is a subject that is physiologically capable of responding to an immunological stimulus by the production of a substantially normal immune response, e.g., including the production of antibodies that specifically interact with the immunological stimulus, and/or the production of functional T cells (CD4⁺ and/or CD8⁺ T cells) that bear receptors that specifically interact with the immunological stimulus. It will further be understood, that a particular effect of infection with HIV is to render a previously immunocompetent subject immunodeficient. Thus, with respect to therapeutic methods discussed below, it is generally desirable to administer the compositions to a subject prior to exposure to HIV (that is, prophylactically, e.g., as a vaccine) or therapeutically at a time following exposure to HIV during which the subject is nonetheless capable of developing an immune response to a stimulus, such as an antigenic polypeptide.

[036] The compositions include a plurality of (that is two, three, four, five, six or even more) different nucleic acid constructs. Multiple copies of each of the different nucleic acid constructs are typically present. Each of the different nucleic acid constructs includes a polynucleotide sequence encoding an HIV antigenic polypeptide operably linked to a transcription regulatory sequence capable of directing its expression in the cells of a subject following systemic or localized administration. Included among the nucleic acid constructs are polynucleotide sequences that encode antigenic polypeptides of more than one (multiple) clades or

strains of HIV. Thus, the composition includes multiple nucleic acid constructs, at least two of which incorporate polynucleotide sequences that encode HIV antigenic polypeptides from different clades or strains. Frequently, the composition includes nucleic acid constructs that encode HIV antigenic polypeptides from at least three different clades or strains.

[037] In one embodiment, the composition includes multiple separate nucleic acid constructs, each of which includes a polynucleotide sequence encoding an HIV antigenic polypeptide operably linked to a CMV/R transcription control sequence. In one example, the CMV/R transcription control sequence has the sequence of SEQ ID NO:26. In another embodiment, the composition includes multiple separate nucleic acid constructs, each of which includes a polynucleotide sequence encoding a single HIV antigenic polypeptide. In certain embodiments, the nucleic acid constructs are plasmids.

[038] The compositions typically include a first nucleic acid construct that includes a polynucleotide sequence that encodes an HIV Gag polypeptide, a second nucleic acid construct that includes a polynucleotide sequence that encodes an HIV Pol polypeptide, a third nucleic acid construct comprising a polynucleotide sequence that encodes an HIV Nef polypeptide, and at least one additional nucleic acid construct that includes a polynucleotide sequence that encodes an HIV Env polypeptide. The composition can also include one or more additional nucleic acid constructs that include a polynucleotide sequence that encodes an Env polypeptide of a different HIV clade or strain.

[039] For example, the first nucleic acid construct can include a polynucleotide sequence that encodes a clade B Gag polypeptide, the second nucleic acid construct can include a polynucleotide sequence that encodes a clade B Pol polypeptide, and the third nucleic acid construct can include a polynucleotide sequence that encodes a clade B Nef polypeptide. Alternatively, the first, second and third nucleic acid constructs can include polynucleotide sequences that encode Gag, Pol and Nef polypeptides of a different clade, such as clade A or clade C, etc. For example, the composition can include a nucleic acid construct that include a polynucleotide

sequence that encodes a Gag polypeptide with at least about 95% sequence identity to SEQ ID NO:20; a nucleic acid construct that includes a polynucleotide sequence that encodes a Pol polypeptide with at least about 95% sequence identity to SEQ ID NO:21 and/or a nucleic acid construct that includes a polynucleotide sequence that encodes a Nef polypeptide with at least about 95% sequence identity to SEQ ID NO:22. In one embodiment, the immunogenic composition includes a first nucleic acid construct with a polynucleotide sequence that encodes the Gag polypeptide of SEQ ID NO:20, a second nucleic acid construct with a polynucleotide sequence that encodes the Pol polypeptide of SEQ ID NO:21; and a third nucleic acid construct with a polynucleotide sequence that encodes the Nef polypeptide of SEQ ID NO:22. For example, the composition can include a nucleic acid construct that include a polynucleotide sequence with at least 95% sequence identity to positions 1375-2883 of SEQ ID NO:1; a nucleic acid construct that include a polynucleotide sequence with at least 95% sequence identity to positions 1349-4357 of SEQ ID NO:2 and/or a nucleic acid construct that include a polynucleotide sequence with at least 95% sequence identity to positions 1392-2006 of SEQ ID NO:3, or differing from the reference sequence by the substitution of one or more degenerate codons. In one embodiment, the composition includes the nucleic acid constructs represented by SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3 (plasmids VRC 4401, VRC 4409 and VRC 4404), or constructs having at least 95% sequence identity thereto.

[040] Additionally, the composition can include multiple nucleic acid constructs that encode Env polypeptides from different clades or strains. For example, the composition can include a first additional nucleic acid construct including a polynucleotide sequence that encodes a clade A Env polypeptide, a second additional nucleic acid construct including a polynucleotide sequence that encodes a clade B Env polypeptide, and a third additional nucleic acid construct including a polynucleotide sequence that encodes a clade C Env polypeptide. Generally, clade A, clade B and clade C Env polypeptides will be utilized as clades A, B and C collectively account for the highest proportion of HIV infections worldwide. However, one of skill in the art will recognize that compositions can be produced that include Env polypeptides from any combination of HIV clades or strains. In

certain embodiments, the immunogenic compositions include a first additional nucleic acid construct that includes a polynucleotide sequence that encodes a clade A Env polypeptide with at least 95% sequence identity to SEQ ID NO:23; a second additional nucleic acid construct that includes a polynucleotide sequence that encodes a clade B Env polypeptide with at least 95% sequence identity to SEQ ID NO:24; and/or a third additional nucleic acid construct that includes a polynucleotide sequence that encodes a clade C Env polypeptide with at least 95% sequence identity to SEQ ID NO:25. In one embodiment, the composition includes a first additional nucleic acid construct with a polynucleotide sequence that encodes the clade A Env polypeptide of SEQ ID NO:23; a second additional nucleic acid construct with a polynucleotide sequence that encodes the clade B Env polypeptide of SEQ ID NO:24; and a third additional nucleic acid construct with a polynucleotide sequence that encodes the clade C Env polypeptide of SEQ ID NO:25. For example, the immunogenic composition can include a nucleic acid construct with a polynucleotide sequence that is at least about 95% identical to positions 1392-3272 of SEQ ID NO:4; a nucleic acid construct with a polynucleotide sequence that is at least about 95% identical to positions 1384-3312 of SEQ ID NO:5 and/or a nucleic acid construct with a polynucleotide sequence that is at least about 95% identical to positions 1392-3272 of SEQ ID NO:6. In an embodiment, the immunogenic compositions includes nucleic acid constructs represented by SEQ ID NO:4; SEQ ID NO:5 and SEQ ID NO:6 (plasmids VRC 5736, 5737 and 5738, respectively), or constructs having at least 95% sequence identity thereto, or constructs differing from the reference sequence by the substitution of degenerate codons.

[041] Thus, in certain embodiments, the immunogenic composition includes a first nucleic construct with a polynucleotide sequence encoding a Gag polypeptide, a second nucleic acid construct with polynucleotide sequence encoding a Pol polypeptide, a third nucleic acid construct with a polynucleotide sequence encoding a Nef polypeptide, a fourth nucleic acid construct with a polynucleotide sequence encoding a clade A Env polypeptide, a fifth nucleic acid construct with a polynucleotide sequence encoding a clade B Env polypeptide, and a sixth nucleic

acid construct with a polynucleotide sequence encoding a clade C Env polypeptide. In one such an embodiment, the first nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:20, the second nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:21; the third nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:22; the fourth nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:23; the fifth nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:24 and the sixth nucleic acid construct encodes a polypeptide with at least 95% sequence identity to SEQ ID NO:25. In an embodiment, the immunogenic composition includes six nucleic acid constructs, of which one or more are at least 95% identical to positions 1375-2883 of SEQ ID NO:1; positions 1349-4357 of SEQ ID NO:2; positions 1392-2006 of SEQ ID NO:3; positions 1392-3272 of SEQ ID NO:4; positions 1384-3312 of SEQ ID NO:5 and positions 1392-3272 of SEQ ID NO:6. For example, the composition can include six nucleic acid constructs with the polynucleotide sequences represented by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 and SEQ ID NO:6 (plasmids VRC 4401, VRC 4409, VRC 4404, VRC 5736, VRC 5737 and VRC 5738, respectively), or constructs having at least 95% sequence identity thereto, or constructs differing from the reference sequences by the substitution of degenerate codons. When combined in an immunogenic composition, the nucleic acid constructs can be combined in a substantially equal ratio by weight (that is an approximately 1:1:1:1:1:1 ratio).

[042] In some cases, the compositions include nucleic acid constructs that each encode an HIV antigenic polypeptide of a single clade or strain. In other cases, it can be useful to include nucleic acid constructs that incorporate polynucleotide sequences that encode a chimeric Env polypeptide. Thus, in certain embodiments, the nucleic acid construct can encode a chimeric Env polypeptide with at least 95% identity to a polypeptide encoded by one of SEQ ID NOs:7-15.

[043] Typically, when formulated for administration to a subject, the compositions also include a pharmaceutically acceptable carrier or excipient, for example, an aqueous carrier, such as phosphate buffered saline (PBS) or another neutral

physiological salt solution. The composition can also include an adjuvant or other immunostimulatory molecule. The composition can be administered one or more times to a subject to elicit an immune response. For example, the composition can be administered multiple times at intervals of at least about 28 days, or at different intervals as dictated by logistical or therapeutic concerns.

[044] Thus, a feature of the disclosure includes pharmaceutical compositions or medicaments for the therapeutic or prophylactic treatment of an HIV infection. The use of the compositions disclosed herein in the production of medicament for the therapeutic or prophylactic treatment of HIV is also expressly contemplated. Any of the limitations or formulations disclosed above with respect to compositions are applicable to their use in or as medicaments for the treatment of an HIV infection.

[045] Another aspect of the disclosure relates to methods for eliciting an immune response against HIV by administering the compositions described above to a human subject. When administered to an immunocompetent subject, the composition is capable of eliciting an immune response against multiple clades or strains of HIV. For example, in one embodiment the method involves administering a composition that includes multiple different nucleic acid constructs, each of which includes a polynucleotide sequence encoding an HIV antigenic polypeptide operably linked to a CMV/R transcription control sequence. In another embodiment, the method involves administering a composition that includes multiple different nucleic acid constructs, each of which includes a polynucleotide sequence encoding a single HIV antigenic polypeptide. In certain embodiments, the administered nucleic acid constructs are plasmids. Indeed, any of the above described compositions are suitable for administration to human subjects in the methods disclosed herein.

[046] One dose or multiple doses of the composition can be administered to a subject to elicit an immune response with desired characteristics, including the production of HIV specific antibodies, or the production of functional T cells that react with HIV. In certain embodiments, the composition is administered intramuscularly, for example, using a needleless delivery device. Alternatively, the

composition is administered by other routes, such as intravenous, transdermal, intranasal, oral (or via another mucosa).

[047] In some embodiments, the methods also involve administering viral vectors that encode HIV antigenic polypeptides, instead of, or in combination with one or more of the nucleic acid constructs already described. In some cases, the viral vectors are adenoviral vectors (for example a replication deficient adenoviral vectors). For example, one or more doses of a “primer” composition, such as those disclosed above, can be administered to a subject, followed by administration of one or more doses of a “booster” composition including multiple adenoviral vectors encoding HIV antigenic polypeptides. In certain embodiments, the adenoviral vectors encode one or more HIV antigenic polypeptide that is identical to an HIV antigenic polypeptide previously administered in the primer composition.

Exemplary recombinant adenoviral vectors are represented by SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18 and SEQ ID NO:19. Of course, alternative adenoviral vectors, for example, that encode polypeptides with at least about 95% sequence identity to a polypeptide encoded by one of these sequences, or that share at least about 95% sequence identity to one of these sequences, can also be used.

[048] In another aspect, the disclosure concerns isolated or recombinant nucleic acids that include a polynucleotide sequence that encodes an HIV antigenic polypeptide operably linked to a CMV/R transcription regulatory sequence. For example, such a nucleic acid can be a plasmid or a viral vector. The polynucleotide sequence can encode an HIV Gag polypeptide, an HIV Pol polypeptide, an HIV Nef polypeptide or an HIV Env polypeptide. In some examples, the HIV polypeptide encoded by the nucleic acid construct is the only HIV antigen encoded by the isolated or recombinant nucleic acid. Exemplary polypeptides encoded by these nucleic acids are represented by SEQ ID NOs:20-25, and include sequences that are at least 95% identical to the amino acid sequences of SEQ ID NOs:20-25. For example, such a nucleic acid can include a polynucleotide sequence that is at least 95% identical to: positions 1375-2883 of SEQ ID NO:1; positions 1349-4357 of SEQ ID NO:2; positions 1392-2006 of SEQ ID NO:3; positions 1392-3272 of SEQ ID NO:4; positions 1384-3312 of SEQ ID NO:5 or positions 1392-3272 of SEQ ID

NO:6, any of which can be operably linked to a CMV/R transcription regulatory sequence. For example, the CMV/R transcription control sequence can be a polynucleotide sequence with at least 95% sequence identity to SEQ ID NO:26. Exemplary embodiments of such nucleic acids include the plasmids VRC 4401, VRC 4409, VRC 4404, VRC 5736, VRC 5737 and VRC 5738 represented by SEQ ID NOs:1-6, respectively.

[049] In other embodiments, the nucleic acids include a polynucleotide sequence that encodes a chimeric HIV polypeptide that incorporates at least a subsequence of multiple HIV clades or strains. For example, the chimeric HIV polypeptide can be a chimeric Env polypeptide that includes subsequences of different HIV clades or strains. Examples of such nucleic acids include SEQ ID NOs:7-15, as well as substantially similar polynucleotide sequences, such as those having at least about 95% sequence identity to one of SEQ ID NOs:7-15, or polynucleotide sequences in which one or more degenerate codons have been substituted for each other.

Alternatively, the nucleic acids can include a polynucleotide sequence that encodes a chimeric HIV Env polypeptide operably linked to a transcription regulatory sequence other than the CMV/R transcription regulatory region (for example, the CMV immediate early promoter enhance or other promoter and/or enhancer as discussed below). Chimeric Env polypeptides are also a feature of this disclosure.

[050] Additional technical details are provided under the specific topic headings below. In order to facilitate review of the various embodiments of this disclosure, the following explanations of specific terms are provided:

Terms

[051] Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Definitions of common terms in molecular biology may be found in Benjamin Lewin, *Genes V*, published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew *et al.* (eds.), *The Encyclopedia of Molecular Biology*, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and

Robert A. Meyers (ed.), *Molecular Biology and Biotechnology: a Comprehensive Desk Reference*, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

[052] The singular terms “a,” “an,” and “the” include plural referents unless context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “plurality” refers to two or more. It is further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of this disclosure, suitable methods and materials are described below. The term “comprises” means “includes.” The abbreviation, “e.g.” is derived from the Latin *exempli gratia*, and is used herein to indicate a non-limiting example. Thus, the abbreviation “e.g.” is synonymous with the term “for example.”

[053] In order to facilitate review of the various embodiments of this disclosure, the following explanations of specific terms are provided:

[054] Adjuvant: A vehicle used to enhance antigenicity; such as a suspension of minerals (alum, aluminum hydroxide, aluminum phosphate) on which antigen is adsorbed; or water-in-oil emulsion in which antigen solution is emulsified in oil (MF-59, Freund’s incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund’s complete adjuvant) to further enhance antigenicity (inhibits degradation of antigen and/or causes influx of macrophages). Adjuvants also include immunostimulatory molecules, such as cytokines, costimulatory molecules, and for example, immunostimulatory DNA or RNA molecules, such as CpG oligonucleotides.

[055] Antigen: A compound, composition, or substance that can stimulate the production of antibodies or a T cell response in an animal, including compositions that are injected, absorbed or otherwise introduced into an animal. The term “antigen” includes all related antigenic epitopes. An “antigenic polypeptide” is a polypeptide to which an immune response, such as a T cell response or an antibody

response, can be stimulated. “Epitope” or “antigenic determinant” refers to a site on an antigen to which B and/or T cells respond. In one embodiment, T cells respond to the epitope when the epitope is presented in conjunction with an MHC molecule. Epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of an antigenic polypeptide. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5, about 9, or about 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and multi-dimensional nuclear magnetic resonance spectroscopy.

[056] Antibody: Immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, that is, molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. A naturally occurring antibody (for example, IgG, IgM, IgD) includes four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds. The phrase “antibody response” refers to an immunological response against an antigen involving the secretion of antibodies specific for the antigen. An antibody response is a B cell mediated immune response initiated through the interaction of an antigen (or epitope) with a B cell receptor (membrane bound IgD) on the surface of a B cell. Following binding of the stimulation of the B cell receptor by its cognate antigen, the B cell differentiates into a plasma cell that secretes antigen specific immunoglobulin to produce an antibody response. “Neutralizing antibodies” are antibodies that bind to an epitope on a virus inhibiting infection and/or replication as measured, for example, in a plaque neutralization assay.

[057] cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and regulatory sequences that determine transcription. cDNA is typically synthesized in the laboratory by reverse transcription from messenger RNA extracted from cells. In the context of preparing nucleic acid constructs including polynucleotide sequences that encode an HIV antigenic polypeptide, a cDNA can be prepared, for example by reverse transcription or

amplification (e.g., by the polymerase chain reaction, PCR) from an HIV RNA genome (or genome segment).

[058] Host cells: Cells in which a polynucleotide, for example, a polynucleotide vector or a viral vector, can be propagated and its DNA expressed. The cell may be prokaryotic or eukaryotic. The term also includes any progeny of the subject host cell. It is understood that all progeny may not be identical to the parental cell since there may be mutations that occur during replication. However, such progeny are included when the term "host cell" is used. Thus, the nucleic acid constructs described herein can be introduced into host cells where their polynucleotide sequences (including those encoding HIV antigenic polypeptides) can be expressed.

[059] Immune response: A response of a cell of the immune system, such as a B cell, T cell, or monocyte, to a stimulus. In some cases, the response is specific for a particular antigen (that is, an "antigen-specific response"). In some cases, an immune response is a T cell response, such as a CD4+ response or a CD8+ response. Alternatively, the response is a B cell response, and results in the production of specific antibodies. A "protective immune response" is an immune response that inhibits a detrimental function or activity of a pathogen (such as HIV), reduces infection by the pathogen, or decreases symptoms (including death) that result from infection by the pathogen. A protective immune response can be measured, for example, by the inhibition of viral replication or plaque formation in a plaque reduction assay or ELISA-neutralization assay (NELISA), or by measuring resistance to viral challenge *in vivo* in an experimental system.

[060] Immunogenic composition: A composition comprising at least one epitope of a pathogenic organism, that induces a measurable CTL response, or induces a measurable B cell response (for example, production of antibodies that specifically bind the epitope), or both, when administered to an immunocompetent subject. Thus, an immunogenic composition is a composition capable of eliciting an immune response in an immunocompetent subject. For example, an immunogenic composition can include isolated nucleic acid constructs (such as plasmids or viral vectors) that encode one or more immunogenic epitopes of an HIV antigenic

polypeptide that can be used to express the epitope(s) (and thus be used to elicit an immune response against this polypeptide or a related polypeptide expressed by the pathogen). For *in vitro* use, the immunogenic composition can consist of the isolated nucleic acid, protein or peptide. For *in vivo* use, the immunogenic composition will typically include the nucleic acid or virus that expresses the immunogenic epitope in pharmaceutically acceptable carriers or excipients, and/or other agents, for example, adjuvants. An immunogenic polypeptide (such as an HIV antigen), or nucleic acid encoding the polypeptide, can be readily tested for its ability to induce a CTL or antibody response by art-recognized assays.

[061] Pharmaceutically acceptable carriers and/or pharmaceutically acceptable excipients: The pharmaceutically acceptable carriers or excipients of use are conventional. *Remington's Pharmaceutical Sciences*, by E. W. Martin, Mack Publishing Co., Easton, PA, 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the polypeptides and polynucleotides disclosed herein.

[062] In general, the nature of the carrier will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch or magnesium stearate. In addition to biologically neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.

[063] A "therapeutically effective amount" is a quantity of a composition used to achieve a desired effect in a subject. For instance, this can be the amount of the composition necessary to inhibit viral (or other pathogen) replication or to prevent or measurably alter outward symptoms of viral (or other pathogenic) infection. When

administered to a subject, a dosage will generally be used that will achieve target tissue concentrations (for example, in lymphocytes) that has been shown to achieve an *in vitro* effect.

[064] Inhibiting or treating a disease: Inhibiting infection by HIV refers to inhibiting the full development of disease caused by exposure to human immunodeficiency virus. For example, inhibiting an HIV infection refers to lessening symptoms resulting from infection by the virus, such as preventing the development of symptoms in a person who is known to have been exposed to the virus, or to reducing virus load or infectivity of a virus in a subject exposed to the virus. “Treatment” refers to a therapeutic or prophylactic intervention that ameliorates or inhibits or otherwise avoids a sign or symptom of a disease or pathological condition related to infection of a subject with a virus.

[065] Subject: Living multi-cellular vertebrate organisms, a category that includes both human and veterinary subjects, including human and non-human mammals. In a clinical setting with respect to HIV, a subject is usually a human subject. An immunocompetent subject is a subject that is able to produce a substantially normal immune response against an antigenic stimulus.

[066] T Cell: A white blood cell critical to the immune response. T cells include, but are not limited to, CD4⁺ T cells and CD8⁺ T cells. A CD4⁺ T lymphocyte is an immune cell that carries a marker on its surface known as CD4, for example, a “helper” T cell. These cells, also known as helper T cells, help orchestrate the immune response, including antibody responses as well as killer T cell responses. CD8⁺ T cells carry the CD8 marker, and include T cells with cytotoxic or “killer” effector function.

[067] Transduced or Transfected: A transduced cell is a cell into which a nucleic acid molecule has been introduced, for example, by molecular biology techniques. As used herein, the term introduction or transduction encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transformation with plasmid vectors, transfection with viral vectors, and

introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.

[068] Vaccine: A vaccine is a pharmaceutical composition that elicits a prophylactic or therapeutic immune response in a subject. In some cases, the immune response is a protective immune response. Typically, a vaccine elicits an antigen-specific immune response to an antigen of a pathogen. In the context of this disclosure, the vaccines elicit an immune response against HIV. The vaccines described herein include nucleic acid constructs, for example, plasmids or viral vectors, encoding HIV antigens.

[069] Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector may include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication. A vector may also include one or more selectable marker gene and other genetic elements known in the art. The term vector includes plasmids, linear nucleic acid molecules, and viral vectors, such as adenovirus vectors and adenoviruses. The term adenovirus vector is utilized herein to refer to nucleic acids including one or more components of an adenovirus that generate viral particles in host cells. Such particles may be capable of one or more rounds of infection and replication, or can be replication deficient, e.g., due to a mutation. An adenovirus includes nucleic acids that encode at least a portion of the assembled virus. Thus, in many circumstances, the terms can be used interchangeably.

Nucleic Acid Constructs encoding HIV antigens

[070] The present disclosure concerns nucleic acid constructs including polynucleotide sequences that encode antigenic polypeptides of human immunodeficiency virus -1 (“HIV-1” or simply, “HIV”). The term polynucleotide or nucleic acid sequence refers to a polymeric form of nucleotide at least 10 bases in length. The nucleotides can be ribonucleotides, deoxyribonucleotides, or modified forms of either nucleotide. The term includes single- and double-stranded forms of DNA. In the context of this disclosure, the nucleic acid constructs are

“recombinant” nucleic acids. A recombinant nucleic acid is a nucleic acid that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence, for example, a heterologous sequence that is not immediately contiguous with both of the coding sequences with which it is immediately contiguous (one on the 5' end and one on the 3' end) in the naturally occurring genome of the organism from which it is derived. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

[071] In some cases, the nucleic acids are “isolated” nucleic acids. An “isolated” nucleic acid (and similarly, an isolated protein) has been substantially separated or purified away from other biological components in the cell of the organism in which the nucleic acid naturally occurs, for example, other chromosomal and extra-chromosomal DNA and RNA, proteins and organelles. Nucleic acids and proteins that have been “isolated” include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

[072] An “HIV antigenic polypeptide” or “HIV antigen” can include any proteinaceous HIV molecule or portion thereof that is capable of provoking an immune response in an immunocompetent mammal. An “HIV molecule” is a molecule that is a part of a human immunodeficiency virus, is encoded by a nucleic acid sequence of a human immunodeficiency virus, or is derived from or synthetically based upon any such molecule. Administration of a nucleic acid that encodes an HIV antigen that provokes an immune response preferably leads to protective immunity against HIV. In this regard, an “immune response” to HIV is an immune response to any one or more HIV antigens.

[073] Examples of suitable HIV antigens include as all or part of the HIV Gag, Pol, Nef or Env proteins. In the virus, Gag proteins are components of the viral capsid. The Pol polyprotein provides reverse transcriptase (RT); integrase (IN) and

protease(PR) functions, which reverse transcribe the viral RNA into double stranded DNA, integrated into the chromosome of a host cell, and cleave the *gag-pol* derived proteins into functional polypeptides, respectively. The Nef polypeptide is a negative regulatory factor involved in determining pathogenicity of the virus following infection. Env proteins are envelope proteins involved in viral attachment and fusion to target cells. One of skill in the art will recognize that functional attributes of the polypeptides can be altered (for example, deleted) without altering antigenic properties of the polypeptides. Immunogenic variants or fragments of each of Gag, Pol, Nef or Env are also HIV antigenic polypeptides that can be included in the immunogenic compositions disclosed herein. Immunogenic variants include those, for example, having at least 90%, 95%, or 98% sequence identity to SEQ ID NOS:20-25, or immunogenic fragments thereof. The nucleic acid vaccines disclosed herein can include SEQ ID NOS:1-19 or sequences that encode HIV antigens, such as those represented by SEQ ID NOS:20-25, or HIV antigens that have at least 90%, 95% or 98% sequence identity to SEQ ID NOS:20-25.

[074] Suitable Env proteins are known in the art and include, for example, gp160, gp120, gp41, and gp140. Any clade of HIV is appropriate for antigen selection, including HIV clades A, B, C, and the like. Thus, it will be appreciated that any one, or a combination, of the following HIV antigens can be used in the inventive method: HIV clade A gp140, Gag, Pol, Nef and/or Env; HIV clade B gp140, Gag, Pol, Nef and/or Env proteins; and HIV clade C gp140, Gag, Pol, Nef and/or Env proteins. While the compositions and methods are described in detail with respect to Gag, Pol, Nef and/or Env proteins, any HIV protein or portion thereof capable of inducing an immune response in a mammal can be used in connection with the inventive method. HIV Gag, Pol, Nef and/or Env proteins from HIV clades A, B, C, as well as nucleic acid sequences encoding such proteins and methods for the manipulation and insertion of such nucleic acid sequences into vectors, are known (see, for example, HIV Sequence Compendium, Division of AIDS, National Institute of Allergy and Infectious Diseases, 2003, HIV Sequence Database (on the world wide web at hiv-web.lanl.gov/content/hiv-db/mainpage.html), Sambrook et al., *Molecular Cloning, a Laboratory Manual*, 2d edition, Cold Spring Harbor Press,

Cold Spring Harbor, N.Y., 1989, and Ausubel et al., *Current Protocols in Molecular Biology*, Greene Publishing Associates and John Wiley & Sons, New York, N.Y., 1994).

[075] Gag, Pol, Nef and Env polypeptide sequences are known in the art, and numerous amino acid sequences are available from publicly accessible databases, such as GENBANK®. For example, a Gag polypeptide corresponding to the amino acid sequence of the strain HXB2 is represented by the sequence of GENBANK® accession number K03455. Pol and Nef polypeptides corresponding to the amino acid sequence of the strain NL4-3 is represented by the sequence of GENBANK® accession number M19921. Exemplary Env polypeptides, for example, corresponding to clades A, B and C are represented by the sequences of GENBANK® accession numbers U08794, K03455 and AF286227, respectively. Particular exemplary sequences encoded by the nucleic acid constructs disclosed herein are represented by SEQ ID NOs:20-25, corresponding to Gag, Pol, Nef, clade A Env, clade B Env, and clade C Env, respectively. Certain of these exemplary polypeptides have been modified functionally (as indicated in further detail in the Examples) but nonetheless retain important antigenic characteristics of the naturally occurring proteins.

[076] An entire, intact HIV protein is not required to produce an immune response. Indeed, most antigenic epitopes of HIV proteins are relatively small in size. Thus, fragments (for example, epitopes or other antigenic fragments) of an HIV protein, such as any of the HIV proteins described herein, can be used as an HIV antigen. Antigenic fragments and epitopes of the HIV Gag, Pol, Nef and/or Env proteins, as well as nucleic acid sequences encoding such antigenic fragments and epitopes, are known (see, for example, HIV Immunology and HIV/SIV Vaccine Databases, Vol. 1, Division of AIDS, National Institute of Allergy and Infectious Diseases, 2003).

[077] A nucleic acid construct is said to “encode” an antigen when a polynucleotide sequence incorporated into the construct includes one or more open reading frames that upon recognition and activity by cellular transcriptional and

translational processes gives rise to a sequence of amino acids constituting the antigen.

[078] HIV antigens are “different” if they comprise a different antigenic amino acid sequence. When referring to a plurality of different HIV antigens, the two or more different HIV antigens can be any HIV antigens, such as two or more (or three, or four, or five, or six, or more) of the HIV antigens described herein. Different HIV antigenic polypeptides can be two or more antigenic polypeptides from different HIV proteins, that is proteins encoded by different genes in the HIV genome (for example, an HIV Gag polypeptide is different from an HIV Pol polypeptide, which is different from an HIV Nef polypeptide, which again is different from an HIV Env polypeptide). Thus, Gag, Pol, Nef and Env are different HIV proteins or antigenic polypeptides. Alternatively, different HIV antigenic polypeptides are different if they are encoded by a homologous genomic segment (or gene) from different strains or clades of HIV. Thus, a clade A Env polypeptide is different from a clade B Env polypeptide, which is different from a clade C Env polypeptide, and the like. In the context of immunogenic (for example, vaccine) compositions described herein, the two or more different HIV antigens include HIV antigens from two or more different HIV clades or strains, such as from three or more different HIV clades (such as clades A, B and C) or from two or more variant HIV strains of the same clade. Exposing the immune system of a mammal to a “cocktail” of different HIV antigens can elicit a broader and more effective immune response than exposing the immune system to only a single HIV antigen.

[079] Thus, a plurality of separate nucleic acid constructs each including a polynucleotide sequence encoding a single HIV antigenic polypeptide, wherein the plurality of nucleic acid constructs encode a plurality of antigenic polypeptides or a plurality of HIV clades or strains, can include a plurality of encoded polypeptides of the same clade or strain (for example all clade B) or encoded polypeptides of different clades or strains (for example some of clade A and others of clade B).

[080] In some particularly disclosed embodiments the composition includes a plurality of different nucleic acid constructs. The nucleic acid constructs include a

polynucleotide sequence encoding a single (no more than once) HIV antigen operably linked to a transcription control sequence, and the single HIV antigen is different for the different nucleic acid constructs. In particular examples, the different single HIV antigens of the different nucleic acid constructs, are different encoded polypeptides of the same clade or strain, but may further include different encoded polypeptides, expressed from different constructs, of clades or strains that differ from the encoded polypeptides that share the same clade or strain. For example, the different nucleic acid constructs that encode HIV antigens of the same clade or strain can be three separate constructs that respectively encode Gag, Pol, and Nef as the only HIV antigen expressed from each of the constructs, and each of Gag, Pol, and Nef are of the same clade or strain (for example, all clade B). In addition, in some embodiments the composition can further include separate nucleic acid constructs that encode Env antigens of different clades or strains. For example, at least three separate constructs independently encode clade A Env, clade B Env and clade C Env as their only encoded HIV antigen.

[081] For example, a nucleic acid construct can include a polynucleotide sequence that encodes a single HIV antigenic polypeptide. In specific examples provided herein, the nucleic acid construct encodes a single Gag polypeptide, a single Pol polypeptide, a single Nef polypeptide or a single Env polypeptide. For example, the nucleic acid construct can include a polynucleotide sequence that encodes a single Gag polypeptide, such as a clade B Gag polypeptide (e.g., the amino acid sequence of SEQ ID NO:20); a polynucleotide sequence that encodes a single Pol polypeptide, such as a clade B Pol polypeptide (e.g., SEQ ID NO:21); a polynucleotide sequence that encodes a single Nef polypeptide, such as a clade B Nef polypeptide (e.g., SEQ ID NO:22), or a polynucleotide sequence that encodes a single Env polypeptide, such as a clade A, a clade B or a clade C Env polypeptide (for examples, SEQ ID NO:23, SEQ ID NO:24 and SEQ ID NO:25). Exemplary nucleic acid constructs encoding these polypeptides are represented by SEQ ID NOs:1-6, respectively.

[082] Alternatively, a nucleic acid construct can include a polynucleotide sequence that encodes an HIV antigenic polypeptide that includes subsequences of multiple clades or strains, that is, a “chimeric” HIV polypeptide. A chimeric HIV antigenic

polypeptide can include subsequences of two or more clades or strains, such as three or more different clades or strains. For example, a chimeric HIV Env polypeptide can include one or more subsequence of a clade A Env polypeptide in combination with one or more subsequence of a clade B Env polypeptide and/or one or more subsequence of a clade C Env polypeptide, or in combination with one or more subsequences of a different clade A strain (or strains) of HIV with a different amino acid sequence. Similarly, subsequences of clade B and C Env polypeptides can be combined with subsequences of other clades and/or strains. Nucleic acid constructs including chimeric Env polypeptides are represented by SEQ ID NOs:7-15.

[083] Typically, the nucleic acid constructs encoding the HIV antigenic polypeptides are plasmids. However, other vectors (for example, viral vectors, phage, cosmids, etc.) can be utilized to replicate the nucleic acids. In the context of this disclosure, the nucleic acid constructs typically are expression vectors that contain a promoter sequence which facilitates the efficient transcription of the inserted genetic sequence of the host. The expression vector typically contains an origin of replication, a promoter, as well as specific nucleic acid sequences that allow phenotypic selection of the transformed cells. In exemplary nucleic acid constructs, the coding sequence is operably linked under the transcriptional control of a human cytomegalovirus (CMV) immediate early (IE) enhancer/promoter that has been modified to include a regulatory sequence from the R region of the long terminal repeat (LTR) of human T-cell leukemia virus type 1 (HTLV-1). This transcription regulatory sequence is designated “CMV/R” or “CMV/R promoter.” The CMV/R transcription regulatory sequence (alternatively referred to as a “transcription control sequence”) contains, in a 5' to 3' direction: the CMV IE enhancer/promoter; the HTLV-1 R region; and a 123 base pair (bp) fragment of the CMV IE 3' intron. The CMV/R transcription regulatory region confers substantially increased expression and improved cellular immune responses to HIV antigens operably linked under its control. An exemplary CMV/R is represented by SEQ ID NO:26. However, transcription control sequences that retain the regulatory properties or have been modified to enhance expression, including transcription

regulatory regions that are at least about 90%, or 95% or 98% identical to SEQ ID NO:26, can also be used.

[084] More generally, polynucleotide sequences encoding HIV antigenic polypeptides can be operably linked to any promoter and/or enhancer that is capable of driving expression of the nucleic acid following introduction into a host cell. A promoter is an array of nucleic acid control sequences that directs transcription of a nucleic acid. A promoter includes necessary nucleic acid sequences (which can be) near the start site of transcription, such as in the case of a polymerase II type promoter (a TATA element). A promoter also can include distal enhancer or repressor elements which can be located as much as several thousand base pairs from the start site of transcription. Both constitutive and inducible promoters are included (see, for example, Bitter *et al.*, *Methods in Enzymology* 153:516-544, 1987). Specific, non-limiting examples of promoters include promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the cytomegalovirus immediate early gene promoter, the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used. Promoters produced by recombinant DNA or synthetic techniques may also be used. A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.

[085] To produce such nucleic acid constructs, polynucleotide sequences encoding HIV antigenic polypeptides are inserted into a suitable expression vector, such as a plasmid expression vector that use the CMV/R promoter and the bovine growth hormone polyadenylation sequence to regulate expression. The CMV/R promoter consists of a translational enhancer region of the CMV immediate early region 1 enhancer (CMV-IE) substituted with the 5'-untranslated HTLV-1 R-U5 region of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) to optimize gene expression. The HIV-1 polynucleotide sequences are typically modified to optimize expression in human cells. The plasmid expression vectors are

introduced into bacterial cells, such as, *E. coli*, which are grown in culture in kanamycin selection medium. In all cases, bacterial cell growth is dependent upon the cellular expression of the kanamycin resistance protein encoded by a portion of the plasmid DNA. Following growth of bacterial cells harboring the plasmid, the plasmid DNA is purified from cellular components. Procedures for producing polynucleotide sequences encoding HIV antigenic polypeptides and for manipulating them *in vitro* are well known to those of skill in the art, and can be found, e.g., in Sambrook and Ausubel, *supra*.

[086] In addition to the polynucleotide sequences encoding the polypeptides represented by SEQ ID NOs:20-25 disclosed herein, such as SEQ ID NOs:1-6 (as well as nucleic acids encoding chimeric Env polypeptides represented by SEQ ID NOs:7-15 and nucleic acids encoding adenoviral vectors represented by SEQ ID NOs:16-19) as disclosed herein, the nucleic acid constructs can include variant polynucleotide sequences that encode polypeptides that are substantially similar to SEQ ID NOs:20-25 (for example, are substantially similar to SEQ ID NOs:1-6 and/or SEQ ID NOs:16-19). Similarly, the nucleic acid constructs can include polynucleotides that encode chimeric polypeptides that are substantially similar to those encoded by SEQ ID NOs:7-15. The similarity between amino acid (and polynucleotide) sequences is expressed in terms of the similarity between the sequences, otherwise referred to as sequence identity. Sequence identity is frequently measured in terms of percentage identity (or similarity); the higher the percentage, the more similar are the primary structures of the two sequences. In general, the more similar the primary structures of two amino acid sequences, the more similar are the higher order structures resulting from folding and assembly. Variants of an HIV antigenic polypeptide (for example, of a particular clade) can have one or a small number of amino acid deletions, additions or substitutions but will nonetheless share a very high percentage of their amino acid (and generally their polynucleotide sequence). To the extent that variants of a subtype differ from each other, their overall antigenic characteristics are maintained. In contrast, HIV antigens of different clades share less sequence identity and/or differ from each other such that their antigenic characteristics are no longer identical. Thus, the

nucleic acid constructs can include polynucleotides that encode polypeptides that are at least about 90%, or 95%, or 98% identical to one of SEQ ID NOs:20-25 with respect to amino acid sequence, or that have at least about 90%, 95%, or 98% sequence identity to one or more of SEQ ID NOs:1-19 and/or that differ from one of these sequences by the substitution of degenerate codons.

[087] Methods of determining sequence identity are well known in the art. Various programs and alignment algorithms are described in: Smith and Waterman, *Adv. Appl. Math.* 2:482, 1981; Needleman and Wunsch, *J. Mol. Biol.* 48:443, 1970; Higgins and Sharp, *Gene* 73:237, 1988; Higgins and Sharp, *CABIOS* 5:151, 1989; Corpet *et al.*, *Nucleic Acids Research* 16:10881, 1988; and Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444, 1988. Altschul *et al.*, *Nature Genet.* 6:119, 1994, presents a detailed consideration of sequence alignment methods and homology calculations. The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul *et al.*, *J. Mol. Biol.* 215:403, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, MD) and on the internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. A description of how to determine sequence identity using this program is available on the NCBI website on the internet.

[088] Another indicia of sequence similarity between two nucleic acids is the ability to hybridize. The more similar are the sequences of the two nucleic acids, the more stringent the conditions at which they will hybridize. The stringency of hybridization conditions are sequence-dependent and are different under different environmental parameters. Thus, hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybridization method of choice and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (especially the Na^+ and/or Mg^{++} concentration) of the hybridization buffer will determine the stringency of hybridization, though wash times also influence stringency. Generally, stringent conditions are selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic

strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.

Conditions for nucleic acid hybridization and calculation of stringencies can be found, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001; Tijssen, *Hybridization With Nucleic Acid Probes, Part I: Theory and Nucleic Acid Preparation*, Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Ltd., NY, NY, 1993. and Ausubel *et al.* *Short Protocols in Molecular Biology*, 4th ed., John Wiley & Sons, Inc., 1999.

[089] For purposes of the present disclosure, “stringent conditions” encompass conditions under which hybridization will only occur if there is less than 25% mismatch between the hybridization molecule and the target sequence. “Stringent conditions” may be broken down into particular levels of stringency for more precise definition. Thus, as used herein, “moderate stringency” conditions are those under which molecules with more than 25% sequence mismatch will not hybridize; conditions of “medium stringency” are those under which molecules with more than 15% mismatch will not hybridize, and conditions of “high stringency” are those under which sequences with more than 10% mismatch will not hybridize.

Conditions of “very high stringency” are those under which sequences with more than 6% mismatch will not hybridize. In contrast nucleic acids that hybridize under “low stringency conditions include those with much less sequence identity, or with sequence identity over only short subsequences of the nucleic acid. For example, a nucleic acid construct can include a polynucleotide sequence that hybridizes under high stringency or very high stringency, or even higher stringency conditions to a polynucleotide sequence that encodes any one of SEQ ID NOs:20-25. Similarly, the nucleic acid constructs can hybridize under such conditions to any one of SEQ ID NOs:1-19.

[090] Thus, in addition to polynucleotides encoding the particular amino acid sequences represented by SEQ ID NOs:20-25, for example those polynucleotides represented by the codon optimized constructs of SEQ ID NO:s1-19, the nucleic acid constructs used in the vaccine compositions can include polynucleotide

sequences having a high percentage of sequence identity, for example, that hybridize under high stringency, or very high stringency (or even higher stringency) to one of these sequences. A codon composition at one or more positions that is found in a naturally occurring or mutant strain of HIV are also encompassed within the nucleic acid constructs disclosed herein. One of skill in the art can easily identify numerous HIV polynucleotide sequences, and determine which nucleotides can be varied without substantially altering the amino acid content of the encoded polypeptide. In addition, polynucleotide sequences that encode variants with a small number of amino acid additions, deletions or substitution are also encompassed within the nucleic acid constructs described herein. Typically, any amino acid additions, deletions and/or substitutions are located in positions that do not alter the antigenic epitopes and that do not interfere with folding, or other translational or post-translational processing. Most commonly, any amino acid substitutions are conservative amino acid substitutions. For example, a variant polynucleotide sequence can encode an HIV antigenic polypeptide with one or two or three or four or five, or more amino acid additions, deletions or substitutions.

[091] Conservative variants of particular amino acids are well known in the art, and can be selected, for example from groupings set forth in Table 1.

Table 1: Conservative amino acid substitutions

Original Residue	Conservative Substitutions
Ala	Ser
Arg	Lys
Asn	Gln, His
Asp	Glu
Cys	Ser
Gln	Asn
Glu	Asp
His	Asn; Gln
Ile	Leu, Val
Leu	Ile; Val
Lys	Arg; Gln; Glu
Met	Leu; Ile
Phe	Met; Leu; Tyr
Ser	Thr
Thr	Ser
Trp	Tyr
Tyr	Trp; Phe
Val	Ile; Leu

IMMUNOGENIC COMPOSITIONS

[1092] Used in combination, the nucleic acid constructs, such as those exemplified by SEQ ID NOs:1-6, can be used to provide immunogenic compositions that elicit a broad spectrum immune response against HIV. This specific combination of nucleic acid constructs is referred to herein as VRC-HIVDNA016-00-VP, and includes the plasmids VRC-4401, VRC-4409, VRC-4404, VRC-5736, VRC 5737, and VRC-5738, corresponding respectively to SEQ ID NOs:1-6).

[1093] The composition including two or more nucleic acid construct encoding different HIV antigens is typically provided by a composition including multiple nucleic acid constructs, each of which encodes a single HIV antigen. Collectively, the two or more nucleic acid constructs encode antigens from more than one clade or strain, for example, from two or more clades or strains, or from three or more clades or strains. In some cases, the composition includes polynucleotide sequences that encode a chimeric HIV antigen, with subsequences of more than one clade or strain.

[094] For clinical purposes, all nucleic acid constructs, such as plasmids and host *E. coli* strains used in the production of the vaccine are characterized in accordance with the relevant sections of the “Points to Consider in the Production and Testing of New Drugs and Biologicals Produced by Recombinant DNA Technology” (1985), the “Supplement: Nucleic Acid Characterization and Genetic Stability” (1992), and “Points to Consider in Human Somatic Cell Therapy and Gene Therapy” (1991, 1998), “Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications” (1996). In addition for clinical testing and use, all compositions are produced in compliance with current Good Manufacturing Practices (cGMP).

[095] Thus, in one embodiment, the immunogenic composition is VRC-HIVDNA016-00-VP, a six-component multiclade plasmid DNA vaccine, expressing Gag, Pol and Nef proteins from clade B HIV-1 and Env glycoproteins from clades A, B and C. This composition is suitable for the prophylactic treatment of HIV, that is, as a preventive HIV-1 vaccine. The vaccine has been designed to elicit immune responses against several proteins from a variety of HIV-1 strains. This vaccine differs from previous multiclade vaccine compositions in two significant ways. First, previous compositions have relied on a single plasmid encoding a Gag-Pol-Nef fusion protein. In the particular examples described herein, these three proteins are separated into three different plasmids, encoding Gag (VRC 4401), Pol (VRC 4409), and Nef (VRC 4404) individually. Additionally, there is a 68 amino acid addition in the *gag* gene as compared to the previous fusion protein composition. Second, the promoter is modified to include the 5'-untranslated HTLV-1 R-U5 region of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) rather than a portion of the translational enhancer region of the CMV immediate early region 1 enhancer used in previous constructs. Vaccination, for example, of non-human primates, with plasmids containing CMV/R transcription regulatory region elicited higher and more consistent HIV-1 specific cellular immune responses than vaccination with plasmids constructed with the unmodified CVM IE promoter/enhancer sequence.

[096] VRC-HIVDNA016-00-VP is designed to elicit immune responses against several proteins from a variety of HIV-1 strains. This vaccine product has evolved from the initial HIV-1 DNA plasmid product (VRC-4302; BB-IND 9782) that encoded for an HIV-1 clade B Gag-Pol fusion protein. Preclinical studies demonstrated expression of immunogenic protein in small animals, and an ongoing Phase I clinical trial has revealed no safety concerns at the doses tested to date. The VRC-HIVDNA009-00-VP vaccine (BB-IND 10681) expanded upon the product concept to include proteins from multiple subtypes (clades) of HIV-1 and increased the number of vaccine components to include a highly immunogenic regulatory protein (Nef), as well as modified Envelope glycoproteins that have been able to generate immune responses in rhesus macaques.

[097] The four plasmid product, VRC-HIVDNA009-00-VP, was chosen to advance to clinical testing based upon preclinical immunogenicity studies conducted in rhesus macaques and mice, as well as preclinical safety studies of a vaccine product (VRC-HIVDNA006-00-VP) consisting of the same four plasmids and two additional Gag-Pol-Nef expressing plasmids. Based on biological safety testing of these plasmid products, and the high degree of homology between the candidate vaccines VRC-HIVDNA009-00-VP (BB-IND 10681) and VRC-HIVDNA016-00-VP, it was determined that the six plasmid vaccine was safe for human clinical trials.

THERAPEUTIC METHODS

[098] The nucleic acid constructs encoding HIV antigenic polypeptides described herein are used, for example, in combination, as pharmaceutical compositions (medicaments) for use in therapeutic, for example, prophylactic regimens (e.g., vaccines) and administered to subjects (e.g., human subjects) to elicit an immune response against one or more clade or strain of HIV. For example, the compositions described herein can be administered to a human (or non-human) subject prior to infection with HIV to inhibit infection by or replication of the virus. Thus, the pharmaceutical compositions described above can be administered to a subject to elicit a protective immune response against HIV. To elicit an immune response, a

therapeutically effective (e.g., immunologically effective) amount of the nucleic acid constructs are administered to a subject, such as a human (or non-human) subject.

[099] A “therapeutically effective amount” is a quantity of a chemical composition (such as a nucleic acid construct or vector) used to achieve a desired effect in a subject being treated. For instance, this can be the amount necessary to express an adequate amount of antigen to elicit an antibody or T cell response, or to inhibit or prevent infection by or replication of the virus, or to prevent, lessen or ameliorate symptoms caused by infection with the virus. When administered to a subject, a dosage will generally be used that will achieve target tissue or systemic concentrations that are empirically determined to achieve an *in vitro* effect. Such dosages can be determined without undue experimentation by those of ordinary skill in the art. Exemplary dosages are described in detail in the Examples.

[0100] A pharmaceutical composition including an HIV encoding nucleic acid construct can be administered by any means known to one of skill in the art (see Banga, A., “Parenteral Controlled Delivery of Therapeutic Peptides and Proteins,” in *Therapeutic Peptides and Proteins*, Technomic Publishing Co., Inc., Lancaster, PA, 1995; *DNA Vaccines: Methods and Protocols* (Methods in Molecular Medicine) by Douglas B. Lowrie and Robert G. Whalen (Eds.), Humana Press, 2000) such as by intramuscular, subcutaneous, or intravenous injection, but even oral, nasal, or anal administration is contemplated. In one embodiment, administration is by subcutaneous or intramuscular injection. Actual methods for preparing administrable compositions will be known or apparent to those skilled in the art and are described in more detail in such publications as *Remingtons Pharmaceutical Sciences*, 19th Ed., Mack Publishing Company, Easton, Pennsylvania, 1995.

[0101] Suitable formulations for the nucleic acid constructs, for example, the primer or booster compositions disclosed herein, include aqueous and non-aqueous solutions, isotonic sterile solutions, which can contain anti-oxidants, buffers, and bacteriostats, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such

as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water, immediately prior to use. Extemporaneous solutions and suspensions can be prepared from sterile powders, granules, and tablets. Preferably, the carrier is a buffered saline solution. More preferably, the composition for use in the inventive method is formulated to protect the nucleic acid constructs from damage prior to administration. For example, the composition can be formulated to reduce loss of the adenoviral vectors on devices used to prepare, store, or administer the expression vector, such as glassware, syringes, or needles. The compositions can be formulated to decrease the light sensitivity and/or temperature sensitivity of the components. To this end, the composition preferably comprises a pharmaceutically acceptable liquid carrier, such as, for example, those described above, and a stabilizing agent selected from the group consisting of polysorbate 80, L-arginine, polyvinylpyrrolidone, trehalose, and combinations thereof. Use of such an adenoviral vector composition will extend the shelf life of the vector, facilitate administration, and increase the efficiency of the inventive method. Formulations for adenoviral vector-containing compositions are further described in, for example, U.S. Patent 6,225,289, 6,514,943, U.S. Patent Application Publication No. 2003/0153065 A1, and International Patent Application Publication WO 00/34444. An adenoviral vector composition also can be formulated to enhance transduction efficiency. In addition, one of ordinary skill in the art will appreciate that the composition can comprise other therapeutic or biologically-active agents. For example, factors that control inflammation, such as ibuprofen or steroids, can be part of the adenoviral vector composition to reduce swelling and inflammation associated with *in vivo* administration of the adenoviral vectors. As discussed herein, immune system stimulators can be administered to enhance any immune response to the antigens. Antibiotics, i.e., microbicides and fungicides, can be present to treat existing infection and/or reduce the risk of future infection, such as infection associated with gene transfer procedures.

[0102] The compositions can be administered for therapeutic treatments. In therapeutic applications, a therapeutically effective amount of the composition is

administered to a subject prior to or following exposure to or infection by HIV. When administered prior to exposure, the therapeutic application can be referred to as a prophylactic administration (e.g., a vaccine). Single or multiple administrations of the compositions are administered depending on the dosage and frequency as required and tolerated by the subject. In one embodiment, the dosage is administered once as a bolus, but in another embodiment can be applied periodically until a therapeutic result, such as a protective immune response, is achieved. Generally, the dose is sufficient to treat or ameliorate symptoms or signs of disease without producing unacceptable toxicity to the subject. Systemic or local administration can be utilized.

[0103] Controlled release parenteral formulations can be made as implants, oily injections, or as particulate systems. Particulate systems include microspheres, microparticles, microcapsules, nanocapsules, nanospheres, and nanoparticles. Particles, microspheres, and microcapsules smaller than about 1 μm are generally referred to as nanoparticles, nanospheres, and nanocapsules, respectively. Capillaries have a diameter of approximately 5 μm so that only nanoparticles are administered intravenously. Microparticles are typically around 100 μm in diameter and are administered subcutaneously or intramuscularly (*see*, Kreuter, *Colloidal Drug Delivery Systems*, J. Kreuter, ed., Marcel Dekker, Inc., New York, NY, pp. 219-342, 1994; Tice & Tabibi, *Treatise on Controlled Drug Delivery*, A. Kydonieus, ed., Marcel Dekker, Inc. New York, NY, pp. 315-339, 1992).

[0104] In certain embodiments, the pharmaceutical composition includes an adjuvant. An adjuvant can be a suspension of minerals, such as alum, aluminum hydroxide, aluminum phosphate, on which antigen is adsorbed; or water-in-oil emulsion in which antigen solution is emulsified in oil (MF-59, Freund's incomplete adjuvant), sometimes with the inclusion of killed mycobacteria (Freund's complete adjuvant) to further enhance antigenicity (inhibits degradation of antigen and/or causes influx of macrophages). In the context of nucleic acid vaccines, naturally occurring or synthetic immunostimulatory compositions that bind to and stimulate receptors involved in innate immunity can be administered along with nucleic acid

constructs encoding the HIV antigenic polypeptides. For example, agents that stimulate certain Toll-like receptors (such as TLR7, TLR8 and TLR9) can be administered in combination with the nucleic acid constructs encoding HIV antigenic polypeptides. In some embodiments, the nucleic acid construct is administered in combination with immunostimulatory CpG oligonucleotides.

[0105] Nucleic acid constructs encoding HIV antigenic polypeptides can be introduced *in vivo* as naked DNA plasmids. DNA vectors can be introduced into the desired host cells by methods known in the art, including but not limited to transfection, electroporation (e.g., transcutaneous electroporation), microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (See e.g., Wu et al. *J. Biol. Chem.*, 267:963-967, 1992; Wu and Wu *J. Biol. Chem.*, 263:14621-14624, 1988; and Williams et al. *Proc. Natl. Acad. Sci. USA* 88:2726-2730, 1991). As described in detail in the Examples, a needleless delivery device, such as a BIOJECTOR® needleless injection device can be utilized to introduce the therapeutic nucleic acid constructs *in vivo*. Receptor-mediated DNA delivery approaches can also be used (Curiel et al. *Hum. Gene Ther.*, 3:147-154, 1992; and Wu and Wu, *J. Biol. Chem.*, 262:4429-4432, 1987). Methods for formulating and administering naked DNA to mammalian muscle tissue are disclosed in U.S. Pat. Nos. 5,580,859 and 5,589,466, both of which are herein incorporated by reference. Other molecules are also useful for facilitating transfection of a nucleic acid *in vivo*, such as a cationic oligopeptide (e.g., WO95/21931), peptides derived from DNA binding proteins (e.g., WO96/25508), or a cationic polymer (e.g., WO95/21931).

[0106] Alternatively, electroporation can be utilized conveniently to introduce nucleic acid constructs encoding HIV antigens into cells. Electroporation is well known by those of ordinary skill in the art (see, for example: Lohr et al. *Cancer Res.* 61:3281-3284, 2001; Nakano et al. *Hum Gene Ther.* 12:1289-1297, 2001; Kim et al. *Gene Ther.* 10:1216-1224, 2003; Dean et al. *Gene Ther.* 10:1608-1615, 2003; and Young et al. *Gene Ther.* 10:1465-1470, 2003). For example, in electroporation, a high concentration of vector DNA is added to a suspension of host cell (such as isolated autologous peripheral blood or bone marrow cells) and the mixture shocked

with an electrical field. Transcutaneous electroporation can be utilized in animals and humans to introduce heterologous nucleic acids into cells of solid tissues (such as muscle) *in vivo*. Typically, the nucleic acid constructs are introduced into tissues *in vivo* by introducing a solution containing the DNA into a target tissue, for example, using a needle or trochar in conjunction with electrodes for delivering one or more electrical pulses. For example, a series of electrical pulses can be utilized to optimize transfection, for example, between 3 and ten pulses of 100V and 50 msec. In some cases, multiple sessions or administrations are performed.

[0107] Another well known method that can be used to introduce nucleic acid constructs encoding HIV antigens into host cells is particle bombardment (also known as biolistic transformation). Biolistic transformation is commonly accomplished in one of several ways. One common method involves propelling inert or biologically active particles at cells. This technique is disclosed in, e.g., U.S. Pat. Nos. 4,945,050, 5,036,006; and 5,100,792, all to Sanford et al., which are hereby incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the plasmid can be introduced into the cell by coating the particles with the plasmid containing the exogenous DNA. Alternatively, the target cell can be surrounded by the plasmid so that the plasmid is carried into the cell by the wake of the particle.

[0108] Alternatively, the vector can be introduced *in vivo* by lipofection. For the past decade, there has been increasing use of liposomes for encapsulation and transfection of nucleic acids *in vitro*. Synthetic cationic lipids designed to limit the difficulties and dangers encountered with liposome mediated transfection can be used to prepare liposomes for *in vivo* transfection of a gene encoding a marker (Felgner et. al. *Proc. Natl. Acad. Sci. USA* 84:7413-7417, 1987; Mackey, et al. *Proc. Natl. Acad. Sci. USA* 85:8027-8031, 1988; Ulmer et al. *Science* 259:1745-1748, 1993). The use of cationic lipids can promote encapsulation of negatively charged nucleic acids, and also promote fusion with negatively charged cell membranes (Felgner and Ringold *Science* 337:387-388, 1989). Particularly useful lipid

compounds and compositions for transfer of nucleic acids are described in WO95/18863 and WO96/17823, and in U.S. Pat. No. 5,459,127, herein incorporated by reference.

[0109] In other embodiments, the nucleic acid constructs are viral vectors. Methods for constructing and using viral vectors are known in the art (See e.g., Miller and Rosman, *BioTech.*, 7:980-990, 1992). Preferably, the viral vectors are replication defective, that is, they are unable to replicate autonomously in the target cell. In general, the genome of the replication defective viral vectors that are used within the scope of the present disclosure lack at least one region that is necessary for the replication of the virus in the infected cell. These regions can either be eliminated (in whole or in part), or be rendered non-functional by any technique known to a person skilled in the art. These techniques include the total removal, substitution (by other sequences, in particular by the inserted nucleic acid), partial deletion or addition of one or more bases to an essential (for replication) region. Such techniques can be performed in vitro (for example, on the isolated DNA).

[0110] In some cases, the replication defective virus retains the sequences of its genome that are necessary for encapsidating the viral particles. DNA viral vectors commonly include attenuated or defective DNA viruses, including, but not limited to, herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), Moloney leukemia virus (MLV) and human immunodeficiency virus (HIV) and the like. Defective viruses, that entirely or almost entirely lack viral genes, are preferred, as defective virus is not infective after introduction into a cell. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, a specific tissue can be specifically targeted. Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector (Kaplitt et al. *Mol. Cell. Neurosci.*, 2:320-330, 1991), defective herpes virus vector lacking a glycoprotein L gene (See for example, Patent Publication RD 371005 A), or other defective herpes virus vectors (See e.g., WO 94/21807; and WO 92/05263); an attenuated adenovirus vector, such as the vector described by Stratford-Perricaudet et al. (*J. Clin. Invest.*, 90:626-630 1992; La Salle et al., *Science* 259:988-

990, 1993); and a defective adeno-associated virus vector (Samulski et al., *J. Virol.*, 61:3096-3101, 1987; Samulski et al., *J. Virol.*, 63:3822-3828, 1989; and Lebkowski et al., *Mol. Cell. Biol.*, 8:3988-3996, 1988).

[0111] In one embodiment, the vector is an adenovirus vector. Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid of the disclosure to a variety of cell types. Various serotypes of adenovirus exist. Of these serotypes, preference is given, within the scope of the present disclosure, to type 2 or type 5 human adenoviruses (Ad 2 or Ad 5), or adenoviruses of animal origin (See e.g., WO94/26914). Those adenoviruses of animal origin that can be used within the scope of the present disclosure include adenoviruses of canine, bovine, murine (e.g., Mav1, Beard et al. *Virol.*, 75-81, 1990), ovine, porcine, avian, and simian (e.g., SAV) origin. In some embodiments, the adenovirus of animal origin is a canine adenovirus, such as a CAV2 adenovirus (e.g. Manhattan or A26/61 strain (ATCC VR-800)).

[0112] The replication defective adenoviral vectors described herein include the ITRs, an encapsidation sequence and the polynucleotide sequence of interest. In some embodiments, at least the E1 region of the adenoviral vector is non-functional. The deletion in the E1 region preferably extends from nucleotides 455 to 3329 in the sequence of the Ad5 adenovirus (*Pvu*II-*Bgl*II fragment) or 382 to 3446 (*Hinf*II-*Sau*3A fragment). Other regions can also be modified, in particular the E3 region (e.g., WO95/02697), the E2 region (e.g., WO94/28938), the E4 region (e.g., WO94/28152, WO94/12649 and WO95/02697), or in any of the late genes L1-L5.

[0113] In other embodiments, the adenoviral vector has a deletion in the E1 region (Ad 1.0). Examples of E1-deleted adenoviruses are disclosed in EP 185,573, the contents of which are incorporated herein by reference. In another embodiment, the adenoviral vector has a deletion in the E1 and E4 regions (Ad 3.0). Examples of E1/E4-deleted adenoviruses are disclosed in WO95/02697 and WO96/22378.

[0114] The replication defective recombinant adenoviruses according to this disclosure can be prepared by any technique known to the person skilled in the art

(See e.g., Levrero et al. *Gene* 101:195, 1991; EP 185 573; and Graham *EMBO J.*, 3:2917, 1984). In particular, they can be prepared by homologous recombination between an adenovirus and a plasmid, which includes, *inter alia*, the DNA sequence of interest. The homologous recombination is accomplished following co-transfection of the adenovirus and plasmid into an appropriate cell line. The cell line that is employed should preferably (i) be transformable by the elements to be used, and (ii) contain the sequences that are able to complement the part of the genome of the replication defective adenovirus, preferably in integrated form in order to avoid the risks of recombination. Examples of cell lines that can be used are the human embryonic kidney cell line 293 (Graham et al. *J. Gen. Virol.* 36:59, 1977), which contains the left-hand portion of the genome of an Ad5 adenovirus (12%) integrated into its genome, and cell lines that are able to complement the E1 and E4 functions, as described in applications WO94/26914 and WO95/02697. Recombinant adenoviruses are recovered and purified using standard molecular biological techniques that are well known to one of ordinary skill in the art. Nucleic acids encoding HIV antigens can also be introduced using other viral vectors, such as retroviral vectors, for example, lentivirus vectors or adenovirus-associated viral (AAV) vectors.

[0115] As described in detail in the Examples, in one embodiment, a pharmaceutical composition including nucleic acid constructs encoding HIV antigens that correspond to antigenic polypeptides of multiple clades or strains of HIV are introduced into a subject prior to exposure to HIV to elicit a protective immune response. Typically, the nucleic acid constructs are plasmids. For example, several plasmids including polynucleotide sequences that encode different HIV antigens can be included in a pharmaceutical composition. For example, a set of plasmids that encodes antigenic polypeptides of different HIV clades or strains can be included in the composition to elicit immunity that protects against infection by HIV of multiple clades or strains. In an exemplary embodiment, the composition includes six plasmids. Each of the plasmids includes a polynucleotide sequence encoding a different HIV antigen operably linked to a transcription regulatory sequence that promotes expression of the antigenic polypeptide *in vivo*. For example, the

composition can include different plasmids that encode a Gag polypeptide, a Pol polypeptide, a Nef polypeptide, and optionally, Env polypeptides of different clades or strains (for example, a clade A Env polypeptide, a clade B Env polypeptide and/or a clade C polypeptide. In one specific embodiment, the vaccine composition includes the six plasmids (VRC 4409, VRC 4401, VRC-4404, VRC 5736, VRC 5737 and VRC 5738 represented by SEQ ID NOS:1-6, respectively. This particular embodiment is designated VRC-HIVDNA016-00-VP, and is described in further detail in the Examples.

[0116] Typically, the multi-plasmid composition includes the six plasmids in substantially equal ratio (e.g., approximately 1:1:1:1:1:1). The pharmaceutical composition can be administered to a subject in a single or multiple doses. The dose range can be varied according to the physical, metabolic and immunological characteristics of the subject, however, a dose of at least about 1 mg and no more than about 12 mg is typically administered. For example, a single dose can be at least about 2 mg, or at least about 3 mg, or at least about 4 mg of combined DNA. Typically, a single dose does not exceed about 6 mg, or about 8 mg or about 10 mg of combined DNA. As described in the Examples, a dose of about 4 mg combined plasmid weight is typically effective to elicit a protective immune response in an immunocompetent adult.

[0117] A single dose, or multiple doses separated by a time interval can be administered to elicit an immune response against HIV. For example, two doses, or three doses, or four doses, or five doses, or six doses or more can be administered to a subject over a period of several weeks, several months or even several years, to optimize the immune response.

[0118] In some cases the pharmaceutical composition including the nucleic acid constructs, for example the multi-plasmid vaccine VRC-HIVDNA016-00-VP is included in combination modality regimens using it as a DNA vaccine prime followed by an adenoviral vector boost. Prime-boost regimens have shown promise in non-human primate models of HIV infection. Such regimens have the potential for raising high levels of immune responses. For example, a “primer” composition

including one or more nucleic acid constructs that encode at least one HIV antigen that is the same as an HIV antigen encoded by an adenoviral vector of an adenoviral vector composition can be administered to a subject. For example, the primer composition can be administered at least about one week before the administration of the “booster” composition including one or more adenoviral vectors.. The one or more nucleic acid sequences of the primer composition (such as VRC-HIVDNA016-00-VP) can be administered as part of a gene transfer vector or as naked DNA. Any gene transfer vector can be employed in the primer composition, including, but not limited to, a plasmid, a retrovirus, an adeno-associated virus, a vaccine virus, a herpesvirus, or an adenovirus. In an exemplary embodiment, the transfer vector is a plasmid.

[0119] Thus, the multi-plasmid composition described above can be used to prime an immune response against HIV, in combination with administration of a composition including one or more adenovirus vectors encoding HIV antigens. For example, the adenoviral vector composition can include (i) a single adenoviral vector that encodes two or more HIV antigens, for example, as a polyprotein or fusion protein, such as a fusion protein encoding a Gag-Pol-Nef polypeptide. Alternatively, the adenoviral vector composition can include (ii) multiple adenoviral vectors each of which encodes a single HIV antigen, such as, two or more, such as three, or four, or more, adenovirus vectors that each encode one HIV antigen, such as an Env polypeptide. Consistent with configuration (i), it is within the scope of the invention to use an adenoviral vector comprising a nucleic acid sequence that encodes more than two different HIV antigens (e.g., three or more, four or more, or even five or more different HIV antigens) or encodes multiple copies of the same antigen, provided that it encodes at least two or more different HIV antigens. Likewise, consistent with configuration (ii), it is within the scope of the invention to use an adenoviral vector comprising several nucleic acid sequences (e.g., three or more, four or more, or even five or more different nucleic acid sequences) each encoding different HIV antigens or multiple copies of the same antigen, provided that the adenoviral vector encodes at least two different HIV antigens. Whether by configuration (i) or (ii), the adenoviral vector composition preferably comprises one

or more adenoviral vectors encoding three or more, or even four or more, different HIV antigens (e.g., wherein each vector comprises a nucleic acid sequence that encodes three or more, or four or more different HIV antigens, or wherein each vector comprises three or more, or four or more nucleic acid sequences, and each nucleic acid sequence encodes a different HIV antigen). In certain embodiments, the two or more, three or more, or four or more different HIV antigens are from two or more, three or more, or four or more different HIV clades. There is no upper limit to the number of adenoviral vectors used or the number of different HIV antigens encoded thereby.

[0120] Of course, a combination of the above configurations of adenoviral vectors can be used in a single composition. For example, the adenoviral vector composition used in accordance with the invention can comprise a first adenoviral vector encoding a single HIV antigen and a second adenoviral vector encoding two or more HIV antigens that are different from the HIV antigen encoded by the first adenoviral vector. Other similar combinations and permutations of the adenoviral vector configurations disclosed herein can be readily determined by one of skill in the art.

[0121] In certain embodiments, the booster composition includes multiple adenoviral vectors. For example, the booster can include multiple adenoviral vectors each of which encodes an HIV Env polypeptide, such as Env polypeptide of different clades or strains. In addition, the booster composition can include an adenoviral vector that encodes Gag, Pol and/or Nef polypeptides. In one specific embodiment, designated VRC-HIVDNA014-00VP, the booster composition includes four adenoviral vectors, three of which encode Env polypeptides of different clades (that is, clade A, clade B and clade C), and an adenoviral vector that encodes Gag and Pol antigens (of clade B). Of course, numerous variants can easily be designed by one of skill in the art, incorporating fewer or more adenoviral vectors, and/or encoding antigens of the same or different HIV clades or strains.

[0122] While the HIV antigen encoded by the one or more nucleic acid sequences of the boost composition often is the same as an HIV antigen encoded by the nucleic

acid constructs of the primer composition, in some embodiments it may be appropriate to use a primer composition comprising one or more nucleic acid sequences encoding an HIV antigen that is different from the antigen(s) encoded by the adenoviral vector composition. For example, Gag and/or Pol and/or Nef antigens of a different clade or strain, or Env antigens of a different clade or strain.

[0123] The primer composition is administered to the mammal to prime the immune response to HIV. More than one dose of primer composition can be provided in any suitable timeframe (e.g., at least about 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, 16 weeks, or more prior to boosting). Preferably, the primer composition is administered to the mammal at least three months (e.g., three, six, nine, twelve, or more months) before administration of the booster composition. Most preferably, the primer composition is administered to the mammal at least about six months to about nine months before administration of the booster composition. More than one dose of booster composition can be provided in any suitable timeframe to maintain immunity.

[0124] Any route of administration can be used to deliver the adenoviral vector composition and/or the primer composition to the mammal. Indeed, although more than one route can be used to administer the adenoviral vector composition and/or the primer composition, a particular route can provide a more immediate and more effective reaction than another route. Most commonly, the adenoviral vector composition and/or the primer composition is administered via intramuscular injection. The adenoviral vector composition and/or the primer composition also can be applied or instilled into body cavities, absorbed through the skin (for example, via a transdermal patch), inhaled, ingested, topically applied to tissue, or administered parenterally via, for instance, intravenous, peritoneal, or intraarterial administration.

[0125] The adenoviral primer composition and/or the booster composition can be administered in or on a device that allows controlled or sustained release, such as a sponge, biocompatible meshwork, mechanical reservoir, or mechanical implant. Implants (see, e.g., U.S. Patent 5,443,505), devices (see, e.g., U.S. Patent

4,863,457), such as an implantable device, e.g., a mechanical reservoir or an implant or a device comprised of a polymeric composition, are particularly useful for administration of the composition. The adenoviral vector composition and/or the primer composition also can be administered in the form of sustained-release formulations (see, e.g., U.S. Patent 5,378,475) comprising, for example, gel foam, hyaluronic acid, gelatin, chondroitin sulfate, a polyphosphoester, such as bis-2-hydroxyethyl-terephthalate (BHET), and/or a polylactic-glycolic acid.

[0126] A booster composition can include a single dose of adenoviral vector comprising at least about 1×10^5 particles (which also is referred to as particle units) of adenoviral vector. The dose preferably is at least about 1×10^6 particles (for example, about 1×10^6 - 1×10^{12} particles), more preferably at least about 1×10^7 particles, more preferably at least about 1×10^8 particles (e.g., about 1×10^8 - 1×10^{11} particles or about 1×10^8 - 1×10^{12} particles), and most preferably at least about 1×10^9 particles (e.g., about 1×10^9 - 1×10^{10} particles or about 1×10^9 - 1×10^{12} particles), or even at least about 1×10^{10} particles (e.g., about 1×10^{10} - 1×10^{12} particles) of the adenoviral vector. Alternatively, the dose comprises no more than about 1×10^{14} particles, preferably no more than about 1×10^{13} particles, even more preferably no more than about 1×10^{12} particles, even more preferably no more than about 1×10^{11} particles, and most preferably no more than about 1×10^{10} particles (e.g., no more than about 1×10^9 particles). In other words, the adenoviral vector composition can comprise a single dose of adenoviral vector comprising, for example, about 1×10^6 particle units (pu), 2×10^6 pu, 4×10^6 pu, 1×10^7 pu, 2×10^7 pu, 4×10^7 pu, 1×10^8 pu, 2×10^8 pu, 4×10^8 pu, 1×10^9 pu, 2×10^9 pu, 4×10^9 pu, 1×10^{10} pu, 2×10^{10} pu, 4×10^{10} pu, 1×10^{11} pu, 2×10^{11} pu, 4×10^{11} pu, 1×10^{12} pu, 2×10^{12} pu, or 4×10^{12} pu of adenoviral vector.

EXAMPLES

Example 1: Construction of Plasmids

[0127] The nucleic acid constructs were derived from parental 1012 DNA vaccine plasmid containing the human CMV immediate early (IE) enhancer, promoter, and intron. To construct the CMV/R regulatory element, a *Sac*II/*Hpa*I fragment of the 1012 plasmid containing the majority of the CMV IE intron was replaced with a 227

bp *EcoRV/HpaI* fragment of the HTLV-1 R region (Seiki et al., *Proc. Natl. Acad. Sci. USA* 80: 3618-3622, 1983). The resulting CMV/R plasmid thus contains the human CMV IE enhancer/promoter, followed by the HTLV-1 R region and a 123 bp fragment of CMV IE 3' intron. The splice donor in the R region and the splice acceptor in the CMV IE 3' intron serve as the pair of splicing signals. RSV/R and mUB/R plasmids were similarly constructed by replacing the CMV enhancer/promoter region of the CMV/R plasmid with a 381 bp *AfIII/HindIII* fragment of the Rous sarcoma virus (RSV) enhancer/promoter or an 842 bp *SpeI/EcoRV* fragment of the mouse ubiquitin B(mUB) enhancer/promoter respectively. The mUB enhancer/promoter has been described previously (Yew et al., *Mol. Ther.* 4:75-82, 2001).

Construction of CMV/R Clade B Gag/h (VRC-4401)

[0128] To construct DNA plasmid VRC-4401, diagrammed in FIG. 1, the protein sequence of the gag polyprotein (Pr55, amino acids 1-432) from HXB2 (GENBANK® accession number K03455) was used to create a synthetic version of the gag gene using codons optimized for expression in human cells. The nucleotide sequence of the synthetic gag gene shows little homology to the HXB2 gene, but the protein encoded is the same. A SalI/BamHI fragment including the synthetic gene encoding Gag (B) was excised from plasmid VRC 3900, which contained the same insert in a pVR1012 backbone, and cloned into the SalI/BamHI sites of the CMV/R backbone described above. A summary of predicted VRC-4401 domains is provided in Table 2. The plasmid is 5886 nucleotide base pairs (bp) in length and has an approximate molecular weight of 3.9 MDa. The sequence of VRC-4401 is provided in SEQ ID NO:1.

Table 2: Description of plasmid VRC-4401

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	31	1344-1374
HIV-1 Gag (Clade B)	1509	1375-2883
Synthetic Linker	23	2884-2906
Bovine Growth Hormone Poly A	548	2907-3454
pUC18 plasmid-derived	1311	3455-4765
Kanamycin Resistance Gene	816	4766-5581
pUC18 plasmid-derived	305	5582-5886

Construction of CMV/R Clade B Pol/h (VRC-4409)

[0129] To construct DNA plasmid VRC-4409 diagrammed in FIG. 2, the protein sequence of the Pol polyprotein (amino acids 3-1003) from NL4-3 (GENBANK® accession number M19921) was used to create a synthetic version of the pol gene using codons optimized for expression in human cells. To initiate translation at the beginning of Pol, a methionine codon was added to the 5'-end of the synthetic polymerase gene to create the Pol/h gene. Additionally, a Protease (PR) mutation was introduced at amino acid 553 (AGG->GGC or amino acids R->G), a Reverse Transcriptase (RT) mutation was introduced at amino acid 771 (GAC->CAC or amino acids D->H), and an Integrase (IN) mutation was introduced at amino acid 1209 (ACT->CAT or amino acids D->A). The gene expressing Pol was inserted into the CMV/R backbone described above. A summary of predicted VRC-4409 domains is provided in Table 3. The plasmid is 7344 nucleotide base pairs (bp) in length and has an approximate molecular weight of 4.8 MDa. The sequence of VRC-4409 is provided in SEQ ID NO:2.

Table 3: Description of Plasmid VRC-4409

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	5	1344-1348
HIV-1 Pol (Clade B) (Pr-, RT-, IN-)	3009	1349-4357
Synthetic Linker	7	4358-4364
Bovine Growth Hormone Poly A	548	4365-4912
pUC18 plasmid-derived	1311	4913-6223
Kanamycin Resistance Gene	816	6224-7039
pUC18 plasmid-derived	305	7040-7344

Construction of CMV/R HIV-1 Nef/h (VRC-4404)

[0130] To construct DNA plasmid VRC-4404, diagrammed in FIG. 3, the protein sequence of the Nef protein from HIV-1 NY5/BRU (LAV-1) clone pNL4-3 (GENBANK® accession number M19921) was used to create a synthetic version of the Nef gene (Nef/h) using codons optimized for expression in human cells. The nucleotide sequence Nef/h shows little homology to the viral gene, but the protein encoded is the same. The Myristol site (GGC-Gly, amino acid 2-3) was deleted. The fragment encoding Nef was digested from the pVR1012 backbone in which it was originally inserted, with XbaI/BamHI, and then cloned into the XbaI/BamHI site of the CMV/R backbone described above. A summary of predicted VRC-4404 domains is provided in Table 4. The plasmid is 5039 nucleotide base pairs (bp) in length and has an approximate molecular weight of 3.3 MDa. The sequence of VRC-4404 is provided in SEQ ID NO:3.

Table 4: Description of plasmid VRC-4404

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	48	1344-1391
HIV-1 Nef (Clade B) (Delta Myr)	615	1392-2006
Synthetic Linker	19	2007-2025
Bovine Growth Hormone Poly A	548	2026-2573
pUC18 plasmid-derived	1345	2574-3918
Kanamycin Resistance Gene	816	3919-4734
pUC18 plasmid-derived	305	4735-5039

CMV/R-HIV-1 Clade A Env/h (VRC-5736)

[0131] To construct DNA plasmid VRC-5736, diagrammed in FIG. 4, the protein sequence of the envelope polyprotein (gp160) from 92rw020 (R5-tropic, GENBANK® accession number U08794) was used to create a synthetic version of the gene (Clade-A gp145delCFI) using codons altered for expression in human cells. Plasmids expressing the HIV-1 genes were made synthetically with sequences designed to disrupt viral RNA structures that limit protein expression by using codons typically found in human cells. The nucleotide sequence R5gp145delCFI shows little homology to the 92rw020 gene, but the protein encoded is the same. The truncated envelope polyprotein contains the entire SU protein and the TM domain, but lacks the fusion domain and cytoplasmic domain. Heptad (H) 1, Heptad 2 and their Interspace (IS) are involved in oligomerization. The Fusion and Cleavage (F/CL) domains, from amino acids 486-519, have been deleted. The Interspace (IS) between Heptad (H) 1 and 2, from amino acids 576-604, has been deleted. The XbaI (18nt up-stream from ATG) to BamH1 (1912 nt down-stream from ATG) fragment, which contains a polylinker at the 5' end, a Kozak sequence and ATG, was cloned into the XbaI to BamH1 sites of the CMV/R backbone described above. EnvA summary of predicted VRC-5736 domains is provided in Table 5. The plasmid is 6305 nucleotide base pairs (bp) in length and has an

approximate molecular weight of 4.2 MDa. The sequence of VRC-5736 is provided in SEQ ID NO:4.

Table 5: Description of plasmid VRC-5736

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	48	1344-1391
HIV-1 Env (Clade A), gp145 (delCFI)/h	1881	1392-3272
Synthetic Linker	19	3273-3291
Bovine Growth Hormone Poly A	548	3292-3839
pUC18 plasmid-derived	1345	3840-5184
Kanamycin Resistance Gene	816	5185-6000
pUC18 plasmid-derived	305	6001-6305

Construction of CMV/R Clade B Env/h (VRC-5737)

[0132] To construct DNA plasmid VRC-5737 diagrammed in FIG. 5, the protein sequence of the envelope polyprotein (gp160) from HXB2 (X4-tropic, GENBANK® accession number K03455) was used to create a synthetic version of the gene (X4gp160/h) using codons optimized for expression in human cells. The nucleotide sequence X4gp160/h shows little homology to the HXB2 gene, but the protein encoded is the same with the following amino acid substitutions: F53L, N94D, K192S, I215N, A224T, A346D, and P470L. To produce an R5-tropic version of the envelope protein (R5gp160/h), the region encoding HIV-1 envelope polyprotein amino acids 275 to 361 from X4gp160/h (VRC3300) were replaced with the corresponding region from the BaL strain of HIV-1 (GENBANK® accession number M68893, again using human preferred codons). The full-length R5-tropic version of the envelope protein gene from pR5gp160/h (VRC3000) was terminated after the codon for amino acid 704. The truncated envelope polyprotein (gp145) contains the entire SU protein and a portion of the TM protein including the fusion domain, the transmembrane domain, and regions important for oligomer formation. Heptad(H) 1, Heptad 2 and their Interspace(IS) are involved in oligomerization. The Fusion and Cleavage (F/CL) domains, from amino acids 503-536, have been

deleted. The Interspace (IS) between Heptad (H) 1 and 2, from amino acids 593-620, has been deleted. The expression vector backbone is CMV/R, described above. A summary of predicted VRC-5737 domains is provided in Table 6. The plasmid is 6338 nucleotide base pairs (bp) in length and has an approximate molecular weight of 4.2 MDa. The sequence of VRC-5737 is provided in SEQ ID NO:5.

Table 6: Description of plasmid VRC-5737

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	40	1344-1383
HIV-1 Env (Clade B), gp145 (delCFI)/h	1929	1384-3312
Synthetic Linker	12	3313-3324
Bovine Growth Hormone Poly A	548	3325-3872
pUC18 plasmid-derived	1345	3873-5217
Kanamycin Resistance Gene	816	5218-6033
pUC18 plasmid-derived	305	6034-6338

Construction of CMV/R HIV-1 Clade C Env/h (VRC-5738)

[0133] To construct DNA plasmid VRC-5738, diagrammed in FIG. 6, the protein sequence of the envelope polyprotein (gp145delCFI) from 97ZA012 (R5-tropic, GENBANK® accession number AF286227) was used to create a synthetic version of the gene (Clade-C gp145delCFI) using codons optimized for expression in human cells. The nucleotide sequence R5gp145delCFI shows little homology to the gene 97ZA012, but the protein encoded is the same. The truncated envelope polyprotein contains the entire SU protein and the TM domain, but lacks the fusion domain and cytoplasmic domain. Heptad(H) 1, Heptad 2 and their Interspace (IS) are involved in oligomerization. The Fusion and Cleavage (F/CL) domains, from amino acids 487-520, have been deleted. The Interspace (IS) between Heptad (H) 1 and 2, from amino acids 577-605, has been deleted. The XbaI (18nt up-stream from ATG) to BamH1 (1914 nt down-stream from ATG) fragment, which contains polylinker at the 5' end, Kozak sequence and ATG, was cloned into the XbaI to BamH1 sites of the CMV/R backbone. A summary of predicted VRC-5738 domains is provided in

Table 7. The plasmid is 6298 nucleotide base pairs (bp) in length and has an approximate molecular weight of 4.2 MDa. The sequence of VRC-5738 is provided in SEQ ID NO:6.

Table 7: Description of plasmid VRC-5738

Fragment Name or Protein Domain	Fragment Size (bp)	Predicted Fragment
pUC18 plasmid-derived	247	1-247
CMV-IE Enhancer/Promoter	742	248-989
HTLV-1 R region	231	990-1220
CMV IE Splicing Acceptor	123	1221-1343
Synthetic Linker	48	1344-1391
HIV-1 Env (Clade C), gp145 (delCFI)/h	1881	1392-3272
Synthetic Linker	12	3273-3284
Bovine Growth Hormone Poly A	548	3285-3832
pUC18 plasmid-derived	1345	3833-5177
Kanamycin Resistance Gene	816	5178-5993
pUC18 plasmid-derived	305	5994-6298

Example 2: Increased expression of HIV antigenic polypeptides by CMV/R transcription regulatory sequence.

[0134] To assess antigen expression from plasmids containing the CMV/R transcriptional regulatory elements, 3T3 cells were transfected with the above described expression vectors and gp145 Δ CFI expression was measured by Western blots. Murine fibroblast 3T3 cells were transfected with 0.5 μ g parental 1012 (CMV), CMV/R, RSV, RSV/R, mUB, and mUB/R DNA vaccines expressing HIV-1 Env gp145 Δ CFI (9) in 6-well plates using calcium phosphate. 24 h after transfection, cells were harvested and lysed in 50 mM HEPES, 150 mM NaCl, 1% NP-40 with protease inhibitors. 10 μ g total protein was electrophoresed by SDS-PAGE, and gp145 expression was assessed by Western blot analysis. A 1:5000 dilution of human HIV-IgG was utilized as the primary antibody, and a 1:5000 dilution of HRP-conjugated goat anti-human IgG was utilized as the secondary antibody. The blots were developed with the ECL Western blot developing system (Amersham Biosciences, Piscataway, NJ).

[0135] The expression of gp145 Δ CFI from the CMV/R plasmid was 5- to 10-fold higher than expression from the parental 1012 plasmid (FIG. 8). Thus, addition of the HTLV-1 R element substantially increased antigen expression driven by the CMV promoter. Baseline expression from the mUB plasmid was higher than from the 1012 plasmid but was not further enhanced by addition of the R element (FIG. 8), demonstrating that the effects of adding the R element were promoter-dependent. An increase in expression was observed in the RSV/R compared to RSV plasmid (FIG. 8). Expression from RSV plasmids is routinely lower than from the 1012 plasmid.

Example 3: Immunogenicity of CMV/R multiclade HIV vaccine

[0136] Non-clinical immunogenicity studies were conducted with plasmid constructs comprising the DNA plasmid vaccine VRC-HIVDNA016-00-VP as well as with DNA plasmid prime/adenoviral vector boost regimens using the recombinant adenoviral vector vaccine VRC-HIVADV014-00-VP in mice and non-human primates. Cellular immune responses were tested in these non-clinical immunogenicity studies by the interferon gamma (IFN- γ) ELISPOT assay which quantitatively measures the production of IFN- γ by peripheral blood mononuclear cells (PBMC) from immunized animals. The cells are exposed in vitro to HIV-1 antigens (a series of short, overlapping peptides that span the length of the protein expressed in the vaccine). The IFN- γ produced by antigen sensitized T-lymphocytes are bound to antibody coating an assay plate and may be counted colorimetrically as spot forming cells (SFC) by using an alkaline phosphatase conjugated read-out system. The results are expressed as SFCs per million PBMC.

[0137] DNA plasmid prime regimens are performed using plasmids expressing HIV-1 genes, identical in composition to clinical grade vaccine VRC-HIVDNA009-00-VP (4 plasmid vaccine, PCT Publication No. WO/05034992) or VRC-HIVDNA016-00-VP. The recombinant adenoviral vector vaccines used in preclinical immunology studies consisted of GMP grade VRC-HIVADV014-00-VP (Lot# 026-03017, PCT Application No. PCT/US2005/12291, filed April 12, 2005), composed of four adenoviral vectors that encode clade B gag/pol and clade A, B and

C Env, supplied by GenVec, Inc. Gaithersburg, MD). Table 8 provides a summary of the plasmids.

[0138] A tabulated summary of the immunology studies performed in mice and in non-human primates are summarized in Table 9.

Table 8: Summary of preclinical and clinical studies of VRC DNA vaccines

	Plasmid	Gag	Pol	Nef	Env (A)	Env (B)	Env (C)	Safety Testing	Clinical Trial
VRC-4302 (1-plasmid)	p1012w/ CMV promoter	Gag-Pol (B) Nef not included			Not included	Not included	Not included	+	+
VRC- HIVDNA00 6-00-VP (6-plasmids)	p1012w/ CMV promoter	Gag-Pol-Nef (A) (4413) Gag-Pol-Nef (B) (4306) Gag-Pol-Nef (C) (4311)			5305	2805	5309	+	N/A
VRC- HIVDNA00 9-00-VP (4-plasmids)	p1012w/ CMV promoter	Gag-Pol-Nef (B) (4306)			5305	2805	5309	+	+
VRC- EBODNA01 2-00-VP (3-plasmids)	p1012w/ CMV/R promoter	Ebola GP's and NP						+	+
VRC- HIVDNA01 6-00-VP (6-plasmids)	p1012w/ CMV/R promoter	4401	4409	4404	5736	5737	5738	*	In progress

Table 9: Summary of Vaccine Immunogenicity Studies in Mice and Non-Human Primates

Test System	Mouse	Cynomolgus macaques
Study Design	Immunogenicity	Immunogenicity
Route	i.m. ¹	i.m. ²
Dose	DNA:50µg	DNA:8mg rAd:1x10 ¹¹ PU
Treatments per Animal	1 DNA	3 DNA 1 rAd
Treatment Period	0 day	38 Wks
Study Duration	21 days	58 Wks
Conclusions	Vaccination with <i>gag-pol-nef</i> (CMV/R) elicits higher HIV-1-specific cellular responses in mice than plasmids constructed with the 1012 backbone.	Cynomolgus macaques receiving DNA prime/rAd boost immunization with the 6-plasmid DNA vaccine that expresses HIV-1 Gag, Pol, Nef and clade A, B and C Env (VRC-HIVDNA016-00-VP), and boosted with rAd expressing HIV-1 Gag/Pol and 3 Env, elicited cellular immune responses to all viral antigens.
References	Item (8) Section 2.3.1	Item (8) Section 2.3.2 Study VRC-02-035
PU = Particle Unit		
¹ DNA plasmid administered intramuscularly (i.m.) by needle and syringe		
² DNA Plasmid administered i.m. by Biojector; recombinant adenoviral vector vaccine (rAd) VRC-HIVADV014-00-VP (Lot # 026-03024) delivered i.m. by needle and syringe.		

Vaccination with the CMV/R plasmid encoding the gag-pol-nef fusion protein elicits higher HIV-1-specific cellular responses in mice than the unmodified 1012 plasmid encoding the same fusion protein.

[0139] To explore the possibility that enhanced antigen expression results in improved immunogenicity of these novel DNA vaccines *in vivo*, Balb/c mice (N=5/group) were immunized with 50 µg of the parental 1012 DNA vaccine or the CMV/R, RSV/R, mUB, or mUB/R DNA vaccines expressing HIV-1 Env gp145 ΔCFI. Mice were immunized three times at weeks 0, 2, and 6. On day 10 following

the final immunization, splenocytes were assessed for Env-specific cellular immune responses by IFN- γ and TNF- α intracellular cytokine staining (ICS) assays. The CMV/R DNA vaccine elicited approximately 2-fold higher CD4 $^{+}$ (p=0.15) and CD8 $^{+}$ (p=0.043) T lymphocyte responses as compared with the parental 1012 DNA vaccine expressing the same antigen (FIG. 9). In contrast, the RSV/R, mUB, and mUB/R DNA vaccines did not elicit enhanced CD8 $^{+}$ immune responses, suggesting that the HTLV-1 R element selectively improved immunogenicity in the context of the CMV promoter.

[0140] Immunogenicity of the parental 1012 DNA vaccines and the CMV/R DNA vaccines expressing other antigens were then compared. Mice (N=8/group) were immunized with sham plasmids or with these DNA vaccines expressing the HIV-1 Gag-Pol-Nef fusion protein. Mice were immunized twice at weeks 0 and 6, and cellular immune responses were assessed by IFN- γ ELISPOT assays using splenocytes harvested 3 weeks after the initial or boost immunization. Groups of BALB/c female mice (8 mice per group) were immunized with the following regimens of plasmids diluted in normal saline:

clade B *g-p-n* (1012): VRC-4306 (50 μ g/animal); this plasmid expresses Gag-Pol-Nef as a fusion protein, and is contained in the four-plasmid vaccine VRC-HIVDNA009-00-VP (BB-IND 10681);

clade B *g-p-n* (CMV/R): VRC-4400 (50 μ g/animal); this plasmid expresses Gag-Pol-Nef as a fusion protein.

[0141] Mice were injected with a single intramuscular (i.m.) immunization of 50 μ l total DNA in the quadriceps muscles using on day 0. On day 21 following immunization, mice were sacrificed for immunologic assays.

[0142] ICS assays. CD4 $^{+}$ and CD8 $^{+}$ T lymphocyte responses were evaluated by intracellular cytokine staining (ICS) for interferon-gamma (IFN- γ) and tumor necrosis factor-alpha (TNF- α). Briefly, splenocytes from immunized mice were harvested and incubated with pools of 15 amino acid peptides overlapping by 11

amino acids (2.5 μ g/ml each) covering the entire HIV-1 Env protein, followed by treatment with 10 μ g/ml brefeldin A (Sigma, St. Louis, MO). Cells were then fixed, permeabilized, and stained using rat anti-mouse CD3, CD4, CD8, IFN- γ and TNF- α monoclonal antibodies (BD Pharmingen, San Diego, CA). The IFN- γ and TNF- α positive cells in the CD4 $^{+}$ and CD8 $^{+}$ cell populations were analyzed with the program FlowJo (Tree Star, Ashland, OR).

[0143] Splenocytes were removed aseptically and homogenized to create a single-cell suspension. IFN- γ ELISPOT assays were then performed using splenocytes from vaccinated mice to assess the magnitude of vaccine-elicited cellular immune responses. Ninety-six-well multiscreen plates (Millipore, Bedford, MA) coated overnight with 100 μ l/well of 10 μ g/ml rat anti-mouse IFN- γ (Pharmingen, San Diego, CA) in PBS were washed with endotoxin-free Dulbecco's PBS (Life Technologies, Gaithersburg, MD) containing 0.25% Tween-20 and blocked with PBS containing 5% FBS for 2 h at 37° C. The plates were washed three times with Dulbecco's PBS containing 0.25% Tween-20, rinsed with RPMI 1640 containing 10% FBS, and incubated in triplicate with 5x10⁵ splenocytes per well in a 100 μ l reaction volume containing pooled peptides. Responses were measured using the HIV-1 Gag, Pol, and Nef peptide pools (VRC, Bethesda, MD). Following an 18h incubation, the plates were washed nine times with Dulbecco's PBS containing 0.25% Tween-20 and once with distilled water. The plates were then incubated for 2 h with 75 μ l/well of 5 μ g/ml biotinylated rat anti-mouse IFN- γ (Pharmingen, San Diego, CA), washed six times with Coulter Wash (Coulter Corporation, Miami, FL), and incubated for 2 h with a 1:500 dilution of streptavidin-AP (Southern Biotechnology Associates, Birmingham, AL). Following five washes with Coulter Wash and one with PBS, the plates were developed with NBT/BCIP chromogen (Pierce, Rockford, IL), stopped by washing with tap water, air dried, and read using an ELISPOT reader (Hitech Instruments, Edgemont, PA).

[0144] Immunologic data are presented as means with standard errors. Statistical analyses were performed with GraphPad Prism version 4.01 (GraphPad Software, Inc., 2004). Comparisons of mean cellular immune responses between groups of

animals were performed by two-tailed nonparametric Mann-Whitney tests. In all cases, p-values of less than 0.05 were considered significant.

[0145] Consistent with the prior experiment, we observed approximately 2-fold higher Gag- ($p=0.038$) and Pol-specific ($p=0.020$) responses elicited by the CMV/R DNA vaccine compared to the parental 1012 DNA vaccine following the initial immunization (FIG. 10A). Following the boost immunization, responses elicited by the CMV/R DNA vaccine remained approximately 2-fold higher than responses elicited by the parental DNA vaccine using both unfractionated splenocytes (FIG. 10B) and CD8-depleted splenocytes (FIG. 10C).

Immunogenicity of DNA Prime/Recombinant Adenoviral Vector Boost Immunization of Cynomolgus Macaques

[0146] Immunogenicity of the parental 1012 DNA vaccines was compared with CMV/R DNA vaccines expressing multiple HIV-1 antigens in cynomolgus monkeys. Two groups of adult cynomolgus monkeys (N=6/group) were immunized with 4-plasmid mixtures of 1012 or CMV/R DNA vaccines expressing HIV-1 Env gp145 Δ CFI from clades A, B, and C and the Gag-Pol-Nef fusion protein from clade B in a 1:1:1:3 ratio. This multiclade, multivalent DNA vaccine has been previously described and is currently being evaluated in clinical trials (VRC-HIVDNA009-00-VP; PCT Publication No. WO/05034992). A third group of monkeys was included to investigate whether separating the Gag-Pol-Nef fusion protein into separate genes encoded on separate plasmids would further increase immune responses to these antigens (VRC-HIVDNA016-00-VP). This third group of monkeys received a 6-plasmid mixture of CMV/R DNA vaccines encoding HIV-1 Env gp145 from clades A, B, and C and separate Gag, Pol, and Nef proteins from clade B in a 1:1:1:1:1:1 ratio. All monkeys received three immunizations of 8 mg total DNA vaccine at weeks 0, 4, and 8.

[0147] Plasmid DNA vectors (Althea Technologies, Inc., San Diego CA) expressing HIV-1 Gag, Pol, Nef proteins or Gag-Pol-Nef fusion protein and Clade A, B and C Env were used for the DNA prime immunization. The plasmids expressed the same

proteins as those contained in 4-plasmid vaccine VRC-HIVDNA009-00-VP and 6-plasmid vaccine VRC-HIVDNA016-00-VP.

[0148] The 4-plasmid combination was formulated using 1012 plasmids VRC 4306 (clade B Gag-Pol-Nef), VRC 5305 (clade A Env), VRC 2805 (clade B Env), and VRC 5309 (clade C Env). To achieve the required volumes for the three scheduled injections in the animal study, three lots of formulated material were prepared. The three lots were combined in a 50 mL conical tube. Following inversion of the tube several times to mix, 15.6-15.7 mL of the mixture was aliquotted into each of three 50 mL conical tubes. Tubes were labeled with study number, lot number, plasmid numbers, tube number, and date of preparation. Tubes were stored at -20°C until distributed.

[0149] The 6-plasmid combination was formulated using CMV/R plasmids VRC 4401 (clade B Gag), VRC 4409 (clade B Pol), VRC 4404 (clade B Nef), VRC 5736 (clade A Env), VRC 5737 (clade B Env) and VRC 5738 (clade C Env). To achieve the required volumes for the three scheduled injections of the animal study, three lots of formulated material were prepared. The three lots were combined in a sterile container. Following inversion of the container several times to mix, 16.8 mL of the mixture was aliquotted into each of three 50 mL conical tubes. Tubes were labeled with study number, lot number, plasmid numbers, tube number and date of preparation and stored at -20°C until distributed.

[0150] VRC-HIVADV014-00-VP (Lot #026-03024) was used as the rAd boost.

[0151] Outbred adult Cynomolgus macaques (6 monkeys per group) were vaccinated with DNA vaccine prime, delivered i.m. at weeks 0, 4, and 8 by Biojector. In each case, plasmid vaccine was delivered as two 0.5 ml injections in the quadriceps muscles using a No. 3 Biojector syringe (BIOJECT). A rAd vaccine boost was delivered i.m. by needle and syringe at week 38 (Group 1) and week 24 (Group 2). The following vaccination regimens were administered:

Group 1: 1012 plasmid DNA prime (4-plasmid combination): 8 mg total dose delivered as a combination of clade B Gag-Pol-Nef

fusion protein (4 mg), clade A Env (1.3 mg), clade B Env (1.3 mg) and clade C Env (1.3 mg). This is a non-GMP version of the VRC-HIVDNA009-00-VP clinical product (BB-IND 10681). rAd vaccine boost: VRC-HIVADV014-00-VP (10^{11} PU total dose; GMP lot # 026-03024).

Group 2: CMV/R plasmid DNA (6-plasmid combination): 8 mg total dose delivered as a combination of clade B Gag (1.3 mg), clade B Pol (1.3 mg), clade B Nef (1.3 mg), clade A Env (1.3 mg), clade B Env (1.3 mg) and clade C Env (1.3 mg). This is a non-GMP version of the VRC-HIVDNA016-00-VP clinical product (the subject of this IND submission). rAd vaccine boost: VRC-HIVADV014-00-VP (GMP lot # 026-03024).

Group 3: CMV/R plasmid DNA (4 plasmid combination): 8 mg total dose delivered as a combination of clade B Gag-Pol-Nef fusion protein (4 mg), clade A Env (1.3 mg), clade B Env (1.3 mg) and clade C Env (1.3 mg). rAd vaccine boost: VRC-HIVADV014-00-VP (GMP lot # 026-03024).

Group 4: 1012 plasmid DNA (6 plasmid combination): 8 mg total dose delivered as a combination of clade B Gag (1.3 mg), clade B Pol (1.3 mg), clade B Nef (1.3 mg), clade A Env (1.3 mg), clade B Env (1.3 mg) and clade C Env (1.3 mg). rAd vaccine boost: VRC-HIVADV014-00-VP (GMP lot # 026-03024).

[0152] Monkeys were bled at various intervals through week 42 post-immunization.

[0153] ELISPOT assays were utilized to monitor the emergence of vaccine-elicited T cell immune responses to multiple viral antigens. Separate assays were performed for each animal using pools of 15 amino acid peptides overlapping by 11 amino acids spanning the HIV-1 Gag, Pol, Nef, clade A Env, clade B Env and clade C Env

proteins matching the sequences of the vaccine immunogens. 96-well multiscreen plates were coated overnight with 100 μ l/well of 5 μ g/ml anti-human IFN- γ (B27; BD Pharmingen) in endotoxin-free Dulbecco's PBS (D-PBS). The plates were then washed three times with D-PBS containing 0.25% Tween-20 (D-PBS/Tween), blocked for 2 h with D-PBS containing 5% FBS at 37 °C, washed three times with D-PBS/Tween, rinsed with RPMI 1640 containing 10% FBS to remove the Tween-20, and incubated with peptide pools and 2 \times 10⁵ PBMC in triplicate in 100 μ l reaction volumes. Following an 18h incubation at 37 °C, the plates were washed nine times with D-PBS/Tween and once with distilled water. The plates were then incubated with 2 μ g/ml biotinylated rabbit anti-human IFN- γ (Biosource) for 2 h at room temperature, washed six times with Coulter Wash (Beckman-Coulter), and incubated for 2.5 h with a 1:500 dilution of streptavidin-AP (Southern Biotechnology). Following five washes with Coulter Wash and one with PBS, the plates were developed with NBT/BCIP chromogen (Pierce), stopped by washing with tap water, air dried, and read using an ELISPOT reader (Hitech Instruments). Spot-forming cells (SFC) per 10⁶ PBMC were calculated. Media backgrounds were consistently <15 spot-forming cells per 10⁶ PBMC.

[0154] Cellular immune responses against Env clade A, Env clade B, Env clade C, and Gag, Pol, and Nef from clade B were compared in monkeys that received the 4-plasmid mixtures under the control of CMV (1012) (Group 1) or CMV/R regulatory elements (Group 3). Monkeys immunized with the parental 1012 DNA vaccines developed low and sporadic IFN- γ ELISPOT responses to Env two weeks following the second immunization at week 6, and no clear responses above background were detected to Gag, Pol, and Nef (FIG. 11A). In contrast, monkeys immunized with the analogous CMV/R DNA vaccines exhibited significantly higher responses to all antigens (FIG. 11B). Compared to the parental 1012 DNA vaccines, the CMV/R DNA vaccines elicited >10-fold higher ELISPOT responses to Gag ($p=0.0022$), Pol ($p=0.0043$), and Nef ($p=0.041$) and 7- to 9-fold higher responses to Env clade A ($p=0.026$), B ($p=0.0087$), and C ($p=0.030$) at this time point. These results demonstrate that the CMV/R DNA vaccines were markedly more immunogenic than the parental 1012 DNA vaccines for multiple HIV-1 antigens in nonhuman primates.

[0155] Separating the Gag-Pol-Nef fusion protein into individual genes encoded on different plasmids further improved these responses. In particular, monkeys that received the 6-plasmid mixture of CMV/R DNA vaccines (Group 2) developed 4-fold higher responses to Gag ($p=0.0022$), a trend towards 2-fold higher responses to Pol ($p=0.19$), and 4-fold higher responses to Nef ($p=0.049$) (FIG. 11C), as compared to animals that received the 4-plasmid mixture of CMV/R DNA vaccines that included the Gag-Pol-Nef fusion protein (FIG. 11B). Env-specific responses between these two groups of monkeys that received the 4-plasmid and 6-plasmid mixtures of CMV/R DNA vaccines were comparable ($p=0.48$).

[0156] The evolution of mean IFN- γ ELISPOT responses in these groups of monkeys was evaluated at weeks 0, 2, 6, 10, and 12. Following the third DNA immunization at week 8, responses increased in all groups of monkeys (FIG. 12). At week 10, the parental 1012 DNA vaccines elicited Env- and Pol-specific responses in the majority of animals, although Gag- and Nef-specific responses remained low (FIG. 12A). In contrast, the CMV/R DNA vaccines elicited potent and broad responses to all antigens (FIG. 12B-C). At week 10, the 4-plasmid CMV/R DNA vaccines (FIG. 12B) elicited >10-fold higher ELISPOT responses to Gag ($p=0.0022$) and Nef ($p=0.0022$), 4-fold higher ELISPOT responses to Pol ($p=0.043$), and trends toward 1.5- to 4-fold higher responses to Env clade A, B, and C (FIG. 12B), as compared with the 4-plasmid parental 1012 DNA vaccines (FIG. 12A). Gag-, Pol- and Nef-specific responses remained highest in the animals that received the 6-plasmid CMV/R DNA vaccines with these genes encoded on separate plasmids (FIG. 12C). All responses boosted well with rAd. These studies confirm that the CMV/R DNA vaccines elicited substantially higher magnitude and broader cellular immune responses to multiple antigens as compared with the parental 1012 DNA vaccines. Thus, including the HTLV-1 R element and separating the Gag, Pol, and Nef genes significantly enhanced the immunogenicity of HIV-1 DNA vaccines in nonhuman primates.

[0157] In both mice and cynomolgus monkeys, CMV/R DNA vaccines expressing HIV-1 antigens elicited higher cellular immune responses than the parental 1012 DNA vaccines expressing the same antigens. However, the magnitude of the

observed effects differed substantially between the two species. While the CMV/R DNA vaccines elicited only 2-fold higher responses in mice (FIG. 10), the CMV/R DNA vaccines elicited >10-fold higher cellular immune responses to Gag, Pol, and Nef and 7- to 9-fold higher responses to Env after two immunizations in cynomolgus monkeys (FIGS. 11,12). This difference reflects the lower baseline immunogenicity of the parental 1012 DNA vaccines in nonhuman primates and indicates that the beneficial effects of the R element is more apparent in limiting situations. Consistent with this observation, the R element had the greatest effect at enhancing the weakest responses elicited by the parental 1012 DNA vaccine against Gag and Nef. However, Env- and Pol-specific cellular immune were also significantly higher when induced by CMV/R DNA vaccines as compared with the parental 1012 DNA vaccines.

[0158] The 6-plasmid mixture of CMV/R DNA vaccines that included Gag, Pol, and Nef on separate plasmids elicited significantly higher cellular immune responses to these antigens as compared to the 4-plasmid mixture of CMV/R DNA vaccines that included the Gag-Pol-Nef fusion protein. These effects are particularly notable since the separate Gag, Pol, and Nef plasmids were each utilized at one-third the dose of the plasmid encoding the Gag-Pol-Nef fusion protein. Without being bound by theory, this increased immunogenicity may reflect enhanced translation or mRNA stability of the shorter genes as compared with the fusion gene, which might potentially affect antigen processing and presentation.

[0159] Accumulating data has confirmed the importance of cellular immune responses in controlling HIV-1 replication in humans and SIV replication in rhesus monkeys. Moreover, vaccines aimed at eliciting virus-specific cellular immune responses have afforded partial control of SHIV and SIV challenges in rhesus monkeys. Thus, the markedly increased magnitude and breadth of HIV-1-specific cellular immune responses afforded by the CMV/R DNA vaccines in nonhuman primates in the present study is believed to be beneficial in the development of second-generation DNA vaccines for both HIV-1 and other pathogens. In particular, incorporating the HTLV-1 R element and utilizing separate genes in place of fusion

genes represent simple and practical strategies to improve DNA vaccines, making these vaccines suitable for clinical applications.

Example 4: Preparation of Material for Clinical Use

[0160] The process for manufacturing, filling, and packaging the VRC-HIVDNA016-00-VP drug product involves *E. coli* fermentation, purification, and formulation as a sterile liquid injectable dosage form for intramuscular injection. This naked DNA product involves no lipid, viral, or cellular vector components.

[0161] The vaccine, VRC-HIVDNA016-00-VP, is composed of a combination of six closed circular plasmid DNA macromolecules (VRC-4401, 4409, 4404, 5736, 5737 and 5738). For preparation of plasmids for clinical use, a master cell bank (MCB) was prepared for each source plasmid (VRC-4401, 4409, 4404, 5736, 5737 and 5738). Identity and composition of plasmid DNA samples from each of these MCBs was confirmed by sequence analysis. Restriction enzyme analysis and microbial analysis (including mold and yeast) were also performed to confirm identity and sterility.

[0162] Bulk plasmid preparations are prepared from bacterial cell cultures containing a kanamycin selection medium. In all cases, bacterial cell growth is dependent upon the cellular expression of the kanamycin resistance protein encoded by a portion of the plasmid DNA. Following growth of bacterial cells harboring the plasmid, the plasmid DNA is purified from cellular components.

[0163] Clinical trial vaccines are prepared under cGMP conditions. The vaccines meet lot release specifications prior to administration. The DNA vaccine is manufactured at a 4.0 mg dose in phosphate buffered saline (PBS). Vials are aseptically filled to a volume of 1.2 mL at a ratio of 1:1:1:1:1:1 of the six plasmids. The 4.0 mg plasmid DNA vaccine vials is shipped, unblinded, to the study pharmacist on dry ice, and is stored at or below -20°C until use. Placebo control vials of 2.4 mL PBS, pH 7.2 ± 0.2, are obtained from Bell-More Labs, Incorporated (Hampstead, MD).

[0164] Expression testing of the individual plasmids and the final formulated drug product are conducted prior to release of the vaccine product. Qualitative expression of the plasmid proteins is verified by comparing the reactive protein bands on the Western blot with the standards run under the same conditions. Once the plasmids are combined, expression is verified using the same assay procedures. Expression is determined by detecting proteins expressed by transfected 293 human embryonic kidney (HEK) cells. For transfection, 10^5 to 10^6 cells are transfected with 1-5 μ g of plasmid DNA using the calcium phosphate method. Cells are incubated for 14-20 hours to allow for DNA uptake. Following a medium change, cells are grown for an additional 24-48 hours before harvesting. Transfection efficiency is monitored using a known similar vector in the same backbone. After cell lysis, 10 μ g of an appropriate amount of total cellular protein is loaded onto an SDS-PAGE gel to separate the crude lysate proteins.

[0165] Following electrophoresis for approximately 1.5 hours, the proteins are transferred to a nitrocellulose membrane (0.45 μ m) for Western blot analysis. The membrane is blocked with skim milk to prevent non-specific binding interaction prior to incubation with the primary antibody for 60 minutes. Following washing, the membrane is incubated for 45 minutes with HRP conjugated second antibody. Visualization of the protein bands is achieved by incubating the membrane with chemiluminescent substrates and exposing to X-ray film for 2 minutes or an appropriate time. Expression of protein produced by transfected cells is determined by observing the intensity of expressed protein on the Western blot. The assay is being further developed to allow for semi-quantitative analysis of protein expression by the vaccine plasmids.

Example 5: Clinical safety in humans.

[0166] For clinical use, VRC-HIVDNA016-00-VP is composed of 6 closed, circular DNA plasmids that are each 16.67% (by weight) of the vaccine. Each of the 6 plasmids in this vaccine expresses a single gene product. Plasmids VRC 4401, VRC 4409 and VRC 4404 are designed to express clade B HIV-1 Gag, Pol and Nef, respectively. VRC 5736, VRC 5737, and VRC 5738 are designed to express HIV-1

Env glycoprotein from clade A, clade B, and clade C, respectively. Vaccine vials are supplied at 4 mg/mL. Each DNA administration is 1 mL of the vaccine composition delivered intramuscularly (in deltoid muscle) using the Biojector 2000[®] Needle-Free Injection Management SystemTM.

[0167] Evaluation of the safety of this vaccine includes laboratory studies, medical history, physical assessment by clinicians, and subject self-assessment recorded on a diary card. Potential adverse reactions are further evaluated prior to continuing the immunization schedule. Day 0 is defined as the day of enrollment and first injection. Day 0 evaluations prior to the first injection are the baseline for subsequent safety assessments. The schedule of vaccination is Day 0, Day 28 ± 7 , Day 56 ± 7 (with at least 21 days between injection days). All study injections are given by an intramuscular administration of VRC-HIVDNA016-00-VP at a 4 mg dose using a Biojector 2000[®] needle-free injection system. Study injections are administered into deltoid muscle.

[0168] Following study injections, subjects are observed for a minimum of 30 minutes. Vital signs (temperature, blood pressure, pulse and respiratory rate) are taken at 30-45 minutes post-immunization. The injection site is inspected for evidence of local reaction. Subjects will be given a "Diary Card" on which to record temperature and symptoms daily for 5 days. Follow-up on subject well-being will be performed by telephone on the first or second day following each injection. A clinic visit will occur if indicated by the telephone interview. On each injection day (prior to injection) and at 14 ± 3 days after each injection, study subjects are evaluated by clinical exam and laboratory tests. Long-term follow-up visits are at Week 12 ± 7 days, Week 24 ± 14 days and Week 32 ± 14 days. At intervals throughout the study subjects have blood drawn for immunologic assays. Any cells, serum or plasma not used will be stored for future virological and immunological assays. Subjects are also interviewed at the final clinical visit (Week 32) regarding social harms, including problems with employment, travel, immigration, access to insurance, medical or dental care, and negative reactions from family, friends, and co-workers.

[0169] Assessment of product safety includes clinical observation and monitoring of hematological and chemical parameters. The following parameters will be assessed: local reactogenicity signs and symptoms; systemic reactogenicity signs and symptoms; laboratory measures of safety; and adverse and serious adverse experiences.

[0170] The principal immunogenicity endpoints are measured at Week 0 (baseline) and Weeks 6, 8, 10 and 12 (for cellular immune responses) and consist of HIV-1-specific T cell responses, as measured by intracellular cytokine staining (ICS) assays. ICS at other study timepoints, as well as HIV-1-specific humoral immune responses as measured by HIV-specific antibody assays will be completed as exploratory evaluations.

[0171] Administration of the vaccine composition is performed using a BIOJECTOR 2000® NEEDLE-FREE INJECTION MANAGEMENT SYSTEM® as directed by the company. Neither the material being injected nor the deltoid injection site skin preparation require deviation from standard procedures. In brief, the injection site is disinfected and the area allowed to dry completely. The skin around the injection site is held firmly while the syringe is placed against the injection site at a 90° angle. The actuator is pressed and the material is released into the muscle. Continue to hold firmly for 3 seconds. After the injection, the site is covered with a sterile covering and pressure applied with 3 fingers for 1 minute. BIOJECTOR 2000® utilizes sterile, single-use syringes for variable dose, up to 1.0 mL, medication administration. The study agent is delivered under pressure by a compressed CO₂ gas cartridge that is stored inside the BIOJECTOR®. When the BIOJECTOR®'s actuator is depressed, CO₂ is released, causing the plunger to push the study agent out of the sterile syringe through the skin and into the underlying tissue. The study agent is expelled through a micro-orifice at high velocity in a fraction of a second to pierce the skin. The CO₂ does not come in contact with the injectate and the syringe design prevents any back splatter or contamination of the device by tissue from the subject.

[0172] Fifteen subjects received three 1 mL doses at 4 mg/mL on a 0, 1, 2 month schedule. Vaccinations were administered intramuscularly using the BIOJECTOR 2000®. Fourteen of the 15 subjects received 3 intramuscular injections of a 4 mg dose of vaccine administered by BIOJECTOR 2000®; one subject was lost to follow-up after two vaccinations. No subjects reported fever following vaccination. Reactogenicity was none to mild except that two subjects reported moderate injection site pain and one subject reported moderate nausea and malaise. The only adverse event requiring expedited reporting to the IND sponsor was a grade 3 generalized urticaria. The subject had reported starting an antihistamine about 2 weeks after first vaccination but reported at that time that the reason was latex allergy. While being screened for the rollover booster study, VRC 010, it was learned that the subject had experienced generalized urticaria around the time of the second vaccination when the supply of antihistamine ran out. The subject has chronic urticaria that are well controlled by antihistamine. Evaluation is ongoing. The etiology is unknown but at this time the chronic urticaria is assessed as possibly related to study vaccine. To date, there have been two moderate (grade 2) adverse events possibly attributed to vaccine. These were intermittent dizziness of 2 days duration beginning 13 days after the second vaccination in one subject (this subject received the third vaccination without recurrence of symptoms) and asymptomatic hypoglycemia in another subject, first noted at the follow-up visit that was 14 days after the third vaccination. The last safety evaluation of the subject lost to follow-up was by telephone one day after the second vaccination; at that time the subject reported no side effects from the vaccination.

[0173] An unexpected local injection site reaction for this DNA vaccine has been observed. Mild cutaneous lesions (0.5-1.0 cm diameter) at the vaccination site occurred after 4 of 44 (9%) vaccinations administered; these occurred in 3 of 15 (20%) subjects. Subjects were routinely asked to call if they experience any unusual problem after study vaccinations. The vaccination site cutaneous lesions did not alarm subjects enough to prompt them to contact the VRC Clinic prior to their next regularly-scheduled visit. In retrospect, three subjects reported that they experienced skin lesions that started as a small papule or vesicle within 3 days after vaccination.

After a few days the papule or vesicle unroofed and a scab formed. There was surrounding mild erythema and mild induration. After the scab came off, the skin healed without treatment. None of the cutaneous lesions were associated with pustular exudates, fever, rash or urticaria. They did not appear to be either a local infection or an allergic reaction.

[0174] The first three cutaneous lesions were discovered at the first post-vaccination clinic visit (days 14 ± 3 Day); at that time they were largely resolved. The fourth cutaneous lesion was examined in the clinic while still in an active stage and it was biopsied at post-vaccination day 6. This biopsy demonstrated a microscopic subcutaneous and dermal perivascular lymphocytic infiltrate. The infiltrate was composed almost exclusively of CD3 positive cells, including both CD4⁺ and CD8⁺. There were rare eosinophils present and rare giant cells noted. The process appeared to be primarily a subcutaneous and dermal response to vaccination with cutaneous manifestations.

[0175] Whether these reactions correlate with the strength of the vaccine-induced immune response is also not yet known. Eight of the 14 subjects who remained in follow-up have had a vaccine-induced positive HIV ELISA by a commercial test at one or more timepoints; this includes all three subjects who had a cutaneous lesion. Preliminary immunogenicity data with the 6-plasmid DNA indicate that the Env-specific T cell responses are similar to those seen in the 4-plasmid DNA, and the Gag- and Nef-specific responses are also present.

[0176] Cellular responses in subjects were measured by intracellular cytokine staining (ICS) and flow cytometry to detect IFN- γ or IL-2 in both CD4⁺ and CD8⁺ T lymphocytes after stimulation with peptide pools representing the viral antigens (FIG. 13). Data for each individual subject is shown in columns. Responses to each peptide pools are shown in rows. Each box represents the entire time course from prevaccination to 12 weeks (4 weeks after the last immunization). The scale for each box is 0-0.2% of the total CD4⁺ or CD8⁺ population tested. CD4⁺ responses are shown in red and CD8⁺ responses shown in green. Nearly all subject have detectable responses to Env peptides. In contrast to the 4-plasmid product, the

majority of subjects have detectable responses to Gag and there are also Nef responders.

Example 6: Immunogenicity of Chimeric Env Proteins

[0177] To demonstrate the role of different genetic sequences in the induction of neutralizing antibodies, nucleic acid constructs expressing chimeric antigenic polypeptides having different regions of the viral envelope from two different clades were produced. Nucleic acid constructs encoding different portions of the clade C Env polypeptide and clade B Env polypeptide were analyzed and compared to the clade C Env polypeptide. The transposition of the proximal 25% of clade C onto the clade B background showed an increase in the potency and breadth of neutralization against a variety of clade B isolates and improved the neutralization of clade C isolates. Replacement of the distal region of clade B Env with the clade C Env resulted in improved neutralization against clade B isolates, demonstrating that the region containing V₃ in clade B isolates contributes to its ability to inhibit a variety of diverse viral isolates. These nucleic acid constructs are represented by SEQ ID NOS:7-15. Thus, certain embodiments of the disclosed compositions can include constructs encoding chimeric Env polypeptides combining multiple clades.

[0178] To demonstrate the roles of V regions in alternative clades, mutations were made both in the V₁V₂ as well as the V₃ regions of clades A, B and C. To demonstrate the role of V₁V₂ in clade A, a clade A prototype was compared to that containing deletions of the V₁ and V₂ regions. Removal of V₁V₂ and/or V₃ enhanced the ability of the clade A Env polypeptide to elicit an immune response that neutralized a variety of clade B isolates, demonstrating that deletion of these regions increases the ability of the antigenic polypeptide to elicit broadly neutralizing antibodies (for example, by increasing accessibility to specific epitopes that elicit cross-reactive antibodies). Accordingly, in certain embodiments disclosed herein, the nucleic acid constructs include deletions of a V₁, V₂ and/or V₃ region.

[0179] To demonstrate the role of V₁V₂ in clade B against a heterologous V₃ from clade C, the V₃ from a South African clade C isolate was inserted in place of the V₃

from a clade B and compared to a stem-shortened version that has been shown to enhance neutralization using clade B V₃ loops. The ability of these plasmid DNA vectors in combination with a recombinant adenovirus boost to elicit neutralizing antibodies was evaluated against the indicated strains. Immunization with both V₃ substitutions allowed neutralization of viral isolates from clades A, B and C, although the magnitude of the response was greater with the stem-shortened 1AB V₃. In addition, the peptide inhibition revealed that the neutralizing antibodies elicited in this response were of greater breadth and interacted with V₃ regions from diverse clades, A, B and C. Thus, the clade C V₃ loop appeared to elicit broadly reactive V₃ neutralizing antibodies.

[0180] Deletion of the V₁ and V₂ regions of these envelopes improves their ability to elicit neutralizing antibody responses. These responses are directed largely against the V₃ regions in diverse clades. The use of alternative V regions derived from different clades demonstrates that these V regions also display differences in their ability to elicit strain-specific responses. For example, the inclusion of V₃ regions from clade C allowed neutralization of a variety of clade B isolates and greater breadth of neutralization by V₃ peptides from diverse strains. Thus, the elimination of both the V₁ and V₂ regions as well as the presentation of more broadly reactive V₃s can enhance the breadth of neutralization mediated by an Env antigenic polypeptide.

[0181] In addition to the V₃-mediated neutralization, other variable regions contribute to virus neutralization when V₃ is not exposed. Among these, a highly exposed region in V₁ was identified. Although this region is highly likely to show strain-specific variation, there are also conserved subregions within the V₁ that contribute to increased breadth of the immune response to this variable loop.

[0182] The ability to define improved immunogens using genetic information based on viral diversity can improve the ability to design effective HIV vaccines. The results described above demonstrate that genotypic sequence variation can result in neutralization sensitivities that are independent of clade. This finding has important

10 Aug 2011

2005274948

implications for the design of improved HIV immunogens based on genetic sequence.

[0183] In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.

[0184] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

[0185] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

10 Aug 2011

2005274948

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of inducing an immune response against HIV in a human subject, wherein said method comprises:

(i) administering a first composition to a human subject, wherein the first composition comprises as separate plasmids:

(a) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

(b) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C;

(d) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Gag protein from clade B;

(e) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Pol protein from clade B; and

(f) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Nef protein from clade B; and
and wherein the plasmids are in combination with:

(g) a pharmaceutically acceptable carrier or excipient, and

(ii) administering a second composition to the human subject after administration of the first composition to the human subject, wherein the second composition comprises as separate adenoviral vectors:

(a) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

(b) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C; and

(d) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Gag-Pol fusion protein from clade B;

and wherein the adenoviral vectors are in combination with:

(e) a pharmaceutically acceptable carrier or excipient,
to thereby induce an immune response against HIV in the human subject.

2. A method of treating or preventing HIV infection in a human subject, wherein said method comprises:

10 Aug 2011

2005274948

(i) administering a first composition to a human subject, wherein the first composition comprises as separate plasmids:

- (a) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;
- (b) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;
- (c) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C;
- (d) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Gag protein from clade B;
- (e) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Pol protein from clade B; and
- (f) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Nef protein from clade B;

and wherein the plasmids are in combination with:

- (g) a pharmaceutically acceptable carrier or excipient, and

(ii) administering a second composition to the human subject after administration of the first composition to the human subject, wherein the second composition comprises as separate adenoviral vectors:

- (a) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;
- (b) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;
- (c) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C; and
- (d) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Gag-Pol fusion protein from clade B; and

wherein the adenoviral vectors are in combination with:

- (e) a pharmaceutically acceptable carrier or excipient,

to thereby induce an immune response against HIV in the human subject.

3. The method of claim 1 or claim 2, wherein each of the Env proteins from clade A, B and C encoded by a plasmid of the first composition is a gp145 protein which lacks (a) the fusion and cleavage domains and (b) the interspace between heptad (H) 1 and 2.

10 Aug 2011

2005274948

4. The method according to any one of claims 1 to 3, wherein each of the Env proteins from clade A, B and C encoded by an adenoviral vector of the second composition is HIV gp140 or gp140dv12.
5. The method according to any one of claims 1 to 4, wherein one or more of the nucleic acids that comprise a sequence encoding the HIV Env, Gag, Pol, Nef, and/or Gag-Nef-Pol protein comprise codons optimized for expression in a human subject.
6. The method according to any one of claims 1 to 5, wherein the first composition is administered to the human subject at least one week prior to administration of the second composition to the human subject.
7. The method according to any one of claims 1 to 6, wherein the first composition is administered to the human subject three months prior to administration of the second composition to the human subject.
8. The method according to any one of claims 1 to 6, wherein the first composition is administered to the human subject nine months prior to administration of the second composition to the human.
9. The method according to any one of claims 1 to 8, wherein the first composition is administered to the human subject two or more times prior to administration of the second composition to the human subject.
10. The method according to any one of claims 1 to 9, wherein the immune response is protective against multiple clades or strains of HIV.
11. The method according to any one of claims 1 to 10, wherein the first composition and the second composition are administered to the human subject intramuscularly or via a needleless delivery device.
12. The method according to any one of claims 1 to 11, wherein one or more of the adenoviral vectors of the second composition is replication-deficient.

10 Aug 2011

2005274948

13. Use of a multidose composition comprising a first dosage unit and a second dosage unit to inducing an immune response against HIV in a human subject or to treat or prevent HIV infection in a subject, wherein:

(i) said first dosage unit comprises as separate plasmids:

(a) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

(b) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C;

(d) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Gag protein from clade B;

(e) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Pol protein from clade B; and

(f) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Nef protein from clade B; and

(ii) said second dosage unit comprises as separate adenoviral vectors:

(a) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

(b) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C; and

(d) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Gag-Pol fusion protein from clade B;

and wherein the adenoviral vectors are in combination with:

(e) a pharmaceutically acceptable carrier or excipient; and

wherein the second dosage unit is formulated for administration to the human subject after administration of the first dosage unit to the human subject.

14. Use of a multidose composition comprising a first dosage unit and a second dosage unit in the preparation of a medicament to induce an immune response against HIV in a human subject or to treat or prevent HIV infection in a subject, wherein:

(i) said first dosage unit comprises as separate plasmids:

(a) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

10 Aug 2011

2005274948

(b) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C;

(d) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Gag protein from clade B;

(e) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Pol protein from clade B;

(f) a plasmid comprising a nucleic acid that comprises a sequence encoding an HIV Nef protein from clade B; and

(ii) said second dosage unit comprises as separate adenoviral vectors:

(a) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade A;

(b) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade B;

(c) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Env protein from clade C;

(d) an adenoviral vector comprising a nucleic acid that comprises a sequence encoding an HIV Gag-Pol fusion protein from clade B; and

and wherein the adenoviral vectors are in combination with:

(e) a pharmaceutically acceptable carrier or excipient; and

wherein the second dosage unit is formulated for administration to the human subject after administration of the first dosage unit to the human subject.

15. The use of claim 13 or claim 14, wherein each of the Env proteins from clade A, B and C encoded by a plasmid of the first dosage unit is a gp145 protein which lacks (a) the fusion and cleavage domains and (b) the interspace between heptad (H) 1 and 2.

16. The use according to any one of claims 13 to 15, wherein each of the Env proteins from clade A, B and C encoded by an adenoviral vector of the second dosage unit is HIV gp140 or gp140dv12.

17. The use according to any one of claims 13 to 16, wherein one or more of the nucleic acids that comprise a sequence encoding the HIV Env, Gag, Pol, Nef, and/or Gag-Nef-Pol protein comprise codons optimized for expression in a human subject.

10 Aug 2011

2005274948

18. The use according to any one of claims 13 to 17, wherein one or more of the adenoviral vectors of the second dosage unit is replication-deficient.
19. The method according to any one of claims 1 to 12 or the use according to any one of claims 13 to 18, wherein the human subject is immunocompetent and/or been previously exposed to HIV.
20. The method according to any one of claims 1 to 12 or claim 19 or the use according to claims 13 to 19 substantially as hereinbefore described with reference to the accompanying Examples and/or Drawings and/or Sequence Listing.

DATED this TENTH day of AUGUST, 2011

The Government of the United States of America, as represented by the Secretary, Department of Health and Human Services
-and-
Genvec, Inc.

By patent attorneys for the applicants:
F.B. Rice

Editorial Note;

The Gene Sequence pages attached to the Drawings have been separated and are now in the Document Type of Gene Sequence on the application.

Pat Robertson 02.09.2011

1/13

FIG. 1

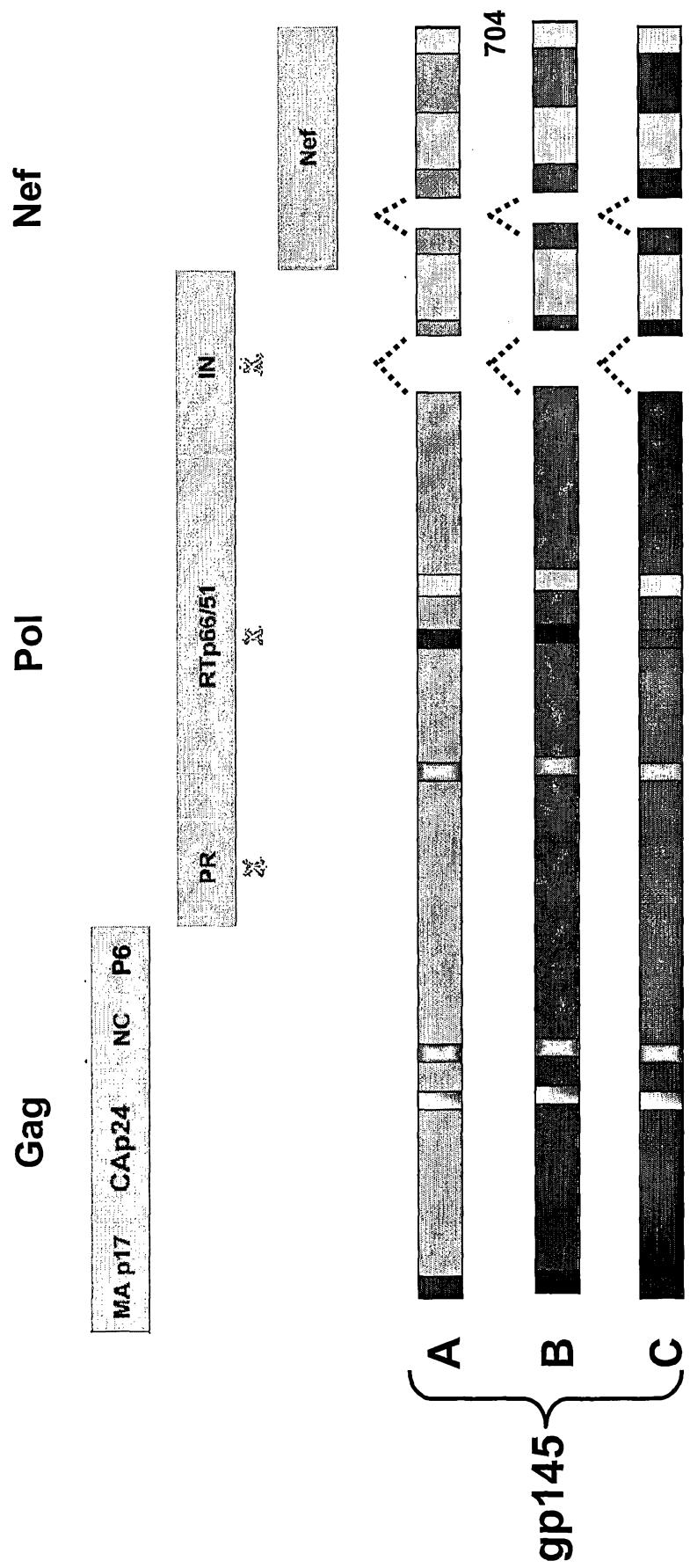


FIG. 2

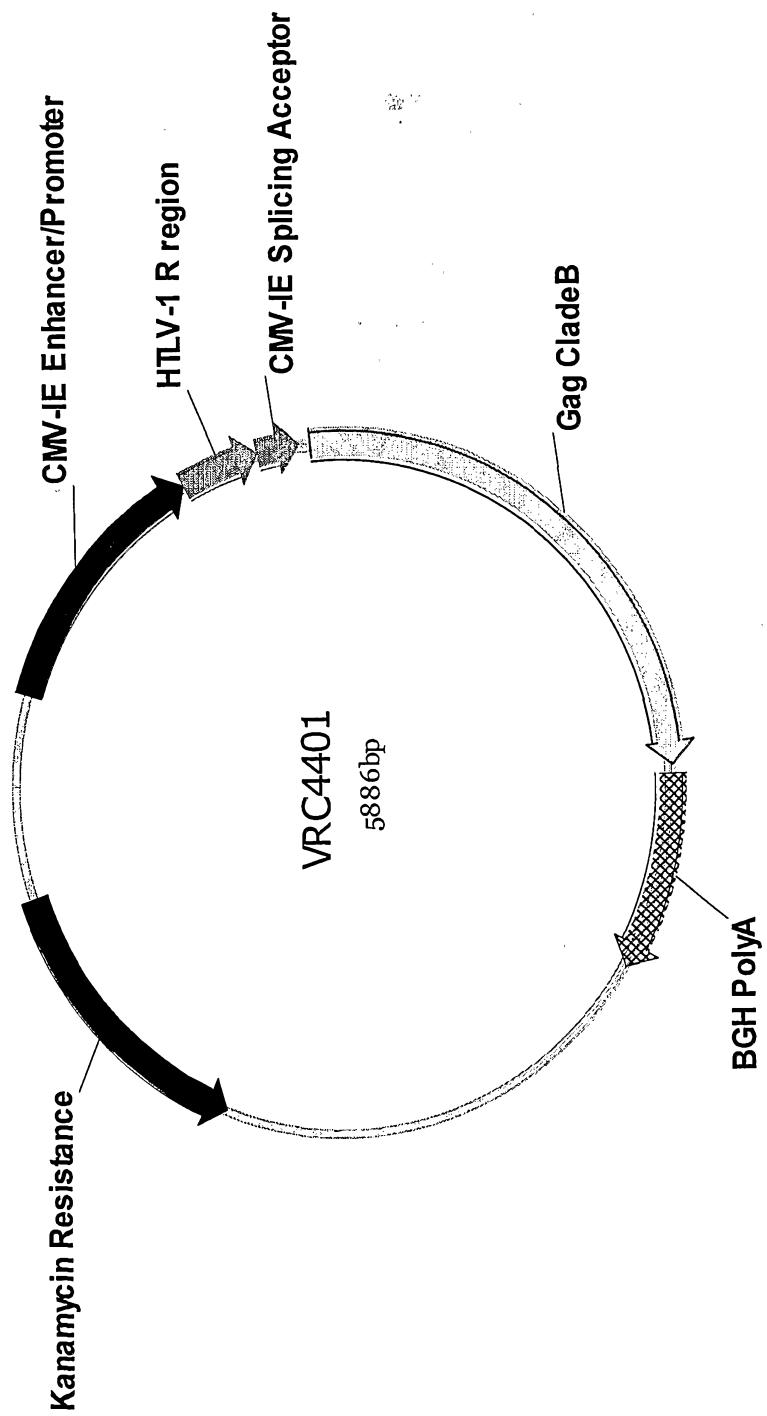


FIG. 3

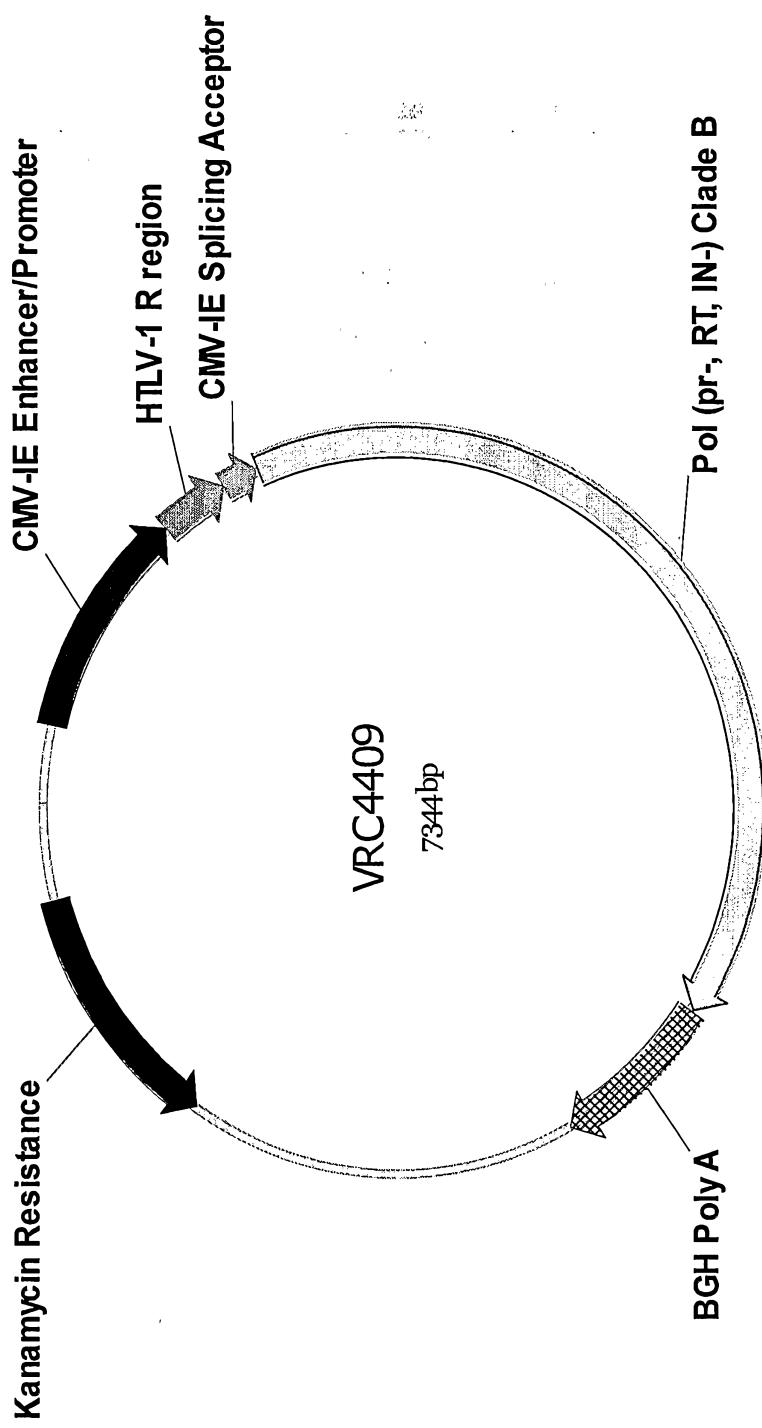


FIG. 4

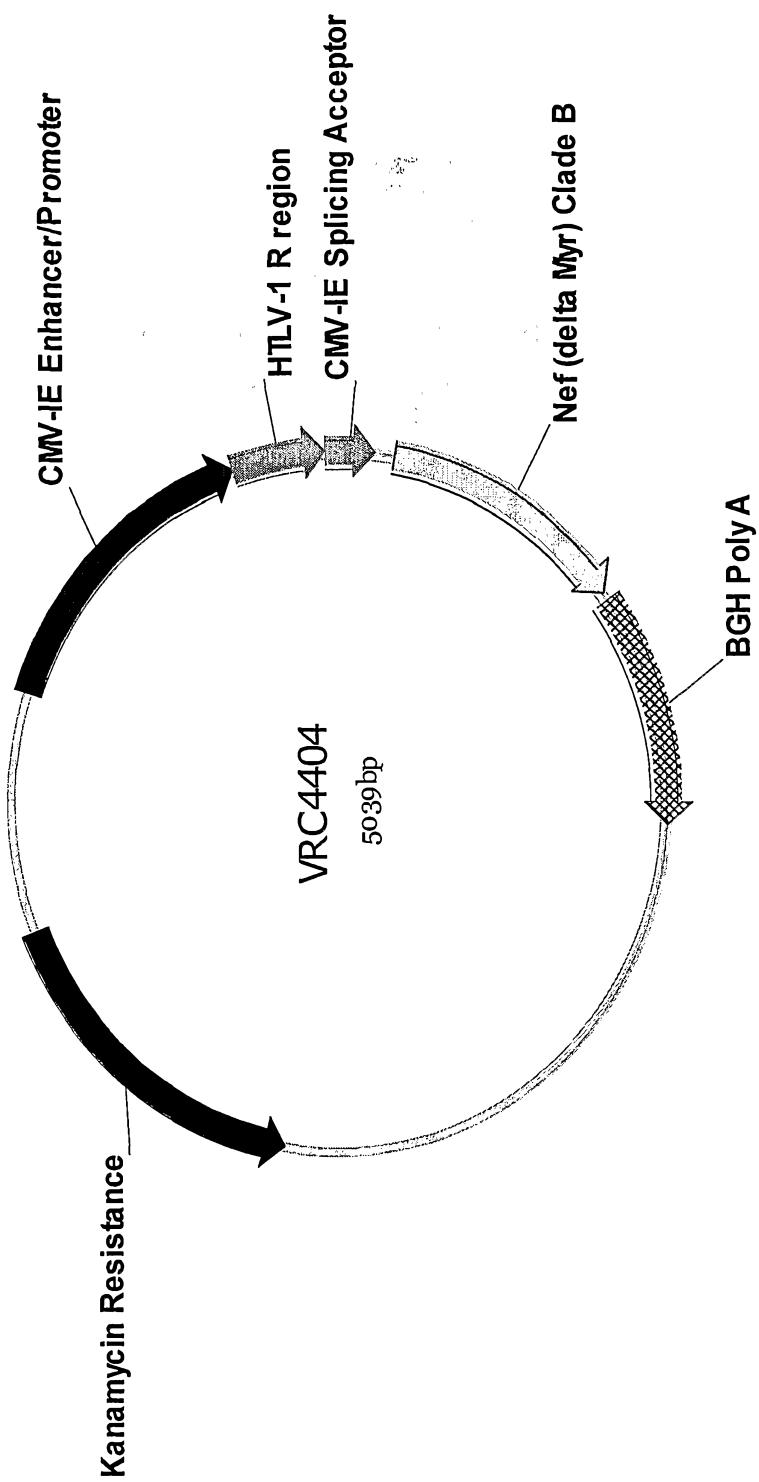


FIG. 5

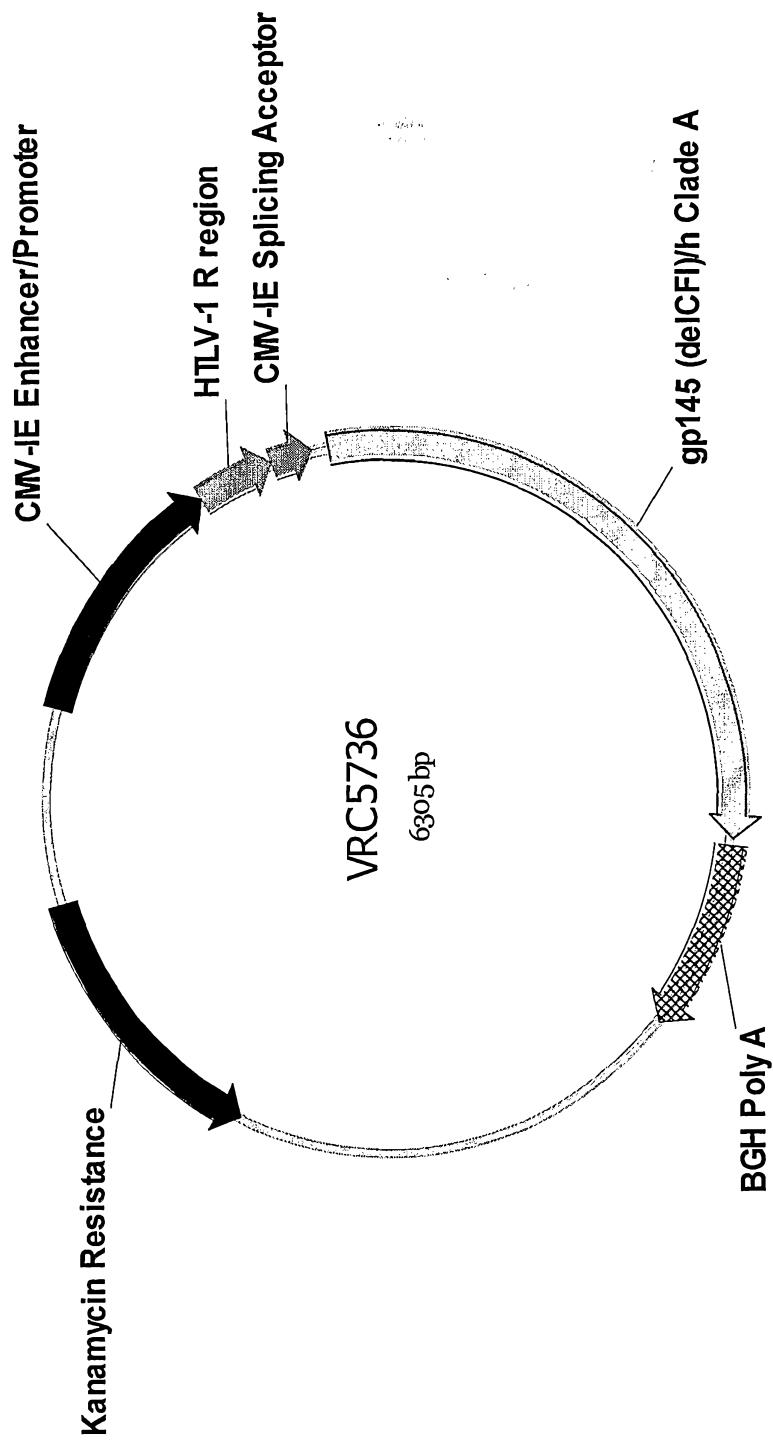


FIG. 6

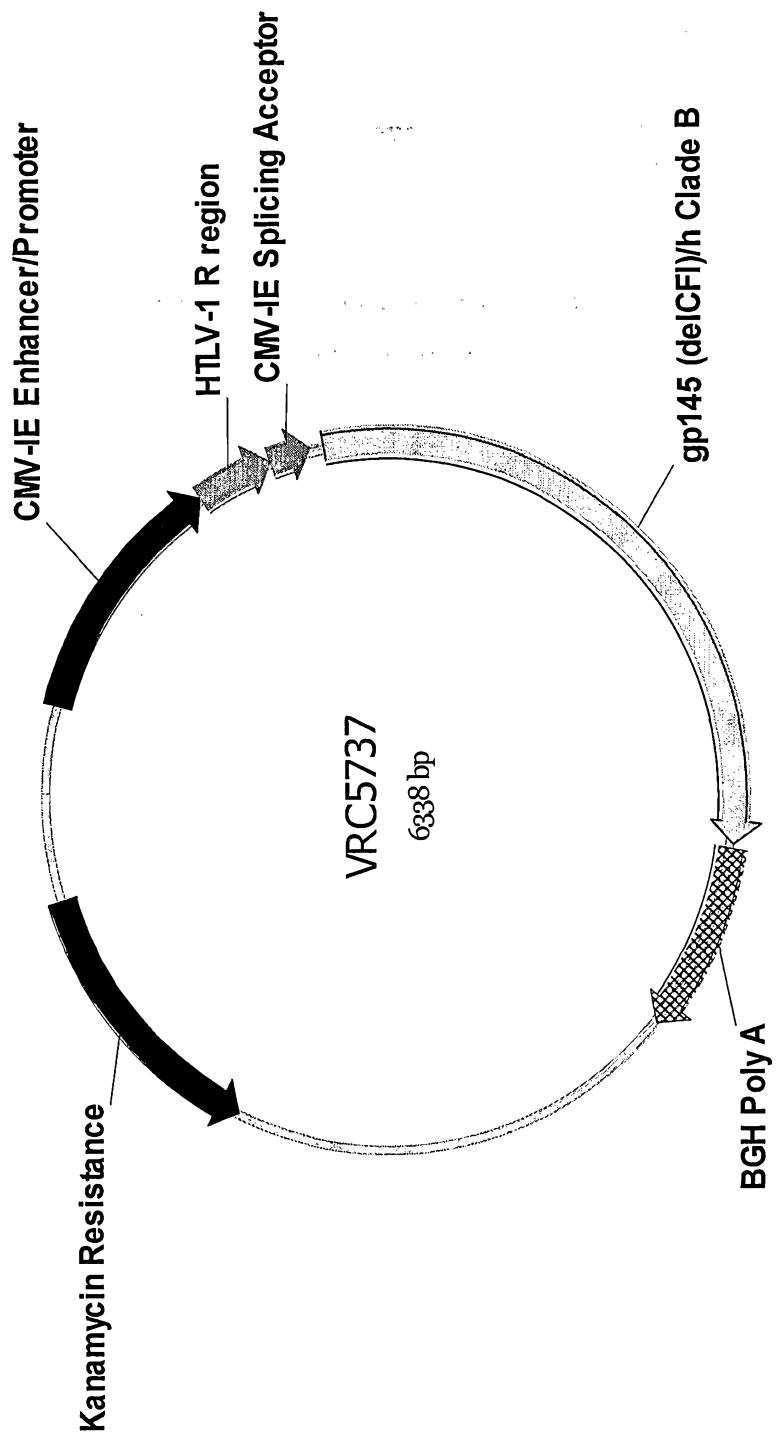
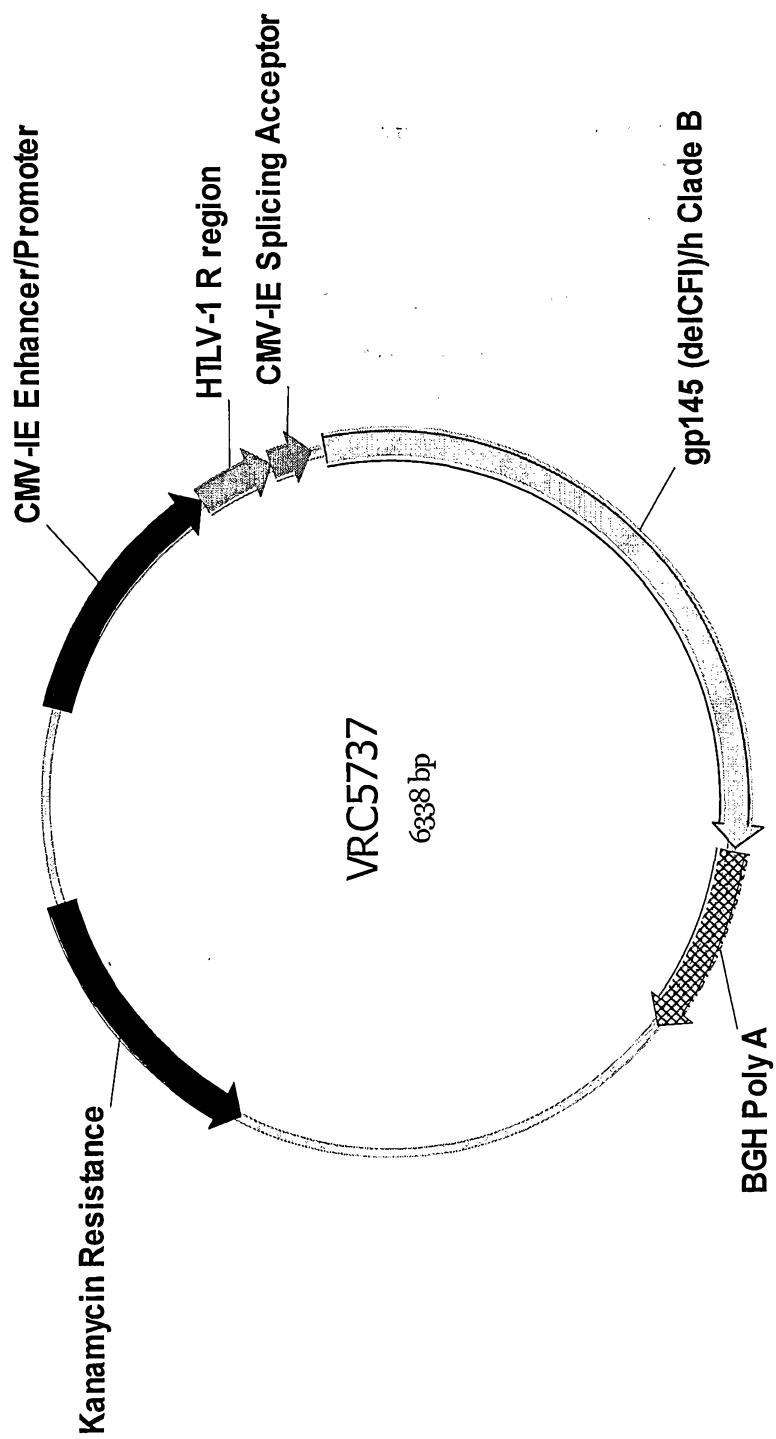
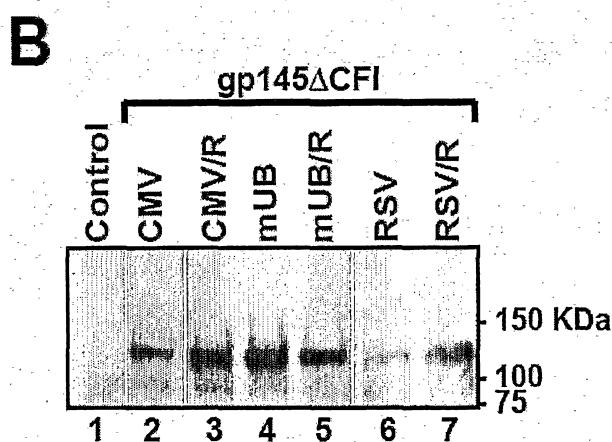
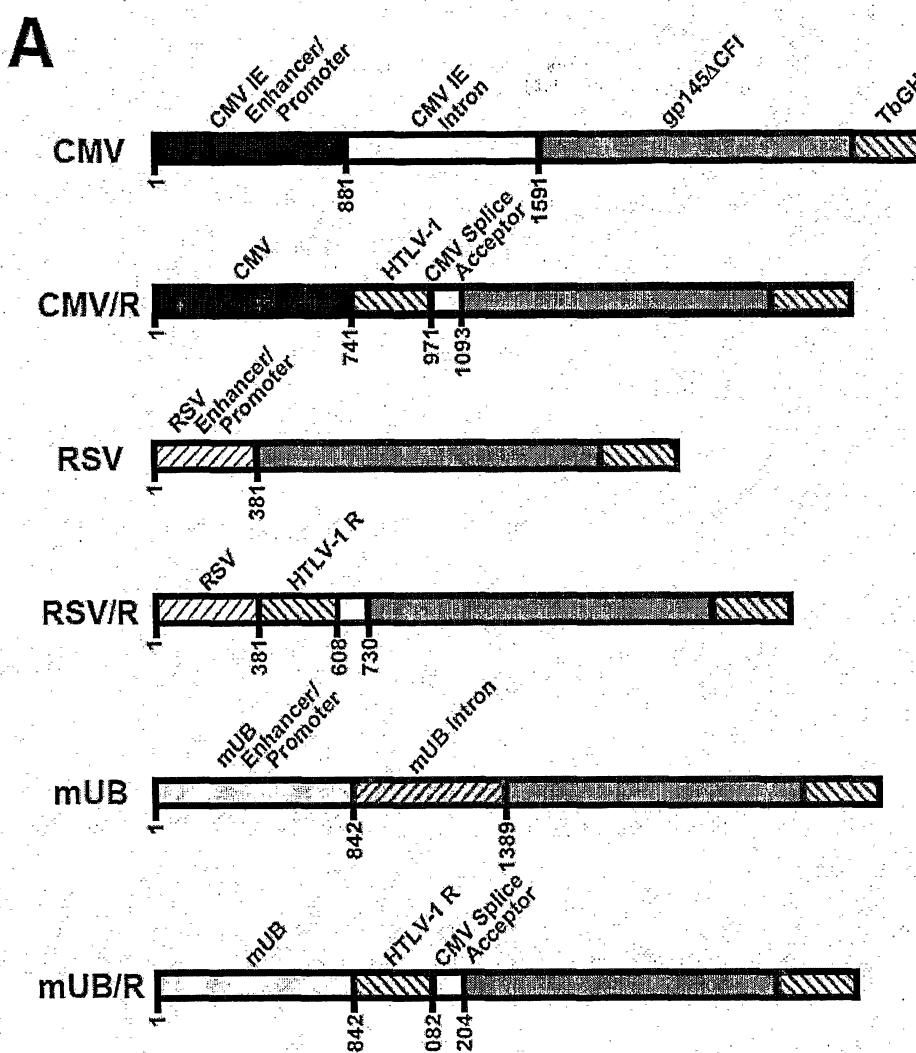





FIG. 7

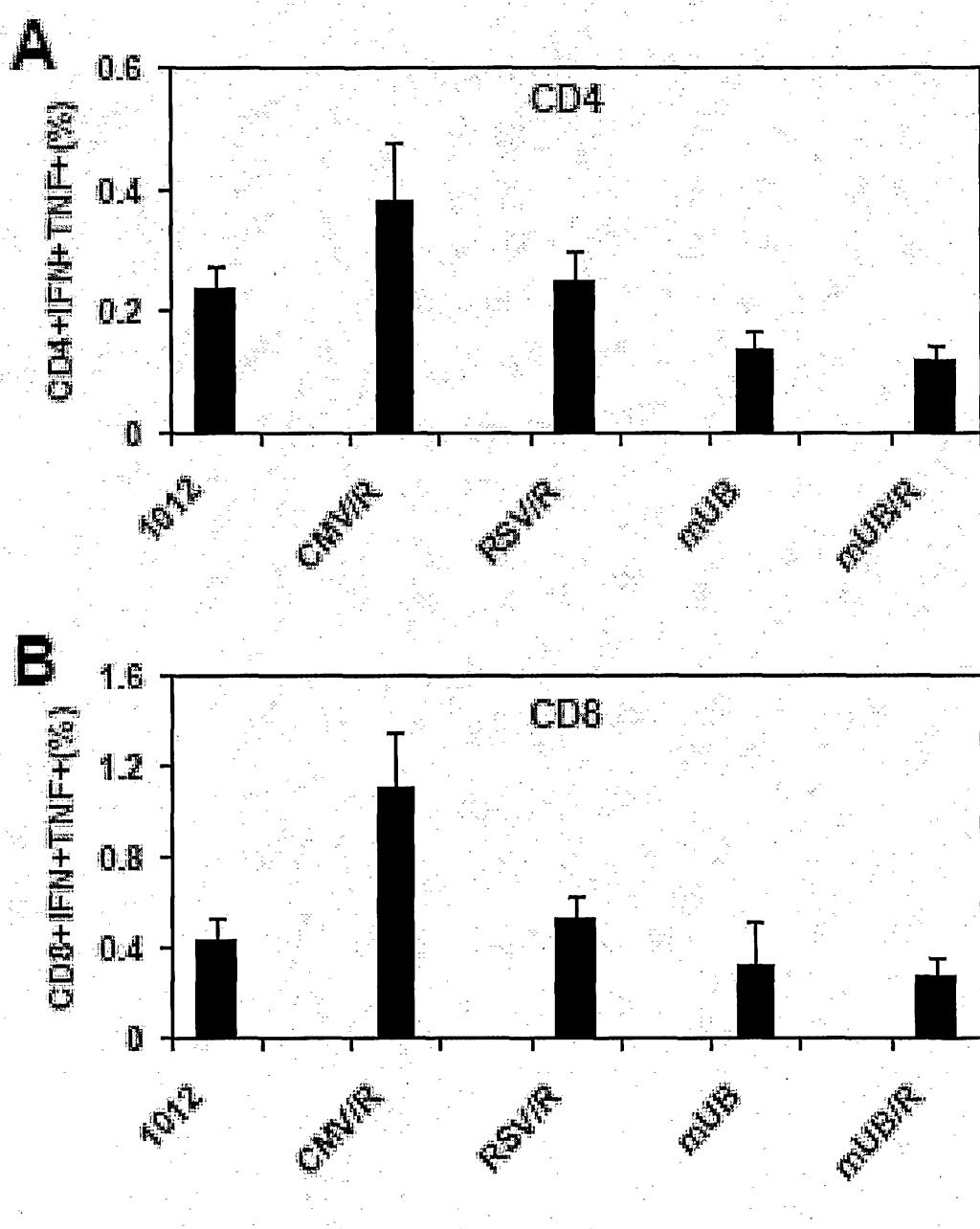

8/13

FIG. 8

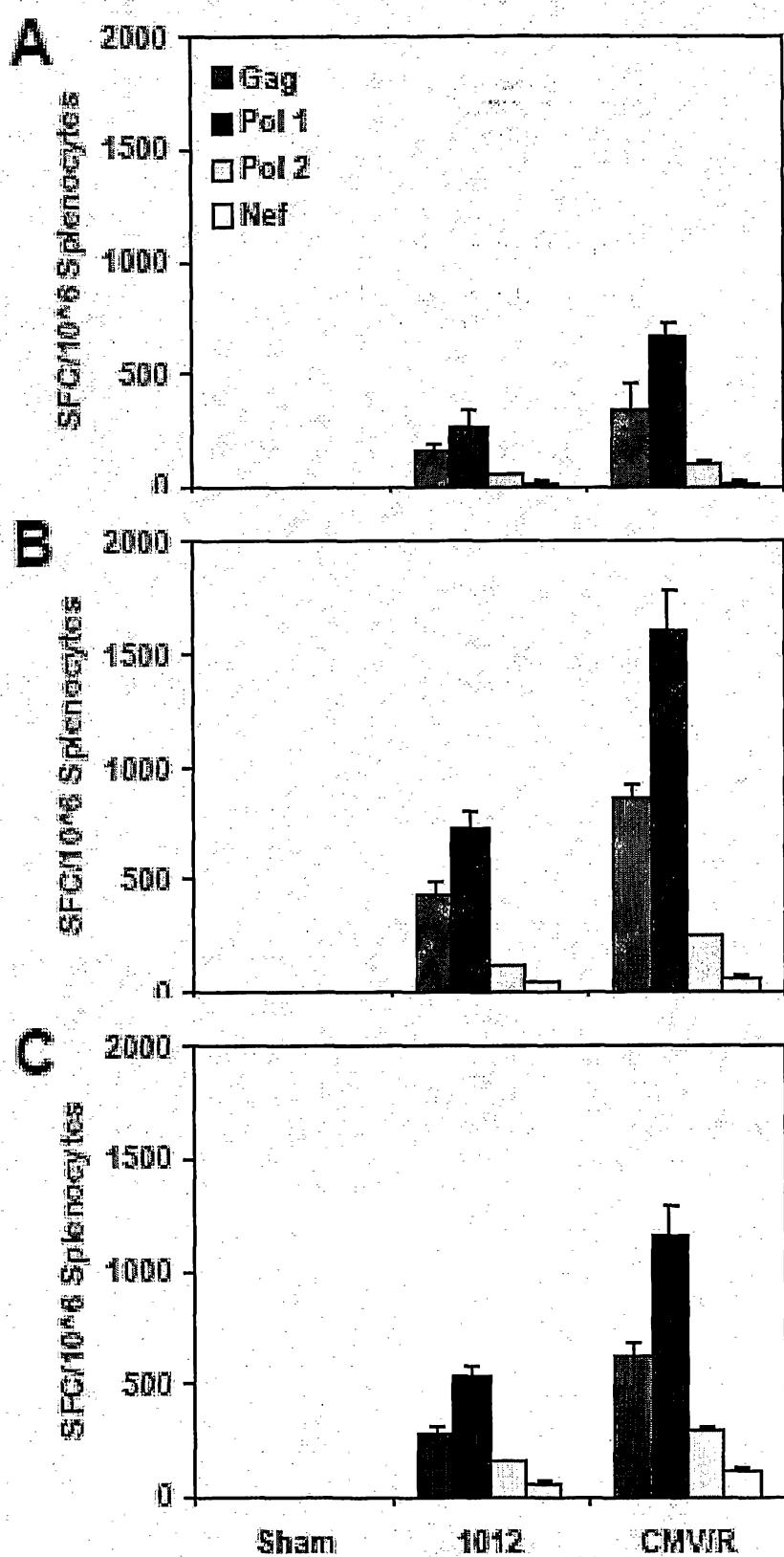

9/13

FIG. 9

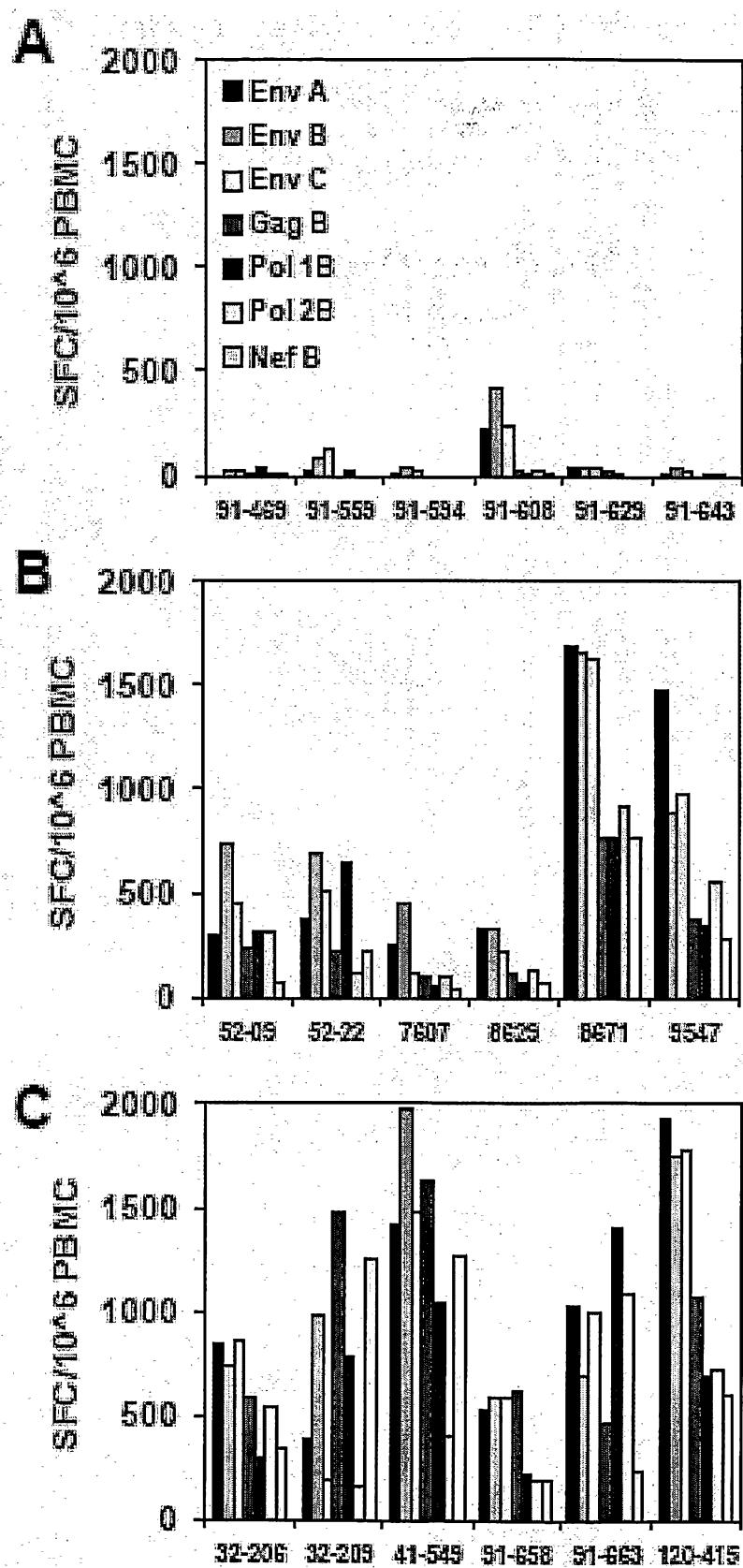

10/13

FIG. 10

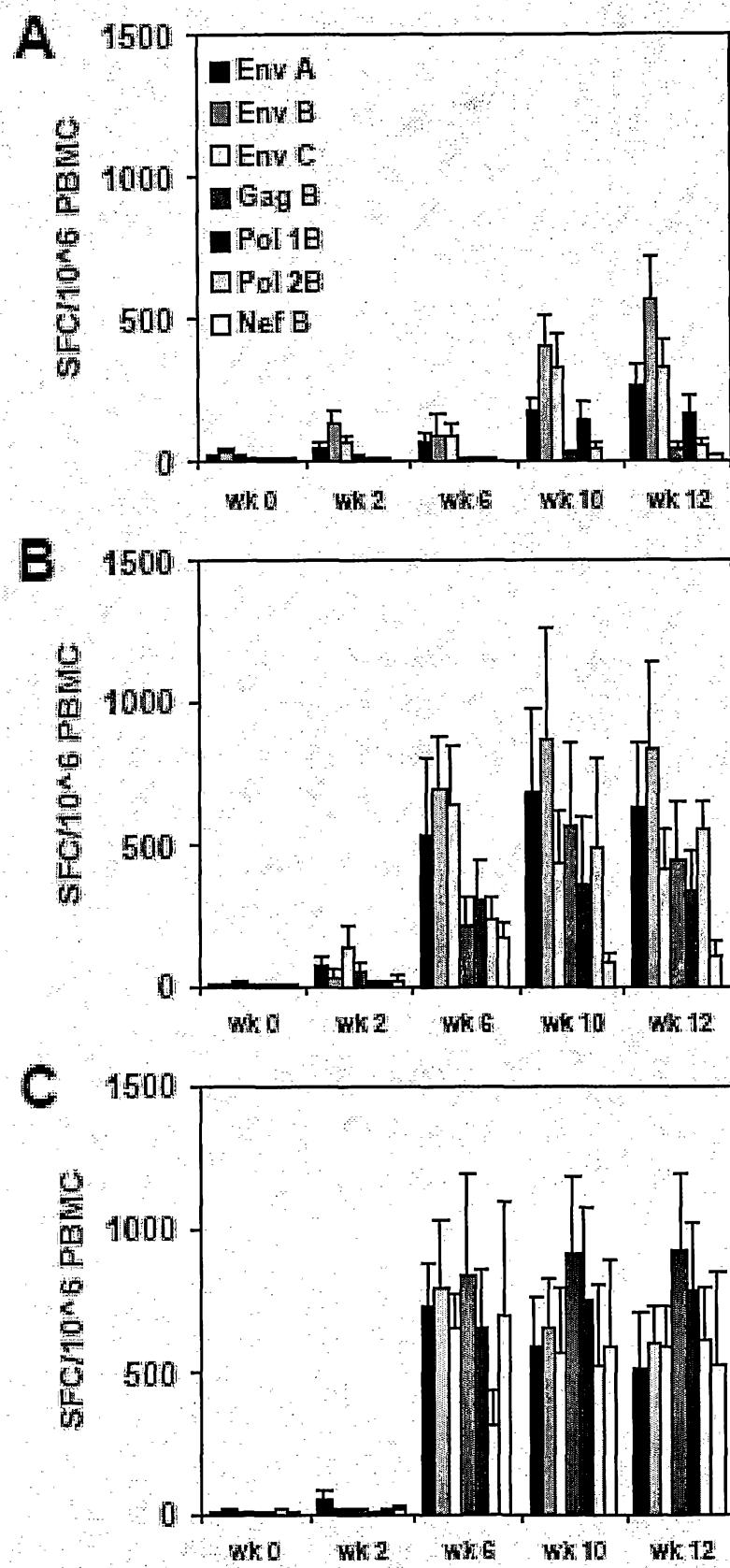
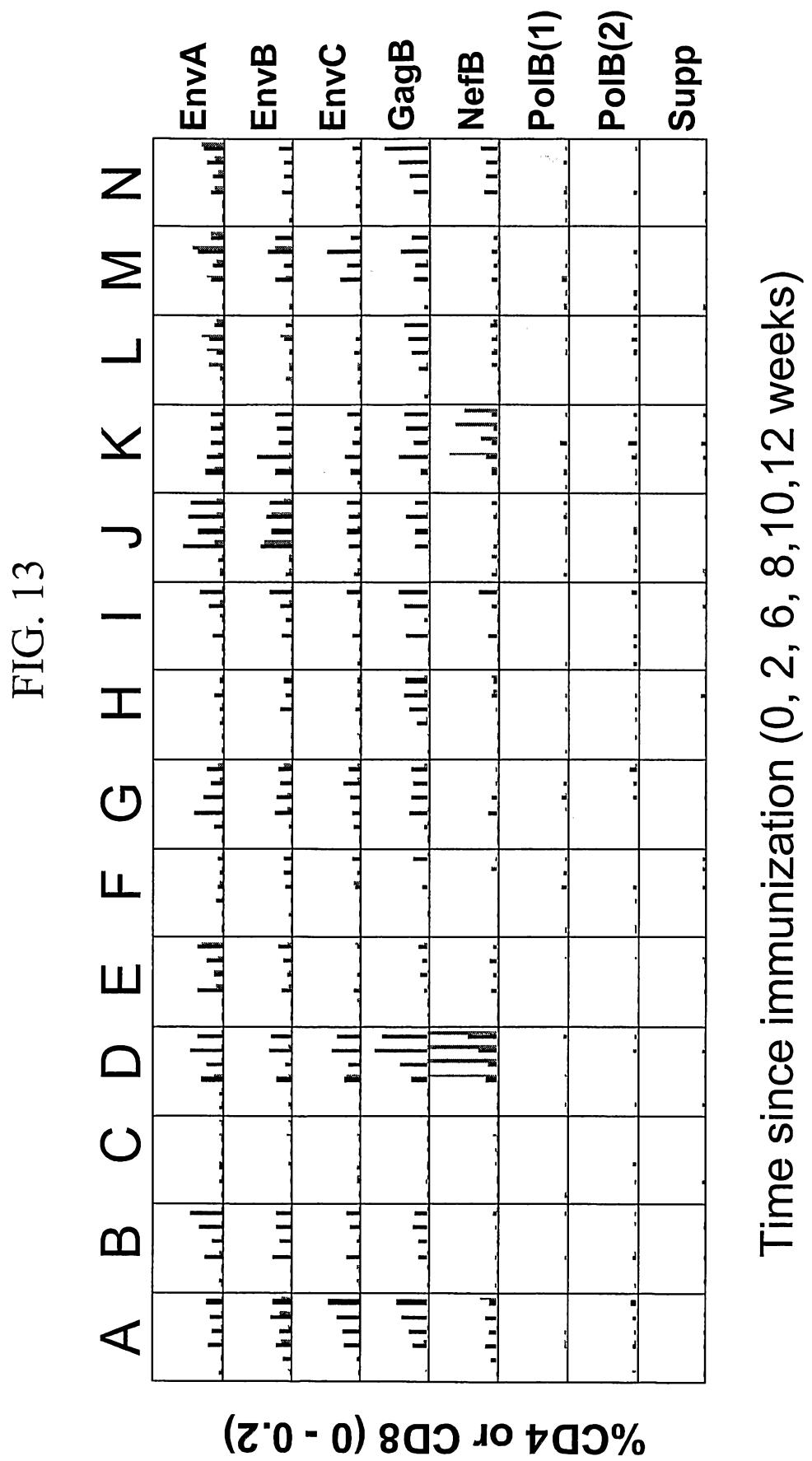

11/13

FIG. 11



12/13

FIG. 12

13/13

SEQUENCE LISTING

<110> The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services
 GenVec, Inc.
 Nabel, Gary
 Huang, Yue
 Xu, Ling
 Chakrabarti, Bimal
 Wu, Lan
 Yang, Zhi-yong
 Gall, Jason G.D.
 King, C. Richter

<120> VACCINE CONSTRUCTS AND COMBINATIONS OF VACCINES DESIGNED TO IMPROVE THE BREADTH OF THE IMMUNE RESPONSE TO DIVERSE STRAINS AND CLADES OF HIV

<130> 4239-71329-02

<150> US 60/588,378
 <151> 2004-07-16

<150> PCT/US2004/030284
 <151> 2004-09-15

<150> PCT/US2005/12291
 <151> 2005-04-12

<160> 26

<170> PatentIn version 3.3

<210> 1
 <211> 5886
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid VRC4401

<400> 1
 tcgcgcgtt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggta 60
 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
 accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg 240
 ctattggcca ttgcatacgt tgtatccata tcataatatg tacattata ttggctcatg 300
 tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac 360
 ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg 420
 cccgcctggc tgaccgccc acgaccggcg cccattgacg tcaataatga cgtatgttcc 480
 catagtaacg ccaataggga cttccattg acgtcaatgg gtggagtatt tacggtaaac 540
 tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa 600
 tgacggtaaa tggcccgct ggcattatgc ccagtacatg accttatggg actttcctac 660

ttggcagtac atctacgtat tagtcatgc tattaccatg gtgatgcgg tttggcagta 720
 catcaatggg cgtggatago ggtttgactc acggggattt ccaagtctcc accccattga 780
 cgtcaatggg agtttgtttt ggcaccaaaa tcaacggac tttccaaaat gtcgtaacaa 840
 ctccgccccca ttgacgcaaa tggcggtag gcgtgtacgg tgggaggctt atataagcag 900
 agctcgtttta gtgaaccgtc agatcgctg gagacgccc ccacgctgtt ttgacctcca 960
 tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccctt acgcgcccgc 1020
 cgcctaccc gaggccgcca tccacccgg ttgagtcgctt ttctgcgc tcccgctgt 1080
 ggtgcctcctt gaactgcgtc cgccgtctag gtaagttaa agctcagggtc gagaccggc 1140
 ctttgcctgg cgctccctt gggcccttgg gggcccttgg agactcaggcc gggcccttgg 1200
 accctgcttgcctt gttaaacggtg gggcccttgg tagtctgagc agtactcggtt 1260
 gctgcgcgc ggcgcaccag acataatagc tgacagacta acagactgtt ctttccatgt 1320
 ggtcttttctt gcagtcaccgg tcgtcgacac gtgtgatcag ataaactttaa gcttatggc 1380
 gcccggcgc gctgtctgg cggccggcgg ctggaccgtt gggagaagat ccgcctgcgc 1440
 cccggccggca agaagaagta caagctgaag cacatcgtgtt gggccagccg cgagctggag 1500
 cgcttcggcc tgaaccccccgg cctgctggag accagcgagg gctgcgcgc gatcctggc 1560
 cagctgcagc ccagcctgc tttttttttt gggcccttgg gggcccttgg gggcccttgg 1620
 gcccacccgtt actgcgtgc tttttttttt gggcccttgg gggcccttgg gggcccttgg 1680
 aagatcgagg aggaggcagaa caagagcaag aagaaggccc agcaggccgc cgccgacacc 1740
 ggccacagca accaggttag ccagaactac cccatcgtgc agaacatcca gggccagatg 1800
 gtgcaccagg ccatcagccccccccc cccatcgtgc aacgccttgg tgaaggtggt ggaggagaag 1860
 gccttcagcc ccgaggtgat cccatgttgc agcgccttgg tttttttttt gggcccttgg 1920
 gacctgaaca ccatgctgaa caccgtggc gggccaccagg ccgccttgg gggcccttgg 1980
 gagaccatca acgaggaggc cgccgagttt gggcccttgg gggcccttgg gggcccttgg 2040
 atcgccccccg gccagatgcg cgagccccgc ggcggccacca tggccggcaccc caccaggcacc 2100
 ctgcaggaggc agatcggttgc gatgaccaac aacccccc tttttttttt gggcccttgg 2160
 aagcgctgaa tttttttttt gggcccttgg cccatcgtgc tttttttttt gggcccttgg 2220
 ctggacatcc gccaggggccc caaggagccc ttccgcact acgtggaccg tttttttttt 2280
 accctgcgcg ccgagcaggc cagccaggag gtgaagaact ggatgaccg gggcccttgg 2340
 gtgcagaacg ccaaccccgaa ctgcacccacc atcctgaaagg ccctggccccc cgccgcccacc 2400
 ctggaggaggc tttttttttt gggcccttgg cccatcgtgc tttttttttt gggcccttgg 2460
 ctggccggagg ccatgagccaa ggtgaccaac agcgccttgg tttttttttt gggcccttgg 2520
 ttccgcacacc agcgcaagat cgtgaagtgc tttttttttt gggcccttgg gggcccttgg 2580
 cgcaactgccc gccggcccccgg caagaaggc tttttttttt gggcccttgg gggcccttgg 2640

atgaaggact gcaccgagcg acaggctaat ttttaggga agatctggcc ttcccacaag	2700
ggaaggccag ggaattttct tcagagcaga ccagagccaa cagccccacc agaagagagc	2760
ttcaggttg gggaaagagac aacaactccc tctcagaagc aggagccgat agacaaggaa	2820
ctgtatcctt tagttccct cagatcaactc tttggcagcg acccctcgtc acaataaaga	2880
taggtaccga gctcgatcc agatctgctg tgccttctag ttgccagcca tctgttgttt	2940
gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc ctttcctaatt	3000
aaaatgagga aattgcacatcg cattgtctga gtaggtgtca ttctattctg ggggggtgggg	3060
tggggcagga cagcaagggg gaggattggg aagacaatag caggcatgtc ggggatgcgg	3120
tgggctctat gggtaaccag gtgctgaaga attgaccggg ttccctcctgg gccagaaaga	3180
agcaggcaca tccccttctc tgtgacacac cctgtccacg cccctgggtc ttagttccag	3240
ccccactcat aggacactca tagtcagga gggctccgccc ttcaatccca cccgctaaag	3300
tacttggagc ggtctctccc tccctcatca gcccacccaaa ccaaaccctag cctccaagag	3360
tgggaagaaa ttaaagcaag ataggctatt aagtgcagag ggagagaaaa tgcctccaac	3420
atgtgagga gtaatgagag aaatcataga atttcttccg cttcctcgct cactgactcg	3480
ctgcgcgtcg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg	3540
ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag	3600
gccaggaacc gtaaaaaggc cgcggtgctg gcgttttcc ataggctccg ccccccgtac	3660
gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga	3720
taccaggcgt ttccccctgg aagctccctc gtgcgtctc ctgttccgac cctgcccgtt	3780
accggatacc tgtccgcctt tctccctcg ggaagcgtgg cgctttctca tagtcacgc	3840
tgttaggtatc tcagttcgggt gtaggtgtt cgctccaagc tgggtgtgt gcaagaaaccc	3900
cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta	3960
agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat	4020
gtaggcggtg ctacagagtt cttgaagtgg tggcttaact acggctacac tagaagaaca	4080
gtatttggta tctgcgtct gctgaagcca gttacctcg gaaaaagagt tggtagctct	4140
tgatccggca aacaaaccac cgctggtagc ggtgggtttt ttgtttgcaa gcagcagatt	4200
acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct	4260
cagtggAACG aaaaactcactc ttaaggatt ttggcatga gattatcaaa aaggatctc	4320
accttagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa	4380
acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc gatctgtcta	4440
tttcgttcat ccatagttgc ctgactcggt gggggggggc gctgaggct gctcgtgaa	4500
gaaggtgttg ctgactcata ccaggctga atcgccccat catccagcca gaaagtgagg	4560

gagccacgg	tgatgagagc	tttgtttag	gtggaccagt	tggtgatttt	gaactttgc	4620
tttgcacgg	aacggctgc	gttgtcgga	agatgcgtga	tctgatcctt	caactcagca	4680
aaagttcgat	ttattca	aaagccgcgt	cccgtaagt	cagcgtaatg	ctctgccagt	4740
gttacaacca	attaaccaat	tctgattaga	aaaactcatc	gagcatcaaa	tgaaactgca	4800
atttattcat	atcaggatta	tcaataccat	attttgaaa	aagccgttc	tgtatgaag	4860
gagaaaactc	accgaggcag	ttccatagga	tggcaagatc	ctggtatcgg	tctgcgattc	4920
cgactcgtcc	aacatcaata	caacctatta	atttcccctc	gtcaaaaata	agtttatcaa	4980
gtgagaaatc	accatgagtg	acgactgaat	ccggtgagaa	tggcaaaagc	ttatgcattt	5040
cttccagac	ttgttcaaca	ggccagccat	tacgctcg	atcaaaatca	ctcgcatcaa	5100
ccaaaccgtt	attcattcgt	gattgcgcct	gagcgagacg	aaatacgcga	tcgctgttaa	5160
aaggacaatt	acaaacagga	atcgaatgca	accggcgcag	gaacactgccc	agcgcatcaa	5220
caatattttc	acctgaatca	ggatattctt	ctaatacctg	gaatgctgtt	ttcccgggga	5280
tcgcagtgg	gagtaaccat	gcatcatcg	gagtaacggat	aaaatgcttg	atggcggaa	5340
gaggcataaa	ttccgtcagc	cagtttagtc	tgaccatctc	atctgtaa	tcattggcaa	5400
cgctacctt	gccatgtttc	agaaacaact	ctggcgcata	gggcttccca	tacaatcgat	5460
agattgtcgc	acctgattgc	ccgacattat	cgcgagccca	tttataccca	tataaatcgat	5520
catccatgtt	ggaatttaat	cgcggcctcg	agcaagacgt	ttcccggttga	atatggctca	5580
taacacccct	tgtattactg	tttatgtaa	cagacagttt	tattgttcat	gatgatata	5640
ttttatcttg	tgcaatgtaa	catcagagat	tttgagacac	aacgtggctt	tccccccccc	5700
cccattattt	aagcatttat	cagggttatt	gtctcatgag	cgatatacata	tttgaatgt	5760
tttagaaaaaa	taaacaata	ggggttccgc	gcacatttcc	ccgaaaagtg	ccacctgacg	5820
tctaagaaac	cattattatc	atgacattaa	cctataaaaaa	taggcgtatc	acgaggccct	5880
ttcg	tc					5886

<210> 2
 <211> 7344
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid VRC4409

<400> 2	tcgcgcgtt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
	ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgtt	ctgagagtgc	180
	accatatgcg	gtgtgaaata	ccgcacagat	gcgttggag	aaaataccgc	atcagattgg	240
	ctattggcca	ttgcatacgt	tgtatccata	tcataatatg	tacattata	ttggctcatg	300

tccaaacatta ccggccatgtt gacattgatt attgactagt tattaaatgt aatcaattac 360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggttaaatgg 420
ccgcctggc tgaccgccc acgaccccg cccattgacg tcaataatga cgtatgttcc 480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac 540
tgcccacttg gcagtagatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa 600
tgacggtaaa tggcccgct ggcattatgc ccagtagatc accttatggg actttcctac 660
ttggcagtagc atctacgtat tagtcatcgc tattaccatg gtgatgcgtt tttggcagta 720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga 780
cgtcaatggg agtttgggg ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa 840
ctccgccccca ttgacgcaaa tggccggtag gcgtgtacgg tggaggtct atataagcag 900
agctcggtta gtgaaccgtc agatcgctg gagacgccc ccacgctgtt ttgacctcca 960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccttc acgcgccccgc 1020
cgccctacct gaggccgcca tccacgcccc ttgagtcgctg ttctgccc tcccgccctgt 1080
ggtgcctcct gaactgcgtc cgccgtctag gtaagttaa agctcaggc gagaccgggc 1140
ctttgtccgg cgctcccttg gagcctacct agactcagcc ggctctccac gctttgcctg 1200
accctgcttg ctcaactcta gttAACGGTG gagggcagtg tagtctgagc agtactcggt 1260
gctgccgccc gcccaccag acataatagc tgacagacta acagactgtt ctttccatg 1320
ggtctttct gcagtcaccg tcgtcgacat gagggaaat ctggccttcc cacaaggaa 1380
ggccaggaa ttttcttcag agcagaccag agccaacagc cccaccagaa gagagcttca 1440
ggtttggggaa agagacaaca actccctctc agaagcagga gccgatagac aaggaactgt 1500
atcccttagc ttccctcaga tcactcttg gcagcgaccc ctcgtcacaa taaagatagg 1560
ggccagctg aaggaggccc tgctggacac cggccggac gacaccgtgc tggaggagat 1620
gaacctgccc gcccgtgga agcccaagat gatcggccgc atcggcggtc tcatcaaggt 1680
ggccagtagc gaccagatcc tgatcgagat ctgcggccac aaggccatcg gcaccgtgt 1740
ggtggggcccc acccccggtga acatcatcg cgcacccctg ctgacccaga tcggctgcac 1800
cctgaacttc cccatcagcc ccatcgagac cgtggccgtg aagctgaagc cggccatgg 1860
cggccccaag gtgaagcagt ggcccctgac cgaggagaag atcaaggccc tggtgagat 1920
ctgcacccggat atggagaagg agggcaagat cagcaagatc ggcccccggaga accccctacaa 1980
caccccccgtg ttgcctcatca agaagaagga cagcaccaag tggcgcaagc tggtgagat 2040
ccgcgagctg aacaagcgca cccaggactt ctgggaggtg cagctggca tccccccaccc 2100
cgccggcctg aagcagaaga agagcgtgac cgtgctggac gtggcgacg cctacttcag 2160
cgtggccctg gacaaggact tccgcaagta caccggcccttc accatccccca gcatcaacaa 2220

cgagaccccc ggcatccgct accagtacaa cgtgctgccc cagggctgga agggcagccc 2280
 cgccatcttc cagtgcagca tgaccaagat cctggagccc ttccgcaagc agaaccggca 2340
 catcggtatc taccagtaca tggaccacct gtacgtggc agcgacctgg agatcgccca 2400
 gcaccgcacc aagatcgagg agctgcgcca gcacctgctg cgctgggct tcaccacccc 2460
 cgacaagaag caccagaagg agcccccctt cctgtggatg ggctacgagc tgcaccccg 2520
 caagtggacc gtgcagccca tcgtgctgcc cgagaaggac agctggaccg tgaacgacat 2580
 ccagaagctg gtggcaagc tgaactggc cagccagatc tacgcccggca tcaaggtgcg 2640
 ccagctgtgc aagctgctgc gcggcaccaa gcgcctgacc gaggtggtgc ccctgaccga 2700
 ggaggccgag ctggagctgg ccgagaaccg cgagatcctg aaggagcccg tgcacggcgt 2760
 gtactacgac cccagcaagg acctgatcgc cgagatccag aagcagggcc agggccagtg 2820
 gacctaccag atctaccagg agcccttcaa gaacctgaag accggcaagt acgcccgc 2880
 gaagggcgcc cacaccaacg acgtgaagca gctgaccgag gccgtgcaga agatcgccac 2940
 cgagagcatc gtgatctgg gcaagacccc caagttcaag ctgccccatcc agaaggagac 3000
 ctgggaggcc tggtgaccg agtactggca gcgcacctgg atccccaggt gggagttcgt 3060
 gaacaccccc cccctggta agctgtggta ccagctggag aaggagccca tcattcgccgc 3120
 cgagaccttc tacgtggacg gcgcgcgc 2940
 cccctggacc 3180
 cgtgaccgac cgccgcgcgc 3240
 agaagggtggt gcgcgcgcgc 3300
 gacaccatc 3360
 cgagctgcag gccatccacc tggccctgca ggacagccgc ctggaggtga acatcgatc 3300
 cgacagccag tacgcccctgg gcatcatcca ggcccagccc gacaagagcg agagcgagct 3360
 ggtgagccag atcatcgagc agctgatcaa gaaggagaag gtgtacctgg cctgggtgcc 3420
 cgcccacaag ggcattcgcc gcaacgagca ggtggacccgc ctggtagcgcc 3480
 caaggtgctg ttccctggacg gcatcgacaa ggcccaggag gagcacgaga agtaccacag 3540
 caactggccgc gccatggcca gcgacttcaa cctggccccc gtggtgccca aggagatcgt 3600
 ggccagctgc gacaagtgcc agctgaaggg cgaggccatg cacggccagg tggactgcag 3660
 ccccgccatc tggcagctgg catgcaccca cctggaggcc aaggtgatcc tggtgccgt 3720
 gcacgtggcc agcggctaca tcgaggccga ggtgatcccc gccgagaccg gccaggagac 3780
 cgcctacttc ctgctgaagc tggccggccg ctggccctg aagaccgtgc acaccgacaa 3840
 cggcagcaac ttaccaggca ccaccgtgaa ggccgcctgc tggtgccgc gcatcaagca 3900
 ggagttcggc atcccctaca acccccagag ccagggccgtg atcgagagca tgaacaagga 3960
 gctgaagaag atcatcgcc aggtgcgcga ccaggccagc cacctgaaga ccgcgtgc 4020
 gatggccgtg ttcatccaca acttcaagcg caagggccgc atcggccgct acagcgccgg 4080
 cgagcgcac 4140
 tggacatca tcgcccaccga catccagacc aaggagctgc agaagcagat
 caccaagatc cagaacttcc gcgtgtacta ccgcgcacagc cgcgaccccg tggtaaggg 4200

ccccgccaag ctgctgtgga agggcgaggg cgccgtggtg atccaggaca acagcgacat 4260
caaggtggtg ccccgcgcga aggccaagat catccgcgac tacggcaagc agatggccgg 4320
cgacgactgc gtggccagcc gccaggacga ggactaggaa ttctgctgtg ccttctagtt 4380
gccagccatc tggttgttgc ccctcccccg tgcttcctt gaccctggaa ggtgccactc 4440
ccactgtcct ttcctaataa aatgaggaaa ttgcacatcgca ttgtctgagt aggtgtcatt 4500
ctattctggg ggggtgggtg gggcaggaca gcaaggggga ggattggaa gacaatagca 4560
ggcatgctgg gnatgcggtg ggctctatgg gtacccaggt gctgaagaat tgacccggtt 4620
cctcctggc cagaaagaag caggcacatc cccttctctg tgacacaccc tgcacacgccc 4680
cctggttctt agttccagcc ccactcatag gacactcata gctcaggagg gctccgcctt 4740
caatcccacc cgctaaagta cttggagcgg tctctccctc cctcatcagc ccaccaaacc 4800
aacacctagcc tccaagagtg ggaagaaatt aaagcaagat aggctattaa gtgcagaggg 4860
agagaaaatg cctccaacat gtgaggaagt aatgagagaa atcatagaat ttcttccgct 4920
tcctcgctca ctgactcgct gcgctcggtc gttcggctgc ggcgagcggt atcagctcac 4980
tcaaaggcgg taatacggtt atccacagaa tcagggata acgcaggaaa gaacatgtga 5040
gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gttttccat 5100
aggctccgccc cccctgacga gcatcacaaa aatcgacgct caagtcagag gtggcgaaac 5160
ccgacaggac tataaagata ccaggcggtt cccctggaa gctccctcggt gcgctctcct 5220
gttccgaccc tgccgcttac cggatacctg tccgccttc tccctcggg aagcgtggcg 5280
ctttctcata gtcacgctg taggtatctc agttcgggtg aggtcgctcg ctccaagctg 5340
ggctgtgtgc acgaacccccc cgttcagccc gaccgctgcg cttatccgg taactatcgt 5400
cttgagtcac acccggttaag acacgactta tcgcccactgg cagcagccac tggtaacagg 5460
attagcagag cgaggtatgt aggcgggtgt acagagttct tgaagtggtg gcttaactac 5520
ggctacacta gaagaacagt atttggtatac tgcgtctgc tgaagccagt taccttcgga 5580
aaaagagttg gtagcttttgc atccggcaaa caaaccaccc ctggtagccgg tggtttttt 5640
gtttgcaagc agcagattac ggcggaaaaaa aaaggatctc aagaagatcc tttgatcttt 5700
tctacgggggt ctgacgctca gtggAACGAA aactcacgtt aagggatttt ggtcatgaga 5760
ttatcaaaaaa ggatcttcac ctagatcctt taaaattaaa aatgaagttt taaatcaatc 5820
taaagtatat atgagtaaac ttggctgtac agttaccaat gcttaatcag tgaggcacct 5880
atctcagcga tctgtctatt tcgttcatcc atagttgcct gactcgggggg gggggggcgc 5940
tgaggtctgc ctcgtgaaga aggtgttgct gactcatacc aggcctgaat cgcccccata 6000
tccagccaga aagtgaggaa ggcacgggtt atgagagctt tggtaggt ggaccagttg 6060
gtgattttga acttttgctt tgccacggaa cggtctgcgt tgcggaaag atgcgtgatc 6120

tgatccttca	actcagcaaa	agttcgattt	attcaacaaa	gccgccgtcc	cgtcaagtca	6180
gcgtaatgct	ctgccagtgt	tacaaccaat	taaccaattc	tgattagaaa	aactcatcga	6240
gcatcaaatg	aaactgcaat	ttattcatat	caggattatc	aataccatat	ttttgaaaaa	6300
gccgttctg	taatgaagga	gaaaactcac	cgaggcagtt	ccataggatg	gcaagatcct	6360
ggtatcggtc	tgcgattccg	actcgtccaa	catcaataca	acctattaat	ttccctcggt	6420
caaaaataag	gttatcaagt	gagaaatcac	catgagtgac	gactgaatcc	ggtgagaatg	6480
gcaaaagctt	atgcatttct	ttccagactt	gttcaacagg	ccagccatta	cgctcgcat	6540
caaaatcaact	cgcataacc	aaaccgttat	tcattcgtga	ttgcgcctga	gcgagacgaa	6600
atacgcgatc	gctgttaaaa	ggacaattac	aaacaggaat	cgaatgcac	cggcgcagga	6660
acactgccag	cgcataaca	atatttcac	ctgaatcagg	atattcttct	aatacctgga	6720
atgctgtttt	cccggggatc	gcagtggta	gtaaccatgc	atcatcagga	gtacggataa	6780
aatgcttgat	ggtcggaaga	ggcataaattt	ccgtcagcca	gtttagtcgt	accatctcat	6840
ctgtaacatc	attggcaacg	ctacctttgc	catgtttcag	aaacaactct	ggcgcatcggt	6900
gcttccata	caatcgatag	attgtcgac	ctgattgccc	gacattatcg	cgagcccatt	6960
tataccata	taaatcagca	tccatgttgg	aatttaatcg	cggcctcgag	caagacgtt	7020
cccggttaat	atggctcata	acaccccttg	tattactgtt	tatgtaagca	gacagttttt	7080
ttgttcatga	tgatataattt	ttatcttgc	caatgttaaca	tcagagattt	tgagacacaa	7140
cgtggctttc	cccccccccc	cattattgaa	gcatttatca	gggttattgt	ctcatgagcg	7200
gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	7260
gaaaagtgcc	acctgacgac	taagaaacca	ttattatcat	gacattaacc	tataaaaata	7320
ggcgtatcac	gaggcccttt	cgtc				7344

<210> 3
 <211> 5039
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid VRC4404

<400> 3	tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
	ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180
	accatatgcg	gtgtgaaata	ccgcacagat	gcgttaaggag	aaaataccgc	atcagattgg	240
	ctattggcca	ttgcatacgt	tgtatccata	tcataatatg	tacattata	ttggctcatg	300
	tccaacatta	ccgccccgtt	gacattgatt	attgactagt	tattaatagt	aatcaattac	360
	ggggtcatta	gttcatacgcc	catatatgga	gttccgcgtt	acataactta	cggttaatgg	420

cccgccctggc tgaccgcccc acgaccggcg cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggcccgctt ggcattatgc ccagtacatg accttatggg acttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacggac tttccaaaat gtcgtaacaa	840
ctccgccccca ttgacgcaaa tgggcgttag gcgtgtacgg tgggaggtct atataagcag	900
agctcggtta gtgaaccgtc agatcgctg gagacgccc ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tcttccttc acgcccgc	1020
cggccctacct gaggccgcca tccacgcccgg ttgagtcgcg ttctgcccgc tcccgctgt	1080
ggtcgcctcct gaactgcgtc cgccgtctag gtaagttaa agctcaggtc gagaccggc	1140
ctttgtccgg cgctcccttg gagcctacct agactcagcc ggctctccac gctttgcctg	1200
accctgcttg ctcaactcta gttaacggtg gagggcagtg tagtctgagc agtactcggt	1260
gctgccgcgc ggccaccag acataatagc tgacagacta acagactgtt ccttcctatg	1320
ggtctttctt gcagtcaccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagag	1380
atatcgccgc catgaagtgg agcaagagca gcgtgatcgg ctggccgcgc gtgcgcgagc	1440
gcatgcgcgc cgccgagccc gccgcccacg gcgtggcgcgc cgtgagccgc gacctggaga	1500
agcacggcgc catcaccagc agcaacaccc cgccaaacaa cgccgcctgc gcctggctgg	1560
aggcccagga ggaggaggag gtgggcttcc ccgtgacccc ccaggtgccc ctgcgcggca	1620
tgacctacaa ggccgcgtg gacctgagcc acttcctgaa ggagaaggc ggcctggagg	1680
gcctgatcca cagccagcgc cgccaggaca tcctggaccc gtggatctac cacacccagg	1740
gctacttccc cgactggcag aactacaccc cggccccgg cgtgcgtac cccctgaccc	1800
tcggctggtg ctacaagctg gtgcccgtgg agcccgacaa ggtggaggag gccaacaagg	1860
gcgagaacac cagcctgctg caccgggtga gcctgcacgg catggacgac cccgagcgc	1920
aggtgctgga gtggcgcttc gacagccgcc tggccttcca ccacgtggcc cgcgagctgc	1980
accccgagta cttcaagaac tgctgaacac gtgggatcca gatctgctgt gcctcttagt	2040
tgccagccat ctgttgggg cccctccccc gtgccttcct tgaccctgga aggtgccact	2100
cccaactgtcc tttcctaata aaatgaggaa attgcacgc attgtctgag taggtgtcat	2160
tctattctgg ggggtgggggt ggggcaggac agcaaggggg aggattggaa agacaatagc	2220
aggcatgctg gggatgcggt gggctctatg ggtacccagg tgctgaagaa ttgacccgg	2280
tcctccctggg ccagaaagaa gcaggcacat cccctctct gtgacacaccc ctgtccacgc	2340

ccctggttct tagttccagc cccactcata ggacactcat agctcaggag ggctccgcct	2400
tcaatccac ccgctaaagt acttggagcg gtctctccct ccctcatcag cccaccaaac	2460
caaaccttagc ctccaagagt gggaaagaaat taaagcaaga taggctatta agtgcagagg	2520
gagagaaaat gcctccaaca tgtgaggaag taatgagaga aatcatagaa ttttaaggcc	2580
atgatttaag gccatcatgg ccttaatctt ccgcttcctc gctcactgac tcgctgcgct	2640
cggtcgttcg gctgcggcga gcggtatcag ctcaactaaa ggccgtaata cggttatcca	2700
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga	2760
accgtaaaaa ggccgcgttg ctggcggtt tccataggct ccgccccct gacgagcatc	2820
acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg	2880
cgtttccccc tggaaagctcc ctcgtgcgct ctccgttcc gaccctgccg cttaccggat	2940
acctgtccgc ctttctccct tcggaaagcg tggcgcttc tcatagctca cgctgttaggt	3000
atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa ccccccgttc	3060
agcccgaccc ctgcgcctta tccggtaact atcgtcttga gtccaaacccg gtaagacacg	3120
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg	3180
gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg	3240
gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg	3300
gcaaacaac caccgctggt agcgggtggtt ttttgggtt caagcagcag attacgcgca	3360
aaaaaaaaagg atctcaagaa gatccttga tctttctac ggggtctgac gctcagtggaa	3420
acgaaaactc acgttaaggg atttggtca tgagattatc aaaaaggatc ttcacctaga	3480
tcctttaaa taaaaaatga agttttaat caatctaaag tatatatgag taaacttggt	3540
ctgacagtttta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt	3600
catccatagt tgcctgactc gggggggggg ggcgctgagg tctgcctcgt gaagaaggtg	3660
ttgctgactc ataccaggcc tgaatcgccc catcatccag ccagaaagtg agggagccac	3720
ggttcatgag agctttgttg taggtggacc agttggtgat tttgaacttt tgctttgcc	3780
cggAACGGTC tgcgttgtcg ggaagatgctg tgatctgatc cttcaactca gcaaaagtcc	3840
gatttattca acaaAGCCGC cgtcccgatca agtcagcgta atgctctgcc agtgttacaa	3900
ccaattaacc aattctgttca agaaaaactc atcgagcatc aaatgaaact gcaattttt	3960
catatcagga ttatcaatac catatTTTG aaaaAGCCGT ttctgtatg aaggagaaaa	4020
ctcaccgagg cagttccata ggatggcaag atcctggat cggctgcga ttccgactcg	4080
tccaaacatca atacaaccta ttaatttccc ctgcctaaaa ataaggatcat caagtggaa	4140
atcaccatga gtgacgactg aatccggatca gaatggcaaa agcttatgca tttctttcca	4200
gacttggatca acaggccagc cattacgctc gtcatcaaaa tcactcgcat caaccaaacc	4260
gttatttcatt cgtgattgctg cctgagcgag acgaaatacg cgatcgctgt taaaaggaca	4320

attacaaaca ggaatcgaat gcaaccggcg caggaacact gccagcgcat caacaatatt	4380
ttcacctgaa tcaggatatt cttctaatac ctggaatgct gtttcccg ggatcgagt	4440
ggtgagtaac catgcacat caggagtacg gataaaatgc ttgatggcg gaagaggcat	4500
aaattccgtc agccagttt gtctgaccat ctcatctgta acatcatgg caacgctacc	4560
tttgccatgt ttcagaaaca actctggcgc atcgggcttc ccatacaatc gatagattgt	4620
cgcacctgat tgcccgacat tatcgcgagc ccatttatac ccatataaat cagcatccat	4680
gttggaaattt aatcgccggcc tcgagcaaga cgtttccgt tgaatatggc tcataacacc	4740
ccttgtatta ctgttatgt aagcagacag ttttattgtt catgatgata tattttatc	4800
ttgtgcaatg taacatcaga gatttgaga cacaacgtgg ctttcccccc ccccccatta	4860
ttgaagcatt tattcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa	4920
aaataaaacaa ataggggttc cgcgacatt tcccgaaaaa gtgccacctg acgtctaaga	4980
aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc ccttcgtc	5039

<210> 4
 <211> 6305
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid VRC5736

<400> 4	
tcgcgcgtt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gcccggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata cgcacagat gcgttaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacattata ttggctcatg	300
tccaacatta cggccatgtt gacattgatt attgactagt tattaatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
ccgcctggc tgaccgccc acgacccccc cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga cttccattt acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatgg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcgtt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttggttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa	840
ctccgcggccaa ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggctt atataaggcag	900

agctcggtta	gtgaaccgtc	agatcgctg	gagacgccat	ccacgctgtt	ttgacctcca	960
tagaagacac	cgggaccgtat	ccagcctcca	tcggctcgca	tctctcccttc	acgcccgc	1020
cgcctacct	gaggccgcca	tccacgcccgg	ttgagtcgctg	ttctgccccc	tccgcctgt	1080
ggtgccctcct	gaactgcgtc	cgcgtctag	gtaagttaa	agctcaggtc	gagaccggc	1140
ctttgtccgg	cgcctcccttg	gagcctacct	agactcagcc	ggctctccac	gctttgcctg	1200
accctgcttg	ctcaactcta	gttaacggtg	gagggcagtg	tagtctgagc	agtactcggt	1260
gctgccgcgc	gcccaccagg	acataatagc	tgacagacta	acagactgtt	ccttccatg	1320
ggtctttct	gcagtcaccg	tcgtcgacac	gtgtgatcag	atatcgccgc	cgctctagag	1380
atatcgccac	catgcgcgtg	cgcggcatcc	agaccagctg	gcagaacctg	tggcgctggg	1440
gcaccatgat	cctgggcatg	ctggtgatct	acagcgcgc	cgagaacctg	tgggtggccg	1500
tgtactacgg	cgtgcccgtg	tggaaggacg	ccgagaccac	cctgttctgc	gccagcgacg	1560
ccaaggccta	cgacaccgag	gtgcacaacg	tgtgggagac	ccacgcctgc	gtgcccaccg	1620
acccaacccc	ccagggatc	cacctggaga	acgtgaccga	ggacttcaac	atgtggcgca	1680
acaacatgg	ggagcagatg	cacaccgaca	tcatcagcct	gtgggaccag	agcctgaagc	1740
cctgcgtgaa	gctgacccccc	ctgtgcgtga	ccctggactg	caacgcccacc	gccagcaacg	1800
tgaccaacga	gatgcgcaac	tgtagttca	acatcaccac	cgagctgaag	gacaagaagc	1860
agcagggtta	cagcctgttc	tacaagctgg	acgtggtgca	gatcaacgag	aagaacgaga	1920
ccgacaagta	ccgcctgatc	aactgcaaca	ccagcgcct	cacccaggcc	tgcccccaagg	1980
tgagcttcga	gcccatcccc	atccactact	gcgcggccgc	cggcttcgccc	atcctgaagt	2040
gcaaggacac	cgagttcaac	ggtacggcc	cctgcaagaa	cgtgagcacc	gtgcagtgca	2100
cccacggcat	ccgaccgggtg	atcagcaccc	agctgctgct	gaacggcagc	ctggccgagg	2160
agggcatcca	gatccgcagc	gagaacatca	ccaacaacgc	caagaccatc	atcgtgcagc	2220
tggataaggc	cgtgaagatc	aactgcaccc	gccccaaacaa	caacacccgc	aaggcgtgc	2280
gcatcgcccc	cggccaggcc	ttctacgcca	ccggccgc	catcgccgac	atccgcagg	2340
cccactgcca	cgtgagccgc	gccaagtgg	acgacaccct	gcgcggcgtg	gccaagaagc	2400
tgcgcgagca	cttcaagaac	aagaccatca	tctcgagaa	gagcagcggc	ggcgacatcg	2460
agatcaccac	ccacagcttc	atctgcggcg	gcgagttctt	ctactgcaac	accagcggcc	2520
tgttcaacag	cacctggag	agcaacagca	ccgagagcaa	caacaccacc	agcaacgaca	2580
ccatcaccct	gacctgccgc	atcaagcaga	tcatcaacat	gtggcagaag	gtggccagg	2640
ccatgtaccc	ccccccatc	cagggcgtga	tccgctgcga	gagcaacatc	accggcctgc	2700
tgctgacccg	cgacggcggc	aacaacagca	ccaacgagat	cttccgcccc	ggcgccggca	2760
acatgcgcga	caactggcgc	agcgagctgt	acaagtacaa	ggtggtaag	atcgagcccc	2820
tggcgtggc	ccccagccgc	gccaagctta	ccgcccaggc	ccgcccagctg	ctgagcggca	2880

tcgtgcagca gcagagcaac ctgctgcg	2940
tgaccgtgtg gggcatcaag cagctgcagg	3000
cccgctgtgc ggccgtggag cgctacctga	
aggaccagca gctcgagatc tgggacaaca	3060
tgacctggct gcagtggac aaggagatca	
gcaactacac ccagatcatc tacaacctga	3120
tcgaggagag ccagaaccag caggagaaga	
acgagcagga cctgctggcc ctggacaagt	3180
gggccagcct gtggacttgg ttcgacatca	
gccgctggct gtggatcatc aagatcttca	3240
tcatgatcgt gggcggcctg atcggcctgc	
gcatcggtt cggcgtctg agcgtgatct	3300
gaacacgtgg gatccagatc tgctgtgcct	
tctagttgcc accatctgt tgtttgc	3360
ccccccccc tccccgtgc cttccttgac	
cctggaaaggt gccactccca ctgtcccttc	3420
ctaataaaat gaggaaattt catcgatttgc	
tctgagtagg tgtcatctca ttctgggggg	3480
tgggtgggg caggacagca agggggagga	
ttggaaagac aatagcaggg atgctgggat	3540
tgcgggtggc tctatggta cccaggtgct	
gaagaatttga cccgggttcct cctgggcccag	3600
aaagaagcag gcacatcccc ttctctgtga	
cacaccctgt ccacgccccct gtttcttagt	3660
tccagccccca ctcataggac actcatagct	
caggagggttct ccccttccaa taaagtactt	3720
ggagcggtct ctcctccct catcagccccaa	
ccaaacccaa cctagcctcc aagagtgggat	3780
agaaattaaa gcaagatagg ctatataatgt	
cagagggaga gaaaatgcct ccaacatgtg	3840
aggaagtaat gagagaaatc atagaatttt	
aaggccatga tttaaggcca tcatggcctt	3900
aatctccgc ttccctcgactcgactcg	
ttccctcgactcgactcg tgcgctcggt	3960
cggttggctg cggcgagcgg tatcagctca	
ctcaaaggcg gtaatacggt tatccacaga	4020
atcaggggat aacgcaggaa agaacatgtg	
agcaaaaaggc cagcaaaaggccatcaaa	4080
ccaggaaccg taaaaaggcc gcggtgtgg	
cgttttcca taggctccgc cccctgacg	4140
agcatcacaa aaatcgacgc tcaagtcaga	
ggtggcgaaa cccgacagga ctataaagat	4200
accaggcggtt tccccctgga agctccctcg	
tgcgctctcc tgccgttccat ctggccgttta	4260
ccggataacct gtccgccttt ctcccttcgg	
gaagcgtggc gctttctcat agtcacgct	4320
gtaggtatct cagttcggtg taggtcggtc	
gctccaagct gggctgtgtg cacgaaccccc	4380
ccgttcagcc cgaccgctgc gccttatccg	
gtaactatcg tcttgagtcc aacccggtaa	4440
gacacgactt atcgccactg gcagcagcca	
ctggtaacag gattagcaga gcgaggtatg	4500
taggcgggtgc tacagagttc ttgaagtgg	
ggcctaacta cggctacact agaagaacag	4560
tatttggat ctgcgcctcg ctgaaggccag	
ttaccttcgg aaaaagagtt ggtagctttt	4620
gatccggcaa acaaaccacc gctggtagcg	
gtggtttttt tgtttgcag cagcagatta	4680
cgcgcagaaa aaaaggatct caagaagatc	
ctttgatctt ttctacgggg tctgacgctc	4740
agtggAACGA aaactcacgt taagggattt	
tggcatgag attatcaaaa aggatcttca	4800
cctagatccc tttaaattaa aaatgaagtt	
ttaaatcaat ctaaagtata tatgagtaaa	

cttggctctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat	4860
ttcgttcatc catagttgcc tgactcgggg gggggggcg ctgaggctcg cctcgtgaag	4920
aagggtttgc tgactcatac caggcctgaa tcgccccatc atccagccag aaagtgaggg	4980
agccacggtt gatgagagct ttgtttagg tggaccagtt ggtgatttg aactttgct	5040
ttgccacgga acggctcgcg ttgtcgaa gatgcgtgat ctgatccctc aactcagcaa	5100
aagttcgatt tattcaacaa agccgcccgtc ccgtcaagtc agcgtaatgc tctgccagtg	5160
ttacaaccaa ttaaccaatt ctgattagaa aaactcatcg agcatcaaata gaaactgcaa	5220
tttattcata tcaggattat caataccata ttttgaaaa agccgttct gtaatgaagg	5280
agaaaactca ccgaggcagt tccataggat ggcaagatcc tggatcggt ctgcgattcc	5340
gactcgtcca acatcaatac aacctattaa tttccctcg tcaaaaataa ggttatcaag	5400
tgagaaatca ccatgagtga cgactgaatc cggtgagaat ggcaaaagct tatgcatttc	5460
tttccagact tggtaacag gccagccatt acgctcgta tcaaaaatcac tcgcatcaac	5520
caaaccgtta ttcatcgat attgogcctg agcgagacga aatacgcgt cgctgttaaa	5580
aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg aacactgcca ggcgcataac	5640
aatattttca cctgaatcag gatattttc taatacctgg aatgctgtt tccccggat	5700
cgcagtggc agtaaccatg catcatcagg agtacggata aaatgcttga tggtcggaag	5760
aggataaaat tccgtcagcc agtttagtct gaccatctca tctgttaacat cattggcaac	5820
gctacccttg ccatgttca gaaacaactc tggcgcatcg ggctcccat acaatcgata	5880
gattgtcgca cctgattgcc cgacattatc gcgagcccat ttatacccat ataaatcagc	5940
atccatgttgc gattttatc gcggcctcgaa gcaagacgtt tcccggttataatggctcat	6000
aacaccctt gtattactgt ttatgttaagc agacagttt attgttcatg atgatatatt	6060
tttatcttgt gcaatgtaac atcagagatt ttgagacaca acgtggctt ccccccccccc	6120
ccattattga agcattatc agggttatttgc tctcatgagc ggatacatat ttgaatgtat	6180
tttagaaaaat aaacaaatag gggttcccgac cacattccc cgaaaagtgc cacctgacgt	6240
ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt	6300
tcgtc	6305

<210> 5
 <211> 6338
 <212> DNA
 <213> artificial sequence

<220>
 <223> plasmid VRC5737

<400> 5
 tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
 cagcttgcgtt gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120

ttggcgggtg tcggggctgg cttaactatg cgccatcaga gcagattgtt ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg 240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg 300
tccaacatta ccgcatgtt gacattgatt attgactgt tattaatagt aatcaattac 360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactt cggtaatgg 420
ccgcctggc tgaccgccc acgaccccg cccattgacg tcaataatga cgtatgttcc 480
catagtaacg ccaataggga ctttccattt acgtaatgg gtggagtatt tacggtaaac 540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa 600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatggg acttcttac 660
ttggcagttac atctacgtat tagtcatcg tattaccatg gtgatgcgtt tttggcagta 720
catcaatggg cgtggatagc ggttgactc acggggattt ccaagtctcc accccattga 780
cgtcaatggg agtttgggg ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa 840
ctccgcggca ttgacgcaaa tggcggttag gcgtgtacgg tgggagggtct atataagcag 900
agctcggttta gtgaaccgtc agatgcctg gagacgccc ccacgctgtt ttgacctcca 960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccttc acgcgcggc 1020
cgccctacct gaggccgcca tccacgccgg ttgagtcgat ttctgccc tccgcctgt 1080
ggtcgcctcct gaactgcgtc cgccgtctag gtaagttaa agtcaggtc gagaccggc 1140
ctttgtccgg cgctcccttg gagcctacct agactcagcc ggctctccac gctttgcctg 1200
accctggttg ctcaactcta gttaacggtg gagggcagtg tagtctgagc agtactcgat 1260
gctgccgcgc gcgccaccag acataatagc tgacagacta acagactgtt ctttccatg 1320
ggtctttct gcagtcaccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagac 1380
accatgcgcg tgaaggagaa gtaccagcac ctgtggcgct ggggctggcg ctggggcacc 1440
atgctgctgg gcatgctgat gatctgcacg gccaccgaga agctgtgggt gaccgtgtac 1500
tacggcgtgc ccgtgtggaa ggaggccacc accaccctgc tctgcgcac cgacgccaag 1560
gcctacgaca ccgaggtgca caacgtgtgg gccacccacg cctgcgtgcc caccgacccc 1620
aaccggcagg aggtgggtgt ggtgaacgtg accgagaact tcgacatgtg gaagaacgac 1680
atggtggagc agatgcacga ggacatcatc agcctgtggg accagagcct gaagccctgc 1740
gtgaagctga cccccctgtg cgtgagcctg aagtgcaccg acctgaagaa cgacaccaac 1800
accaacagca gcagcggccg catgatcatg gagaaggccg agatcaagaa ctgcagcttc 1860
aacatcagca ccagcatccg cggcaagggtg cagaaggagt acgccttctt ctacaagctg 1920
gacatcatcc ccatcgacaa cgacaccacc agctacagcc tgaccagctg caacaccaggc 1980
gtgatcaccc aggcctgccc caaggtgacg ttcgagccca tcccccaacca ctactgcgc 2040

ccgcggct tcgccccctt	gaagtgcacgg	gacaagaatgtcaacggca	ggggccctgc	2100	
accaacgtga gcacccgtgca	gtgcacccac	ggcatccgccc	ccgtggtag	cacccagctg	2160
ctggttacgg gtaacctggc	cgaggaggag	gtggtagatcc	gcagcgctaa	cttcggccac	2220
aacgccaagg tgatcatcg	gcagctgaac	gagagcgtgg	agatcaactg	cacccgcccc	2280
aacaacaaca cccgcaagag	catccacatc	ggccccggcc	gcgccttcta	caccaccggc	2340
gagatcatcg gcgacatccg	ccaggcccac	tgcaacctga	gccgcgc当地	gtggaaacgac	2400
accctgaaca agatcgtgat	caagctgcgc	gagcagttcg	gcaacaagac	catcgtgttc	2460
aagcacagca gcggcggcga	ccccgagatc	gtgaccacaca	gcttcaactg	cggcggcggag	2520
tttttctact gcaacagcac	ccagctgttc	aacagcacct	ggttcaacag	cacctggagc	2580
accgagggca gcaacaacac	cgagggcagc	gacaccatca	ccctggccctg	ccgcatcaag	2640
cagatcatca acatgtggca	gaaggtggc	aaggccatgt	acgccccccc	catcagcggc	2700
cagatccgct gcagcagcaa	catcaccggc	ctgctgctga	cccgc当地	cggcaacagc	2760
aacaacgaga gcgagatctt	ccgcctggc	ggcggcaca	tgcgc当地	ctggcgc当地	2820
gagctgtaca agtacaaggt	ggtgaagatc	gagccctgg	gcgtggcccc	caccaaggcc	2880
aagcttaccg tccaggcccc	ccagctgctg	agcggcatcg	tgcagcagca	gaacaacctg	2940
ctgcgc当地 tcgaggccc	gcagcacctg	ctgcagctga	ccgtgtgggg	catcaagcag	3000
ctgcaggccc gcacccctggc	cgtggagcgc	tacctgaagg	accagcagct	gctcggc当地	3060
atcttggacc acaccacctg	gatggagttgg	gaccgc当地	tcaacaacta	caccagcctg	3120
atccacagcc tgatcgagga	gagccagaac	cagcacgaga	agaacgagca	ggagctgctg	3180
gagctggaca agtggccag	cctgtggaa	tggttcaaca	tcaccaactg	gctgtggtag	3240
atcaagctgt tcatcatgat	cgtggccggc	ctggtagggcc	tgcgc当地	gttcggccgt	3300
ctgagcatct gaggatccag	atctgctgt	ccttctagtt	gccagccatc	tgttgggtgc	3360
ccctcccccg tgccttcctt	gaccctggaa	gggccactc	ccactgtcct	ttccataataa	3420
aatgaggaaa ttgc当地	ttgtctgag	aggtgtcatt	ctattctggg	gggtgggggtg	3480
ggcaggaca gcaaggggg	ggattggaa	gacaatagca	ggcatgctgg	ggatgc当地	3540
ggctctatgg gtacccaggt	gctgaagaat	tgacccgg	cctcctggc	cagaaaagaag	3600
cagggcacatc cccttctctg	tgacacaccc	tgtccacgccc	cctgggttctt	agttccagcc	3660
ccactcatag gacactcata	gctcaggagg	gctccgc当地	caatcccacc	cgctaaagta	3720
cttggagcgg tcttc当地	cctcatcagc	ccaccaaacc	aaacctagcc	tccaagagtg	3780
ggaagaaatt aaagcaagat	aggctattaa	gtgc当地	agagaaaatg	cctccaacat	3840
gtgaggaatg aatgagagaa	atcatagaat	ttt当地	tgat当地	ccatcatggc	3900
cttaatctt cgttccctcg	ctcaactgact	cgctgc当地	ggtc当地	ctgc当地	3960
cggtatcagc tcactcaaag	gc当地	ggttatccac	agaatcaggg	gataacgc当地	4020

gaaagaacat gtgagcaaaa ggccagcaaa aggcaggaa ccgtaaaaag gccgcgttgc	4080
tggcgaaaa ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc	4140
agaggtggcg aaacccgaca ggactataaa gataccaggc gttccccc ggaagctccc	4200
tctgtcgctc tcctgttccg accctgccgc ttaccggata cctgtccgccc ttctccctt	4260
cgggaagcgt ggcgtttct catagctcac gctgttaggta tctcagttcg gtgttagtgc	4320
ttcgctccaa gctgggctgt gtgcacgaac ccccccgttca gccccgaccgc tgcccttat	4380
ccggtaacta tcgtcttgag tccaacccgg taagacacgaa cttatcgcca ctggcagcag	4440
ccactggta caggattagc agagcgaggt atgttaggcgg tgctacagag ttcttgaagt	4500
ggtggcctaa ctacggctac actagaagaa cagtatttgg tatctgcgt ctgctgaagc	4560
cagttacctt cgaaaaaaga gttggtagct cttgatccgg caaacaacc accgctggta	4620
gcggtggttt ttttgttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag	4680
atccttgcat ctttctacg gggctgacg ctcagtgaa cgaaaaactca cgtaaggaa	4740
ttttggtcat gagattatca aaaaggatct tcacctagat cttttaaat taaaaatgaa	4800
gttttaatc aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa	4860
tcagtggggc acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcg	4920
gggggggggg gcgctgaggt ctgcctcgta aagaagggtg tgctgactca taccaggcct	4980
gaatcgcccc atcatccagc cagaaagtga gggagccacg gttgatgaga gctttgttgt	5040
aggtggacca gttggtgatt ttgaacttt gcttgcac ggaacggctc gcgttgcgg	5100
gaagatgcgt gatctgatcc ttcaactcag caaaaatcgt atttattcaa caaagccccc	5160
gtcccgtaa gtcagcgtaa tgctctgcca gtgttacaac caattaacca attctgatta	5220
aaaaaactca tcgagcatca aatgaaactg caatttattc atatcaggat tatcaataacc	5280
atattttga aaaagccgtt tctgtaatga aggagaaaaac tcaccggggc agttccatag	5340
gatggcaaga tcctggtatac ggtctgcgt tccgactcgt ccaacatcaa tacaacctat	5400
taatttcccc togtcaaaaa taagggttac aagtgagaaa tcaccatgag tgacgactga	5460
atccgggtgag aatggcaaaa gcttatgcat ttcttccag acttgttcaa caggccagcc	5520
attacgctcg tcatcaaat cactcgcatc aaccaaaacgg ttattcattc gtgattgcgc	5580
ctgagcgaga cggaaatacgc gatcgctgtt aaaaggacaa ttacaaacag gaatcgatg	5640
caaccggcgc aggaacactg ccagcgcatc aacaatattt tcacctgaat caggatattc	5700
ttctaatacc tggaatgctg ttttccccgg gatcgctgt gtgagtaacc atgcatcatc	5760
aggagtacgg ataaaaatgct tgatggtcgg aagaggcata aattccgtca gccagtttag	5820
tctgaccatc tcatctgtaa catcattggc aacgctaccc ttgccatgtt tcagaaacaa	5880
ctctggcgca tcgggcttcc catacaatcg atagattgtc gcacctgatt gcccgacatt	5940

atcgcgagcc catttataacc catataaatac agcatccatg ttggaattta atcgccgcct	6000
cgagcaagac gtttcccggtt gaatatggct cataacaccc cttgtattac tgtttatgtt	6060
agcagacagt tttattgttc atgatgatat atttttatct tgtgcaatgt aacatcagag	6120
atttttagac acaacgtggc tttccccccc cccccattat tgaagcattt atcagggtt	6180
ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc	6240
gcmcacattt ccccgaaaag tgccacctga cgtctaagaa accattatta tcatgacatt	6300
aacctataaa aataggcgta tcacgaggcc cttdcgta	6338

<210> 6
 <211> 6298
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid VRC5738

<400> 6	
tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggta	60
cagcttgcgtt gtaagcggat gcccggagca gacaagcccg tcagggcgcg tcagcgggtt	120
ttggcgggtt tcggggctgg ctttaactatg cggcatcaga gcagattgtt ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tttatccata tcataatatg tacattata ttggctcatg	300
tccaaacatta ccgcattgtt gacattgatt attgactgtt tattatagt aatcaattac	360
ggggtcatta gttcatagcc catatatggc gttccgcgtt acataactt ccgtaaatgg	420
cccgctggc tgaccgccc acgaccccg cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga ctttccattt acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaatgt acgcccccta ttgacgtcaa	600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgtgcgtt ttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgggg ggcaccaaaa tcaacgggac tttccaaaat gtcgtacaa	840
ctccgcggca ttgacgcaaa tggcggttgc gctgtacgg tggaggtct atataagcag	900
agtcgttta gtgaaccgtc agatgcctg gagacgccat ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgtt ccagcctcca tcggctcgca tcttccttc acgcggccgc	1020
cgccctaccc gaggccgcca tccacggcg ttgagtcgcg ttctgcgc tccgcctgt	1080
ggtgcccttcc gaaactgcgtc ccgcgtctag gtaagttaa agctcaggc gagaccgggc	1140
ctttgtccgg cgctcccttgc gagcctaccc agactcagcc ggctctccac gctttgcctg	1200
accctgcttgc tcaactcta gttaacgggtt gggggcagggtt tagtctgagc agtactcggtt	1260

gctgccgcgc	gcccaccag	acataatagc	tgacagacta	acagactgtt	cattccatg	1320
ggtctttct	gcagtcaccg	tcgtcgacac	gtgtgatcg	atatcgccgc	cgctctagag	1380
atatcgccac	catgcgtgtt	cgtggtatcc	cgcgttaactg	gccgcagtgg	tggatgtggg	1440
gtatcctggg	tttctggatg	atcatcatct	gccgtgttgt	tggtaacatg	tgggttaccg	1500
tttactacgg	tgttccgggtt	tggaccgacg	ctaaaaccac	cctgttctgc	gcttccgaca	1560
ccaaaggcta	cgaccgtgaa	gttcacaacg	tttgggctac	ccacgcttgc	gttccgaccg	1620
acccgaaccc	gcaggaaatc	gttctggaaa	acgttaccga	aaacttcaac	atgtggaaaa	1680
acgacatggt	tgaccagatg	cacgaagaca	tcatctccct	gtgggaccag	tccctgaaac	1740
cgtgcgttaa	actgaccccg	ctgtgcgtta	ccctgcactg	caccaacgct	accttcaaaa	1800
acaacgttac	caacgacatg	aacaaagaaa	tccgttaactg	ctccttcaac	accaccaccg	1860
aaatccgtga	caaaaaacag	cagggttacg	ctctgttcta	ccgtccggac	atcggtctgc	1920
tgaaagaaaa	ccgtaaacaac	tccaacaact	ccgaatacat	cctgatcaac	tgcaacgctt	1980
ccaccatcac	ccaggcttgc	ccgaaagtta	acttcgaccc	gatcccgatc	cactactgcg	2040
ctccggctgg	ttacgctatc	ctgaaatgca	acaacaaaac	cttctccggt	aaaggtccgt	2100
gcaacaacgt	ttccaccgtt	cagtgcaccc	atggtatcaa	accggttgtt	tccacccagc	2160
tgctgctgaa	cgttccctg	gctaaaaag	aaatcatcat	ccgttccgaa	aacctgaccg	2220
acaacgttaa	aaccatcatc	gttcacctga	acaaatccgt	tgaaatcggt	tgcacccgtc	2280
cgaacaacaa	cacccgtaaa	tccatgcgt	tcggtccggg	tcagaccttc	tacgctaccg	2340
gtgacatcat	cggtgacatc	cgtcaggctt	actgcaacat	ctccggttcc	aatggAACG	2400
aaaccctgaa	acgtgttaaa	aaaaaactgc	aggaaaaacta	caacaacaac	aaaaccatca	2460
aattcgttcc	gtcctccggt	ggtgacctgg	aaatcaccac	ccactccctc	aactgcccgt	2520
gtgaattctt	ctactgcaac	accaccgtc	tgttcaacaa	caacgctacc	gaagacgaaa	2580
ccatcaccct	gccgtgccgt	atcaaacaga	tcatcaacat	gtggcagggt	gttggcgtgt	2640
ctatgtacgc	tccggcgatc	gctggtaaca	tcacctgcaa	atccaacatc	accggcttgc	2700
tgctggttcg	tgacggtggt	gaagacaaca	aaaccgaága	aatttccgt	ccgggtgggt	2760
gtaacatgaa	agacaactgg	cgttccgaac	tgtacaata	caaagttatc	gaactgaaac	2820
cgtgggtat	cgttccgacc	ggtgctaagc	ttaccgttca	ggctcgctag	ctgctgtcct	2880
ccatcggtca	gcagcagtcc	aacctgctgc	gtgctatcga	agctcagcag	cacatgctgc	2940
agctgaccgt	ttggggtatac	aaacagctgc	agacccgtgt	tctggctatc	gaacgttacc	3000
tgaaagacca	gcagctcgag	atctggaaaca	acatgacctg	gatggatgg	gaccgtgaaa	3060
tctccaacta	caccgacacc	atctaccgtc	tgctggaaaga	ctcccagacc	cagcaggaaa	3120
aaaacgaaaa	agacctgctg	gctctggact	cctggaaaaa	cctgtggtcc	tggttcgaca	3180

tctccaactg	gctgtggta	atcaaaatct	tcatcatgat	cgttgggtg	ctgatcggtc	3240	
tgctatcat	cttcgtgtt	ctgtccatct	gaggatccag	atctgctgt	ccttctagtt	3300	
gccagccatc	tgttgttgc	ccctccccg	tgccctcctt	gaccctggaa	ggtgcac	3360	
ccactgtcct	ttcctaataa	aatgaggaaa	ttgcatcgca	ttgtctgagt	aggtgtcatt	3420	
ctattctggg	gggtgggtg	gggcaggaca	gcaaggggga	ggattggaa	gacaatagca	3480	
ggcatgctgg	ggatgcggtg	ggctctatgg	gtacccaggt	gctgaagaat	tgacccggtt	3540	
cctcctggc	cagaaagaag	caggcacatc	cccttctctg	tgacacaccc	tgtccacg	3600	
cctggttctt	agttccagcc	ccactcatag	gacactcata	gctcaggagg	gctccgc	3660	
caatccacc	cgctaaagta	cttggagcgg	tctccctc	cctcatcagc	ccaccaaacc	3720	
aaacctagcc	tccaagagt	ggaagaaatt	aaagcaagat	aggctattaa	gtcagaggg	3780	
agagaaaatg	cctccaacat	gtgaggaagt	aatgagagaa	atcatagaat	tttaaggcca	3840	
tgatttaagg	ccatcatggc	cttaatctc	cgcttcctcg	ctcactgact	cgctgcg	3900	
ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcccgtata	gttatccac	3960	
agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	4020	
ccgtaaaaag	gccgcgttgc	tggcg	ccataggctc	cgccccctg	acgagcatca	4080	
aaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	4140	
gttccccct	ggaagctccc	tcgtgcgtc	tcctgttccg	accctgc	ttaccggata	4200	
cctgtccg	tttctccctt	cggaaagcgt	ggcgcttct	catagctac	gctgttaggt	4260	
tctcagttcg	gttaggtcg	ttcgctccaa	gctggctgt	gtgcacgaa	ccccgttca	4320	
gcccgaccgc	tgcg	ccgtaacta	tcgtctttag	tccaa	accgg	4380	
cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	agagcgaggt	atgtaggcgg	4440	
tgctacagag	ttcttgaagt	ggtggctaa	ctacggctac	actagaagaa	cagtatttgg	4500	
tatctgcgct	ctgctgaagc	cagttac	cgaaaaaaga	gttggtagct	cttgatccgg	4560	
caaacaacc	accgctggta	gccccgttt	ttttgttgc	aagcagcaga	ttacgcgc	4620	
aaaaaaagga	tctcaagaag	atccctt	ctttctacg	gggtctgacg	ctcagtggaa	4680	
cggaaactca	cgttaaggga	ttttggtcat	gagattatca	aaaaggatct	tcacc	4740	
cctttaaat	taaaaatgaa	gtttaaatc	aatctaaagt	atatatgagt	aaacttgg	4800	
tgacagttac	caatgcttaa	tca	gatggaggc	acctatctca	gcatctgt	4860	
atccatagtt	gcctgactcg	gggggggggg	gcgtgaggt	ctgcctcg	aagaagg	4920	
tgctgactca	taccaggc	aatcgcccc	atcatccagc	cagaaagt	gggagccac	4980	
gtttagt	gtttgtt	agg	gttggatt	ttgaact	gtttggcc	5040	
ggAACGGTCT	GGTGTGCGG	GAAGATGCGT	GATCTGATCC	TTCAACTCAG	CAAAAGTTCG	5100	
ATTTATTCAA	CAAAGCCGCC	GTCCCGTCAA	GTCA	CGTAA	TGCTCTGCCA	GTGTTACAAC	5160

caattaacca attctgatta gaaaaactca tcgagcatca aatgaaactg caatttattc	5220
atatcaggat tatcaatacc atattttga aaaagccgtt tctgtaatga aggagaaaaac	5280
tcaccgaggc agttccatag gatggcaaga tcctggtac ggtctgcgt tccgactcgt	5340
ccaacatcaa tacaacctat taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa	5400
tcaccatgag tgacgactga atccggtag aatggcaaaa gcttatgcat ttcttccag	5460
acttgtcaa caggccagcc attacgctcg tcatcaaaat cactcgcatc aaccaaaccg	5520
ttattcattc gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt aaaaggacaa	5580
ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcac aacaatattt	5640
tcacctgaat caggatattc ttctaatacc tggaatgctg tttccccc gatcgactgt	5700
gtgagtaacc atgcatcatc aggagtacgg ataaaatgt tcatggcgg aagaggcata	5760
aattccgtca gccagtttag tctgaccatc tcatctgtaa catcattggc aacgctacct	5820
ttgccatgtt tcagaaacaa ctctggcgca tcgggcttcc catacaatcg atagattgtc	5880
gcacctgatt gcccgacatt atcgcgagcc catttatacc catataaattc agcatccatg	5940
ttggaattta atcgccgcct cgagcaagac gtttcccggtt gaatatggct cataacaccc	6000
cttgtattac ttttatgtt agcagacagt tttattgtt atgatgatat attttatct	6060
tgtcaatgt aacatcagag attttgagac acaacgtggc tttcccccc cccccattat	6120
tgaagcattt atcaggggttta ttgtctcatg agcgataca tatttgaatg tatttagaaa	6180
aataaaacaaa taggggttcc ggcgcacattt ccccgaaaag tgccacctga cgtctaagaa	6240
accattattt tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtc	6298

<210> 7
 <211> 6298
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> plasmid CMV/R-gp145dCFI (CCCC)

<400> 7	
tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gcccggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tttatccata tcataatatg tacattata ttggctcatg	300
tccaaacatta ccgcacatgtt gacattgatt attgactagt tattatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
cccgccatggc tgaccgccccca acgacccccc cccattgacg tcaataatga cgtatgttcc	480

catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggcccgctt ggcattatgc ccagtacatg accttatggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgggg ggcaccaaaa tcaacggac ttccaaaat gtcgtaacaa	840
ctccgccccca ttgacgcaaa tgggoggtag gcgtgtacgg tgggaggtct atataagcag	900
agctcggtta gtgaaccgtc agatcgctg gagacgccat ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccctc acgcggccgc	1020
cgcctaccc gaggccgcca tccacgcccgg ttgagtcgctg ttctgcccgc tccgcctgt	1080
ggtgcctcctt gaactgcgtc cgccgtctag gtaagttaa agctcaggc gagaccgggc	1140
ctttgtccgg cgctcccttg gagoctacctt agactcagcc ggctctccac gctttgcctg	1200
accctgcttg ctcaactcta gttaacggtg gagggcagtg tagtctgagc agtactcggtt	1260
gctgccgcgc ggcaccagg acataatagc tgacagacta acagactgtt ccttccatg	1320
ggtctttctt gcagtcaccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagag	1380
atatcgccac catcgctgtt cgtggatcc cgcgttaactg gcccagtttggatgtggg	1440
gtatcctggg tttctggatg atcatcatct gccgttgcgtt tggtaacatg tgggttaccg	1500
tttactacgg tggccgggtt tggaccgacg ctaaaaccac cctgttctgc gcttccgaca	1560
ccaaaggcta cgaccgtgaa gttcacaaacg tttggctac ccacgcttgc gttccgaccg	1620
acccgaaccc gcaggaaatc gttctggaaa acgttaccga aaacttcaac atgtggaaaa	1680
acgacatggt tgaccagatg cacgaagaca tcacatccct gtgggaccag tccctgaaac	1740
cgtgcgttaa actgaccccg ctgtgcgtta ccctgcactg caccaacgct accttcaaaa	1800
acaacgttac caacgacatg aacaaagaaa tccgttaactg ctcctcaac accaccaccg	1860
aaatccgtga caaaaaacag cagggttacg ctctgttcta ccgtccggac atcggttgc	1920
tgaaagaaaa ccgtaaacaac tccaaacaact ccgtatacat cctgatcaat tgcaacgctt	1980
ccaccatcac ccaggcttgc ccgaaagtta acttcgaccc gatcccgatc cactactgcg	2040
ctccggctgg ttacgctatc ctgaaatgca acaacaaaac cttctccggt aaaggtccgt	2100
gcaacaaacgt ttccaccgtt cagtgacacc atggatcaa accgggttgcgtt tccacccaccg	2160
tgctgctgaa cggttccctg gctgaaaaag aaatcatcat ccgttccgaa aacctgaccg	2220
acaacgttaa aaccatcatc gttcacctga acaaatccgt tgaaatcggtt tgcacccgtc	2280
cgaacaacaa caccctgtaaa tccatgcgtt tcggtccggg tcagacccctc tacgctaccg	2340
gtgacatcatc cggtgacatc cgtcaggctt actgcaacat ctccgggttcc aaatggaaacg	2400
aaaccctgaa acgtgttaaa gaaaaactgc agggaaaacta caacaacaac aaaaccatca	2460

aattcgctcc	gtcctccgg	ggtgacctgg	aaatcaccac	ccactccttc	aactgccgtg	2520		
gtgaattctt	ctactgcaac	accaccg	tcgtcaacaa	caacgctacc	gaagacgaaa	2580		
ccatcaccc	ccgtgccgt	atcaaacaga	tcatcaacat	gtggcagggt	gttggcgtg	2640		
ctatgtacgc	tccgccc	gatc	gctggtaaca	tcacctgcaa	atccaacatc	accggctgc	2700	
tgctggttcg	tgacggtggt	gaagacaaca	aaaccgaaga	aatctccgt	ccgggtgg	2760		
gtaacatgaa	agacaactgg	cg	ttccgaac	tgtacaaata	caaagtatac	gaactgaaac	2820	
cgctgggtat	cgctccgacc	ggtgcta	ttaccgttca	ggctcg	ctgctgtc	cct	2880	
ccatcg	ttca	gcagc	gtcc	gtgctatc	agctcagc	agcacatgc	2940	
agctgaccgt	ttgggtatc	aaacagctgc	agacccgtgt	tctggctatc	gaacgttacc	3000		
tgaaagacca	gcagctcgag	atctggaaaca	acatgacctg	gatggatgg	gaccgtgaaa	3060		
tctccaa	acta	caccgacacc	atctaccgtc	tgctggaa	actc	ctcc	3120	
aaaacgaaaa	agacctgctg	gctctggact	cctggaaaaa	cctgtgg	tgg	tcgaca	3180	
tctccaa	actg	gctgtgg	tac	atctatgt	cg	tggt	ctgg	3240
tgctatcat	cttcg	ctgt	ccatct	gaggatcc	atctg	ctgt	gtgt	3300
gccagccatc	tgtt	gttt	gc	ccctcccc	tg	ccttc	c	3360
ccactgtc	ctt	cct	taataa	aatgagg	tt	gc	atcg	3420
ctattctgg	gggt	gggg	gggt	ggcaggaca	gcaagg	ggat	ggaa	3480
ggcatgctgg	ggat	gcgg	gtat	gg	acc	tt	ccgg	3540
cctc	c	ctgg	ccat	cc	tgac	cc	tgcc	3600
cctgg	tt	gtt	actc	atc	gac	act	cc	3660
caatcccacc	cgt	taa	acta	ttgg	ggc	tct	ccct	3720
aaacctagcc	tcca	aa	agatg	gg	ttt	cc	cc	3780
agagaaaatg	c	c	ttt	ttt	ttt	ttt	ttt	3840
tgat	ttt	aa	gg	ttt	ttt	ttt	ttt	3900
ggtcgtt	cg	tc	ttt	cc	ttt	cc	ttt	3960
agaatcagg	gata	ac	tc	act	ca	act	cc	4020
ccgtaaaa	ggcc	cg	tt	cc	cc	cc	cc	4080
caaaaatcga	cg	ct	ca	ag	tt	cc	cc	4140
gtt	ttt	cc	cc	gg	cc	cc	cc	4200
cctgtcc	ttt	cc	cc	gg	cc	cc	cc	4260
tctcagtt	gt	tg	tt	cc	tt	cc	tt	4320
ccccgaccgc	tg	cg	cc	tt	cc	tt	cc	4380
ccgtaacta	tc	gt	ct	tg	tt	cc	aa	

cttatacgcca ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg	4440
tgctacagag ttcttgaagt ggtggctaa ctacggctac actagaagaa cagtatttgg	4500
tatctgcgct ctgctgaagc cagttacctt cgaaaaaaga gttggtagct cttgatccgg	4560
caaacaaacc accgctggta gcggtggttt tttgtttgc aagcagcaga ttacgcgcag	4620
aaaaaaaaagga tctcaagaag atcctttgat ctttctacg gggtctgacg ctcagtggaa	4680
cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat	4740
ccttttaaat taaaaatgaa gttttaaattc aatctaaagt atatatgagt aaacttggtc	4800
tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc	4860
atccatagtt gcctgactcg gggggggggg gcgcgtgggt ctgcctcgtg aagaagggtgt	4920
tgctgactca taccaggcct gaatcgcccc atcatccagc cagaaagtga gggagccacg	4980
gtttagatgaga gctttgttgtt aggtggacca gttggtgatt ttgaactttt gctttgccac	5040
ggaacggctc gctttgtcgga gaagatgcgt gatctgatcc ttcaactcag caaaagttcg	5100
atttattcaa caaagccgccc gtcccgtaa gtcaagctaa tgctctgcca gtgttacaac	5160
caattaacca attctgatta gaaaaactca tcgagcatca aatgaaactg caatttattc	5220
atatcaggat tatcaataacc atattttga aaaagccgtt tctgtatga aggagaaaaac	5280
tcaccgaggc agttccatag gatggcaaga tcctggtac ggtctgcgtat tccgactcgt	5340
ccaaacatcaa tacaacctat taatttcccc tcgtcaaaaaa taaggttatc aagtgagaaaa	5400
tcaccatgag tgacgactga atccggtgag aatggcaaaa gcttatgcat ttctttccag	5460
acttggtcaa caggccagcc attacgctcg tcatcaaaat cactcgcatc aaccaaaccg	5520
ttattcattc gtgattgcgc ctgagcgaga cggaaatacgc gatcgctgtt aaaaggacaa	5580
ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcacatc aacaatattt	5640
tcacctgaat caggatattc ttcttaatacc tggaaatgctg tttccccc gatcgactgt	5700
gtgagtaacc atgcacatc aggagtaggg ataaaatgct tggatggcgaa aagaggcata	5760
aattccgtca gccagtttag tctgaccatc tcatctgtaa catcattggc aacgctacat	5820
ttgccatgtt tcagaaacaa ctctggcgc tcgggcttcc catacaatcg atagattgtc	5880
gcacctgatt gcccgcacatt atcgcgcgaccc catttataacc catataaattc agcatccatg	5940
ttggaaattta atcgcggcct cgagcaagac gttcccggtt gaatatggct cataacacccc	6000
cttgttattac tggttatgtt agcagacagt tttattgttc atgatgatat attttatct	6060
tgtgcaatgt aacatcagag attttgagac acaacgtggc tttccccccc cccccattat	6120
tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaaa	6180
aataaacaacaa taggggttcc ggcgcacattt ccccgaaaaag tgccacctga cgtctaagaa	6240
accatttataa tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtc	6298

<210> 8
 <211> 6325
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> plasmid CMV/R-gp145dCFI (BBBB)

<400> 8						
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagcttgtct	gtaaaggat	gccgggagca	gacaagcccg	tcagggcg	tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgt	ctgagagtg	180
accatatg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcagattgg	240
ctattggca	ttgcatacgt	tgtatccata	tcataatatg	tacattata	ttggctcatg	300
tccaacatta	ccgcatgtt	gacattgatt	attgactagt	tattaatagt	aatcaattac	360
ggggtcatta	gttcatagcc	catatatgga	gttccgcgtt	acataactta	cggtaaatgg	420
cccgccctggc	tgaccgccc	acgaccccc	cccattgacg	tcaataatga	cgtatgttcc	480
catagtaacg	ccaataggga	cttccattt	acgtcaatgg	gtggagtatt	tacggtaaac	540
tgcctactt	gcagtacatc	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	600
tgacggtaaa	tggccgcct	ggcattatgc	ccagtagatg	accttatggg	actttcctac	660
ttggcagttac	atctacgtat	tagtcatcgc	tattaccatg	gtgatgcgtt	tttggcagta	720
catcaatggg	cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	accccattga	780
cgtcaatggg	agtttgtttt	ggcaccaaaa	tcaacggac	tttccaaaat	gtcgtaacaa	840
ctccgcccc	ttgacgcaaa	tggcggtag	gcgtgtacgg	tggaggtct	atataagcag	900
agctcgttt	gtgaaccgtc	agatcgctg	gagacgccat	ccacgctgtt	ttgacctcca	960
tagaagacac	cgggaccgat	ccagcctcca	tcggctcg	tctctcc	acgcgcggc	1020
cgccttacct	gaggccgcca	tccacgccc	ttgagtcg	ttctgccc	tccgcctgt	1080
ggtgccctc	gaactacgtc	cggcgctag	gtaagttt	agtcaggtc	gagaccggc	1140
cttgcctcg	cgtccctt	gagcctac	agactcagcc	ggctctcc	gctttgcct	1200
accctgctt	ctcaactcta	gttaacgg	gagggcagt	tagtctg	agtactcg	1260
gctgccgc	gcccaccag	acataatagc	tgacagacta	acagactgtt	ccttccatg	1320
ggtctttct	gcagtaccc	tcgtcgac	gtgtgatc	atatcg	cgctctagac	1380
accatgcgc	tgaaggagaa	gtaccagcac	ctgtggcg	ggggctgg	ctggggcacc	1440
atgctgctt	gcatcctgat	gatctgca	gccgaggaga	agctgtgg	gaccgtgt	1500
tacggcgt	ccgtgtgg	ggaggccacc	accaccctgt	tctgcgc	cgaccgca	1560
gcctacgaca	ccgagggt	caacgtgt	gccacccacg	cctgcgt	gccacc	1620
aaccccccagg	aggtggagct	gaagaacgt	accgagaact	tcaacatgt	gaagaacaac	1680

atggtgagc agatgcacga ggacatcatc agcctgtgg accagagcct gaagccctgc	1740
gtgaagctga ccccccgtg cgtgaccctg aactgcaccc acctgcgcaa cgccaccaac	1800
ggaaacgaca caaacacaac aagcagcagc agaggaatgg tgggaggagg cgagatgaag	1860
aactgcagct tcaacatcac caccaacatc cgccgcaagg tgcagaagga gtacccctg	1920
ttctacaagg tggacatcgc cccatcgac aacaactcca acaacagata tagactgatt	1980
agctgcaaca ccagcgtgat cacccaggcc tgccccagg tgagcttgcga gcccattcccc	2040
atccactact gcgcccccgc cggcttcgcc atcctgaagt gcaaggacaa gaagttcaac	2100
ggcaaggggcc cctgcaccaa cgtgagcacc gtgcagtgc cccacggcat cgccccgtg	2160
gtgagcaccc agctgctgct gaacggtagc ctggccgagg aggaggtggt gatccgcagc	2220
gctaacttcg ccgacaacgc caaggtgatc atcgtgcagc tgaacgagag cgtggagatc	2280
aactgcaccc gccccaaacaa caacacccgc aagagcatcc acatcgcccc cgccgcgc	2340
ttctacacca cccgcgagat catcgccgac atccgcagg cccactgcaa cctgagccgc	2400
gccaagtgga acgacaccct gaacaagatc gtatcaagc tgcgcgagca gttcggaac	2460
aagaccatcg tttcaagca cagcagcggc ggcgaccccg agatcgtgac ccacagcttc	2520
aactgcggcg gcaattttt ctactgcaac agcacccagc ttttaattt cacatggAAC	2580
gtgaccgagg agagcaacaa caccgtggag aacaacacca tcaccctgcc ctgcgcattc	2640
aagcagatca tcaacatgtg gcaggaggtg ggccgcgc tgcgcgc cccatccgc	2700
ggccagatcc gctgcagcag caacatcacc ggccctgctgc tgacccgcga cgccggcccc	2760
gaggacaaca agaccgaggt tttccccc ggcggcgccg acatgcgcga caactggcg	2820
agcgagctgt acaagtacaa ggtggtaag atcgacccccc tggcggtggc cccaccaag	2880
gccaagctt ccgtccaggc cccgcctgctg ctgagcggca tcgtgcagca gcagaacaac	2940
ctgctgcgcg ccatcgaggc ccagcagcac ctgctgcagc tgaccgtgtg gggcatcaag	3000
cagctgcagg cccgcgtgct ggccgtggag cgctacctgc gcgaccagca gtcctcaag	3060
atctggaca acatgacctg gatcgagtgg gaccgcgaga tcaacaacta caccagcatc	3120
atctacagcc tgcgtggagga gagccagaac cagcaggaga agaacgagca ggagctgctg	3180
gagctggaca agtggccag cctgtggAAC tgggtcgaca tcaccaagt gctgtggta	3240
atcaagatct tcatcatgat cgtggccggc ctgatcgcc tgcgcattcg tttcgctgt	3300
ctgagcatct gaggatccag atctgtgtg cttcttagtt gccagccatc tttgtttgc	3360
ccctcccccg tgccttcctt gaccctggaa ggtgccactc ccactgtcct ttcttaataa	3420
aatgaggaaa ttgcattcgca ttgtctgagt aggtgtcatt ctattctgg ggggtgggtg	3480
gggcaggaca gcaagggggaa ggattggaa gacaatagca ggcattgtgg ggtgcgggtg	3540
ggctctatgg gtacccaggt gctgaagaat tgacccgggtt ctcctggc cagaaagaag	3600
caggcacatc cccttctctg tgacacaccc tgcacacgc cctgggttctt agttccagcc	3660

ccactcatag gacactcata gctcaggagg gctccgcctt caatcccacc cgctaaagta	3720
cttggagcgg tctctccctc cctcatcagc ccaccaaacc aaacctagcc tccaagagtg	3780
ggaagaaatt aaagcaagat aggctattaa gtgcagaggg agagaaaatg cctccaacat	3840
gtgaggaagt aatgagagaa atcatagaat tttaggcca tcatggcctt aatttccgc	3900
ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatacgctca	3960
ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg	4020
agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgcgtgg cgttttcca	4080
taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaaga ggtggcgaaa	4140
cccgacagga ctataaagat accaggcggtt tccccctgga agctccctcg tgcgctctcc	4200
tgttccgacc ctgccgctta ccggataacct gtccgcctt ctcccttcgg gaagcgtggc	4260
gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct	4320
gggctgtgtg cacgaacccc cgttcagcc cgaccgctgc gccttatccg gtaactatcg	4380
tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag	4440
gattagcaga gcgaggtatg taggcgggtc tacagagttc ttgaagtggg ggcttaacta	4500
cggctacact agaagaacag tatttggtat ctgcgcctcg ctgaagccag ttaccttcgg	4560
aaaaagagtt ggtagcttt gatccgcaa acaaaccacc gctggtagcg gtggttttt	4620
tgttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt	4680
ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggcatgag	4740
attatcaaaa agatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat	4800
ctaaagtata tatgagtaaa ctggcttga cagttaccaa tgcttaatca gtgaggcacc	4860
tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactcgggg gggggggcg	4920
ctgaggtctg cctcgtaag aaggtgttgc tgactcatac caggcctgaa tcgccccatc	4980
atccagccag aaagtgaggg agccacgggt gatgagagct ttgtttagg tggaccagtt	5040
ggtgattttg aactttgct ttgccacgga acggctctgcg ttgtcggaa gatgcgtgat	5100
ctgatccttc aactcagcaa aagttcgatt tattcaacaa agccgcgtc ccgtcaagtc	5160
agcgtaatgc tctgccagtg ttacaaccaa ttaaccaatt ctgattagaa aaactcatcg	5220
agcatcaaat gaaactgcaa tttattcata tcaggattat caataccata tttttgaaaa	5280
agccgtttct gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc	5340
tggtatcggt ctgcgattcc gactcgcca acatcaatac aacctattaa tttccctcg	5400
tcaaaaataa gtttatcaag tgagaaatca ccatgagtga cgactgaatc cggtgagaat	5460
ggcaaaagct tatgcatttc tttccagact tggtaacag gccagccatt acgctcgta	5520
tcaaaaatcac tcgcatcaac caaaccgtta ttcattcggt attgcgcctg agcgagacga	5580

aataacgcgat cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg	5640
aacactgcca ggcgcataac aatatttca cctgaatcag gatattcttc taatacctgg	5700
aatgctgttt tcccgggat cgcaagtggtg agtaaccatg catcatcagg agtacggata	5760
aatatgcttga tggtcggaag aggcatataat tccgtcagcc agtttagtct gaccatctca	5820
tctgttaacat cattggcaac gctaccccttgc ccatgtttca gaaacaactc tggcgcacatcg	5880
ggcttcccat acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat	5940
ttatacccat ataaatcago atccatgttg gaatttaatc gcggcctcga gcaagacgtt	6000
tcccgttgaa tatggctcat aacacccctt gtattactgt ttatgtaaagc agacagtttt	6060
attgttcatg atgatatatatt tttatcttgc gcaatgtaaac atcagagatt ttgagacaca	6120
acgtggctt cccccccccc ccattattga agcattatc agggttatttgc tctcatgac	6180
ggatacatat ttgaatgtat tttagaaaaat aaacaaatag gggttccgcg cacatccc	6240
cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac ctataaaaat	6300
aggcgtatca cgaggccctt tcgtc	6325

<210> 9
 <211> 6298
 <212> DNA
 <213> Artificial sequence

 <220>
 <223> plasmid CMV/R-gp145dCFI (BBCB)

<400> 9	
tcgcgcgttt cggtgatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacattata ttggctcatg	300
tccaacatta ccgcattgtt gacattgatt attgactagt tattaatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaatgg	420
cccgccctggc tgaccgcccc acgaccggccg cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga cttccatttgc acgtcaatgg gtggagtatt tacggtaaac	540
tgcggcacttg gcagttatca aagtgtatca tatgccaatgc acgccccctt ttgacgtcaa	600
tgacggtaaa tggcccgctt ggcattatgc ccagttatgc accttatttttggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgtatgcgtt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttggttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaaaca	840
ctccggccca ttgacgcaaa tggcggtag gcgtgtacgg tgggaggtct atataagcag	900

agctcgttta	gtgaaccgtc	agatcgctg	gagacgccat	ccacgctgtt	ttgaccccca	960
tagaagacac	cgggaccgat	ccagcctcca	tcggctcgca	tctctcccttc	acgcgcccgc	1020
cgccttacct	gaggccgcca	tccacgcccgg	ttgagtcgcg	ttctgccgccc	tcccgctgt	1080
ggtgcctcct	gaactacgtc	cgcgcgttag	gtaagtttag	agctcaggta	gagaccgggc	1140
ctttgcctgg	cgcgccttg	gagcctaccc	agactcagcc	ggctctccac	gctttgcctg	1200
accctgttttgc	ctcaactcta	gttaacggtg	gagggcagt	tagtctgagc	agtactcggt	1260
gctgcgcgc	gcgcaccag	acataatagc	tgacagacta	acagactgtt	cctttccatg	1320
ggtctttct	gcagtcaccg	tcgtcgacac	gtgtgatcag	atatcgccgc	cgctctagac	1380
accatgcgcg	tgaaggagaa	gtaccagcac	ctgtggcgct	ggggctggcg	ctggggcacc	1440
atgctgtgg	gcatcctgat	gatctgcaac	gccgaggaga	agctgtgggt	gaccgtgtac	1500
tacggcgtgc	ccgtgtggaa	ggaggccacc	accaccctgt	tctgcgcag	cgaccgcaag	1560
gcctacgaca	ccgaggtgca	caacgtgtgg	gccacccacg	cctgcgtgcc	caccgacccc	1620
aaccccccagg	aggtggagct	gaagaacgt	accgagaact	tcaacatgt	gaagaacaac	1680
atggtgagc	agatgcacga	ggacatcatc	agcctgtggg	accagagct	gaagccctgc	1740
gtgaagctga	ccccccctgt	cgtgaccctg	aactgcaccc	acctgcgcaa	cgcaccaac	1800
ggaaacgaca	caaacacaac	aagcagcagc	agaggaatgg	tgggaggagg	cgagatgaag	1860
aactgcagct	tcaacatcac	caccaacatc	cgccggcaagg	tgcagaagga	gtacgcctg	1920
ttctacaagc	tggacatcgc	ccccatcgac	aacaactcca	acaacagata	tagactgatt	1980
agctgcaaca	ccagcgtgat	cacccaggcc	tgccccaaagg	tgagcttcga	gccccatcccc	2040
atccactact	gcgcgcgcgc	cggcttcgcc	atccctgaagt	gcaaggacaa	gaagttcaac	2100
ggcaagggcc	cctgcaccaa	cgtgagcacc	gtgcagtgca	cccacggcat	ccgcgcgcgt	2160
gtgagcaccc	agctgctgct	gaacggtagc	ctggccgagg	aggaggtgg	gatccgcagc	2220
gctaacttcg	ccgacaacgc	caaggtgatc	atcgtgcagc	tgaacgagag	cgtggagatc	2280
aactgcaccc	gcgcaccaaa	caacacccgc	aagagcatcc	acatcgcccc	cggccgcgc	2340
ttctacacca	ccggcgagat	catcgccgac	atccggcagg	cccactgcaa	cctgagccgc	2400
gcacagtgaa	acgacaccct	gaacaagatc	gtgatcaagc	tgcgcgagca	gttcggcaac	2460
aagaccatcg	tgttcaagca	cagcagccgc	ggcgaccccg	agatcgtgac	ccacagcttc	2520
aactgcggcg	gcgaattctt	ctactgcaac	accacccgtc	tgttcaacaa	caacgctacc	2580
gaagacgaaa	ccatcaccc	gccgtgccgt	atcaaacaga	tcatcaacat	gtggcagggt	2640
gttggctgt	ctatgtacgc	tccgcgcgtc	gctggtaaca	tcacctgcaa	atccaacatc	2700
accggctctgc	tgctggttcg	tgacggtggt	gaagacaaca	aaaccgaaga	aatctccgt	2760
ccgggtgggt	gttacatgaa	agacaactgg	cgttccgaac	tgtacaata	caaagttatc	2820

gaactgaaac cgctgggtat cgctccgacc ggtgctaagc ttaccgtcca ggcccgcctg	2880
ctgctgagcg gcacatcgta gcagcagaac aacctgctgc gcgccatcga ggcccagcag	2940
cacctgctgc agctgaccgt gtggggcatc aagcagctgc aggcccgcgt gctggccgtg	3000
gagcgctacc tgcgcgacca gcagctcctc aagatctggg acaacatgac ctggatcgag	3060
tgggaccgcg agatcaacaa ctacaccaggc atcatctaca gcctgatcga ggagagccag	3120
aaccagcagg agaagaacga gcaggagctg ctggagctgg acaagtgggc cagcctgtgg	3180
aactggttcg acatcaccaa gtggctgtgg tacatcaaga tcttcatcat gatcgtggc	3240
ggcctgatcg gcctgcgcatt cgtgttcagc gtgtgagca tctgaggatc cagatctgct	3300
gtgccttcta gttgccagcc atctgttgtt tgcccctccc ccgtgccttc cttgaccctg	3360
gaaggtgcca ctccccactgt cctttctaa taaaatgagg aaattgcattc gcattgtctg	3420
agtaggtgtc attctattct ggggggtggg gtggggcagg acagcaaggg ggaggattgg	3480
gaagacaata gcaggcatgc tggggatgctg gtggctcta tgggtaccca ggtgctgaag	3540
aattgaccgg gttcctcctg ggccagaaag aacgaggcac atccccttct ctgtgacaca	3600
ccctgtccac gcccctgggtt cttagttcca gccccactca taggacactc atagctcagg	3660
agggctccgc cttcaatccc acccgtaaaa gtacttggag cggctctcctc ctcctcattc	3720
agcccaccaa accaaaccta gcctccaaga gtgggaagaa attaaagcaa gataggctat	3780
taagtgcaga gggagagaaa atgcctccaa catgtgagga agtaatgaga gaaatcatag	3840
aattttaagg ccatcatggc cttaatcttc cgcttcctcg ctcaactgact cgctgcgc	3900
ggtcgttccgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac	3960
agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggcaggaa	4020
ccgtaaaaag gccgcgttgc tggcgcccccc ccataggctc cgccccctg acgagcatca	4080
caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc	4140
gtttccccct ggaagctccc tcgtgcgc tcctgttccg accctgcgc ttaccggata	4200
cctgtccgccc tttctccctt cgggaagcgt ggcgcgttct ctagctcac gctgttaggt	4260
tctcagttcg gtgttaggtcg ttgcgtccaa gctgggtgt gtgcacgaac ccccccgttca	4320
gccccgaccgc tgcgcccttat ccggtaacta tcgtcttgc tccaaaccgg taagacacga	4380
cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg	4440
tgctacagag ttcttgaagt ggtggctaa ctacggctac actagaagaa cagtatttgg	4500
tatctgcgt ctgctgaagc cagttacattt cggaaaaaga gttggtagct cttgatccgg	4560
caaacaacc accgctggta cgggtggttt ttttgggttgc aagcagcaga ttacgcgc	4620
aaaaaaaagga tctcaagaag atcccttgat cttttctacg gggctgtacg ctcagtggaa	4680
cgaaaaactca cgttaaggaa ttttggtcat gagattatca aaaaggatct tcacccat	4740
ccttttaat taaaatgaa gttttaatc aatctaaagt atatatgagt aaacttggtc	4800

tgacagttac caatgcttaa tcagtgggc acctatctca gcgatctgtc tatttcgttc	4860
atccatagtt gcctgactcg gggggggggg gcgcgtgggt ctgcctcggt aagaagggtgt	4920
tgctgactca taccaggcct gaatcgcccc atcatccagc cagaaagtga gggagccacg	4980
gttgtatgaga gctttgttgt aggtggacca gttggtgatt ttgaactttt gctttgccac	5040
ggaacggtct gcgttgcgg gaagatgcgt gatctgatcc ttcaactcag caaaagttcg	5100
atttattcaa caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca gtgttacaac	5160
caattaacca attctgatta gaaaaactca tcgagcatca aatgaaaactg caatttattc	5220
atatcaggat tatcaataacc atattttga aaaagccgtt tctgtaatga aggagaaaaac	5280
tcaccggaggc agttccatag gatggcaaga tcctggtac ggtctgcgtat tccgactcgt	5340
ccaacatcaa tacaacctat taatttcccc tcgtaaaaaaaaa taaggttac gaaatggaaaa	5400
tcaccatgag tgacgactga atccggtgag aatggaaaaaaaaa gcttatgcatttccag	5460
acttggtcaa caggccagcc attacgctcg tcataaaaaat cactcgcatc aaccaaaaccg	5520
ttattcattc gtgattgcgc ctgagcgaga cggaaatacgc gatcgctgtt aaaaggacaa	5580
ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcacatc aacaatattt	5640
tcacctgaat caggatattc ttcttaatacc tggaatgctg tttcccgaaa gatcgactgt	5700
gtgagtaacc atgcacatc aggagtaacgg ataaaaatgct tgatggcgg aagaggcata	5760
aattccgtca gccagtttag tctgaccatc tcatactgtaa catcattggc aacgctaccc	5820
ttggccatgtt tcagaaacaa ctctggcgc tcgggcttcc catacaatcg atagattgtc	5880
gcacctgatt gcccgcacatt atcgcgcgc catttataacc catataaattc agcatccatg	5940
ttggaattta atcgcggcct cgagcaagac gttcccggtt gaatatggct cataacaccc	6000
cttgcatttac tttttatgtt agcagacagt tttattgttc atgatgatatttttatct	6060
tgtgcaatgt aacatcagag attttggagac acaacgtggc tttccccc ccccccattat	6120
tgaagcattt atcagggtta ttgtctcatg agcggatatac tatttgaatg tatttagaaa	6180
aataaaacaaa taggggttcc ggcgcacattt ccccgaaaaag tgccacatgtc cgtctaagaa	6240
accatttattt tcatacgacatt aacctataaa aataggcgta tcacgaggcc ctggcgat	6298

<210> 10
 <211> 6328
 <212> DNA
 <213> Artificial sequence

<220>
 <223> plasmid CMV/R-gp145dCFI (BCBB)

<400> 10	
tcgcgcgttt cggtgtatgac ggtaaaaacc tctgacacat gcagctcccg gagacgggtca	60
cagcttgcgtt gtaagcggat gcccggagca gacaagcccg tcagggcgcg tcagcgggtg	120

ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg	300
tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
cccgctggc tgaccgccc acgaccccg cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatggg acttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcgtt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgggg ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa	840
ctccgccccca ttgacgcaaa tgggcccgt tagtcatcgc tattaccatg gtgatgcgtt tttggcagta	900
agctcggtta gtgaaccgtc agatcgctg gagacgccc ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccctt acgcgccccgc	1020
cgccttacct gaggccgcca tccacggccgg ttgagtcgcg ttctgcccgc tcccgctgt	1080
ggtgccctcct gaactacgtc cgccgtctag gtaagtttag agctcaggtc gagaccgggc	1140
ctttgtccgg cgctcccttg gagcctacct agactcagcc ggctctccac gctttgcctg	1200
accctgcttg ctcaactcta gttaacggtg gagggcagtg tagtctgagc agtactcggtt	1260
gctgcccgcg gcccaccag acataatagc tgacagacta acagactgtt ccttccatg	1320
ggtctttctt gcagtcaccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagac	1380
accatgcgcg tgaaggagaa gtaccagcac ctgtggcgct ggggctggcg ctggggcacc	1440
atgctgctgg gcatcctgat gatctgcaac gccgaggaga agctgtgggt gaccgtgtac	1500
tacggcgtgc ccgtgtggaa ggaggccacc accaccctgt tctgcgcag cgaccgcaag	1560
gcctacgaca ccgaggtgca caacgtgtgg gccacccacg cctgcgtgcc caccgacccc	1620
aaccccccagg aggtggagct gaagaacgtg accgagaact tcaacatgtg gaagaacaac	1680
atggtgagc agatgcacga ggacatcatc agcctgtggg accagagcct gaagccctgc	1740
gtgaagctga cccccctgtg cgtgaccctg aactgcacccg acctgcgc当地 cgccaccaac	1800
ggaaacgaca caaacacaac aagcagcagc agaggaatgg tgggaggagg cgagatgaag	1860
aactgcagct tcaacatcac caccaacatc cgccgc当地 tgcagaagga gtacgc当地	1920
ttctacaagc tggacatcgc ccccatcgc当地 aacaactcca acaacagata tagactgatt	1980
agctgcaacg cttccaccat cacccaggct tgccgaaag ttaacttcga cccgatccc	2040
atccactact gcgc当地 tggttacgct atcctgaaat gcaacaacaa aaccccttcc	2100

ggtaaaggtc	cgtgcaacaa	cgttccacc	gttcagtgc	cccatggtat	caaaccggtt	2160
gtttccaccc	agctgctgct	gaacggttcc	ctggctgaaa	aagaaatcat	catccgttcc	2220
gaaaacctga	ccgacaacgt	taaaaccatc	atcggtcacc	tgaacaaatc	cgttgaatc	2280
gtttgcaccc	gtccgaacaa	caacacccgt	aaatccatgc	gtatcggtcc	gggtcagacc	2340
ttctacgcta	ccggtgacat	catcggtgac	atccgtcagg	cttactgcaa	catctccggt	2400
tccaaatgga	acgaaaccct	gaaacgtgtt	aaagaaaaac	tgcaggaaaa	ctacaacaac	2460
aacaaaacca	tcaaattcgc	tccgtcctcc	ggtggtgacc	tggaaatcac	cacccactcc	2520
ttcaactgcc	gtgggtgaatt	cttctactgc	aacagcaccc	agctgtttaa	ttccacatgg	2580
aacgtgaccg	aggagagcaa	caacacccgt	gagaacaaca	ccatcaccc	gccctgccgc	2640
atcaagcaga	tcatcaacat	gtggcaggag	gtgggcccgc	ccatgtacgc	cccccccatc	2700
cgcggccaga	tccgctgcag	cagcaacatc	accggcctgc	tgctgaccgc	cgacggcggc	2760
cccgaggaca	acaagaccga	ggtgtccgc	cctggcggcg	gcgacatgcg	cgacaactgg	2820
cgcagcgagc	tgtacaagta	caaggtggtg	aagatcgagc	ccctggcggt	ggccccacc	2880
aaggccaagc	ttaccgtcca	ggcccgctg	ctgctgagcg	gcatcgtgca	gcagcagaac	2940
aacctgctgc	gcgccatcga	ggcccagcag	cacctgctgc	agctgacccgt	gtggggcatc	3000
aagcagctgc	aggcccgctg	gctggccgtg	gagcgctacc	tgcgcgacca	gcagctcctc	3060
aagatctggg	acaacatgac	ctggatcgag	tgggaccgcg	agatcaacaa	ctacaccagc	3120
atcatctaca	gcctgatcga	ggagagccag	aaccagcagg	agaagaacga	gcaggagctg	3180
ctggagctgg	acaagtggc	cagcctgtgg	aactggttcg	acatcacca	gtggctgtgg	3240
tacatcaaga	tcttcatcat	gatcggtggc	ggcctgatcg	gcctgcgc	cgtgttcagc	3300
gtgctgagca	tctgaggatc	cagatctgct	gtgccttcta	gttgccagcc	atctgttgg	3360
tgccccctccc	ccgtgccttc	cttgaccctg	gaaggtgcca	ctcccactgt	ccttcctaa	3420
taaaatgagg	aaattgcata	gcattgtctg	agtaggtgtc	attctattct	gggggggtggg	3480
gtggggcagg	acagcaaggg	ggaggattgg	gaagacaata	gcaggcatgc	tggggatgcg	3540
gtgggctcta	tgggtaccca	ggtgctgaag	aattgacccg	gttcctcctg	ggccagaaag	3600
aagcaggcac	atccccctct	ctgtgacaca	ccctgtccac	gcccctggtt	cttagttcca	3660
cccccaactca	taggacactc	atagctcagg	agggtccgc	cttcaatccc	acccgctaaa	3720
gtacttggag	cggtctctcc	ctccctcatc	agcccaccaa	accaaaccata	gcctccaaga	3780
gtgggaagaa	attaaagcaa	gataggctat	taagtgcaga	gggagagaaa	atgcctccaa	3840
catgtgagga	agtaatgaga	gaaatcatag	aattttaagg	ccatcatggc	cttaatcttc	3900
cgcttcctcg	ctcaactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgg	cggtatcagc	3960
tcactcaaag	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	4020

gtgagcaaaa ggccagcaa aggccagggaa ccgtaaaaag gccgcgttgc tggcgaaaa	4080
ccataggctc cgccccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg	4140
aaacccgaca ggactataaa gataccaggc gttccccc ggaagctccc tcgtgcgctc	4200
tcctgttccg accctgccgc ttaccggata cctgtccgccc tttctccctt cgggaagcgt	4260
ggcgctttct catagctcac gctgttaggta tctcagttcg gtgttaggtcg ttgcgtccaa	4320
gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgccgccttat ccggtaacta	4380
tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa	4440
caggattagc agagcgaggt atgttaggcgg tgctacagag ttcttgaagt ggtggcctaa	4500
ctacggctac actagaagaa cagtattgg tatctgcgct ctgctgaagc cagttacctt	4560
cggaaaaaga gttggtagct cttgatccgg caaacaacc accgctggta gcgggtggttt	4620
ttttgttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat	4680
cttttctacg gggcttgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat	4740
gagattatca aaaaggatct tcacctagat ccttttaat taaaaatgaa gttttaaatc	4800
aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc	4860
acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcg gggggggggg	4920
gcgctgaggt ctgcctcgtg aagaagggtgt tgctgactca taccaggcct gaatcgcccc	4980
atcatccagc cagaaagtga gggagccacg gttgatgaga gctttgtgt aggtggacca	5040
gttggtgatt ttgaactttt gcttgcac ggaacggctc gcgttgcgg gaagatgcgt	5100
gatctgatcc ttcaactcag caaaaaggatcg atttattcaa caaagccccc gtccgtcaa	5160
gtcagcgtaa tgctctgcca gtgttacaac caattaacca attctgatta gaaaaactca	5220
tcgagcatca aatgaaaactg caatttattc atatcaggat tatcaatacc atattttga	5280
aaaagccgtt tctgtatga aggagaaaac tcaccgaggc agttccatag gatggcaaga	5340
tcctggtatac ggtctgcgtat tccgactcgt ccaacatcaa tacaacctat taatttcccc	5400
tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag tgacgactga atccggtag	5460
aatggcaaaa gcttatgcat ttctttccag acttggatcaa caggccagcc attacgctcg	5520
tcatcaaat cactcgcatc aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga	5580
cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc	5640
aggaacactg ccagcgcatac aacaatattt tcacctgaat caggatattc ttctaaatacc	5700
tggaatgctg tttcccgaa gatcgactgt gtgagtaacc atgcattatc aggagtacgg	5760
ataaaaatgct tgatggtcgg aagaggcata aattccgtca gccagtttag tctgaccatc	5820
tcatctgtaa catcattggc aacgctaccc ttgccatgtt tcagaaacaa ctctggcgca	5880
tcgggcttcc catacaatcg atagattgtc gcacctgatt gcccgcatt atcgcgagcc	5940
catttataacc catataaato agcatccatg ttggaaattta atcgcggcct cgagcaagac	6000

gtttcccggtt	aatatggct	cataacacccc	cttgttattac	tgttatgtt	agcagacagt	6060
tttattgttc	atgatgatat	attttatct	tgtcaatgt	aacatcagag	atttgagac	6120
acaacgtggc	tttccccccc	cccccattat	tgaagcattt	atcagggta	ttgtctcatg	6180
agcggataca	tatttgaatg	tatitagaaa	aataaaca	taggggtcc	gcgeacattt	6240
ccccgaaaag	tgccacctga	cgtctaagaa	accattatta	tcatgacatt	aacctataaa	6300
aataggcgta	tcacgaggcc	ctttcgct				6328

<210> 11
 <211> 6311
 <212> DNA
 <213> Artificial sequence

<220>
 <223> plasmid CMV/R-gp145dCFI (BCCC)

<400> 11	tcgcgcgtt	cggtgatgac	ggtaaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
	ttggcgggtg	tcgggctgg	cttaactatg	cggcatcaga	gcagattgtt	ctgagagtgc	180
	accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcagattgg	240
	ctattggcca	ttgcatacgt	tgtatccata	tcataatatg	tacattata	ttggctcatg	300
	tccaacatta	ccgccccgtt	gacattgatt	attgactagt	tattaatagt	aatcaattac	360
	ggggtcatta	gttcatagcc	catatatgga	gttccgcgtt	acataactta	cggtaaatgg	420
	cccgctggc	tgaccgccc	acgaccccg	cccattgacg	tcaataatga	cgtatgtcc	480
	catagtaacg	ccaataggga	ctttccattt	acgtcaatgg	gtggagtatt	tacggtaaac	540
	tgcccacttg	gcagttacatc	aagtgtatca	tatgccaatg	acgcccccta	ttgacgtcaa	600
	tgacggtaaa	tggccgcct	ggcattatgc	ccagttacatg	accttatggg	actttcctac	660
	ttggcagttac	atctacgtat	tagtcatcgc	tattaccatg	gtgatgcgg	tttggcagta	720
	catcaatggg	cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	accccattga	780
	cgtcaatggg	agtttggttt	ggcaccaaaa	tcaacgggac	tttccaaaat	gtcgtaacaa	840
	ctccgccccca	ttgacgcaaa	tgggcggtag	gcgtgtacgg	tgggaggtct	atataagcag	900
	agctcggtta	gtgaaccgtc	agatcgctg	gagacgccc	ccacgctgtt	ttgacctcca	960
	tagaagacac	cgggaccgat	ccagcctcca	tcggctcgca	tctctcccttc	acgcgcccgc	1020
	cggccctaccc	gaggccgcca	tccacgcccgg	ttgagtcgcg	ttctgcccgc	tcccgctgt	1080
	ggtgccctcct	gaactgcgtc	cggcgcttag	gtaagttaa	agctcaggtc	gagaccgggc	1140
	ctttgtccgg	cgctcccttg	gagcctaccc	agactcagcc	ggctctccac	gctttgcctg	1200
	accctgcttg	ctcaactcta	gttaacggtg	gagggcagtg	tagtctgagc	agtactcgtt	1260

gctgccgcgc	gcccaccagg	acataatagc	tgacagacta	acagactgtt	ccttcatg	1320
ggtctttct	gcagtcaccg	tcgtcgacac	gtgtgatcag	atatcgccgc	cgctctagac	1380
accatgcgcg	tgaaggagaa	gtaccagcac	ctgtggcgct	ggggctggcg	ctggggcacc	1440
atgctgctgg	gcatcctgat	gatctgcaac	gccgaggaga	agctgtgggt	gaccgtgtac	1500
tacggcgtgc	ccgtgtggaa	ggaggccacc	accaccctgt	tctgcgccag	cgaccgcaag	1560
gcctacgaca	ccgaggtgca	caacgtgtgg	gccacccacg	cctgcgtgcc	caccgacccc	1620
aaccccccagg	aggtggagct	gaagaacgtg	accgagaact	tcaacatgtg	gaagaacaac	1680
atggtggagc	agatgcacga	ggacatcatc	agcctgtggg	accagagcct	gaagccctgc	1740
gtgaagctga	ccccccctgtg	cgtgaccctg	aactgcacccg	acctgcgc当地	cgccaccaac	1800
ggaaacgaca	caaacacaac	aagcagcagc	agaggaatgg	tgggaggagg	cgagatgaag	1860
aactgcagct	tcaacatcac	caccaacatc	cgccgc当地	tgcagaagga	gtacgc当地	1920
ttctacaagc	tggacatcgc	ccccatcgac	aacaactcca	acaacagata	tagactgatt	1980
agctgcaacg	cttccaccat	cacccaggct	tgcccgaaag	ttaacttcga	cccgatccc当地	2040
atccactact	gcgc当地	tggttacgct	atcctgaaat	gcaacaacaa	aaccttctcc	2100
ggtaaaggc	cgtgcaacaa	cgttccacc	gttcagtgca	cccatggtat	caaaccggtt	2160
gtttccaccc	agctgctgct	gaacggttcc	ctggctgaaa	aagaaatcat	catccgttcc	2220
gaaaacctga	ccgacaacgt	taaaaccatc	atcgttcacc	tgaacaaatc	cgttgaaatc	2280
gtttgcaccc	gtccgaacaa	caacacccgt	aaatccatgc	gtatcggtcc	gggtcagacc	2340
ttctacgcta	ccggtgacat	catcggtgac	atccgtcagg	tttactgcaa	catctccggt	2400
tccaaatgga	acgaaaccct	gaaacgtgtt	aaagaaaaac	tgcagggaaa	ctacaacaac	2460
aacaaaacca	tcaaattcgc	tccgtcctcc	gggggtgacc	tggaaatcac	cacccactcc	2520
ttcaactgcc	gtggtaaatt	tttctactgc	aacaccaccc	gtctgttcaa	caacaacgct	2580
accgaagacg	aaaccatcac	cctgccgtgc	cgtatcaaac	agatcatcaa	catgtggcag	2640
ggtgttggtc	gtgctatgta	cgctccgc当地	atcgctggta	acatcacctg	caaatccaac	2700
atcaccggtc	tgctgctggt	tcgtgacggt	ggtaagaca	acaaaaccga	agaaatcttc	2760
cgtccgggtg	gtggtaacat	gaaagacaac	tggcggtccg	aactgtacaa	atacaaagtt	2820
atcgaactga	aaccgctggg	tatcgctccg	accggtgcta	agcttaccgt	tcaggctcgt	2880
cagctgctgt	cctccatcg	tcagcagcag	tccaaacctgc	tgcgtctat	cgaagctcag	2940
cagcacatgc	tgcagctgac	cgtttgggt	atcaaacagc	tgcagacccg	tgttctggct	3000
atcgaacgtt	acctgaaaga	ccagcagctc	gagatctgga	acaacatgac	ctggatggaa	3060
tgggaccgtg	aaatctccaa	ctacaccgac	accatctacc	gtctgctgga	agactcccg	3120
acccagcagg	aaaaaaaacga	aaaagacctg	ctggctctgg	actcctggaa	aaacctgtgg	3180
tcctgggttcg	acatctccaa	ctggctgtgg	tacatcaaaa	tcttcatcat	gatcggttggt	3240

ggtctgatcg	gtctgcgtat	catttcgct	gttctgtcca	tctgaggatc	cagatctgct	3300
gtgccttcta	gttgccagcc	atctgttgtt	tgcccctccc	ccgtgccttc	cttgaccctg	3360
gaagggtgcca	ctcccaactgt	ccttcctaa	taaaatgagg	aaattgcac	gcattgtctg	3420
agtaggtgtc	attctattct	gggggggtggg	gtggggcagg	acagcaaggg	ggaggattgg	3480
gaagacaata	gcaggcatgc	tggggatgctg	gtgggctcta	tgggtaccca	ggtgctgaag	3540
aattgacc	gttcctcctg	ggccagaaaag	aagcaggcac	atccccttct	ctgtgacaca	3600
ccctgtccac	gcccctgggtt	cttagttcca	gccccactca	taggacactc	atagctcagg	3660
agggctccgc	cttcaatccc	acccgctaaa	gtacttggag	cggtctctcc	ctccctcatc	3720
agcccaccaa	accaaaccata	gcctccaaga	gtgggaagaa	attaaagcaa	gataggctat	3780
taagtgcaga	gggagagaaa	atgcctccaa	catgtgagga	agtaatgaga	gaaatcatag	3840
aattttaagg	ccatgattta	aggccatcat	ggccttaatc	ttccgcttcc	tcgctcactg	3900
actcgctg	ctcggtcg	cggtcg	gagcggtatc	agtcactca	aaggcggtaa	3960
tacggttatc	cacagaatca	ggggataacg	cagggaaagaa	catgtgagca	aaaggccagc	4020
aaaaggccag	gaaccgtaaa	aaggcccg	tgctggcg	tttccatagg	ctccgcccc	4080
ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagagg	gcaaacc	acaggactat	4140
aaagatacca	ggcg	tttccc	cctggaa	ccctcg	ctctcctgtt	4200
cgcttaccgg	ataccgt	gtcc	tttcc	ccgacc	ctgc	4260
cacgctgt	gtatctc	atcgt	tttcc	caagct	gggc	4320
aaccccccgt	tcagccgac	cgctgc	tttcc	ctatcg	tgtgcac	4380
cgtaagaca	cgacttatcg	ccactggc	cagg	taacagg	atcagagc	4440
ggtatgt	cggtg	taca	gagtt	tttgc	taactac	4500
gaacagtatt	tggtatctgc	gctctgt	gat	tttgc	tttgc	4560
gctcttgc	cgcaaa	accacc	gtac	gggtt	tttttttgc	4620
agattacg	cagaaaaaa	ggatct	aagat	tttgc	ttttttgc	4680
acgctc	atcgt	tttgc	tttgc	ttttgc	ttttttgc	4740
tcttac	tttgc	tttgc	tttgc	ttttgc	ttttttgc	4800
agtaaaactt	tg	tttgc	tttgc	ttttgc	ttttttgc	4860
gtctat	tttgc	tttgc	tttgc	ttttgc	ttttttgc	4920
gtgaagaagg	tgttgc	tca	tac	tttgc	ttttttgc	4980
tgagggagcc	acggtt	gtat	tttgc	tttgc	ttttttgc	5040
tttgcttgc	cacgg	aaacgg	tctgc	tttgc	ttttttgc	5100
cagcaaaagt	tcgattt	tatt	caaca	aaagcc	ttttttgc	5160

ccagtgttac aaccaattaa ccaattctga ttagaaaaac tcatcgagca tcaaatgaaa	5220
ctgcaattta ttcatatcg gattatcaat accatatttt tgaaaaagcc gtttctgtaa	5280
tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt atcggtctgc	5340
gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtaa aaataaggtt	5400
atcaagttag aaatcaccat gagtgacgac tgaatccggt gagaatggca aaagcttatg	5460
catttcttc cagacttggta caacaggcca gccattacgc tcgtcatcaa aatcactcgc	5520
atcaaccaaa ccgttattca ttctgtgattt cgccctgagcg agacgaaata cgcgatcgct	5580
gttaaaagga caattacaaa caggaatcga atgcaaccgg cgccaggaaca ctgcccagcgc	5640
atcaacaata tttcacctg aatcaggata ttcttctaattt acctggaatg ctgtttccc	5700
ggggatcgca gtggtgagta accatgcattt atcaggagta cgatggaaat gcttgatgg	5760
cggaagaggc ataaaattccg tcagccagtt tagtctgacc atctcatctg taacatcatt	5820
ggcaacgcta ccttgccat gttcagaaa caactctggc gcatcgggct tcccatacaa	5880
tcgatagatt gtcgcacctg attgcccac attatcgca gcccatttat acccatataa	5940
atcagcatcc atgttggaaat ttaatcgccg cctcgagcaa gacgtttccc gttgaatatg	6000
gctcataaca ccccttgtat tactgtttat gtaagcagac agttttattt ttcatgtga	6060
tatattttta tcttgtgcaa tgtaacatca gagatttga gacacaacgt ggctttcccc	6120
cccccccat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga	6180
atgtatttag aaaaataaaac aaatagggt tccgcgcaca ttccccgaa aagtgccacc	6240
tgacgtctaa gaaaccatta ttatcatgac attaacctat aaaaataggc gtatcacgag	6300
gccctttcgt c	6311

<210> 12
 <211> 6312
 <212> DNA
 <213> Artificial sequence

<220>
 <223> plasmid CMV/R-gp145dCFI (CBBB)

<400> 12	
tcgcgcgttt cgggtatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tttatccata tcataatatg tacattata ttggctcatg	300
tccaaacatta ccgcctatgtt gacattgatt attgactagt tattatagt aatcaattac	360
ggggtaatta gtcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
ccgccttggc tgaccgcaca acgaccggcc cccattgacg tcaataatga cgtatgttcc	480

catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttgc caggtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggcccgctt ggcattatgc ccagtacatg accttatggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgggg tggcacaaaaa tcaacgggac tttccaaaat gtcgtaacaa	840
ctccgccccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataaggcag	900
agtcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgaccccca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccccc acgcgccccgc	1020
cgccttacccctt gaggccgcca tccacgcccgg ttgagtcgcg ttctgcccgc tcccgccctgt	1080
ggtgccctcctt gaactacgtc cgccgtctag gtaagtttag agctcaggtc gagaccgggc	1140
ctttgtccgg cgctccctt gggcttacccctt agactcagcc ggctctccac gctttgcctgt	1200
accctgcttgc ctaactcta gttaacggtg gagggcagtg tagtctgagc agtactcggtt	1260
gctgccgcgc gcccaccagg acataatagc tgacagacta acagactgtt cctttccatgt	1320
ggttttttctt gcagtcaccgc tcgtcgacac gtgtgatcag atatcgccgc cgctctagag	1380
atatcgccac catgcgtgtt cgtggatcc cgcgtactg gcccagtttggatgtggg	1440
gtatcctgggg tttctggatg atcatcatct gccgtttgtt tggtaacatg tgggttaccgg	1500
tttactacgg tggaccggat tggaccggacg ctaaaaccac cctgttctgc gcttccgaca	1560
ccaaaggctta cgaccgtgaa gttcacaacg tttggctac ccacgcttgc gttccgaccgc	1620
acccgaaccc gcaggaaatc gttctggaaa acgttaccga aaacttcaac atgtggaaaa	1680
acgacatggt tgaccagatg cacgaagaca tcatctccct gtgggaccag tccctgaaac	1740
cgtgcgttaa actgaccggc ctgtgcgtta ccctgcactg caccaacgct accttcaaaa	1800
acaacgttac caacgacatg aacaaagaaa tccgtactg ctccttcaac accaccaccg	1860
aaatccgtga caaaaaacag cagggttacg ctctgttcta ccgtccggac atcggtctgc	1920
tgaaagaaaa ccgtaaacaac tccaacaact ccgtataat cctgtatcaat tgcaacacca	1980
gcgtgtacac ccaggcctgc cccaaaggtaa gcttcgagcc catccccatc cactactgcg	2040
ccccccggg ctgcgccttc ctgaagtgcaggacaggaa gttcaacggc aaggggccctt	2100
gcaccaacgt gaggcaccgtg cagtgcaccc acggcatccg ccccggtggtg agcaccggc	2160
tgctgtgaa cggtagcctg gcccggggagg aggtgggtat ccgcagcgct aacttcgccc	2220
acaacgcca ggtgatcatc gtgcagctga acgagagcgt ggagatcaac tgcacccggc	2280
ccaacaacaa caccggcaag agcatccaca tcggccccgg ccgcgccttc tacaccaccg	2340
gcgagatcat cggcgacatc cgccaggccc actgcaacct gagccgcggc aagtggaaacg	2400

acaccctgaa	caagatcgtg	atcaagctgc	gcgagcagtt	cgccaacaag	accatcgtgt	2460
tcaagcacag	cagcggcggc	gaccccgaga	tcgtgaccca	cagcttcaac	tgccgcggcg	2520
aattcttcta	ctgcaacagc	acccagctgt	ttaattccac	atggaacgtg	accgaggaga	2580
gcaacaacac	cgtggagaac	aacaccatca	ccctgccctg	ccgcatcaag	cagatcatca	2640
acatgtggca	ggaggtgggc	cgcgcacatgt	acgccccccc	catccgcggc	cagatccgct	2700
gcagcagcaa	catcaccggc	ctgctgctga	cccgcgacgg	cggcccccag	gacaacaaga	2760
ccgaggtgtt	ccgcctggc	ggcggcgaca	tgcgcgacaa	ctggcgcagc	gagctgtaca	2820
agtacaaggt	ggtgaagatc	gagccctgg	gcgtggccccc	caccaaggcc	aagcttaccg	2880
tccaggcccg	cctgctgctg	agcggcatcg	tgcagcagca	gaacaacctg	ctgcgcgcca	2940
tcgaggccca	gcagcacctg	ctgcagctga	ccgtgtgggg	catcaagcag	ctgcaggccc	3000
gcgtgctggc	cgtggagcgc	tacctgcgcg	accagcagct	cctcaagatc	tggacaaca	3060
tgacctggat	cgagtggac	cgcgagatca	acaactacac	cagcatcatc	tacagcctga	3120
tcgaggagag	ccagaaccag	caggagaaga	acgagcagga	gctgctggag	ctggacaagt	3180
ggccagcct	gtggaactgg	ttcgacatca	ccaagtggct	gtggcacatc	aagatcttca	3240
tcatgatcgt	ggcggcctg	atcggcctgc	gcatcgtgtt	cagcgtgctg	agcatctgag	3300
gatccagatc	tgctgtgcct	tctagttgcc	agccatctgt	tgtttgcccc	tcccccgtgc	3360
cttccttgac	cctggaaggt	gccactccca	ctgtccttcc	ctaataaaat	gaggaaattg	3420
catcgatttgc	tctgagtagg	tgtcattcta	ttctgggggg	tggggtgggg	caggacagca	3480
agggggagga	ttgggaagac	aatagcaggc	atgtgggaa	tgcggtgggc	tctatggta	3540
cccaggtgct	gaagaattga	cccggttcct	cctgggcccag	aaagaagcag	gcacatcccc	3600
ttctctgtga	cacaccctgt	ccacgcccct	ggttcttagt	tccagcccca	ctcataggac	3660
actcatagct	caggaggcgt	ccgccttcaa	tcccacccgc	taaagtactt	ggagcggtct	3720
ctccctccct	catcagccca	ccaaacccaaa	cctagcctcc	aagagtggga	agaaattaaa	3780
gcaagatagg	ctattaagt	cagagggaga	gaaaatgcct	ccaacatgtg	aggaagtaat	3840
gagagaaaatc	atagaatttt	aaggccatca	tggcottaat	cttccgccttc	ctcgctcact	3900
gactcgctgc	gctcggtcgt	tcggctgcgg	cgagcggtat	cagctcactc	aaaggcggta	3960
atacggttat	ccacagaatc	aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	4020
caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	gctccgcccc	4080
cctgacgagc	atcacaaaaaa	tcgacgctca	agttaggt	ggcgaaaccc	gacaggacta	4140
taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctccctgt	tccgaccctg	4200
ccgcttaccg	gatacctgtc	cgcccttctc	ccttcgggaa	gcgtggcgct	ttctcatagc	4260
tcacgctgt	ggtatctcag	ttcggtgttag	gtcgttcgct	ccaagctggg	ctgtgtgcac	4320
gaaccccccgg	ttcagcccgaa	ccgctgcgc	ttatccggt	actatcgct	tgagtccaac	4380

ccggtaagac acgacttatac gccactggca gcagccactg gtaacaggat tagcagagcg	4440
aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga	4500
agaacagtat ttggtatctg cgctctgctg aagccagtta cttcgaaa aagagtttgt	4560
agctcttgat cccgcaaaaca aaccaccgct ggtagcggtg gttttttgt ttgcaaggcag	4620
cagattacgc gcagaaaaaa aggatctaa gaagatcctt tgatctttc tacgggtct	4680
gacgctcagt ggaacgaaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg	4740
atcttcacct agatcctttt aaattaaaaa tgaagttta aatcaatcta aagtatatat	4800
gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggacccat ctcagcgtac	4860
tgtctatttc gttcatccat agttgcctga ctcccccccc gggggcgctg aggtctgcct	4920
cgtgaagaag gtgttgctga ctcataccag gcctgaatcg ccccatcatc cagccagaaa	4980
gtgagggagc cacggttgat gagagctttg ttgttaggtgg accagtttgt gatttgaac	5040
ttttgttttgc ccacggaacg gtctgcgttgc tcggaaagat gcgtgatctg atccttcaac	5100
tcagcaaaag ttcgatttat tcaacaaagc cgccgtcccc tcaagtcaagc gtaatgctct	5160
gccagtggttca accaattctg attagaaaaa ctcatcgagc atcaaatgaa	5220
actgcaattt attcatatca ggattatcaa taccatattt ttgaaaaagc cgtttctgtt	5280
atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg tattcggtctg	5340
cgattccgac tcgtccaaaca tcaatacaac ctattatcc cccctcgatca aaaataaggt	5400
tatcaagtga gaaatcacca tgagtgacga ctgaatccgg tgagaatggc aaaagcttat	5460
gcatttctt ccagacttgt tcaacaggcc agccattacg ctcgtcatca aaatcactcg	5520
catcaaccaa accgttatttc attcgtgatt gcgcctgagc gagacgaaat acgcgatcgc	5580
tgttaaaagg acaattacaa acaggaatcg aatgcaaccg ggcgcggaaac actgccagcg	5640
catcaacaat attttcacct gaatcaggat attcttctaa tacctggat gctgtttcc	5700
cggggatcgc agtggtgagt aaccatgcat catcaggagt acggataaaa tgcttgatgg	5760
tcggaagagg cataaaattcc gtcagccagt tttagtctgac catctcatct gtaacatcat	5820
tggcaacgct acctttgcca tgttttagaa acaactctgg cgcatcgccc ttccatata	5880
atcgatagat tgcgcaccc gattgcccga cattatcgcg agcccatatc tacccatata	5940
aatcagcatc catgttgaa tttaatcgcg gcctcgagca agacgtttcc cggtgaatat	6000
ggctcataac accccttgcata ttactgttta tgtaagcaga cagtttattt gttcatgtat	6060
atataattttt atcttgcata atgtaacatc agagattttg agacacaacg tggctttccc	6120
ccccccccca ttattgaagc atttatcagg gttattgtct catgagcgga tacatatttgc	6180
aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttcccgaa aaagtgcac	6240
ctgacgtctta agaaaccattt attatcatgc cataaccta taaaaatagg cgatcacga	6300

ggccctttcg tc	6312
<210> 13	
<211> 6295	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> plasmid CMV/R-gp145dCFI (CBCC)	
<400> 13	
tcgcgcgtt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca	60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg cttaaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacattata ttggctcatg	300
tccaacatta ccgcattgtt gacattgatt attgactagt tattaatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
ccgcgcgtgc tgaccgccc acgacccccc cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagttt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg acctttaggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcgg tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgggg ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa	840
ctccgcgcgc ttgacgcaaa tggcggttag gcgtgtacgg tgggagggtct atataagcag	900
agctcggtta gtgaaccgtc agatgcctg gagacgccat ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccctc acgcgcgcgc	1020
cgcctacact gaggccgcgc tccacccgg ttgagtcgcg ttctgcgcgc tccgcctgt	1080
ggtgccctcct gaactgcgtc cgccgtctag gtaagttaa agctcaggc gagaccgggc	1140
ctttgcggc cgctccctt gggccctact agactcagcc ggctctccac gcttgcgtt	1200
accctgcttgc tcaactcta gttaaacggtg gggccgttgc tagtctgagc agtactcg	1260
gctgcgcgcgc gcccaccag acataatagc tgacagacta acagactgtt ctttccatg	1320
ggtttttctt gcaactgcgtc tcgtcgacac gtgtgatcag atatgcggc cgctctagag	1380
atatgcgcac catgcgtt cgtggatcc cgcttaactg gcccgttgc tggatgtggg	1440
gtatccctggg tttctggatg atcatcatct gcccgttgc tggtaacatg tgggttaccg	1500
tttactacgg tggccgggtt tggaccgacg ctaaaaccac cctgttgc gttccgaca	1560
ccaaaggccta cgaccgtgaa gttcacaacg tttggctac ccacgcttgc gttccgaccg	1620

acccgaaccc	gcagggaaatc	gttctggaaa	acgttaccga	aaacttcaac	atgtggaaaa	1680
acgacatggt	tgaccagatg	cacgaagaca	tcatctccct	gtgggaccag	tccctgaaac	1740
cgtgcgttaa	actgaccccg	ctgtgcgtta	ccctgcactg	caccaacgct	accttcaaaa	1800
acaacgttac	caacgacatg	aacaaagaaa	tccgttaactg	ctcccttcaac	accaccaccg	1860
aaatccgtga	caaaaaacag	cagggttacg	ctctgttcta	ccgtccggac	atcggtctgc	1920
tgaaagaaaa	ccgttaacaac	tccaacaact	ccgaatacat	cctgatcaat	tgcaacacca	1980
gcgtgatcac	ccaggcctgc	cccaagggtga	gcttcgagcc	catccccatc	cactactgctg	2040
ccccccgcgg	cttcgccttc	ctgaagtgc	aggacaagaa	gttcaacggc	aaggggccct	2100
gcaccaacgt	gagcaccgtg	cagtgcaccc	acggcatccg	ccccgtggtg	agcacccagc	2160
tgctgatgaa	cggtagcctg	gccgaggagg	aggtggtgat	ccgcagcgt	aacttcgccc	2220
acaacgcca	ggtgatcatc	gtgcagctga	acgagagcgt	ggagatcaac	tgcacccgccc	2280
ccaacaacaa	cacccgcaag	agcatccaca	tcggcccccgg	ccgcgccttc	tacaccaccg	2340
gcgagatcat	cggcgacatc	cggcaggccc	actgcaacct	gagccgcgcc	aagtggAACG	2400
acaccctgaa	caagatcgtg	atcaagctgc	gcgagcgtt	cgcaacaag	accatcgtgt	2460
tcaaggcacag	cagcggcgcc	gaccccgaga	tcgtgaccca	cagcttcaac	tgcggcgccg	2520
aattcttcta	ctgcaacacc	acccgtctgt	tcaacaacaa	cgctaccgaa	gacgaaacca	2580
tcaccctgcc	gtgccgtatc	aaacagatca	tcaacatgtg	gcagggtgtt	ggtcgtgcta	2640
tgtacgctcc	gccgatcgct	ggtaacatca	cctgcaaatc	caacatcacc	ggtctgctgc	2700
tggttcgtga	cggtggtgaa	gacaacaaa	ccgaagaaat	cttcgtccg	ggtggtggta	2760
acatgaaaga	caactggcgt	tccgaactgt	acaaatacaa	agttatcgaa	ctgaaaccgc	2820
tgggtatcgc	tccgaccggt	gctaagctta	ccgttcaggc	tcgtcagctg	ctgtccctcca	2880
tcgttcagca	gcagtccaa	ctgctgcgt	ctatcgaagc	tcagcagcac	atgctgcagc	2940
tgaccgtttg	gggtatcaa	cagctgcaga	cccggtttt	ggctatcgaa	cgttacactga	3000
aagaccagca	gctcgagatc	tggaacaaca	tgacctggat	ggaatgggac	cgtaaatct	3060
ccaactacac	cgacaccatc	taccgtctgc	tggaagactc	ccagaccacag	cagaaaaaaa	3120
acgaaaaaga	cctgctggct	ctggactcct	ggaaaaacct	gtggcctgg	ttcgacatct	3180
ccaactggct	gtggatcacatc	aaaatctca	tcatgatcgt	tggtggtctg	atcggtctgc	3240
gtatcatctt	cgtgttctg	tccatctgag	gatccagatc	tgctgtgcct	tctagttgcc	3300
agccatctgt	tgtttgcccc	tccccctgc	cttccttgac	cctggaaggt	gccactccca	3360
ctgtcccttc	ctaataaaaat	gaggaaattg	catgcattg	tctgagtagg	tgtcattcta	3420
ttctgggggg	tgggtgggg	caggacagca	agggggagga	ttgggaagac	aatagcaggc	3480
atgctgggga	tgcgggtggc	tctatggta	cccaggtgct	gaagaattga	cccggttcct	3540

cctgggccag	aaagaagcag	gcacatcccc	ttctctgtga	cacaccctgt	ccacgcccct	3600
ggttcttagt	tccagcccc	ctcataggac	actcatagct	caggaggct	ccgccttcaa	3660
tcccacccgc	taaagtactt	ggagcggtct	ctccctccct	catcagccc	ccaaacccaa	3720
cctagcctcc	aagagtggga	agaaattaaa	gcaagatagg	ctattaagt	cagagggaga	3780
gaaaatgcct	ccaacatgtg	aggaagtaat	gagagaaatc	atagaatttt	aaggccatga	3840
ttaaggcca	tcatggcctt	aatctccgc	ttcctcgctc	actgactcgc	tgcgctcggt	3900
cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	3960
atcagggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	4020
taaaaaggcc	gcgttgctgg	cgttttcca	taggctccgc	ccccctgacg	agcatcaca	4080
aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcg	4140
tccccotgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgcccgtta	ccggatacct	4200
gtccgcctt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgt	gtaggtatct	4260
cagttcggtg	taggtcggtc	gctccaagct	gggtgtgtg	cacgaacccc	cggttcagcc	4320
cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aaccggtaa	gacacgactt	4380
atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	4440
tacagagttc	ttgaagtgg	ggcctaacta	cggctacact	agaagaacag	tatttggtat	4500
ctgcgcctcg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctt	gatccggcaa	4560
acaaccacc	gctggtagcg	gtggttttt	tgttgcaag	cagcagatta	cgccgagaaa	4620
aaaaggatct	caagaagatc	ctttgatctt	tttacgggg	tctgacgctc	agtggAACGA	4680
aaactcacgt	taagggattt	tggtcatgag	attatcaaaa	aggatcttca	cctagatcct	4740
tttaaattaa	aaatgaagtt	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggctctga	4800
cagttaccaa	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	4860
catagttgcc	tgactcgggg	ggggggggcg	ctgaggtctg	cctcgtgaag	aaggtgttgc	4920
tgactcatac	caggcctgaa	tcgccccatc	atccagccag	aaagtgaggg	agccacgg	4980
gatgagagct	ttgttgttagg	tggaccagtt	ggtgatttt	aactttgct	ttgccacgga	5040
acggctcg	ttgtcggaa	gatgcgtgat	ctgatccttc	aactcagcaa	aagttcgatt	5100
tattcaacaa	agccgccc	ccgtcaagtc	agcgtaatgc	tctgccagtg	ttacaaccaa	5160
ttaaccaatt	ctgattagaa	aaactcatcg	agcatcaat	gaaactgcaa	tttattcata	5220
tcaggattat	caataccata	ttttgaaaa	agccgttct	gtaatgaagg	agaaaactca	5280
ccgaggcagt	tccataggat	ggcaagatcc	tggtatcggt	ctgcgattcc	gactcg	5340
acatcaatac	aaccttattaa	tttccctcg	tcaaaaataa	ggttatcaag	tgagaaatca	5400
ccatgagtga	cgactgaatc	cggtgagaat	ggcaaaagct	tatgcatttc	tttccagact	5460
tgttcaacag	gccagccatt	acgctcgtca	tcaaaatcac	tcgcataaac	caaaccgtta	5520

ttcattcgtg attgcgcctg agcgagacga aatacgcgat cgctgttaaa aggacaatta	5580
caaacaggaa tcgaatgcaa cggcgccagg aacactgcc agcgcataac aatatttca	5640
cctgaatcag gatattcttc taatacctgg aatgtgttt tcccgggat cgcaatggtg	5700
agtaaccatg catcatcagg agtacggata aaatgcttga tggtcgaaag aggataaat	5760
tccgtcagcc agtttagtct gaccatctca tctgtacat cattggcaac gctaccttg	5820
ccatgttca gaaacaactc tggcgcatcg ggcttccat acaatcgata gattgtcgca	5880
cctgattgcc cgacattatc gcgagccat ttataccat ataaatcagc atccatgttg	5940
gaatttaatc gcccctcga gcaagacgtt tcccggttgaat tatggctcat aacaccctt	6000
gtattactgt ttatgtaaagc agacagttt attgttcatg atgatatatt tttatcttgt	6060
gcaatgtaac atcagagatt ttgagacaca acgtggctt cccccccccc ccattattga	6120
agcatttatac agggttatttgc tctcatgagc ggatacatat ttgaatgtat ttagaaaaat	6180
aaacaaatag gggttcccgac cacattccc cgaaaagtgc cacctgacgt ctaagaaacc	6240
attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtc	6295

<210> 14
 <211> 6325
 <212> DNA
 <213> Artificial sequence

<220>
 <223> plasmid CMV/R-gp145dCFI (CCBC)

<400> 14	
tcgcgcgtt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggta	60
cagcttgtct gtaagcgat gcccggagca gacaagcccg tcagggcgac tcagcggtg	120
ttggcggttgc tggggctgg cttaactatg cggcatcaga gcagattgtt ctgagagtgc	180
accatatgcg gtgtgaaata ccgcacagat gcgttggaggaaaatccgc atcagattgg	240
ctattggcca ttgcatacgt tttatccata tcataatatg tacattata ttggctcatg	300
tccaaacatta ccgcattgtt gacattgatt attgactgtt tttatatgtt aatcaattac	360
ggggtcatta gttcatagcc catatatggat gttccgcgtt acataacttta cggtttatgg	420
ccgccttgc tgaccggccca acgaccccg cccattgacg tcaataatgtt cgtatgttcc	480
catagtaacg ccaataggga ctttccatttgc acgttacatgg gtggaggattt tacggtaaac	540
tgcccacttgc gcagtacatc aagtgtatca tatgttacatgc acgcccccta ttgacgttac	600
tgacggtaaa tggccgcctt ggcattatgc ccagtacatg accttattggg actttccatc	660
ttggcagtac atctacgtat tagtcatgc tattaccatg gtgtatgcgtt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttggggggggcaccaaaa tcaacgggac tttccaaaat gtcgttacaa	840

ctccgccccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag 900
 agctcgttta gtgaaccgto agatcgctg gagacgcccatt ccacgctgtt ttgacctcca 960
 tagaagacac cgggaccgat ccagcctcca tcggctcgca tctctccttc acgcgcccgc 1020
 cgcctacct gaggccgcca tccacgcccgg ttgagtcgctg ttctgcccgc tccgcctgt 1080
 ggtgcctcct gaactgcgto cgccgtcttag gtaagttaa agctcaggc gagaccggc 1140
 ctttgcctgg cgctcccttg gagcctacct agactcagcc ggctctccac gcttgcctg 1200
 accctgcttg ctcaactcta gttaacggtg gaggcagtg tagtctgagc agtactcggt 1260
 gctgccgcgc gcgccaccag acataatagc tgacagacta acagactgtt ccttccatg 1320
 ggtctttct gcagtcaccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagag 1380
 atatcgccac catgcgtgtt cgtggatcc cgcgtaaactg gccgcagtgg tggatgtggg 1440
 gtatcgtggg ttctggatg atcatcatct gccgtgttgg tggtaacatg tgggttaccg 1500
 tttactacgg tggaccgacg ctaaaaccac cctgttctgc gctccgaca 1560
 ccaaagocta cgaccgtgaa gttcacaacg tttgggtac ccacgcttgc gttccgaccg 1620
 acccgaaccc gcagggaaatc gttctggaaa acgttaccga aaacttcaac atgtggaaaa 1680
 acgacatggt tgaccagatg cacgaagaca tcatctccct gtgggaccag tccctgaaac 1740
 cgtgcgttaa actgaccggc ctgtgcgtt ccctgcactg caccaacgct accttcaaaa 1800
 acaacgttac caacgacatg aacaaagaaaa tccgtaaactg ctccctcaac accaccaccg 1860
 aaatccgtga caaaaaacag cagggttacg ctctgttcta ccgtccggac atcggtctgc 1920
 tggaaagaaaa ccgtaaacaac tccaacaact ccgaatacat cctgatcaat tgcaacgctt 1980
 ccaccatcac ccaggcttgc ccgaaagtta acttcgaccc gatcccgatc cactactgcg 2040
 ctccggctgg ttacgctatc ctgaaatgca acaacaaaac cttctccggt aaaggtccgt 2100
 gcaacaacgt ttccaccgtt cagtgcaccc atggtatcaa accgggttgg tccacccagc 2160
 tgctgctgaa cggttccctg gctgaaaaag aaatcatcat ccgttccgaa aacctgaccg 2220
 acaacgttaa aaccatcatc gttcacctga acaaattccgt tgaaatcggt tgccacccgtc 2280
 cgaacaacaa caccgtaaa tccatgcgtt tcggccggg tcagacccctc tacgttaccg 2340
 gtgacatcat cgggtgacatc cgtcaggctt actgcaacat ctccgggttcc aaatggAAC 2400
 aaaccctgaa acgtgttaaa gaaaaactgc agggaaaacta caacaacaac aaaaccatca 2460
 aattcgctcc gtcctccggg ggtgacccgtt aaatcaccac ccactccctc aactgcccgt 2520
 gtgaattttt ctactgcaac agcaccaccgc tggtttattc cacatggAAC gtgaccgagg 2580
 agagcaacaa caccgtggag aacaacacca tcaccctgccc ctgcccacatc aagcagatca 2640
 tcaacatgtg gcaggaggtg ggccgcggca tgtacgcccc ccccatccgc ggccagatcc 2700
 gctgcagcag caacatcacc ggcctgctgc tgacccggcga cggcggcccc gaggacaaca 2760
 agaccgaggt gttccgcctt ggccggccggc acatgcgcga caactggcgc agcgagctgt 2820

acaagtacaa ggtggtaag atcgagcccc tggcggtggc ccccaccaag gccaaagctta	2880
ccgttcaaggc tcgtcagctg ctgtcctcca tcgttcagca gcagtccaaac ctgctgcgtg	2940
ctatcgaagc tcagcagcac atgctgcagc tgaccgttg gggtatcaaa cagctgcaga	3000
cccggtttct ggctatcgaa cgttacctga aagaccagca gctcgagatc tggaaacaaca	3060
tgacctggat ggaatgggac cgtgaaatct ccaactacac cgacaccatc taccgtctgc	3120
tggaaagactc ccagacccag cagaaaaaaa acgaaaaaga cctgctggct ctggactcct	3180
ggaaaaacct gtggtcctgg ttgcacatct ccaactggct gtggtacatc aaaatcttca	3240
tcatgatcgt tgggtgtctg atcggtctgc gtatcatctt cgctgttctg tccatctgag	3300
gatccagatc tgctgtgcct tctagttgcc agccatctgt tgtttgcctt tccccgtgc	3360
tttccttgac cctggaaggt gccactccca ctgtccttcc ctaataaaat gaggaaattg	3420
catcgatttgc tctgagtagg tgcattcta ttctgggggg tgggtgggg caggacagca	3480
agggggagga ttgggaagac aatagcaggc atgtggggta tgcgggtggc tctatggta	3540
cccaggtgct gaagaattga cccggttcct cctggggccag aaagaagcag gcacatcccc	3600
ttctctgtga cacaccctgt ccacgcccct ggttcttagt tccagccca ctcataggac	3660
actcatagct caggagggt cgccttcaa tcccacccgc taaagtactt ggagcggtct	3720
ctccctccct catcagccca ccaaaccaaa cctagctcc aagagtggga agaaattaaa	3780
gcaagatagg ctattaagtg cagagggaga gaaaatgcct ccaacatgtg aggaagtaat	3840
gagagaaatc atagaatttt aaggccatga tttaaggcca tcatggcctt aatcttccgc	3900
ttcctcgctc actgactcgc tgcgctcggt cggtcgctg cggcgagcgg tatcagctca	3960
ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg	4020
agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgcgtt cgttttcca	4080
taggctccgc cccccctgacg agcatcaca aatcgacgc tcaagtca ggtggcgaaa	4140
cccgacagga ctataaagat accaggcggt tccccctgga agctccctcg tgctctcc	4200
tgttccgacc ctgcccgtta ccggataacct gtccgcctt ctccctcgga gaagcgtggc	4260
gctttctcat agtcacgct gtaggtatct cagttcggtg taggtcggtc gtcggaaatct	4320
gggctgtgtg cacgaacccc cgcgttcagcc cgaccgctgc gccttatccg gtaactatcg	4380
tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag	4440
gattagcaga gcgaggtatg taggcgggtc tacagagtcc ttgaagtggc ggcctaacta	4500
cggtacact agaagaacag tatttggat ctgcgtctg ctgaagccag ttaccttcgg	4560
aaaaagagtt ggtagcttt gatccggcaa acaaaccacc gctggtagcg gtggtttttt	4620
tgtttgcaag cagcagatta cgcccgaaaaaaa aaaaggatct caagaagatc ctttgatctt	4680
ttctacgggg tctgacgctc agtggaaacga aaactcacgt taagggattt tggcatgag	4740

attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aatgaagtt	ttaaatcaat	4800
ctaaagtata	tatgagtaaa	cttggctctga	cagttaccaa	tgcttaatca	gtgaggcacc	4860
tatctcagcg	atctgtctat	ttcggtcatc	catagttgcc	tgactcgggg	ggggggggcg	4920
ctgaggtctg	cctcgtgaag	aagggtttgc	tgactcatac	caggcctgaa	tcgccccatc	4980
atccagccag	aaagtgaggg	agccacggtt	gatgagagct	ttgttgttagg	tggaccagtt	5040
ggtgattttg	aacttttgct	ttgccacgga	acggtctgctg	ttgtcgggaa	gatgcgtgat	5100
ctgatccttc	aactcagcaa	aagttcgatt	tattcaacaa	agccgcccgc	ccgtcaagtc	5160
agcgtaatgc	tctgccagtg	ttacaaccaa	ttaaccaatt	ctgattagaa	aaactcatcg	5220
agcatcaaata	gaaactgcaa	tttattcata	tcaggattat	caataccata	ttttgaaaa	5280
agccgtttct	gtaatgaagg	agaaaactca	ccgaggcagt	tccataggat	ggcaagatcc	5340
tggtatcggt	ctgcgattcc	gactcgtcca	acatcaatac	aacctattaa	tttcccctcg	5400
tcaaaaataa	ggttatcaag	tgagaaatca	ccatgagtga	cgactgaatc	cggtgagaat	5460
ggcaaaagct	tatgcatttc	tttccagact	tgttcaacag	gccagccatt	acgctcgtca	5520
tcaaaaatcac	tcgcatcaac	caaaccgtta	ttcattcgtg	attgcgcctg	agcgagacga	5580
aatacgcgt	cgctgttaaa	aggacaatta	caaacaggaa	tcgaatgcaa	ccggcgcagg	5640
aacactgcca	gcgcataaac	aatatttca	cctgaatcag	gatattcttc	taatacctgg	5700
aatgctgttt	tcccgggat	cgcagtggtg	agtaaccatg	catcatcagg	agtacggata	5760
aaatgcttga	tggtcggaag	aggcataaaat	tccgtcagcc	agtttagtct	gaccatctca	5820
tctgttaacat	cattggcaac	gctaccttg	ccatgtttca	gaaacaactc	tggcgcatcg	5880
ggcttccat	acaatcgata	gattgtcgca	cctgattgcc	cgacattatc	gcgagccat	5940
ttataccat	ataaatcagc	atccatgttg	gaatttaatc	gcggcctcga	gcaagacgtt	6000
tcccgttgaa	tatggctcat	aacaccctt	gtattactgt	ttatgttaagc	agacagttt	6060
attgttcatg	atgatatatt	tttatcttgt	gcaatgtaac	atcagagatt	ttgagacaca	6120
acgtggcttt	cccccccccc	ccattattga	agcatttatac	agggttattg	tctcatgagc	6180
ggatacatat	ttgaatgtat	tttagaaaaat	aaacaaatag	gggtcccg	cacatttccc	6240
cggaaagtgc	cacctgacgt	ctaagaaacc	attattatca	tgacattaac	ctataaaaat	6300
aggcgtatca	cgaggccctt	tcgtc				6325

<210> 15
 <211> 6318
 <212> DNA
 <213> Artificial sequence

<220>
 <223> plasmid CMV/Rgp-145dCFI (CN54)

<400> 15
 tcgcgcgttt cgggtatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
 Page 48

cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg	120
ttggcgggtg tcggggctgg ctttaactatg cggcatcaga gcagattgta ctgagagtgc	180
accatatgct gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg	240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg	300
tccaacatta ccgcattgtt gacattgatt attgactagt tattaatagt aatcaattac	360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg	420
ccgcctggc tgaccgccc acgaccccg cccattgacg tcaataatga cgtatgttcc	480
catagtaacg ccaataggga cttccattt acgtcaatgg gtggagtatt tacggtaaac	540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa	600
tgacggtaaa tggccgcct ggcattatgc ccagtacatg accttatggg actttcctac	660
ttggcagttac atctacgtat tagtcatcgc tattaccatg gtgatgcgtt tttggcagta	720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga	780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa	840
ctccgcggca ttgacgcaaa tgggcgttag gcgtgtacgg tgggaggtct atataagcag	900
agctcgtttta gtgaaccgtc agatcgccctg gagacgccc ccacgctgtt ttgacctcca	960
tagaagacac cgggaccgat ccagcctcca tcggctcgca tcttccttc acgcgcccgc	1020
cgccttacct gaggccgcca tccacggcg ttgagtcgcg ttctgccc tccgcctgt	1080
ggtgcctcct gaactacgtc cgccgtctag gtaagtttag agctcaggc gagaccggc	1140
ctttgtccgg cgctccctt gggccctac agactcagcc ggctctccac gctttgcctg	1200
accctgcttgc tcaactcta gttAACGGTg gagggcagtg tagtctgagc agtactcggt	1260
gctgcggcgc gcccaccagg acataatagc tgacagacta acagactgtt ccttcctatg	1320
ggtctttctt gcagtcacccg tcgtcgacac gtgtgatcag atatcgccgc cgctctagag	1380
atatcgacac catggacagg gccaagctgc tggtgtgtct gctgctgtg ctgtgcggc	1440
aggcccaggc cgtggcaac ctgtgggtga ccgtgtacta cggcgtgccc gtgtgaaagg	1500
gcccaccac caccctgttc tgcccgacgc acgcacaggc ctacgacacc gaggtgcaca	1560
acgtgtggc caccacgc tgccgtcccg ccgacccaa ccccccaggag atggtgctgg	1620
agaacgtgac cgagaacttc aacatgtgga agaacgagat ggtgaaccag atgcaggagg	1680
acgtcatcag cctgtggac cagacccgtga agccctgcgt gaagctgacc cccctgtgcg	1740
tgaccctgga gtgcaggaac gtgagcagca acagcaacga cacctaccac gagacctacc	1800
acgagagcat gaaggagatg aagaactgca gcttcaacgc caccaccgtg gtgagggaca	1860
ggaagcagac cgtgtacgccc ctgttctaca ggctggacat cgtgcctcg accaagaaga	1920
actacagcga gaacagcagc gagtactaca ggctgatcaa ctgcaacacc agcgcctca	1980

cccgaggcctg ccccaaggtg accttcgacc ccatccccat ccactactgc acccccggc	2040
gctacgcccatt cctgaagtgc aacgacaaga tcttcaacgg caccggcccc tgccacaacg	2100
tgagcaccgt gcagtgcacc cacggcatca agcccggtt gaggcaccag ctgctgctga	2160
acggcagcct ggccgagggc gagatcatca tcaggagcga gaacctgacc aacaacgtga	2220
aaaccatcat cgtgcacctg aaccagagcg tggagatcgt gtgcaccagg cccggcaaca	2280
acaccaggaa gagcatcagg atcggccccc gcoagacctt ctacgcccacc ggcgacatca	2340
tcggcgacat cagggcaggcc cactgcaaca tcagcgagga caagtggAAC gagaccctgc	2400
agagggtgag caagaagctg gccgagact tccagaacaa gaccatcaag ttgcggcagca	2460
gcagcggcgg cgacctggag gtgaccaccc acagcttcaa ctgcaggggc gagttttct	2520
actgcaacac cagcggcctg ttcaacggcg cctacacccc caacggcacc aagagcaaca	2580
gcagcagcat catcaccatc ccctgcagga tcaagcagat catcaacatg tggcaggagg	2640
tgggcagggc catgtacgccc cctccatca agggcaacat cacctgcaag agcaacatca	2700
ccggcctgct gctggtgagg gacggcggca ccggagccaa cgacaccgag accttcaggc	2760
ccggcggcgg cgacatgagg aacaactgga ggagcgagct gtacaagtac aaggtggtgg	2820
agatcaagcc cctggcgtg gccccacca ccaccaagct taccgtgcag gccaggcagc	2880
tgctgagcgg catcgtgcag cagcagagca acctgctgag ggccatcgag gcccagcagc	2940
acctgctgca gctgaccgtg tggggcatca agcagctgca gaccagggtg ctggccatcg	3000
agaggtacct gaaggaccag cagctcgaga tctggacaa catgacctgg atgcagtggg	3060
acaaggagat cagcaactac accaacaccc tgtacaggct gctggaggag agccagaacc	3120
agcaggagag gaacgagaag gacctgctgg ccctggacag ctggaagaac ctgtggagct	3180
ggttcgacat caccaactgg ctgtggtaca tcaagatctt catcatcatc gtggcggcc	3240
tgatcggcct gaggatcatc ttgcggcgtc tgagcatcgt gaacagggtg aggcaaggct	3300
actgaggatc cagatctgct gtgccttcta gttgccagcc atctgttgtt tgcccctccc	3360
ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt ccttccctaa taaaatgagg	3420
aaattgcattc gcattgtctg agtaggtgtc attctattct ggggggtggg gtggggcagg	3480
acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta	3540
tgggtaccca ggtgctgaag aattgacccg gttccctctg ggccagaaaag aagcaggcac	3600
atccccttct ctgtgacaca ccctgtccac gcccctggtt cttagttcca gcccactca	3660
taggacactc atagctcagg agggctccgc cttcaatccc acccgctaaa gtacttggag	3720
cggctctctcc ctccctcatc agcccaccaa accaaaccta gcctccaaga gtggaaagaa	3780
attaaagcaa gataggctat taagtgcaga gggagagaaa atgcctccaa catgtgagga	3840
agtaatgaga gaaatcatag aatttaagg ccatcatggc cttaatcttc cgttcctcg	3900
ctcaactgact cgctgcgctc ggtcgttcgg ctgcggcgg cggtatcagc tcactcaaag	3960

gcggtaatac ggttatccac agaattcaggg gataacgcag	gaaagaacat gtgagcaaaa	4020
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc	tggcgaaaaa ccataggctc	4080
cgccccctg acgagcatca caaaaatcga cgctcaagtc	agaggtggcg aaaccgcaca	4140
ggactataaa gataccaggc gtttccccc ggaagctccc	tcgtgcgctc tcctgttccg	4200
accctgccgc ttaccggata cctgtccgccc tttctccctt	cgggaagcgt ggcgccttct	4260
catagctcac gctgttaggta tctcagttcg gtgttaggtcg	ttcgctcaa gctgggctgt	4320
gtgcacgaac ccccccgttca gcccggaccgc tgcccttat	ccggtaacta tcgtcttgag	4380
tccaaccgg taagacacga cttatcgcca ctggcagcag	ccactggtaa caggattagc	4440
agagcgaggt atgtaggcgg tgctacagag ttcttgaagt	ggtggcctaa ctacggctac	4500
actagaagaa cagtatttgg tatctgcgt ctgctgaagc	cagttacctt cgaaaaaaaga	4560
gttggtagct cttgatccgg caaacaacc accgctggta	gccccgtttt ttttgttgc	4620
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag	atcctttgat cttttctacg	4680
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga	ttttggtcat gagattatca	4740
aaaaggatct tcacctagat ccttttaaat taaaaatgaa	tttttaaattc aatctaaagt	4800
atatatgagt aaacttggtc tgacagttac caatgcttaa	tcagtgaggc acctatctca	4860
gcgatctgtc tatttcgttc atccatagtt gcctgactcg	gggggggggg gcgctgaggt	4920
ctgcctcgtg aagaagggtgt tgctgactca taccaggct	gaatcgcccc atcatccagc	4980
cagaaagtga gggagccacg gttgatgaga gctttgtgt	aggtggacca gttggatt	5040
ttgaactttt gcttgccac ggaacggctc gcgttgcgg	gaagatgcgt gatctgatcc	5100
ttcaactcag caaaaagttcg atttattcaa caaagccgcc	gtcccgtaa gtcagcgtaa	5160
tgctctgccca gtgttacaac caattaacca attctgatta	aaaaaactca tcgagcatca	5220
aatgaaactg caatttattc atatcaggat tatcaatacc	atattttga aaaagccgtt	5280
tctgtaatga aggagaaaaac tcaccgaggc agtccatag	gatggcaaga tcctggatc	5340
ggtctgcat tccgactcgt ccaacatcaa tacaacctat	taatttcccc tcgtaaaaaa	5400
taaggttata aagtgagaaa tcaccatgag tgacgactga	atccggtgag aatggcaaaa	5460
gcttatgcat ttctttccag acttggtaaa caggccagcc	attacgctcg tcatcaaaaat	5520
cactcgcatc aaccaaaccg ttattcattc gtgattgcgc	ctgagcgaga cggaaatacgc	5580
gatcgctgtt aaaaggacaa ttacaaacag gaatcgaatg	caaccggcgc aggaacactg	5640
ccagcgcattc aacaatattt tcacctgaat caggatattc	ttctaaatacc tggaaatgctg	5700
ttttccccggg gatcgactgt gtgagtaacc atgcattatc	aggagtacgg ataaaaatgct	5760
tgtatggtcgg aagaggcata aattccgtca gccagtttag	tctgaccatc tcattctgtaa	5820
catcattggc aacgctaccc ttgccatgtt tcagaaacaa	ctctggcgcac tcgggcttcc	5880

cataacaatcg atagattgtc gcacacctgatt gcccgacatt atcgcgagcc catttataacc	5940
catataaaatc agcatccatg ttggaattta atcgcggcct cgagcaagac gtttcccggtt	6000
gaatatggct cataacacccc cttgttattac tgtttatgtt agcagacagt tttattgttc	6060
atgatgatat atttttatct tgtgcaatgt aacatcagag attttgagac acaacgtggc	6120
tttccccccc cccccattat tgaagcattt atcagggtta ttgtctcatg agcggataca	6180
tatttgaatg tatttagaaa aataaaacaaa taggggttcc gcgcacattt ccccgaaaag	6240
tgcccacctga cgtctaaagaa accattattt tcatgacatt aacctataaa aataggcgta	6300
tcacgaggcc ctttcgtc	6318

```

<210> 16
<211> 36066
<212> DNA
<213> Artificial Sequence

<220>
<223> Adenoviral vector Adt.GagPol(B).11D

<400> 16
catcatcaat aatacacctt attttggatt gaagccaata tgataatgag ggggtggagt 60
tttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120
gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgttttg 180
gtgtgcgccc gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgtttag 240
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgccta gggcccgga 360
tcgggtgatca ccgatccaga catgataaga tacattgatg agtttggaca aaccacaact 420
agaatgcagt gaaaaaaatg ctttatttgc gaaatttgcg atgctattgc tttatttgc 480
accattataa gctgcaataa acaagttccc ggatcttct agctgtccta gaattcctag 540
tcctcgctcct ggccggctggc cacgcagtcg tcgcgcggca tctgcttgcg gtagtcgcgg 600
atgatcttgg ctttgcggcg gggcaccacc ttgatgtcgc tggtgtcctg gatcaccacg 660
gcgcctcgc cttccacag cagcttgcgcg gggcccttcc acacggggtc ggggtgtcg 720
cggtagtagtaca cgccgaagtt ctggatcttgc tgatgtcgt tctgcagctc ctgggtctgg 780
atgtcggtgg cgatgtatgtc cacgatgcgc tcgcgcggc tgtagccgc gatgccgccc 840
ttgcgttgcgca agttgtggat gaacacggcc atctgcacgg cggtcttgc gtagtcgcgg 900
tggtcgcgcgca cctggccgat gatcttctc agctccttgc tcatgctctc gatcacgccc 960
tggctctggg ggtttaggg gatgccgaac tcctgttgc tgccggccca ccagcaggcg 1020
gccttcacgg tggtgctggt gaagttgcgt cgggtgtcg tgcacgggt ctacggggc 1080
cagcggccgg ccagcttcag caggaagtag gcggtctctt ggccgggtc ggcggggatc 1140
acctcggcct cgatgttagcc gctggccacg tgcacggccca ccaggatcac ctggccctcc 1200

```

agggtgggtgc agtccagctg ccagatgccg gggctgcagt ccacctggcc gtgcatggcc 1260
tcgccttca gctggcactt gtcgcagctg gccacgatct ccttggccac cacggggggc 1320
agggtgaagt cgctggccat ggcgccag ttgctgtggt acttctcgta tccttcctgg 1380
gccttgcga tgccgtccag gaacagcacc ttgcggatgc cggcgctcac cagggcggtc 1440
acctgctcgta tgccgcccgt gcccggatgg gcgccaccc aggccaggta caccttcctcc 1500
ttcttgatca gctgctcgat gatctggctc accagctcgta tctcgcttt gtcgggctgg 1560
gcctggatga tgcccaggc gtactggctg tcggtaacga tggtcaccc cagggcgctg 1620
tcctgcaggg ccaggtggat ggcctgcagc tcggcttctt ggttgggtggt gtcggtcagg 1680
ggcaccaccc tctggcggcc gcggtcggc acgtagccgg cttggccag cttggctctcg 1740
cggttggcgg cggcgtccac gttagaaggc tcggcgccga tgatgggctc cttctccagc 1800
tggtaccaca gcttcaccag ggggggggtt ttcacgaact cccactcggg gatccagggt 1860
gcctgcccagt actcggtcca ccaggcctcc caggtcttct tctggatggg cagttgaac 1920
ttgggggtct tgccccagat cacgtatgtc tcggtgccga tcttctgcac ggctcggtc 1980
agctgcttca cgtcggtggt gtgggcggcc ttcatgcggg cgtacttgcc ggtttcagg 2040
ttcttgaagg gctccctggta gatctggtag gtccactggc cttggccctg cttctggatc 2100
tcggcgatca ggtccttgc ggggtcgtag tacacgcccgt gcacgggctc cttcaggatc 2160
tcgcgggtct cggccagctc cagctcgcc tcctcggtca ggggcaccac ctggcgtcagg 2220
gccttgggtgc cgccgagcag cttgcacagc tggcgacact tgatgccggc gtagatctgg 2280
ctggcccaagt tcaagttgcc caccagcttgc tggatgtcgta tcaacggtcca gctgtccttc 2340
tcgggcagca cgatgggctg cacggtccac ttgtcggtggt gcagctcgta gcccattccac 2400
aggaaggggg gctccctctg gtgtttcttgc tcgggggtgg tgaagccccca ggcgcagcagg 2460
tgctggcgca gctccctcgat cttggtgccg tgctggccga tctccaggta gctgcccacg 2520
tacaggtggt ccatgtactg gtagatcagc atgtcggtggt tctgcttgcg gaagggtctcc 2580
aggatcttgg tcatgctgca ctggaaagatg gcggggctgc cttccagcc ctggggcagc 2640
acgttgtact ggtacggat gcccgggtc tcgttgtga tgctgggtat ggtgaaggcgc 2700
gtgtacttgc ggaagtcctt gtccaggggc acgctgaagt aggctcgcc cacgtccagc 2760
acggtcacgc tcttcttctg cttcaggccg gcgggggtggg ggtatgccag cttccaccc 2820
cagaagtcctt gggtgcgtt gttcagctcg cggaaagtccaa ccagcttgcg ccacttgggt 2880
ctgtccttctt tcttgcgttgc gaacacgggg gtgttgcgttgg ggttctcggtt gccgatcttgc 2940
ctgtatctgc cttcccttc catctcggtc cagatctccaa ccagggcctt gatcttcctcc 3000
tcggtcaggc gccactgctt caccttgggg ccgtccatgc cgggcttcag cttcacgggc 3060
acggtctcgta tggggctgtat ggggaagttc aggggtgcagc cgtatctgggtt cagcagggttgc 3120

cggccgatga tgttcacggg ggtggggccc accagcacgg tgccgatggc cttgtggccg 3180
 cagatctcgta tcaggatctg gtcgtactgg cccaccttga tgaagccgcc gatgccgccc 3240
 atcatcttgg gcttccagcg gccgggcagg ttcatctcct ccagcacggt gtcgtcgccg 3300
 ccggtgtcta gaagggcctc cttcagctgg cccctatct ttattgtgac gaggggtcgc 3360
 tgccaaagag tgatctgagg gaagctaaag gatacagttc cttgtctatc ggctcctgct 3420
 tctgagaggg agttgttgtc tcttcccaa acctgaagct ctcttctggt ggggctgttg 3480
 gctctggtct gctctgaaga aaattccctg gccttccctt gtgggaaggc cagatcttcc 3540
 ctattagcct gtcgctcggt gcagtccttc atctggtggc ctccttgcc gcacttccag 3600
 cagcccttct tgcggggggc gcggcagttg cggcggtgt ggccctcctt gccgcagttg 3660
 aagcacttca cgtatcttgcg ctgggtgcgg aagttgcgcg gctgcatcat gatggtggcg 3720
 ctgttggtca cctggctcat ggccctggcc agcacgcggg cttgtggcc ggggcccggc 3780
 acgccttggc aggccgtcat catctcctcc agggtggcgg cggggcccaag ggccttcagg 3840
 atggtcttgc agtcggggtt ggcttctgc accagcaggg tctcggtcat ccagttcttc 3900
 acctccttggc tggcctgctc ggccgcgcagg gtctttaga agcggtccac gtagtcgcgg 3960
 aagggtctct tggggccctg gcgatgtcc aggtatctgg tggggctgta catgcgcacg 4020
 atcttggtca ggcccaggat gatccagcgc tttagatct cggccacggg gatggggggg 4080
 ttgttggtca tccagccat ctgctctgc aggggtctgg tgggtccggc gatgtcgctg 4140
 ccgcggggct cgccatctg gccggggcg atggggccgg cgtgcacggg gtgcacgcgg 4200
 tcccactcgg cggcctcctc gttgatggc tcctcagca tctgcattgc ggcctgggtgg 4260
 ccgcacgg tggcagcat ggtgttcagg tcctgggggg tggcgccctc gctcaggcg 4320
 ctgaacatgg ggtcacccctc ggggtgaag gccttctctt ccaccacctt cacccaggcg 4380
 ttcaagggtgc gggggctgat ggcttggc accatctggc cctggatgtt ctgcacgatg 4440
 gggtagttct ggctcacctg gttgatgtgg ccggatgtcg cggcgccctg ctgggccttc 4500
 ttcttgcctt tggatgtctc ctccatgcattt tttccatggg cttcttgggt gtccttgcatt 4560
 tcgatgcgt ggtgcacgca gtacagggtg gccacgggtgt tgtacaggct ggcgcagctcc 4620
 tcgctgcgg tctgcaggct gggctgcagc tggccagga tctggcgca gccctcgctg 4680
 gtctccagca ggcgggggtt cacggcgaag cgctccagct cgccgcgttgc ccacacgtg 4740
 tgcttcagct tgacttctt cttggcccg gggcgaggc ggatcttctc ccagcggtcc 4800
 agctcgccgc cgctcagcac gctggcgccgg gcccacatgt cgaatcaat tctgcagtga 4860
 tcagggatcc gttatgtgag tcgttattagg taccggctgc agttggaccc gggagtggtac 4920
 acctgtggag agaaaggcaa agtggatgtc attgtcaactc aagtgtatgg ccagatctca 4980
 agcctgccac acctcaagtg aagccaaggg ggtggcccta tagactctat aggccgtact 5040
 tacgtcaactc ttggcacggg gaatccgcgt tccaaatgcac cggtccggc cgccggaggct 5100

ggatcggtcc	cggtgtcttc	tatggagggtc	aaaacagcgt	ggatggcgtc	tccaggcgat	5160
ctgacggttc	actaaacgag	ctcgctgacg	atctctatca	ctgataggga	gatctctatc	5220
actgataggg	agagctctgc	ttatatajac	ctcccacccgt	acacgcctac	cgcgcatttg	5280
cgtcaatggg	gcccgggtgt	tacgacattt	tggaaagtcc	cgttgcattt	ggtgccaaaa	5340
caaactccca	ttgacgtcaa	tggggtgag	acttggaaat	ccccgtgagt	caaaccgcta	5400
tccacgccc	ttgatgtact	gccaaaaccg	catcaccatg	gtaatagcga	tgactaatac	5460
gtagatgtac	tgccaagtag	gaaagtccca	taaggtcatg	tactggcat	aatgccaggc	5520
gggcattta	cgtcattga	cgtcaatagg	gggcgtactt	ggcatatgat	acacttgatg	5580
tactgccaag	tgggcagttt	accgtaaata	ctccacccat	tgacgtcaat	ggaaagtccc	5640
tattggcg	tttactatggaa	catacgtcat	tattgacgtc	aatgggcggg	ggtcgttggg	5700
cggtcagcca	ggcgggccat	ttaccgttaag	ttatgttaacg	cggaactcca	tatatggct	5760
atgaactaat	gaccccgtaa	ttgattacta	ttaataacta	gtactgaaat	gtgtggcgt	5820
ggcttaaggg	tggaaagaa	tatataaggt	gggggtctta	tgtatgtttt	tatctgtttt	5880
gcagcagccg	ccgcccgc	gagcaccaac	tcgtttgatg	gaagcattgt	gagctcatat	5940
ttgacaacgc	gcatgcccc	atgggcggg	gtgcgtcaga	atgtatggg	ctccagcatt	6000
gatggtcg	ccgtcctg	cgcaaaactct	actaccttga	cctacgagac	cgtgtctgga	6060
acgcgcgttgg	agactgcagc	ctccgcgc	gcttcagccg	ctgcagccac	cgcgcggg	6120
attgtgactg	actttgtttt	cctgagcccg	cttgcagca	gtgcagcttc	cggttcatcc	6180
gcccgcgt	acaagttgac	ggctttttt	gcacaattgg	attcttgcac	ccgggaactt	6240
aatgtcg	tttctcagcag	gttggatctg	cgccagcagg	tttctgcct	gaaggcttcc	6300
tcccctccca	atgcggtta	aaacataaaat	aaaaaaccag	actctgtttt	gatttggatc	6360
aagcaagtgt	cttgcgtct	ttatattagg	gttttgcgcg	cgcggtaggc	ccgggaccag	6420
cggtctcggt	cgttgggggt	cctgtgtatt	ttttccagga	cgtggtaaag	gtgactctgg	6480
atgttcagat	acatggcat	aagccgtct	ctgggggtgg	ggtagcacca	ctgcagagct	6540
tcatgtgcg	gggtgggttt	gtagatgatc	cagtcgttagc	aggagcgttg	ggcgtgggtgc	6600
ctaaaaatgt	ctttcagtag	caagctgatt	gccaggggca	ggcccttggt	gtaagtgttt	6660
acaaagcggt	taagctggg	tgggtgcata	cgtggggata	tgagatgcat	cttggactgt	6720
attttttaggt	tggctatgtt	cccagccata	tccctccggg	gattcatgtt	gtcagaacc	6780
accagcacag	tgtatccggt	gcacttggg	aatttgcac	gtagcttgc	aggaaatgcg	6840
tggaaact	tggagacg	cttgcaccc	ccaagattt	ccatgcattc	gtccataatg	6900
atggcaatgg	gcccacgggc	ggcggcctgg	gcgaagat	ttctggatc	actaacgtca	6960
tagttgttt	ccaggatgag	atcgtcatag	gccattttt	caaagcgcgg	gcggagggtg	7020

ccagactgcg	gtataatgg	tccatccggc	ccagggcgt	agttaccctc	acagattgc	7080
atttcccacg	cttgagttc	agatggggg	atcatgtcta	cctgcgggc	gatgaagaaa	7140
acggttccg	gggttaggg	gatcagctgg	gaagaaagca	ggtcctgag	cagctgcac	7200
ttaccgcagc	cggtggccc	gtaaatcaca	cctattaccg	ggtgcaactg	gtagttaga	7260
gagctgcagc	tgccgtcata	cctgagcagg	gggccactt	cgttaagcat	gtccctgact	7320
cgcattttt	ccctgaccaa	atccgccaga	aggcgctcg	cgcaggcga	tagcagttct	7380
tgcaaggaag	caaagttttt	caacggttt	agaccgtccg	ccgtaggcat	gctttgagc	7440
gtttgaccaa	gcagttccag	gcccgtccac	agctcggtca	cctgctctac	ggcatctcg	7500
tccagcatat	ctcctcgttt	cgccgggttgg	ggccggcttcc	gctgtacggc	agtagtcggt	7560
gctcgccag	acggggcagg	gtcatgttt	tccacggcgc	cagggtcctc	gtcagcgtag	7620
tctgggtcac	ggtgaagggg	tgcgctccgg	gctgcgcgt	ggccagggtg	cgcttgaggc	7680
tggccctgct	ggtgctgaag	cgtgcgggt	cttcgcactg	cgcgtcgcc	aggttagcatt	7740
tgaccatgg	gtcatagtc	agcccctccg	cggcgtggcc	cttggcgcgc	agttgcct	7800
tggaggaggc	gccgcacgag	ggcagtgca	gactttgag	ggcgtagagc	ttggcgcga	7860
gaaataccga	tcccgggag	taggcattccg	cgcgcaggc	ccgcagacg	gtctcgatt	7920
ccacgagcca	ggtgagctct	ggccgttcgg	ggtcaaaaac	caggttccc	ccatgcttt	7980
tgatgcgtt	cttacctctg	gttccatga	gcccgtgtcc	acgctcggt	acgaaaaggc	8040
tgtccgtgtc	cccgatata	gacttgagag	gcctgtcctc	gagcgggtt	ccgcggcct	8100
cctcgatag	aaactcgac	cactctgaga	caaaggctcg	cgtccaggcc	agcacgaagg	8160
aggctaagt	ggagggtag	cggtcgttgt	ccactagggg	gtccactcgc	tccagggtgt	8220
gaagacacat	gtccccc	tccatcaa	ggaaggtgat	tggttttag	gtgtaggcca	8280
cgtgaccggg	tgttcctgaa	ggggggctat	aaaaggggg	ggggcgcgt	tgcgtcc	8340
tctctccgc	atcgctgtct	gcgagggcca	gctgttgggg	ttagtactcc	ctctgaaaag	8400
cgggcatgac	ttctgcgcta	agattgtcag	tttccaaaaa	cgaggaggat	ttgatattca	8460
cctggccgc	ggtgatgcct	ttgagggtgg	ccgcattccat	ctggtcagaa	aagacaatct	8520
ttttgtgtc	aagcttgg	gcaaacgacc	cgtagagggc	gttggacagc	aacttggcga	8580
tggagcgcag	ggtttgg	ttgtcgcgat	cggcgcgc	cttggccgc	atgttagct	8640
gcacgtattc	gcgcgcacg	caccgcatt	cggaaagac	gggtgtgcgc	tcgtcggca	8700
ccaggtgcac	gcgcacaccg	cggttgtca	gggtgacaag	gtcaacgctg	gtggctacct	8760
ctccgcgtag	gcgcgcgtt	gtccagcaga	ggcggccgc	cttgcgcag	cagaatggcg	8820
gtaggggtc	tagtgcgtc	tgcgtccgg	ggtctgcgtc	cacggtaaag	accccgcc	8880
gcaggcgcgc	gtcgaagtag	tctatcttgc	atcctgca	gtctagcgcc	tgctgccc	8940
cgcggcggc	aagcgcgcgc	tcgtatgg	tgagtgggg	acccatggc	atgggtgg	9000

tgagcgcgga ggcgtacatg ccgcaaatgt cgtaaacgta gaggggctct ctgagtattc 9060
 caagatatgt aggtagcat cttccaccgc ggatgctggc ggcacgtaa tcgtatagtt 9120
 cgtgcgaggg agcgaggagg tcgggaccga ggttgctacg ggccggctgc tctgctcgga 9180
 agactatctg cctgaagatg gcatgtgagt tggatgatat ggttggacgc tggaagacgt 9240
 tgaagctggc gtctgtgaga cctaccgcgt cacgcacgaa ggaggcgtag gagtcgcgca 9300
 gcttgtgac cagctcgccg gtgacctgca cgtctaggc gcagtagtcc agggtttct 9360
 tcatgtatgtc atacttatcc tgcctttt tttccacag ctgcgggtt aggacaaaact 9420
 ctgcgggtc tttccagttac tcttggatcg gaaaccgcgc ggcctccgaa cggtaaagac 9480
 ctagcatgtta gaactgggtt acggcctggt aggccgcagca tccctttct acggtagcg 9540
 cgtatgcctg cgccgccttc cggagcgagg tgggggtgag cgcaaagggtg tccctgacca 9600
 tgacttttagt gtactggat ttgaagtcag tgcgtcgca tccgcctgc tcccaagac 9660
 aaaagttccgt ggccttttg gaacgcggat ttggcagggc gaagggtgaca tgcgttgaaga 9720
 gtatcttcc cgccgcaggc ataaagttgc gtgtgatgcg gaagggtccc ggcacctcg 9780
 aacggttgtt aattacctgg gcggcgagca cgatctcgca aaagccgtt atgttgcgc 9840
 ccacaatgtta aagttccaag aagcgcggga tgcccttgat ggaaggcaat ttttaagtt 9900
 cctcgttaggt gagctttca gggagctga gcccgtgctc tggaaaggcc cagtctgca 9960
 gatgagggtt ggaagcgcacg aatgagctcc acaggtcacg ggccattagc atttgcaggt 10020
 ggtcgcgaaa ggtcctaaac tggcgaccta tggccatttt ttctgggtt atgcagtaga 10080
 aggtaagcgg gtcttgcgtcc cagcggtccc atccaagggtt cgccgttagg tctcgccgg 10140
 cagtcactag aggctcatct ccgcgaact tcatgaccag catgaaggcc acgagctgct 10200
 tcccaaggc ccccatccaa gtataggtct ctacatcgta ggtgacaaag agacgctcg 10260
 tgcgaggatg cgagccgatc gggagaact ggatctcccg ccaccaattt gaggagtggc 10320
 tattgatgtg gtgaaagtag aagtccctgc gacggggcga acactcgatc tggctttgt 10380
 aaaaacgtgc gcagtactgg cagcggtgca cggctgtac atccctgcacg aggttgcac 10440
 gacgaccgcg cacaaggaag cagagtggga atttgagccc ctgcctggc gggttggct 10500
 ggtggcttc tactcggct gcttgcctt gaccgtctgg ctgcgtgagg ggagttacgg 10560
 tggatcggac caccacgccc cgccgagccaa aagtccagat gtccgcgcgc ggcggctcg 10620
 gcttgcgtac aacatcgccg agatgggagc tgcgttgcgtt ctggagctcc cgccgcgtca 10680
 ggtcaggcgg gagctcctgc aggttaccc cgcatacgacg ggtcaggcggc cgggctagat 10740
 ccaggtgata cctaattcc aggggctggt tggggccgc gtcgttgcgt tgcaagaggc 10800
 cgcattcccg cggcgact acggtaccgc gcggcggggcg gtggccgcg ggggtgtcc 10860
 tggatgtgc atctaaaagc ggtgacgcgg gcggagccccc ggaggttaggg ggggttcgg 10920

acccgccggg agagggggca ggggcacgac ggcgccgcg gcgggcagga gctggtgctg 10980
 cgcgcttagg ttgctggcga acgcgacgac gcggcggttgc atctcctgaa tctggcgcc 11040
 ctgcgtgaag acgacgggcc cggtgagctt gaacctgaaa gagagttcga cagaatcaat 11100
 ttcggtgtcg ttgacggcgg cctggcgcaa aatctcctgc acgtctcctg agttgtctt 11160
 ataggcgatc tcggccatga actgctcgat ctcttcctcc tggagatctc cgctccggc 11220
 tcgctccacg gtggcgccgaa ggtcggttga aatgcggcc atgagctgcg agaaggcg 11280
 gaggcctccc tcgttccaga cgccgctgtta gaccacgccc cttcggcat cgccggcg 11340
 catgaccacc tgccgagat tgagctccac gtggcgccgaa aagacggcg agttcgcag 11400
 gcgctgaaag aggttagttga gggtggtggc ggtgttctt gccacgaaga agtacataac 11460
 ccagcgctgc aacgtggatt cggtgatatac ccccaaggcc tcaaggcgct ccatggcctc 11520
 gtagaagtcc acggcgaagt tgaaaaactg ggagttgcgc gccacacgg ttaactcctc 11580
 ctccagaaga cggatgagct cgccgacagt gtcgcgcacc tcgcgctcaa aggctacagg 11640
 ggcctttct tcttcttcaa tctcctcttc cataaggcc tcccttctt cttttctgg 11700
 cggcggtggg ggagggggga cacggcgccg acgacggcg accgggaggc ggtcgacaaa 11760
 gcgctcgatc atctccccgc ggacggcg catggtctcg gtgacggcg ggcgttctc 11820
 gcggggcgcc agttggaaga cgccgcccgt catgtcccggtt gatgggttgcg 11880
 gccatgcggc agggatacgg cgctaacgat gcatctcaac aattgttgcg taggtactcc 11940
 gcccggcagg gacctgagcg agtccgcattc gacggatcg gaaaacctct cgagaaaggc 12000
 gtctaaccag tcacagtgc aaggtaggct gagcaccgtg gcggcgccgca gcggcgccg 12060
 gtcgggttg tttctggcg aggtgctgct gatgatgtaa taaaagttagg cggtcttgc 12120
 acggcgatg gtcgacagaa gcaccatgtc cttgggtccg gcctgctgaa tgccgaggcg 12180
 gtcggccatg cccaggctt cggttgcata tcggcgagg tctttgtat agtcttgcatt 12240
 gagcctttctt accggcactt cttttctcc ttcccttgcgtt cctgcatttc ttgcatttat 12300
 cgctgcggcg gggcgaggat ttggccgtag gtggcgccctt cttcctccca tgctgtgac 12360
 cccgaagccc ctcatcggtt gaagcaggcc taggtcgccg acaacgcgct cggctaataat 12420
 ggcctgctgc acctgcgtga gggtagactg gaagtcatcc atgtccacaa agcggtggt 12480
 tgcggccgtt tgatgggtt aagtgcagtt ggccataacg gaccagttaa cggtctgggt 12540
 acccgctgc gagagctcgg tgcgttgcg acgcgagtaa gcccctcgat caaatacgta 12600
 gtcgttgcata gtcgcacca ggtactggta tcccaccaaa aagtgcggcg gcggctggcg 12660
 gtagagggcg cagcgtaggg tggccggggc tccggggcg agatcttccaa acataaggcg 12720
 atgatatccg tagatgtacc tggacatcca ggtgatgcgcg gcggcggtgg tggaggcg 12780
 cgaaaagtgcg cggacgcggt tccagatgtt ggcgcaggc aaaaagtgcg ccatggtcgg 12840
 gacgctctgg ccggtcaggc ggcgcataatc gttgacgcctc tagcgtgcaaa aaggagagcc 12900

tgtaagcggg cactttccg tggctggtg gataaattcg caagggtatc atggcggacg 12960
 accggggttc gagccccgta tccggccgtc cgccgtgatc catgcggta ccgccccgcgt 13020
 gtcgaaccca ggtgtgcgac gtcagacaac gggggagtgc tcctttggc ttccttccag 13080
 gcgccggcgc tgctgcgcta gctttttgg ccactggccg cgccgagcgt aagcggttag 13140
 gctggaaagc gaaagcatta agtggctcg tccctgttagc cggagggta ttttccaagg 13200
 gttgagtgcg gggacccccc gttcgagtct cggaccggcc ggactgcggc gaacgggggt 13260
 ttgcctcccc gtcatgcaag accccgcttgc caaattcctc cggaaacagg gacgagcccc 13320
 tttttgtt ttcccagatg catccggtgc tgccgcagat gcgcccccct cctcagcagc 13380
 ggcaagagca agagcagcgg cagacatgca gggaccctc ccctccctaccgcgtc 13440
 gaggggcgac atccgcggtt gacgcggcag cagatggtga ttacgaaccc ccgcggcgcc 13500
 gggcccgca ctacctggac ttggaggagg gcgagggcct ggcgcggcta ggagcgccct 13560
 ctccctgagcg gcacccaagg gtgcagctga agcgtgatac gcggtgaggcg tacgtgccgc 13620
 ggcagaacct gttcgcgac cgcgagggag aggagccga ggagatgcgg gatcgaaagt 13680
 tccacgcagg gcgcgagctg cggcatggcc tgaatgcgca gcggttgctg cgcgaggagg 13740
 actttgagcc cgacgcgcga accgggatta gtcccgccgcg cgcacacgtg gcggccgccc 13800
 acctggtaac cgcatacggc cagacggtga accaggagat taactttcaa aaaagcttta 13860
 acaaccacgt gcgtacgctt gtggcgcgcg aggaggtggc tataggactg atgcacatctgt 13920
 gggactttgt aagcgcgctg gagcaaaacc caaatagcaa gcccgtcatg gcgagctgt 13980
 tccttatagt gcagcacagc agggacaacg aggattcag ggtgcgcgtc ctaaacatag 14040
 tagagccga gggccgctgg ctgctcgatt tgataaacat cctgcagagc atagtggtgc 14100
 aggagcgcag cttgagccctg gctgacaagg tggccgcatt caactattcc atgccttagcc 14160
 tgggcaagtt ttacgcccgc aagatatacc atacccctta cgttccata gacaaggagg 14220
 taaagatcga ggggttctac atgcgcattgg cgctgaaggt gcttaccttgcg acgcacgacc 14280
 tggcgcttta tcgcaacggc cgcatccaca aggccgtgag cgtgagccgg cggcgcgagc 14340
 tcagcgaccg cgagctgatg cacagcctgc aaagggccct ggctggcaccg ggcagcggcg 14400
 atagagaggc cgagtcctac tttgacgcgg ggcgtgaccc ggcgtggcc ccaagccgac 14460
 ggcgccttgg ggcagctggg gccggacctg ggctggcggt ggcacccgcg cgcgtggca 14520
 acgtcggcgg cgtggaggaa tatgacgagg acgtgatgatc ggcagccagag gacggcgagt 14580
 actaagcggt gatgtttctg atcagatgat gcaagacgc acggaccggc cggtgcgggc 14640
 ggcgtgcag agccagccgt ccggcattaa ctccacggac gactggcgcc aggtcatgga 14700
 ccgcacatcg tcgctgactg cgcgcaatcc tgacgcgttc cggcagcagc cgcaggccaa 14760
 cggcgtctcc gcaattctgg aagcggtggt cccggcgccg gcaaacccca cgcacgagaa 14820

ggtgctggcg atcgtaaacg cgctggccga aaacagggcc atccggcccg acgaggccgg 14880
 cctggctcac gacgcgctgc ttcagcgcgt ggctcggtac aacagcggca acgtgcagac 14940
 caacctggac cggtgggtgg gggatgtgcg cgaggccgtg ggcgcgcgtg agcgcgcgca 15000
 gcagcagggc aacctgggct ccatggttgc actaaacgcc ttccctgagta cacagccgc 15060
 caacgtgccc cgccccacagg aggactacac caactttgtg agcgcactgc ggctaatgg 15120
 gactgagaca ccgcaaagtg aggtgtacca gtctgggcca gactatttt tccagaccag 15180
 tagacaaggc ctgcagaccg taaacctgag ccaggcttc aaaaacttgc agggctgtg 15240
 ggggtgcgg gctcccacag ggcgcgcgc gaccgtgtct agcttgctga cgcccaactc 15300
 ggcgcgttg ctgctgctaa tagcgcctt cacggacagt ggcgcgtgt cccggacac 15360
 atacctaggt cacttgctga cactgtaccg cgaggccata ggtcaggcgc atgtggacga 15420
 gcatacttc caggagatta caagtgtcag ccgcgcgtg gggcaggagg acacggcag 15480
 cctggaggca accctaaact acctgctgac caaccggcgg cagaagatcc cctcggtgca 15540
 cagttaaac agcgaggagg agcgcattt gcgcgtcgt cagcagacg tgagcctaa 15600
 cctgatgcgc gacggggtaa cgcccgacgt ggcgcgtggac atgaccgcgc gcaacatgga 15660
 accggccatg tatgcctcaa accggccgtt tatcaaccgc ctaatggact actgcacatg 15720
 cgcggccgccc gtgaaccccg agtatttcac caatgccatc ttgaacccgc actggctacc 15780
 gccccctggt ttctacacgg ggggattcga ggtgcggag ggtaacgatg gattcctctg 15840
 ggacgcacata gacgacagcg tgttttcccc gcaaccgcag accctgcttag agttgcaaca 15900
 ggcgcgacag gcagaggcgg cgctgcgaaa ggaaagcttc cgcaggccaa gcagcttgc 15960
 cgatctaggc gctgcggccc cgccgtcaga tgcttagtagc ccatttccaa gcttgatagg 16020
 gtctcttacc agcactcgca ccacccgccc ggcgcgtgt ggcgaggagg agtacctaaa 16080
 caactcgctg ctgcagccgc agcgcgaaaa aaacctgcct ccggcatttc ccaacaacgg 16140
 gatagagagc ctatggaca agatgagtag atggaagacg tacgcgcagg agcacaggga 16200
 cgtgccaggc ccgcgcggcgc ccacccgtcg tcaaaggcac gaccgtcagc ggggtctgg 16260
 gtgggaggac gatgactcgg cagacgacag cagcgtcctg gatttggag ggagtggcaa 16320
 cccgttgcg cacttcgcc ccaggctggg gagaatgttt taaaaaaaaaaa aaaagcatga 16380
 tgcaaaataa aaaactcacc aaggccatgg caccgagcgt tggtttctt gtattccct 16440
 tagtatgcgg cgccgcggcga tggatgagga aggtcctcct ccctcctacg agagtgtgg 16500
 gagcgcggcg ccagtggcgg cggcgtggg ttctcccttc gatgctcccc tggacccgcc 16560
 gtttgcgtt ccgcgggtacc tgcggctac cggggggaga aacagcatcc gttactctga 16620
 gttggcaccc ctattcgaca ccacccgtgt gtacctggtg gacaacaagt caacggatgt 16680
 ggcacccctg aactaccaga acgaccacag caactttctg accacggtca ttcaaaacaa 16740
 tgactacagc ccgggggagg caagcacaca gaccatcaat cttgacgacc ggtcgcactg 16800

gggcggcgac ctgaaaacca tcctgcatac caacatgcc aatgtgaacg agttcatgtt 16860
 taccaataag tttaaggcgc ggggtatggt gtcgcgctt cctactaagg acaatcaggt 16920
 ggagctgaaa tacgagtggg tggagttcac gctgcccggag ggcaactact ccgagaccat 16980
 gaccatagac cttatgaaca acgcgatcgt ggagcaactac ttgaaagtgg gcagacagaa 17040
 cggggttctg gaaagcgaca tcggggtaaa gtttgacacc cgcaacttca gactggggtt 17100
 tgaccggcgc actggtctt tcatgcctgg ggtatataca aacgaagcct tccatccaga 17160
 catcattttg ctgccaggat gcggggtgga cttcacccac agccgcctga gcaacttgg 17220
 gggcatccgc aagcggaac cttccagga gggctttagg atcacctacg atgatctgga 17280
 gggtggttaac attccgcac tggatgtt ggacgcctac caggcgagct tgaaagatga 17340
 caccgaacag ggccgggggtg ggcaggcgg cagcaacagc agtggcagcg gcgcggaaaga 17400
 gaactccaac gcggcagccg cggcaatgca gccgggtggag gacatgaacg atcatgccat 17460
 tcgcggcgac acctttgcca cacggctga ggagaagcgc gctgaggccg aagcagcggc 17520
 cgaagctgcc gcccccgctg cgcaacccga ggtcgagaag cctcagaaga aaccgggtat 17580
 caaaccctg acagaggaca gcaagaaacg cagttacaac ctaataagca atgacagcac 17640
 cttcacccag taccgcagct ggtaccttgc atacaactac ggacgcctc agaccggaat 17700
 ccgctcatgg accctgctt gcactcctga cgtaacctgc ggctcggagc aggtctactg 17760
 gtcgttgcca gacatgtatgc aagaccctgt gacccctccgc tccacgcgcc agatcagcaa 17820
 cttccggtg gtggggcccg agctgttgcc cgtgcactcc aagagttct acaacgacca 17880
 ggcgcgtctac tcccaactca tccgcagtt tacctctctg acccacgtgt tcaatcgctt 17940
 tccccgagaac cagattttgg cgcccccgc agccccacc atcaccaccc tcagtaaaa 18000
 cgttcctgct ctcacagatc acgggacgct accgctgcgc aacagcatcg gaggagtcca 18060
 gcgagtgacc attactgacg ccagaccccg cacctgcctt tacgttaca agggccctggg 18120
 catagtcctcg ccgcgcgtcc tatcgagccg cacttttga gcaaggatgt ccatttttat 18180
 atcgcccagc aataacacag gctggggcct ggcgttccca agcaagatgt ttggcggggc 18240
 caagaagcgc tccgaccaac acccagtgcg cgtgcgcggg cactaccgcg cgccctggg 18300
 cgccgcacaaa cgccggccgca ctgggcgcac caccgtcgat gacgccatcg acgcgggtgt 18360
 ggaggaggcg cgcaactaca cgcccaacgc gacaccagtg tccacagtgg acgcggccat 18420
 tcagaccgtg gtgcgcggag cccggcgcta tgctaaaatg aagagacggc ggaggcgcgt 18480
 agcacgtcgcc acccgccgccc gacccggcac tgccgcggccaa cgccgcggcgg cgccctgct 18540
 taaccgcgc a cgtgcacccg gccgacgggc ggcacatgcgg gccgctcgaa ggctggccgc 18600
 gggtattgtc actgtgcctt ccaggtccag ggcacgagcg gccgcgcgcag cagccgcggc 18660
 cattagtgtc atgactcagg gtgcgcgggg caacgtgtat tgggtgcgcgc actcggttag 18720

cgccctgcgc gtgcccgtgc gcacccgccc cccgcgcaac tagattgcaa gaaaaaacta 18780
cttagactcg tactgttga tgtatccagc ggcggcggcg cgcaacgaag ctatgtccaa 18840
gchgcaaaatc aaagaagaga tgctccaggt catcgccgccc gagatctatg gccccccgaa 18900
gaaggaagag caggattaca agccccgaaa gctaaagcgg gtcaaaaaga aaaagaaaga 18960
tgcgtatgtatgatgatgacg acgagggtgga actgctgcac gctaccgcgc ccaggcgcacg 19020
ggtagcgtgg aaagggtcgac gctgtaaaacg tggtttgcga cccggcacca ccgttagtctt 19080
tacgccccgtt gagcgctcca cccgcaccta caagcgcgtg tatgtatgagg tgcgtacggcga 19140
cgaggacctg cttgagcagg ccaacgagcg cctcggggag tttgcctacg gaaagcggca 19200
taaggacatg ctggcggttgc cgctggacga gggcaacccc acaccttagcc taaagccccgt 19260
aacactgcag caggtgctgc ccgcgttgc accgtccgaa gaaaagcgcg gcctaaagcgc 19320
cgagtctgggt gacttggcac ccaccgtgca gctgtatggta cccaaagcgcg agcgcacttgg 19380
agatgtcttg gaaaaaaatga ccgtggaaacc tgggctggag cccgagggtcc gctgtcggcc 19440
aatcaaggcag gtggcgccgg gacttggcgt gcagaccgtg gacggttcaaga taccctactac 19500
cagtagcacc agtattgcca ccgcacaga gggcatggag acacaaacgt ccccggttgc 19560
ctcagcggtg gcggatgccc cggtgcaggc ggtcgctgcg gccgcgttca agacccctac 19620
ggaggtgcaa acggaccgtt ggtatgtttcg cgtttcagcc ccccgccgcg cgcgcgttgc 19680
gaggaagtac ggccgcgcgca ggcgcgtact gcccgaatat gccctacatc cttccattgc 19740
gcctacccccc ggctatcgtg gctacaccta ccgcggcaga agacgagcaa ctacccgacg 19800
ccgaaccoacc acttggaaaccc gccgcgcgcg tcgcccgtgc cagccgtgc tggcccccgt 19860
ttccgtgcgc agggtggctc gcgaaggagg caggaccctg gtgctgc当地 cagcgcgttgc 19920
ccaccccaagc atcgttaaa agccggtctt tgcgttgc当地 gcagatatgg ccctcacctg 19980
ccgcctccgt ttccgggtgc cgggattccg aggaagaatg caccgttagga gggcatggc 20040
cgcccacggc ctgacggcgcg gcatgcgtcg tgccgcaccac cggccggcggc ggcgcgttgc 20100
ccgtcgcatg cgccgggtta tcctgc当地 ctttattccat ctgatcgccg cggcgttgc 20160
cgccgtgccc ggaattgc当地 ccgtggcctt gcaggcgcag agacactgtat gaaaaacaag 20220
ttgcgtatgtgg aaaaatcaaa ataaaaagtc tggactctca cgctcgcttgc gtcctgttaac 20280
tattttgttag aatggaaagac atcaactttg cgtctctggc cccgcgacac ggctcgcc 20340
cgttcatggg aaactggcaa gatatcgca ccagcaatat gagcgggtggc gccttcagct 20400
ggggctcgct gtggagcggc attaaaaatt tcgggtccac cgttaagaac tatggcagca 20460
aggcctggaa cagcagcaca ggccagatgc tgaggataa gttgaaagag caaaatttcc 20520
aacaatgggt ggttagatggc ctggcctctg gcattagcgg ggtgggtggac ctggccaaacc 20580
aggcagtgca aaataagatt aacagtaagc ttgatccccg ccctcccgta gaggagcctc 20640
caccggccgt ggagacagtg tctccagagg ggcgtggcga aaagcgtccg ccccccgcaca 20700

ggaaagaaaac tctggtgacg caaatagacg agcctccctc gtacgaggag gcactaaagc 20760
 aaggcctgcc caccacccgt cccatcgcbc ccatggctac cgagtgctg gcccagcaca 20820
 caccctgtaac gctggacctg cctccccccg ccgacaccca gcagaaacct gtgctgccag 20880
 gcccgaccgc cggtgttgc acccgtccta gccgcgcgtc cctgcgcgcg gcccgcagcg 20940
 gtccgcgatc gttgcggccc gtagccagt gcaactggca aagcacactg aacagcatcg 21000
 tgggtctggg ggtgcaatcc ctgaaggcgc gacgatgctt ctgatagcta acgtgtcgta 21060
 tgtgtgtcat gtatgcgtcc atgtcgcgc cagaggagct gctgagccgc cgccgcgcgg 21120
 ctttccaaga tggctacccc ttcatgtatg ccgcagtggc ttatcatgca catctcgggc 21180
 caggacgcct cgaggatcacct gagccccggg ctgggtgcagt ttgcccgcgc caccgagacg 21240
 tacttcagcc tgaataacaa gtttagaaac cccacgggtgg cgccctacgca cgacgtgacc 21300
 acagacccgtt cccagcggtt gacgctgcgg ttcatccctg tggaccgtga ggatactgcg 21360
 tactcgtaca aggccgcgtt caccctagct gtgggtgata accgtgtgct ggacatggct 21420
 tccacgtact ttgacatccg cggcgtgctg gacaggggcc ctactttaa gccctactct 21480
 ggcactgcct acaacgcgcct ggctcccaag ggtgccccaa atccttgca atggatgaa 21540
 gctgctactg ctcttggaaat aaaccttagaa gaagaggacg atgacaacga agacgaagta 21600
 gacgagcaag ctgagcagca aaaaactcac gtatttggc aggccctta ttctggata 21660
 aatattacaa aggagggtat tcaaataatgt gtcaaggc aaacaccta atatgccat 21720
 aaaacatttc aacctgaacc tcaaataatggaa gaatctcagt ggtacgaaac agaaattaat 21780
 catgcagctg ggagagtccct aaaaaagact accccaatga aaccatgtta cggttcatat 21840
 gcaaaaacca caaatgaaaaa tggagggcaa ggcattctt taaagcaaca aaatggaaag 21900
 ctagaaatgc aagtggaaat gcaatttttc tcaactactg aggccgcgc aggcaatgg 21960
 gataacttga ctccctaaagt ggtattgtac agtgaagatg tagatataga aaccccgac 22020
 actcatattt cttacatgcc cactattaag gaaggttaact cacgagaact aatggccaa 22080
 caatctatgc ccaacaggcc taattacatt gcttttaggg acaattttat tggctaatg 22140
 tattacaaca gcacgggtaa tatgggtgtt ctggcgggcc aagcatcgca gttgaatgct 22200
 gttgttagatt tgcaagacag aaacacagag ctttcataacc agctttgct tgattccatt 22260
 ggtgatagaa ccaggtactt ttctatgtgg aatcaggctg ttgacagcta tgatccagat 22320
 gttagaattt ttgaaaatca tggaactgaa gatgaacttc caaattactg cttccactg 22380
 ggaggtgtga ttaatacaga gactcttacc aaggtaaaac ctaaaacagg tcagggaaat 22440
 ggtatggaaa aagatgctac agaatttca gataaaaaatg aaataagagt tggaaataat 22500
 tttgccatgg aaatcaatct aaatgccaac ctgtggagaa atttcctgtt ctccaacata 22560
 gcgctgtatt tgcccgacaa gctaaagtac agtccttcca acgtaaaaat ttctgataac 22620

ccaaacacct acgactacat gaacaagcga gtggggctc ccgggctagt ggactgctac 22680
 attaaccttg gagcacgctg gtcccttgac tataatggaca acgtcaaccc atttaaccac 22740
 caccgcaatg ctggcctgctg ctaccgctca atgttgcgtgg gcaatggctg ctatgtgccc 22800
 ttccacatcc aggtgcctca gaagttcttt gccattaaaa acctccttct cctgcggggc 22860
 tcatacacct acgagtgaa cttaggaaag gatgttaaca tggttctgca gagctcccta 22920
 ggaaatgacc taagggttga cggagccagc attaagtttgc atagcatttgc ctttacgccc 22980
 accttcttcc ccatggccca caacaccgccc tccacgcttgc aggccatgct tagaaacgac 23040
 accaacgacc agtcctttaa cgactatctc tccgcccaca acatgctcta ccctataaccc 23100
 gccaacgcta ccaacgtgcc catatccatc ccctcccgca actggggccgc tttccgggc 23160
 tgggccttca cgcccttaa gactaaggaa accccatcac tgggctcggtt ctacgaccct 23220
 tattacaccc actctggctc tataccctac ctagatggaa cttttacactt caaccacacc 23280
 tttaagaagg tggccattac ctttgactct tctgtcagct ggcctggcaa tgaccgcctg 23340
 cttacccca acgagtttga aattaagcgc tcagttgacg gggagggta caacggtgcc 23400
 cagtgttaca tgaccaaaga ctgggtcctg gtacaaatgc tagctaacta taacattggc 23460
 taccagggttcttcc agagaggtac aaggaccgca tgtactcctt ctttagaaac 23520
 ttccagccca tgagccgtca ggtgggttgc gataactaaat acaaggacta ccaacaggtg 23580
 ggcacatcttcc accaacacaa caactctggaa tttgtggctt accttgcctt caccatgcgc 23640
 gaaggacagg cttaccctgc taacttcccc tatccgctta taggcaagac cgcacgttgc 23700
 agcattaccc agaaaaaagtt tctttggat cgcacccctt ggcgcatttttcc atttccatgt 23760
 aactttatgt ccatgggcgc actcacagac ctggggccaaa accttctcta cgccaaactcc 23820
 gcccacgcgc tagacatgac ttttgaggtt gatcccatgg acgagccac ctttctttat 23880
 gttttgttg aagtcttga cgtggccgt gtgcaccagc cgcacccggc cgtcatcgaa 23940
 accgtgttacc tgccacgcgc cttctggcc ggcaacgcaca caacataaag aagcaagcaa 24000
 catcaacaac agctgcccgc atgggctcca gtgagcagga actgaaagcc attgtcaaag 24060
 atcttggtttgc tggccatat tttttggca cctatgacaa ggcctttcca ggctttgttt 24120
 ctccacacaa gctcgccctgc gccatagtca atacggccgg tcgcgagact gggggcgtac 24180
 actggatggc cttgcctgg aacccgcact caaaaacatg ctaccttttgc gagccctttg 24240
 gctttcttgc ccacgcactc aacgggtt accagtttgc gtacgacttca ctcctgcgc 24300
 gtagccat tgccttccccc gacccgcgtt gtataacgct ggaaaagttcc acccaaagcg 24360
 tacagggccca aactcggccgc gcctgtggac tattctgctg catgtttctc cacgcctttg 24420
 ccaactggcc ccaaactccc atggatcaca accccaccat gaaccttatt accgggggtac 24480
 ccaactccat gctcaacagt ccccggttac agcccaccct ggcgtcgcaac caggaacagc 24540
 tctacagctt cctggagcgc cactcgccct actccgcag ccacagtgcg cagatttagga 24600

gcgccacttc tttttgtcac ttgaaaaaca tgtaaaaata atgtactaga gacacttca 24660
 ataaaggcaa atgctttat ttgtacactc tcgggtgatt atttaccccc acccttgccg 24720
 tctgcgccgt taaaaaatca aaggggttct gccgcgcac gctatgcgcc actggcaggg 24780
 acacgttgcg atactggtgt ttagtgctcc acttaaactc aggacacaacc atccgcggca 24840
 gctcggtgaa gtttcactc cacaggtgc gcaccatcac caacgcgtt agcaggtcgg 24900
 gcgccgatat cttgaagtgc cagttgggc ctccgcctg cgcgccgag ttgcgataca 24960
 cagggttgca gcactggaac actatcagcg ccgggtggtg cacgctggcc agcacgctct 25020
 tgtcggagat cagatccgca tccaggtcct ccgcgttgct cagggcgaac ggagtcaact 25080
 ttggtagctg cttcccaa aagggcgcgt gcccaggctt tgagttgcac tcgcaccgta 25140
 gtggcatcaa aaggtgaccg tgcccggtct gggcgtagg atacagcgc tgcataaaag 25200
 cttgatctg cttaaaagcc acctgagcct ttgcgccttc agagaagaac atgcccgaag 25260
 acttgcggaa aaactgattt gcccggacagg ccgcgtcgat cacgcagcac cttgcgtcgg 25320
 tgttggagat ctgcaccaca ttccggcccc accgggtctt cacgatcttgc gccttgctag 25380
 actgctccctt cagcgccgc tgcccggttt cgctcgatcac atccatttca atcacgtgct 25440
 ctttatttat cataatgctt ccgtgttagac acttaagctc gccttcgatc tcagcgcagc 25500
 ggtgcagcca caacgcgcag ccgtgggtct cgtgatgctt gtaggtcacc tctgcaaacg 25560
 actgcaggta cgcctgcagg aatcgccccca tcatcgatcac aaaggtcttgc ttgctggta 25620
 aggtcagctg caacccgcgg tgctcctcgat tcagccaggat cttgcataacg gcccgcagag 25680
 cttccacttg gtcaggcagt agtttgaagt tcgccttttag atcgttatcc acgtggtaact 25740
 tgtccatcgat cgcgcgcgcgca gcctccatgc cttctccca cgcagacacg atcggcacac 25800
 tcagcgggtt catcaccgtat atttcacttt ccgcctcgat gggctcttcc tcttccttt 25860
 gcgtccgcata accacgcgcacc actgggtcgat cttcattcgat ccgcgcact gtgcgcctac 25920
 ctccttgccat atgcttgattt agcaccgggtg ggtgctgaa acccaccatt tgcatacgcca 25980
 catcttctctt ttcttcctcgat ctgtccacga ttacctctgg tgatggcggg cgctcgggtct 26040
 tgggagaagg ggccttcttt ttcttcctgg ggcataatggc caaatccggc gcccgggtcg 26100
 atggccgcgg gctgggtgtg cgcggcacca ggcgtcttgc tgatgagttt tcctcgatcc 26160
 cggactcgat acgcccgcctc atccgctttt ttggggggcgc ccggggagggc ggccggcgacg 26220
 gggacggggga cgacacgtcc tccatgggtt ggggacgtcg cgccgcacccg cgtccgcgtct 26280
 cgggggtggat ttgcgcgtgc tcctcttccc gactggccat ttcccttcc tataaggcaga 26340
 aaaagatcat ggagtcaatgc gagaagaagg acagcctaacc cggccctctt gagttcgcca 26400
 ccaccgcctc caccgatgcc gccaacgcgc ctaccacccat ccccgatcgag gcaccccccgc 26460
 ttgaggagga ggaagtgtt atcgagcagg acccaggttt tgtaagcgaa gacgacgagg 26520

accgctcagt accaacagag gataaaaagc aagaccagga caacgcagag gcaaacgagg 26580
 aacaagtccg gcggggggac gaaaggcatg gcgactacct agatgtggga gacgacgtgc 26640
 ttttgaagca tctgcagcgc cagtgcgcca ttatctgcga cgcgttgcaa gagogcagcg 26700
 atgtccccct cgccatagcg gatgtcagcc ttgcctacga acgccaccta ttctcaccgc 26760
 gcgtacccccc caaacgccaa gaaaacggca catgcgagcc caacccgcgc ctcaacttct 26820
 accccgtatt tgccgtgcca gaggtgcttg ccacctatca catcttttc caaaactgca 26880
 agataccctt atcctgccgt gccaaccgca gccgagcggca caagcagctg gccttgcggc 26940
 agggcgctgt catacctgat atcgccctcg tcaacgaagt gccaaaaatc tttgagggtc 27000
 ttggacgcga cgagaagcgc gcggcaaacg ctctgcaaca ggaaaacagc gaaaatgaaa 27060
 gtcactctgg agtgttggtg gaactcgagg gtgacaacgc gcgcctagcc gtactaaaac 27120
 gcagcatcga ggtcaccac ttgcctacc cggcacttaa cctacccccc aaggcatga 27180
 gcacagtcat gagtgagctg atcgtgcgcc gtgcgcagcc cttggagagg gatgcaaatt 27240
 tgcaagaaca aacagaggag ggcctacccg cagttggcga cgagcagcta gcgcgtggc 27300
 ttcaaacgcg cgagcctgcc gacttggagg agcgcaccaa actaatgatg gcgcagtgc 27360
 tcgttaccgt ggagctttag tgcacgcgc ggttcttgc tgacccggag atgcagcgca 27420
 agctagagga aacattgcac tacacccctt gacaggccta cgtacgcccag gcctgcaaga 27480
 tctccaaacgt ggagctctgc aacctggctt cctaccccttgg aattttgcac gaaaaccgccc 27540
 ttggcaaaa cgtgcttcat tccacgctca agggcgaggc gcgcgcgcac tacgtcccg 27600
 actgcgttta cttatttcta tgctcacacct ggcagacggc catggcggtt tggcagcagt 27660
 gcttggagga gtcaacccctc aaggagctgc agaaaactgct aaagcaaaac ttgaaggacc 27720
 tatggacggc cttcaacgcg cgctccgtgg ccgcgcaccc ggcggacatc attttccccg 27780
 aacgcctgct taaaaccctg caacagggtc tgccagactt caccagtcaa agcatgttgc 27840
 agaacttttag gaactttatc ctagagcgct caggaatctt gcccgcacc tgctgtgcac 27900
 ttcctagcga ctttgtgccc attaagtacc gcgaatgccc tccgcccctt tggggccact 27960
 gctaccccttgcagcttcc aactacccttgc cttaccactc tgacataatg gaagacgtga 28020
 gcggtgacgg tctactggag tgcactgtc gctcaacct atgcaccccg caccgctccc 28080
 tggtttgcac ttgcagctg cttaacgaaa gtcaaattat cggtacccctt gagctgcagg 28140
 tgcgcgcgc tgcggaaaag tccgcggctc cgggggttggaa actcactccg gggctgtgg 28200
 cgtcggcttaccccttgc ctttcgcaaa tttgtaccccttgc aggactacca cggccacgag attaggttct 28260
 acgaagacca atcccccccg cttaatgcgg agcttaccgc ctgcgtcatt acccaggggcc 28320
 acattcttgg ccaattgcaaa gccatcaaca aagcccgcca agagtttctg ctacgaaagg 28380
 gacgggggggt ttacttggac ccccgatccg gcgaggagct caacccaaatc ccccccgcgc 28440
 cgcagcccta tcagcagcag cgcggggccc ttgcctccca ggtggcacc caaaaagaag 28500

ctgcagctgc cgccgccacc cacggacgag gaggaatact gggacagtca ggcagaggag 28560
 gttttggacg aggaggagga ggacatgatg gaagactggg agagcctaga cgaggaagct 28620
 tccgaggtcg aagaggtgtc agacgaaaca ccgtcaccct cggcgcatt cccctcgccg 28680
 gcgccccaga aatcgcaac cggttccagc atggctacaa cctccgctcc tcagggcgcc 28740
 cggcactgc cggttcgccc acccaaccgt agatgggaca ccactggaac cagggccggt 28800
 aagtccaaggc agccgcccgc gttagccaa gagcaacaac agcgccaagg ctaccgctca 28860
 tggcgccggc acaagaacgc catagttgct tgcttgcag actgtgggg caacatctcc 28920
 ttcgcggcc gctttcttct ctaccatcac ggctgtggct tccccgtaa catcctgcat 28980
 tactaccgtc atctctacag cccatactgc accggcggca gcggcagcaa cagcagcggc 29040
 cacacagaag caaaggcgac cgatagcaa gactctgaca aagcccaaga aatccacagc 29100
 ggcggcagca gcaggaggag gagcgctgctg tctggcgccc aacgaaccgg tatcgaccgg 29160
 cgagcttaga aacaggattt ttcccactct gtatgctata tttcaacaga gcagggccca 29220
 agaacaagag ctgaaaataa aaaacagggtc tctgcgatcc ctcacccgca gctgcctgta 29280
 tcacaaaagc gaagatcgc ttcggcgcac gctggaagac gcggaggctc tcttcagtaa 29340
 atactgcgcg ctgactctta aggactagtt tcgcgcctt tctcaaattt aagcgcaaa 29400
 actacgtcat ctccagcggc cacacccggc gccagcacct gttgtcagcg ccattatgag 29460
 caaggaaatt cccacgcctt acatgtggag ttaccagcca caaatggac ttgcggctgg 29520
 agctgcctaa gactactcaa cccgaataaa ctacatgagc gcgggacccc acatgatatc 29580
 ccgggtcaac ggaatacgcg cccaccgaaa cgcatttcg ctggacagg cggttattac 29640
 caccacacct cgtataacc ttaatccccg tagttggccc gctgcctgg tgtaccagga 29700
 aagtcccgct cccaccactg tggacttcc cagagacgcc caggccgaag ttcagatgac 29760
 taactcaggg gcgcagctt cggcggtt tcgtcacagg gtgcggcgcg ccggcaggg 29820
 tataactcact ctgacaatca gagggcgagg tattcagctc aacgacgagt cggtgagctc 29880
 ctcgcttggt ctccgtccgg acgggacatt tcagatcggc ggccggcc gctttcatt 29940
 cacgcctcggt caggcaatcc taactctgca gacctcgcc tctgagccgc gctctggagg 30000
 cattggaaact ctgcaattta ttgaggagtt tgtgcacatcg gtctacttta accccttctc 30060
 gggacccccc gcccactatc cggatcaatt tattcctaac tttgacgcgg taaaggactc 30120
 ggcggacggc tacgactgaa tgttaagtgg agagggcagag caactgcgcc tgaaacacct 30180
 ggtccactgt cggccgcaca agtgctttgc cgcgcactcc ggtgagttt gctactttga 30240
 attgccccgag gatcatatcg agggccggc gcacggcgtc cggcttaccg cccagggaga 30300
 gcttgcggctt agcctgattc gggagttac ccagggcccc ctgctagttg agcgggacag 30360
 gggaccctgt gttctcactg tgatttgcaa ctgtcctaacc cctggattac atcaagatct 30420

ttgttgcattcttgtctagtataataaatacagagaataaaatatactggggctcct 30480
 atcgccatccatgtaaacgcccgtctcacccggcaagcaaaccaaggcgaaccttac 30540
 ctggtacttttaacatctctccctctgtatgtttacaacagtttcaacccagacggagtga 30600
 gtctacgagaaacctctccgagctcagactccatcagaaaaaacaccacccttc 30660
 cctgcccggacgtacgagtgcgtcaccggccgctgcaccacacctaccgcctgaccgta 30720
 aaccagacttttccggacacctcaataactctgttaccagaacacaggaggtgagctt 30780
 agaaaaacccttagggtattaggccaaaggcgcagctacttggttttataacaattca 30840
 agcaactctaaggcttatttcattcaggattctcttagaaatggacggatttattacaga 30900
 gcagcgcctgctagaaagacgcagggcagcggccgagcaa cagcgcatgaatcaagagct 30960
 ccaagacatgtttaacttgcaccagtcaaaagggtatctttgtctggtaaagcaggc 31020
 caaagtccatcaccacatgttacgacatgtatccaccacccgttactacaatgtgccaaccaa 31080
 gcgtcagaaa ttggtggtca tggtggtgaaaggccattaccataactcagcactcggt 31140
 agaaaaccgaa ggctgcatttactcacottgtcaaggacctgaggatctctgcacccttat 31200
 taagaccctgtcggtctca aagatcttatcccttaac taataaaaaaaataataaaa 31260
 gcatcactta cttaaaatca gttacaaatttctgtccatgttattcagcagcacctcct 31320
 tgccctcctccagctctggatttgcagttccctgtccatccgcaccactatcttcatgttgt 31380
 taaatgaaatgtcagttccctgttgcacccactatcttcatgttgc 31440
 tgcagatgaa ggcgcgaaga cctgtgaagataccctcaa cccctgtatccatatgaca 31500
 cggaaaccggtcctccaaactgtgcctttcttactcctcccttgcataatgggt 31560
 ttcaagagag tccccctgggtactcttgcgcctatc cgaacctcta gttacccatc 31620
 atggcatgct tgcgtcaaaatggcaacgcctctctggacggccggcaacccctta 31680
 cctcccaaaa tggtaaccactgtgagccacctctcaaaaaaaccacatgtcaaacataaacc 31740
 tggaaatatctgcacccctc acagttacccatcagaaggccctactgtggctgcgcgcac 31800
 ctctaatggctcgccggcaacacactcacatcgtcaatcaca ggcggccgtaccgtgcacg 31860
 actccaaacttagcattgccaccacaggacccctcacatgtcagaagga aagctagccc 31920
 tgcaacatcaggccccctcaccaccacccatgcgtacccctactgcctcac 31980
 cccctctaactctgtccactgttagcttgggcattgactt gaaagagcccttataacac 32040
 aaaatggaaaactaggactaaatgtacggggctcccttgca tggtaacagacgacctaaaca 32100
 ctggaccgttgcactgttgcattataataacttccttgcataactaaag 32160
 ttactggagcttgggttttattcacaaggtcaatatgtacttaatgtgcaggaggac 32220
 taaggattgtatctcaaaacagacgccttaacttgcgtttagtgccttgc 32280
 aaaaccaactaaatctaagaatgtacaggcccttttataactca gcccacaact 32340
 tggatattaaatcacaacaaa ggccttacttgcgttacagcttcaacaaat tccaaaaagc 32400

ttgaggtaa cctaagcact gccaagggt tgatgttga cgctacagcc atagccatta 32460
 atgcaggaga tgggcttcaa tttggttcac ctaatgcacc aaacacaaat cccctcaaaa 32520
 caaaaattgg ccatggccta gaatttgatt caaacaaggc tatggttcct aaactaggaa 32580
 ctggccttag ttttgacagc acaggtgcca ttacagtagg aaacaaaaat aatgataagc 32640
 taactttgtg gaccacacca gctccatctc ctaactgtag actaaatgca gagaaagatg 32700
 ctaaactcac tttggtctta acaaaatgtg gcagtcaa atctgctaca gtttcagtt 32760
 tggctgttaa aggcatggg gctccaatctt ctggAACAGT tcaaaatgtc catcttatta 32820
 taagatttga cgaaaatggg gtgctactaa acaattcctt cctggaccca gaatatttgg 32880
 acttttagaaa tggagatctt actgaaggca cagcctatac aaacgctgtt ggatttatgc 32940
 ctaacctatc agcttatcca aaatctcactg gtaaaactgc caaaaagtaac attgtcagtc 33000
 aagtttactt aaacggagac aaaactaaac ctgtAACACT aaccattaca ctaaacggta 33060
 cacagggaaac aggagacaca actccaagtg catactctat gtcattttca tggactgg 33120
 ctggccacaa ctacattaat gaaatatttgc ccacatcctc ttacactttt tcatacattt 33180
 cccaagaata aagaatcggtt tgggttatgt ttcaacgtgt ttatTTTCA attgcccggg 33240
 atcgggtatc accgatccag acatgataag atacattgtat gagtttggac aaaccacaac 33300
 tagaatgcag tgaaaaaaat gctttatTTG tgaaatttgtt gatgttatttgc 33360
 aaccattata agctgcaata aacaagtcc cggatcgca tccggcccgaa ggctgttagcc 33420
 gacgatggtg cgccaggaga gttgttgcatttgc ctccctgctg cggttttca 33480
 ccgaagttca tgccagtcca gctttttgc agcagaaaag ccggcactt cggtttcg 33540
 tcgcgagtga agatccctt ctgttaccg ccaacgcgc atatgccttgcgca 33600
 aaatcgccga aattccatac ctgttacccg acgacggcgc tgacgcgatc aaagacgcgg 33660
 tgatacatat ccagccatgc acactgatac tcttcactcc acatgtcggt gtacatttgc 33720
 tgcagccgg ctaacgtatc cacggctat tcgggtatga taatcggttgcgatc 33780
 tcctgcccagg ccagaagttc ttttccagt accttctctg ccgtttccaa atcgccgctt 33840
 tggacataacc atccgtataa acgggttgcagg cacagcacat caaagagatc gctgtatggta 33900
 tcgggtgtgag cgctcgagaa cattacatttgc acgcagggttgc tcggacgcgtt cggttcg 33960
 ttacgcgttg ctcccgccag tggcgcaaa tattccgttgc caccttgcgg acgggtatcc 34020
 ggttcggttgc caataactcca catcaccacg ctgggttgcgtt ttttgcacg cgctatcagc 34080
 tctttaatcg cctgttaatcg cgcttgcgttgc gtttcccgat tgcgttgcctt ttcgttgc 34140
 agttcttcg gcttgcgttgc ccgttgcggaa ccaatgccta aagagaggatc aaagccgaca 34200
 gcagcagttt catcaatcac cacgtgcca tggcatctg cccagtcgag catcttca 34260
 gcgttaagggt aatgcgaggt acggtagggat tggccccaa tccagtccat taatgcgtgg 34320

tcgtgcacca tcagcacgtt atcgaatcct ttgccacgca agtccgcac ttcatgacga 34380
 ccaaagccag taaagttagaa cggtttgtgg ttaatcagga actgttcgcc cttaactgcc 34440
 actgaccgga tgccgacgca aagcgggtag atatcacact ctgtctggct tttggctgtg 34500
 acgcacagtt catagagata accttcaccc ggtgccaga ggtgcggatt caccactgc 34560
 aaagtccgc tagtgccttg tccagttgca accacctgtt gatccgcac acgcagttca 34620
 acgctgacat caccattggc caccacctgc cagtcaacag acgcgtggtt acagtcttgc 34680
 ggcacatgca tcaccacggt gatatcgcc acccaggtgt tcggcgtgggt gtagagcatt 34740
 acgctgcgt ggattccggc atagttaaag aaatcatgga agtaagactg cttttcttg 34800
 ccgtttcgt cgtaatcac cattccggc gggatagtct gccagtttag ttcgttggc 34860
 acacaaacgg tgatacgtac actttcccg gcaataacat acggcgtgac atcggcttca 34920
 aatggcgtat agccgcctg atgctccatc acttcctgat tattgacca cactttccg 34980
 taatgagtga ccgcacatcgaa acgcagcacg atacgctggc ctgcccacc tttcggtata 35040
 aagacttcgc gctgatacca gacgttgcgc gcataattac gaatatctgc atcggcgaac 35100
 tgatcgtaa aactgcctgg cacagcaatt gccggcttt cttgtAACgc gctttccac 35160
 caacgcgtat caattccaca gtttcgca tccagactga atgcccacag ggcgtcgagt 35220
 ttttgattt cacgggttgg gtttctaca ggacggacca tgcgttcgac ctttcttgc 35280
 tttttggc ccatgatggc agatccgtat agtgagtcgt attagcttgt ttttccgccc 35340
 tcagaagcca tagagccac cgcatccccca gcatgcctgc tattgtcttc ccaatcctcc 35400
 cccttgctgt cctgccccac cccacccccc agaatagaat gacacact cagacaatgc 35460
 gatgcaattt cctcatttta ttaggaaagg acagtggag tggcaccttc cagggtcaag 35520
 gaaggcacgg gggaggggca aacaacagat ggctggcaac tagaaggcac agtcgaggct 35580
 gatcagcgag ctctagatgc atgctcgagc ggccgcccagt gtgatggata tctgcagaat 35640
 tccagcacac tggcggccgt tactagtggc tccagactcg gtacccggcc gttataacac 35700
 cactcgacac ggcaccagct caatcagtca cagtgtaaaa aaggccaaag tgcagagcga 35760
 gtatatata gactaaaaaa tgacgtaacg gttaaagtcc acaaaaaaaca cccagaaaaac 35820
 cgcacgcgaa cctacgccccca gaaacgaaag ccaaaaaacc cacaacttcc tcaaatcgcc 35880
 acttccgttt tcccacgtta cgtcacttcc cattttaaaga aaactacaat tcccaacaca 35940
 tacaagttac tccgccttaa aacctacgtc acccgccccg ttcccacgcc ccgcggccacg 36000
 tcacaaactc cacccctca ttatcatatt ggcttcaatc caaaataagg tatattattg 36060
 atgatg 36066

<210> 17
 <211> 33583
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adenoviral vector Adgp140 (A).11D

<400> 17	
catcatcaat aatacacctt atttggatt gaagccaata tgataatgag ggggtggagt	60
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt	120
gatgttgc aa gtgtggcg a acatgtaa gcacggatg tggcaaaagt gacgttttg	180
gtgtgcgc gtgtacacag gaagtgacaa tttcgccg gttttaggcg gatgtttag	240
taaatttggg cgttaaccgag taagatttgg ccatttcgc gggaaaactg aataagagga	300
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tattttgtcta gggcccgaa	360
tcggtgatca ccgatccaga catgataaga tacattgtat agtttggaca aaccacaact	420
agaatgcagt gaaaaaaatg ctttatttgt gaaatttgcg atgctattgc tttatttgc	480
accattataa gctgcaataa acaagttccc ggatcttct agctagtcgactagctag	540
actcgagagc ggccgcaatc gataagcttgc atgatcccac gtgttcacca cagccagcgg	600
ctgatgtcga accagttcca caggctggcc cacttgcgc gggccagcag gtcctgctcg	660
ttcttcctcct gctggttctg gctctccctcg atcaggttgcg agatgatctg ggttagttg	720
ctgatctcct tgcctccactg cagccaggcgc atgttgcgc agatctcgatc ctgctggc	780
ttcaggtagc gctccacggc cagcacgcgg gcctgcagct gcttgcgc ccacacggc	840
agttcagca tgcgtgcgtg ggccctcgatg ggcgcgc ggttgcgc tgcgtgcac	900
atgcgcgtca gcagctggcg ggccctggcg gtaagcttgc cgcggctggg ggccacgccc	960
aggggctcga ttttaccac cttgtacttgc tacagctgc tgcgcgc tgcgcgc	1020
ttggccgcgc cggggcgaa gatctcgatg gtgtgttgc tgccgcgc ggggtcagc	1080
agcaggccgg tgcgtgttgc ctcgcagcgg atcacgcctt ggtgggggg ggggtacatg	1140
gcctggccca ctttgcgc catgttgcgc atctgcgc tgcggcaggc cagggtgcgc	1200
gtgtcgttgc tgggtgttgc gttgtctcg gtgtgttgc tttccaggc gctgttgc	1260
aggccgcgtgg tgggtgcgc gaaactcg ccgcgcaga tgaagcttgc ggtgggtgc	1320
tcgatgtcgc cggcgtgc ctttgcgc atgtgttgc ttttttttgc tgcgtgcgc	1380
agtttttgc ccacgcgc cagggtgcgc ttccacttgc cgcggctcgc tggcgcgtgg	1440
gcctggcgaa tgcgtgcgc gatgcgcgc gtggcgtaga aggccgttgc gggccgcgt	1500
cgcacgcctt tgcgggttgc gttgtgggg cgggtgcgt tgcgttgc tgcgtgcgc	1560
agctgcacgc tgcgtgttgc ggcgttgcgc gtgtgttgc cgcgtgcgc tggatgc	1620
tcctcgccca ggctgcgc tgcgcgc tgggtgcgc tgcgtgcgc gatgcgcgttgc	1680
gtgcactgcgc cgggtgcgc gttttgcgc gggccgcgtac cgttgcactc ggtgttgc	1740
cacttcaggc tggcgaagcc ggccggggcg cagtagtggc tggggatggg ctgcgcgc	1800

accttggggc	aggcctgggt	gatggcgctg	gtgttgcagt	tgatcaggcg	gtacttgcg	1860
gtctcggtct	tctcggtat	ctgcaccacg	tccagctgt	agaacaggct	gtacacctgc	1920
tgcttcttgt	ccttcagctc	ggtggtgatg	ttgaagctac	agttgcgcac	ctcggtggc	1980
acgttgctgg	cggtggcggt	gcagtcagg	gtcacgcaca	ggggggtcag	cttcacgcag	2040
ggcttcaggc	tctggtccca	caggctgatg	atgtcggtgt	gcatctgctc	caccatgtt	2100
ttgcgcacaca	tgttgaagtc	ctcggtcacg	ttctccaggt	ggatctcctg	gggggtgggg	2160
tcggtgggca	cgcaggcggt	ggtctccac	acgttgta	cctcggtgtc	gtaggcctt	2220
gcgtcgctgg	cgcagaacag	ggtggtctcg	gcgtcctcc	acacgggcac	gccgtatgac	2280
acggccaccc	acaggttctc	ggcggcgctg	tagatcacca	gcatgcccag	gatcatggt	2340
ccccagcgcc	acaggttctg	ccagctggtc	tggatgccgc	gcacgcgcac	ggtggcgata	2400
tctctagatc	gaattctgca	gtgatcagg	atcccagatc	cgtatagtg	gtcgattag	2460
gtaccggctg	cagttggacc	tgggagtgga	cacctgtgga	gagaaaggca	aagtggatgt	2520
cattgtcact	caagtgtatg	gccagatctc	aagcctgcca	cacctaagt	gaagccaagg	2580
gggtgggcct	atagactcta	taggcgtac	ttacgtcact	cttggcacgg	ggaatccgcg	2640
ttccaatgca	ccgttcccg	ccgcggaggc	tggatcggtc	ccggtgtctt	ctatggaggt	2700
caaaacagcg	tggatggcgt	ctccaggcga	tctgacggtt	cactaaacga	gctctgctta	2760
tatagacctc	ccaccgtaca	cgcctaccgc	ccatttgcgt	caatgggcg	gagttgttac	2820
gacattttgg	aaagtcccgt	tgatttttgt	gccaaaacaa	actcccattt	acgtcaatgg	2880
ggtggagact	tggaaatccc	cgtgagtc	accgctatcc	acgcccattt	atgtactgcc	2940
aaaaccgcac	caccatggta	atagcgatga	ctaatacgta	gatgtactgc	caagtaggaa	3000
agtcccataa	ggtcatgtac	tggcataat	gccaggcggg	ccatttacgg	tcattgacgt	3060
caataggggg	cgtacttggc	atatgataca	cttgatgtac	tgccaagtgg	gcagtttacc	3120
gtaaatactc	caccatttga	cgtcaatgg	aagtccctat	tggcgttact	atgggaacat	3180
acgtcattat	tgacgtcaat	gggcgggggt	cgttggcgg	tcagccaggc	gggcattta	3240
ccgtaagtta	tgtAACGCGG	aactccatat	atgggctatg	aactaatgac	cccgtaattt	3300
attactatta	ataactatgt	ctgaaatgt	tggcggtgg	ttaagggtgg	gaaagaatat	3360
ataagggtgg	ggtcttatgt	agttttgtat	ctgttttgc	gcagccccc	ccgccatgag	3420
caccaactcg	tttgcgttggaa	gcattgtgag	ctcatattt	acaacgcgc	tgccccatg	3480
ggccgggggt	cgtcagaatg	tgatggcgtc	cagcattgat	ggtcgcccc	tcctgcccgc	3540
aaactctact	accttgaccc	acgagaccgt	gtctggaaacg	ccgttggaga	ctgcagccctc	3600
cccccgcgc	tcagccgcgt	cagccaccgc	ccgcgggatt	gtgactgact	ttgcgtttcct	3660
gagcccgctt	gcaaggcgtg	cagttcccg	ttcatccgc	cgcgatgaca	agttgacggc	3720
tctttggca	caattggatt	cttgacccg	ggaacttaat	gtcgtttctc	agcagctgtt	3780

ggatctgcgc cagcaggaaa ctgcctgaa ggccctcc cctccaaatg cggttaaaa	3840
cataaataaa aaaccagact ctgtttggat ttggatcaag caagtgtttt gctgtctta	3900
ttaggggtt ttgcgcgc ggtaggcccg ggaccagcgg tctcggtcgt tgagggtcct	3960
gtgtatcccccc tccaggacgt ggtaaagggtg actctggatg ttcagataca tggcataag	4020
cccgctctcg gggtgaggt agcaccactg cagacccatca tgctgcgggg tggtgttgc	4080
gatgatccag tcgtacgagg agcgctggc gtgggccta aaaatgtttt tcagtagcaa	4140
gctgattgcc aggggcaggc cttgggtgtt aatgtttaca aagcggtaa gctggatgg	4200
gtgcatacgt gggatatga gatgcattttt ggactgtatt tttaggttgg ctatgttccc	4260
agccatatcc ctccggggat tcatgttgc cagaaccacc agcacagtgt atccggtgca	4320
cttggaaat ttgtcatgtt gcttagaagg aaatgcgtgg aagaacttgg agacgcctt	4380
gtgacctcca agattttcca tgcattcgtc cataatgtatg gcaatggcc cacggcggc	4440
ggcctggcg aagatatttc tggatcaact aacgtcatag ttgtgttcca ggtgagatc	4500
gtcataggcc atttttacaa agcgccggcg gagggtgcata gactgcggta taatggttcc	4560
atccggccca gggcgtagt taccctcaca gattgcatt tccacgcct tgagttcaga	4620
tgggggatc atgtctaccc tgcggggcgat gaagaaaacg gttccgggg tagggagat	4680
cagctggaa gaaaggcaggt tcctgagcag ctgcgactta ccgcagccgg tggcccgta	4740
aatcacacctt attaccggct gcaactggta gttaagagag ctgcagctgc cgtcatccct	4800
gaggcaggggg gccacttcgt taagcatgtc cctgactcgc atgtttccc tgaccaaattc	4860
cgccagaagg cgctcgccgc ccagcgatag cagttcttcgc aaggaagcaa agttttcaa	4920
cggtttggata ccgtccgcgc taggcattgtt tttgagcggt tgaccaagca gttccaggcg	4980
gtcccacagc tcggtcaccc gctctacggc atctcgatcc agcatatctc ctgtttcgc	5040
gggttgggc ggcatttcgcgt gtacggcagt agtcgggtgc cgtccagacg ggccagggtc	5100
atgtctttcc acggggcgac ggtcctcgtc agcgtatgtt gggtcacggtaa gaaagggtgc	5160
gctccggct ggcgcgtggc cagggtgccgc ttgaggctgg tcctgctgg gctgaagcgc	5220
tgccggctt cgcctgcgc gtccggccagg tagcatttga ccatgggtc atagtccagc	5280
ccctccgcgg cgtggccctt ggccgcgcagg ttggcccttgg aggaggcgcc gcacgagggg	5340
cagtgcagac ttttggggc gtagagctt ggcgcgcgaa ataccgattc cggggagtag	5400
gcattccgcgc cgcaggcccc gcagacggtc tgcattcca cgagccaggt gagctctggc	5460
cgttcgggtt caaaaaccag gtttccccca tgcttttga tgctttttt acctctggtt	5520
tccatgagcc ggtgtccacg ctgggtgacg aaaaggctgt ccgtgtcccc gtatacagac	5580
ttgagaggcc tgcctcgag cgggtttcccg cggcccttcgt cgtatagaaa ctggaccac	5640
tctgagacaa aggctcgctt ccaggccaggc acgaaggagg ctaagtggaa gggtagcgg	5700

tcgttgtcca	ctagggggc	cactcgctcc	agggtgtgaa	gacacatgtc	gcccttgc	5760
gcatcaagga	aggtgattgg	ttttaggtg	taggccacgt	gaccgggtgt	tcctgaaggg	5820
gggctataaa	agggggtggg	ggcgcgttc	tcctcaactc	cttccgcac	gctgtctgc	5880
agggccagct	gttggggtga	gtactccctc	tgaaaagcgg	gcatgacttc	tgcgctaaga	5940
ttgtcagttt	ccaaaaacga	ggaggatttg	atattcacct	ggcccgcgt	gatgccttg	6000
agggtgccg	catccatctg	gtcagaaaag	acaatcttt	tgttgtcaag	cttggtgca	6060
aacgaccctgt	agagggcgtt	ggacagcaac	ttggcgatgg	agcgcagggt	ttggttttg	6120
tcgcgatcgg	cgcgctcctt	ggccgcgtatg	tttagctgca	cgtattcgc	cgcaacgcac	6180
cgcattcgg	gaaagacggt	ggtgcgtcg	tcgggcacca	ggtgcacgcg	ccaaccgcgg	6240
ttgtcaggg	tgacaaggc	aacgctggt	gctacctctc	cgcgtaggcg	ctcggtggc	6300
cagcagggc	ggccgcctt	gcfgcagcag	aatggcgta	gggggtctag	ctgcgtctcg	6360
tccgggggt	ctgcgtccac	ggtaaagacc	ccgggcagca	ggcgcgcgtc	gaagtagtct	6420
atcttgcac	ttgcgaagtc	tagcgcctgc	tgccatgcgc	ggcggcaag	cgcgcgtcg	6480
tatgggtga	gtgggggacc	ccatggcatg	gggtgggtga	gcfgggaggc	gtacatgccg	6540
caaatgtcgt	aaacgttagag	gggctctctg	agtattccaa	gatatgtagg	gtagcatctt	6600
ccaccgcgga	tgctggcg	cacgtaatcg	tatagttcgt	gcfgaggagc	gaggaggcgt	6660
ggaccgaggt	tgctacgggc	gggctgtct	gctcggaaaga	ctatctgcct	gaagatggca	6720
tgtgagttgg	atgatatggt	tggacgctgg	aagacgttga	agctggcg	tgtgagacct	6780
accgcgtcac	gcacgaagga	ggcgtaggag	tcgcgcagct	tgttgaccag	ctcgccgg	6840
acctgcacgt	ctagggcgca	gtagtccagg	gtttccttga	tgtatgtcata	cttatacctgt	6900
ccctttttt	tccacagctc	gcgggtt	gagg	acaaactctt	cgcggcttt	6960
tggatcgaa	accgcgtggc	ctccgaacgg	taagagccta	gcatgtagaa	ctgggttgc	7020
gcctggtagg	cgcagcatcc	cttttctacg	ggtagcgcgt	atgcctgcgc	ggccttccgg	7080
agcgaggtgt	gggtgagcgc	aaagggtgtcc	ctgaccatga	ctttgaggta	ctggtatttg	7140
aagtca	gtgtcgatcc	gccctgtcc	cagagcaaaa	agtccgtgc	ctttttggaa	7200
cgcggatttgc	gcaggcgaa	ggtgacatcg	ttgaagagta	tcttccgc	gcfgaggcata	7260
aagttgcgtg	tgtgcggaa	gggtcccggc	acctcggaaac	ggttgttaat	tacctggcgt	7320
gcfgagcacga	tctcgtaaa	gccgttgatg	ttgtggccca	caatgtaaag	ttccaagaag	7380
cgcggatgc	ccttgatgga	aggcaattt	ttaagttcct	cgtaggtgag	ctcttcagg	7440
gagctgagcc	cgtgctctga	aaggcccag	tctgcaagat	gagggttgg	agcgcacgaat	7500
gagctccaca	ggtcacgggc	cattagcatt	tgcaggtgg	cgcgaaaggt	cctaaactgg	7560
cgacctatgg	ccat	ttgggtgtatg	cagtagaagg	taagcgggtc	ttgttcccag	7620
cggtcccatc	caagggtcgc	ggctaggtct	cgcgcggcag	tcactagagg	ctcatctccg	7680

ccgaaacttca tgaccagcat gaagggcacg agctgcttcc caaaggcccc catccaagta 7740
taggtctcta catcgtaggt gacaaagaga cgctcggtgc gaggatgcga gccgatcggg 7800
aagaacttggaa tctcccgcca ccaattggag gagtggctat tcatgtgggt aaagttagaa 7860
tccctgcgac gggccgaaca ctcgtgtgg ctttgtaaa aacgtgcgca gtactggcag 7920
cggtgcacgg gctgtacatc ctgcacgagg ttgacctgac gaccgcgcac aaggaagcag 7980
agtggaaatt tgagccctc gcctggcggg tttggctggt ggtcttctac ttcggctgct 8040
tgtccttgcac cgctctggctg ctgcaggggg gttacgggtgg atcggaccac cacggccgc 8100
gagcccaaag tccagatgtc cgcgccggc ggtcgagct tcatgacaac atcgccgcaga 8160
tgggagctgt ccatggtctg gagtccccgc ggcgtcaggt caggcgggag ctccctgcagg 8220
tttacctcgc atagacgggt cagggcgcgg gctagatcca ggtgataacct aatttccagg 8280
ggctgggtgg tggccgcgtc gatggcttgc aagaggccgc atcccccggg cgccgactacg 8340
gtaccgcgcg gcgggcgggt ggccgcgggg gtgtccttgg atgatgcac taaaagcggg 8400
gacgcggggcg agccccccgga ggttaggggg gctccggacc cgccgggaga gggggcaggg 8460
gcacgtcggc gccgcgcgcg ggcaggagct ggtgctgcgc gcgttaggttgc tggcgaacg 8520
cgacgacgcg gcgggttgc tccctgaatct ggccgcctctg cgtgaagacg acggggcccg 8580
tgagcttgcac cctgaaagag agttcgacag aatcaatttc ggtgtcggtg acggccgcct 8640
ggcgcaaaat ctccctgcacg tcccttgagt tgtcttgata ggccatctcg gccatgaact 8700
gctcgatctc ttccctcctgg agatctccgc gtccggctcg ctccacgggt gcggcgaggt 8760
cgttggaaat gcgggcatg agctgcgaga aggcggttag gctccctcg ttccagacgc 8820
ggctgttagac cacgccccct tcggcatcgc gggcgccat gaccacctgc gcgagattga 8880
gctccacgtg ccggcgaag acggcgtagt ttccgcaggcg ctgaaagagg tagttgaggg 8940
tgggtggcggt gtgttctgcc acgaagaagt acataaccca gcgtcgcaac gtggattcg 9000
tgatatcccc caaggcctca aggcgctcca tggcctcgta gaagtccacg gcgaagttga 9060
aaaacttggaa gttgcgcgc gacacggta actccctcctc cagaagacgg atgagctcg 9120
cgacagtgtc gcgcacctcg cgctcaaagg ctacaggggc ctcttcttct tcttcaatct 9180
cctcttcat aaggcctcc ccttcttctt cttctggcg cggtggggga ggggggacac 9240
ggcggcgacg acggcgacc gggaggcggt cgacaaagcg ctgcgtatc tccccgcggc 9300
gacggcgcat ggtctcggtg acggcgccgc cggtctcgcg ggggcccagt tggaaagacgc 9360
cgcccggtcat gtcccggtta tgggttggcg gggggctgcc atgcggcagg gatacggcgc 9420
taacgatgca tctcaacaat tgggtgttag gtactccgc gccgaggac ctgagcgagt 9480
ccgcacatcgac cggatcgaa aacctctcga gaaaggcgac taaccagtca cagtcgcac 9540
gttaaggctgaa caccqttggcq qgcggcqacq qgcggccggc ggggttgggtt ctggcgagg 9600

tgctgctgat gatgtatatta aagttaggcgg tcttgagacg gcggatggtc gacagaagca 9660
 ccatgtcctt gggccggcc tgctgaatgc gcaggcggtc ggccatgccc caggcttcgt 9720
 tttgacatcg ggcagggtct ttgttagtagt cttgcatgag cctttctacc ggcacttctt 9780
 ctttccttc ctcttgcctt gcatctcttg catctatcgc tgcggcggcg gggagttt 9840
 gccgttaggtg gcccctctt cctccatgc gtgtgacccc gaagcccctc atcggtgaa 9900
 gcagggctag gtcggcgaca acgcgctcgg ctaatatggc ctgctgcacc tgcgtgaggg 9960
 tagactggaa gtcatccatg tccacaaagc ggtggtatgc gcccgtttg atgggttaag 10020
 tgcagttggc cataacggac cagttAACGG tctggtgacc cggctgcgag agctcggtgt 10080
 acctgagacg cgagtaagcc ctcgagtcaa atacgttagtc gttgcaagtc cgcaccaggt 10140
 actggatcc cacccaaaag tgcggcggcg gctggcgta gaggggcccag cgtagggtgg 10200
 cggggctcc gggggcgaga tcttccaaca taaggcgatg atatccgtatg atgtacctgg 10260
 acatccaggt gatgcccggc gcgggtggtgg aggccgcggg aaagtccggc acgcgggttcc 10320
 agatgttgcg cagcggcaaa aagtgcctca tggcgggac gctctggcg gtcaggcg 10380
 cgcaatcggt gacgctctag cgtgcacaaag gagagcctgt aagcggcac tcttccgtgg 10440
 tctggtgat aaattcgcaa gggtatcatg gcccgcgacc ggggttcgag ccccgatcc 10500
 ggcgtccgc cgtgatccat gcgggttaccg cccgcgtgtc gaacccaggt gtgcgacgtc 10560
 agacaacggg ggagtgcctcc ttttggcttc cttccaggcg cggcggctgc tgcgttagct 10620
 ttttggcca ctggccgcgc gcagcgtaag cggtaggtt ggaaagcgaa agcattaagt 10680
 ggctcgctcc ctgtagccgg agggttatcc tccaagggtt gagtcgcggg acccccggtt 10740
 cgagtctcgg accggccgga ctgcggcgaa cgggggtttg cttccgttc atgcaagacc 10800
 ccgcttgcaa attcctccgg aaacagggac gagcccttt tttgctttc ccagatgcat 10860
 ccgggtctgc ggcagatgcg ccccccctt cagcagcggc aagagcaaga gcagcggcag 10920
 acatgcaggg caccctcccc tcccttacc gcgtcaggag gggcgacatc cgccgttgc 10980
 gcggcagcag atggtgatta cgaaccccg cggcgccggg cccggcacta cctggacttg 11040
 gaggagggcg agggcctggc gcggcttagga gcgcctctc ctgagcggca cccaaagggtg 11100
 cagctgaagc gtgatacgcg tgaggcgatc gtgcgcggc agaacctgtt tcgcgaccgc 11160
 gagggagagg agcccgagga gatgcggat cgaaagttcc acgcaggcg cgagctgcgg 11220
 catggcctga atcgcgagcg gttgctgcgc gaggaggact ttgagccga cgccgcacc 11280
 gggattagtc ccgcgcgcgc acacgtggcg gccgcgcacc tggtaaccgc atacgagcag 11340
 acggtaacc aggagattaa ctttcaaaaa agcttaaca accacgtgcg tacgcttgc 11400
 gcgcgcgagg aggtggctat aggactgtat catctgtggg actttgttaag cgccgtggag 11460
 caaaacccaa atagcaagcc gctcatggcg cagctgttcc ttatagtgcg gcacagcagg 11520
 gacaacgagg cattcaggga tgcgctgcta aacatagtag agcccgaggg ccgctggctg 11580

ctcgattga taaacatcct gcagagcata gtgggcagg agcgcagctt gagcctggct 11640
 gacaagggtgg ccgccatcaa ctattccatg cttagcctgg gcaagttta cgcccgcaag 11700
 atataccata ccccttacgt tcccatagac aaggaggtaa agatcgaggg gttctacatg 11760
 cgcacggcgc tgaagggtgct taccttgcgc gacgacctgg gcgttatcg caacgagcgc 11820
 atccacaagg ccgtgagcgt gagccggcgg cgcgagctca gcgaccgcga gctgatgcac 11880
 agcctgcaaa gggccctggc tggcacgggc agccgcata gagaggccga gtctacttt 11940
 gacgcgggcg ctgacctgcg ctggggccca agccgacgcg ccctggaggc agctgggccc 12000
 ggacctgggc tggcggtggc acccgccgcg cgtggcaacg tcggcggcgt ggaggaatat 12060
 gacgaggacg atgagttacga gccagaggac ggcgagttact aacgcgttat gtttctgatc 12120
 agatgatgca agacgcaacg gacccggcgg tgcggggcgc gctgcagagc cagccgtccg 12180
 gccttaactc cacggacgc tggcgcagg tcatggaccg catcatgtcg ctgactgcgc 12240
 gcaatcctga cgcgttccgg cagcagccgc aggccaaaccg gctctccgca attctggaag 12300
 cggtgttccc ggcgcgcgc aaccccacgc acgagaaggt gctggcgatc gtaaacgcgc 12360
 tggccgaaaa cagggccatc cggccgcacg aggccggcct ggtctacgac gcgcgtcttc 12420
 agcgcgtggc tcgttacaac agcggcaacg tgcagaccaa cctggaccgg ctgggtgggg 12480
 atgtgcgcga ggcgtggcg cagcgtgagc gcgcgcagca gcagggcaac ctgggttcca 12540
 tggttgcact aaacgccttc ctgagttacac agccgcacaa cgtggccgcg ggacaggagg 12600
 actacaccaa ctttgcgtgac gcactgcgc taatgggtgac tgagacacccg caaagtgggg 12660
 tgtaccagtc tggccagac tatttttcc agaccagtag acaaggcctg cagaccgtaa 12720
 acctgagcca ggcttcaaa aacttgcagg gggtgtgggg ggtgcgggct cccacaggcg 12780
 accgcgcgcac cgtgtcttagc ttgctgacgc ccaactcgcg cctgttgcgt ctgtaatag 12840
 cgccttcac ggacagtggc agcgttccc gggacacata cctaggtcac ttgctgacac 12900
 tgtaccgcga ggcatacggt caggcgcacat tggacgagca tactttccag gagattacaa 12960
 gtgtcagccg cgcgtgggg caggaggaca cgggcagcct ggaggcaacc ctaaactacc 13020
 tgctgaccaa cccgcggcag aagatcccct cgttgcacag tttaaacagc gaggaggagc 13080
 gcattttgcg ctacgtgcag cagagcgtga gccttaacct gatgcgcgcac gggtaacgc 13140
 ccagcgtggc gctggacatg accgcgcgcac acatggaaacc gggcatgtat gcctcaaacc 13200
 ggccgtttat caaccgccta atggactact tgcacgcgc ggcgcgcgtg aaccccgagt 13260
 atttcaccaa tgccatcttgc aacccgcact gggtaccgc ccctgggttc tacaccgggg 13320
 gattcgaggt gcccgggggt aacgtggat tccctctggga cgacatagac gacagcgtgt 13380
 ttccccgcgca accgcagacc ctgcttagagt tgcaacagcgc cgagcaggca gaggcggcgc 13440
 tgcgaaagga aagcttccgc aggccaaagca gcttgcgcga tctaggcgct gcggccccgc 13500

ggtcagatgc tagtagccca tttccaagct tgatagggtc tcttaccagc actcgacca 13560
 cccgcccccg cctgctggc gaggaggagt acctaaacaa ctcgctgctg cagccgcagc 13620
 gcgaaaaaaaaa cctgcctccg gcatttcca acaacggat agagagccta gtggacaaga 13680
 tgagtagatg gaagacgtac ggcgcaggagc acagggacgt gccaggcccg cgcccccca 13740
 cccgtcgtca aaggcacgac cgtcagcggg gtctgggtg ggaggacgat gactcggcag 13800
 acgacagcag cgtcctggat ttgggaggga gtggcaaccc gtttgcgcac ctgcggcc 13860
 ggctggggag aatgtttaa aaaaaaaaaa agcatgatgc aaaataaaaa actcaccaag 13920
 gccatggcac cgagcgttgg ttttcttgc tatgcggcgc gcggcgatgt 13980
 atgaggaagg tcctcctccc tcctacgaga gtgtgggtgag cgccggccca gtggccgg 14040
 cgctgggttc tcccttcgat gctccctgg accccgcgtt tgtgcctccg cggtaacctgc 14100
 ggcctaccgg ggggagaaac agcatccgtt actctgagtt ggcaccccta ttcgacacca 14160
 cccgtgtgta cctgggtggac aacaagtcaa cggatgtggc atccctgaac taccagaacg 14220
 accacagcaa ct当地tgcac acggtcattc aaaacaatga ctacagcccg ggggaggcaa 14280
 gcacacagac catcaatctt gacgaccggc cgcactgggg cggcgacctg aaaaccatcc 14340
 tgcataccaa catgccaaat gtgaacgagt tcatgtttac caataagtt aaggcgccgg 14400
 tgcgtgtc ggccttgcc actaaggaca atcaggtgga gctgaaatac gagtgggtgg 14460
 agttcacgct gcccgaggc aactactccg agaccatgac catagacatt atgaacaacg 14520
 cgatcggtggaa gcactacttg aaagtggca gacagaacgg ggttctggaa agcgacatcg 14580
 gggtaaagtt tgacacccgc aacttcagac tgggtttga ccccgtaact ggtcttgc 14640
 tgcctgggt atatacaaac gaagccttcc atccagacat cattttgctg ccaggatgc 14700
 gggtggactt cacccacagc cgcctgagca acttggggg catccgcaag cggcaaccct 14760
 tccaggaggg ct当地ggatc acctacgatg atctggggg tggtaacatt cccgcactgt 14820
 tggatgtgga cgcctaccag gcgagcttga aagatgacac cgaacaggc ggggtggcg 14880
 caggccggcag caacagcagt ggcagccgc cggaaagagaa ctccaaacgcg gcagccgcgg 14940
 caatgcagcc ggtggaggac atgaacgatc atgccattcg cggcgacacc tttgccacac 15000
 gggctgagga gaagcgcgc gaggccgaag cagccggcga agctgccgc cccgctgcgc 15060
 aacccgaggt cgagaaggct cagaagaaac cggatgatcaa accccgtaca gaggacagca 15120
 agaaacgcag ttacaaccta ataagcaatg acagcacctt caccctgatc cgcagctgg 15180
 accttgcata caactacggc gaccctcaga cggaaatccg ctcatggacc ctgtttgc 15240
 ctccctgacgt aaccctgcggc tcggagcagg tctactggtc gttgccagac atgatgcaag 15300
 accccgtgac ctcccgctcc acgcgcacaga tcagcaactt tccgggtggc ggcggcggc 15360
 tggatgttgc gcaactccaa agcttctaca acgaccaggc cgtctactcc caactcatcc 15420
 ggcagtttac ctctctgacc cacgtgttca atcgcttcc cgagaaccag atttggcgc 15480

ccccgcgcaggccccaccatcaccaccgtcagtaaaaacgttcctgctctcacagatcacg 15540
ggacgctaccgtcgcaacagcatcgaggaggtccagcgagtgaccattactgacgcca 15600
gacgcccacactgcccctacgttacaaggccctggcatagtctcgcccgcggtccstat 15660
cgagccgcacttttgagcaagcatgtccatccttatatcggccagcaataaacaggct 15720
ggggcctgcgcttccaaggaaagatgtttgcggggccaaagaagcgctccgaccaacacc 15780
cagtgcgcgtgcgcggcacaccgcgcgcgcgcacacaacgcggccgcactg 15840
ggcgaccacaccgtcgatgaccatcgacgcgggtggaggaggcgcaactacacgc 15900
ccacgcgcgcaccagtgtccacagtggacgcggcattcaaccgtggtcgcggagccc 15960
ggcgctatgtctaaatgaagagacggcgagggcgttagcactgcggccaccgccggac 16020
ccggcactgcgcggcaacgcgcggcgccctgcttaaccgcgcacgtcgaccggcc 16080
gacggcgccatgcggaggcgtcgaaaggctggcgccgggtattgtcaactgtccccca 16140
ggtccaggcgacgagcgccgcgcagccgcattgtctatgactcagggtc 16200
gcaggggcaacgtgtattgggtgcgcgactcggttagcgccctgcgcgtgcccgtgc 16260
cccgccccccgcgcaacttagttgcaagaaaaaactactttagctgtacgttgtatgt 16320
atccagcgccgcgcggcggcgcacgaagctatgtccaagcgcaaaatcaagaagagatgc 16380
tccaggtcatcgccggagatctatggccccccgaagaaaggagcaggattacaagc 16440
cccgaaagctaaagcggtcaaaaagaaaaagaaagatgtatgtatgatgacgc 16500
agggtggactgctgcacgctaccgcgcaccggacgggtacagtggaaaaggcgacg 16560
taaaacgtgtttgcgacccggcaccacccgtctttacgcccgtgagcgccaccc 16620
gcacctacaagcgtgtatgtgggtgtacggcgcggacggctgtttggcaggcca 16680
acgagcgccctcgggagtttgcctacggaaagcggcataaaggacatgctggcgtcc 16740
tggacgagggcaacccaaacacctggctaaagccgtaacactgcagcaggtgtcc 16800
cgcttgcaccgtccgaagaaaggcgccgcgtaaagcgacgtctggacgttgc 16860
ccgtcagactgtgttacccaaagcgccagcgactggaaatgtcttggaaaatgaccg 16920
tggAACCTGGGCTGGAGCCCGAGGTCCCGTGCAGGCGACGGCCAAATCAAGCAGGTG 16980
tggcggtgtcaaccgtggacgttcagataccactaccatgtcaccgttgcaccgttgc 17040
ccacagagggcatggagacacaaacgtcccgggtgcctcagcgggtggcgatgcgcgg 17100
tgcaggcggtcgctgcggccgcgtccaaagacctacggatgtcggaaacccgtgga 17160
tgcgttgcgtttcagccccccggcgccgcgcgttgcagaaatgcgcgcggc 17220
cgctactgcccgtacatgtccatcattgcgttgcgttgcaccgttgcggc 17280
acacctaccgcggcagaagacgcaactaccgcgcggaccaccgttgcggc 17340
ggccggcgtcgccgtcgccgtccgtggccgtggccgttgcggcggcgtggcgtcc 17400

aaggaggcag gaccctggtg ctgccaacag cgcgctacca ccccagcatc gttaaaagc 17460
 cggtcttgc gttcttgca gatatggccc tcacctgccc cctccgttcc cgggtccgg 17520
 gattccgagg aagaatgcac cgtaggaggg gcatggccgg ccacggcctg acggcggca 17580
 tgcgtcgtgc gcaccaccgg cggcggcgcg cgtcgacccg tcgcatgcgc ggccgtatcc 17640
 tgcccctcct tattccactg atcgccgcgg cgattggcgc cgtgcccggaa attgcacccg 17700
 tggccttgca ggcgcagaga cactgattaa aaacaagttt catgtggaaa aatcaaaata 17760
 aaaagtcgttgg acttcacgc tcgcttggtc ctgttaactat tttttagaaat ggaagacatc 17820
 aactttgcgt ctctggccccc gcacacccgc tcgcgcggcgt tcatggaaa ctggcaagat 17880
 atcggcacca gcaatatgag cggggccgc ttcaagctgg gctcgctgtg gagcggcatt 17940
 aaaaatttcg gttccaccgt taagaactat ggcagcaagg cctggaaacag cagcacaggc 18000
 cagatgctga gggataagtt gaaagagcaa aatttccaaac aaaaggtggt agatggcctg 18060
 gcctctggca ttagcgggggt ggtggacctg gccaaccagg cagtgcacaaa taagattaac 18120
 agtaagcttgc atccccggccccc tcccgtagag gagcctccac cggccgttgg gacagtgtct 18180
 ccagaggggc gtggcgaaaa gcgtccgcgc cccgacagg aagaaactct ggtgacgcaa 18240
 atagacgagc ctccctcgta cgaggaggca ctaaagcaag gcctgcccac caccgtccc 18300
 atcgcgcacca tggctaccgg agtgcgtggc cagcacacac ccgttaacgct ggacctgcct 18360
 ccccccggccg acacccagca gaaacctgtg ctggcaggcc cgaccggcgt tggtaacc 18420
 cgtcctagcc gcgcgtccct gcgcgcgcgc gcaagcggc cgcgatcggt gcggccgt 18480
 gccagtgccca actggcaaag cacactgaac agcatcggtt gtctgggggt gcaatccctg 18540
 aagcgccgac gatgcttctg atagctaacg tgtcgatgt gtgtcatgta tgcgtccatg 18600
 tcgcgcgcag aggagctgctt gaggccgcgc gcgcgcgtt tccaagatgg ctacccttc 18660
 gatgatgccc cagtggctt acatgcacat ctggggccag gacgcctcg agtacctgag 18720
 ccccgccgtt gtgcagtttgc cccgcgcac cagacgtac ttcaagatgg ataacaagtt 18780
 tagaaacccc acgggtggcgc ctacgcacga cgtgaccaca gaccggtccc agcgtttgc 18840
 gctgcgggttc atccctgtgg accgtgagga tactgcgtac tcgtacaagg cgccgttcac 18900
 cctagctgtg ggtgataacc gtgtgcgttgc catggcttcc acgtactttg acatccgcgg 18960
 cgtgcgtggac agggggcccta cttaaagcc ctactctggc actgcctaca acgcctggc 19020
 tcccaagggt gccccaaatc cttgcgaatg ggatgaagct gctactgctc ttgaaataaa 19080
 cctagaagaa gaggacgtatc acaacgaaga cgaagtagac gagcaagctg agcagcaaaa 19140
 aactcacgtt tttggccagg cgccttattc tggtataaat attacaaagg agggtattca 19200
 aataggtgtc gaaggtcaaa cacctaaata tgccgataaa acatttcaac ctgaacctca 19260
 aataggagaa tctcagtggt acgaaacaga aatcatgc gcaagctgggaa gagtcctaaa 19320
 aaagactacc ccaatgaaac catgttacgg ttcatatgca aaacccacaa atgaaaatgg 19380

agggcaaggc attcttgtaa agcaacaaaa tggaaagcta gaaagtcaag tggaaatgca 19440
 attttctca actactgagg cagccgcagg caatggtgat aacttgactc ctaaagtgg 19500
 attgtacagt gaagatgttag atatagaaac cccagacact catatttctt acatgcccac 19560
 tattaaggaa ggttaactcac gagaactaat gggccaacaa tctatgcccac acaggcctaa 19620
 ttacattgct ttttagggaca attttattgg tctaattgtat tacaacagca cgggtaat 19680
 gggtgttctg gcgggccaag catcgagtt gaatgtgtt gtagatttgc aagacagaaa 19740
 cacagagtt tcataccagc ttttgcttga ttccattggat gatagaacca ggtactttc 19800
 tatgtggaat caggctgtt acagctatga tccagatgtt agaattatttggaaaatcatgg 19860
 aactgaagat gaacttccaa attactgctt tccactggga ggtgtgatta atacagagac 19920
 tcttaccaag gtaaaaaccta aaacaggta gaaaaatggaa tggaaaaag atgctacaga 19980
 atttcagat aaaaatgaaa taagagttgg aaataattt gccatggaaa tcaatctaaa 20040
 tgccaacctg tggagaaatt tcctgtactc caacatagcg ctgtatttgc ccgacaagct 20100
 aaagtacagt ctttccaacg taaaaatttc tgataaccca aacacctacg actacatgaa 20160
 caagcgagtg gtggctcccg ggctagtgta ctgctacatt aaccttggag cacgctggc 20220
 ctttgcattat atggacaacg tcaaccatt taaccaccac cgcaatgctg gcctgcgcta 20280
 ccgtcaatg ttgctggca atggctgcta tgtgccttc cacatccagg tgcctcagaa 20340
 gttcttgcc attaaaaacc tccttctcct gcccggctca tacacctacg agtggactt 20400
 caggaaggat gttaacatgg ttctgcagag ctcccttagga aatgacctaa gggttgacgg 20460
 agccagcatt aagtttgata gcatttgctt ttacgcccacc ttcttccca tggcccacaa 20520
 cacccgcctcc acgcttgggg ccattgttagg aaacgacacc aacgaccagt ctttaacga 20580
 ctatctctcc gccgccaaca tgctctaccc tatacccgcc aacgctacca acgtgcccatt 20640
 atccatcccc tcccgcaact gggcggttt ccggggctgg gccttcacgc gccttaagac 20700
 taaggaaacc ccatcactgg gtcgggcta cgacccttat tacacctact ctggctctat 20760
 accctaccta gatggaacct ttacaccaa ccacaccttt aagaagggtgg ccattacctt 20820
 tgactcttct gtcagctggc ctggcaatga ccgcctgctt acccccaacg agtttgaat 20880
 taagcgctca gttgacgggg agggttacaa cgttgcccag tgtaacatga ccaaagactg 20940
 gttcctggta caaatgcttag ctaactataa cattggctac cagggcttct atatcccaga 21000
 gagctacaag gaccgcattgt actccttctt tagaaacttc cagcccatga gccgtcaggt 21060
 ggtggatgt actaaataca aggactacca acaggtgggc atcctacacc aacacaacaa 21120
 ctctggattt gttggctacc ttgccccac catgcgcgaa ggacaggcct accctgctaa 21180
 ctccccatccat cgccttatacg gcaagaccgc agttgacacgc attacccaga aaaagtttct 21240
 ttgcgatgc accctttggc gcatcccatt ctccagtaac tttatgtcca tggcgcact 21300

cacagacacctg ggccaaaacc ttctctacgc caactccgcc cacgcgctag acatgacttt 21360
 tgaggtggat cccatggacg agcccaccct tctttatgtt ttgtttgaag tctttgacgt 21420
 ggtccgtgtg caccagccgc accgcggcgt catcgaaacc gtgtacotgc gcacgccctt 21480
 ctcggccggc aacgccacaa cataaagaag caagcaacat caacaacagc tgccgccatg 21540
 ggctccagtg agcaggaact gaaagccatt gtcaaagatc ttggttgtgg gccatatttt 21600
 ttgggcacct atgacaagcg cttccaggc tttgttctc cacacaagct cgccctgcgc 21660
 atagtcaata cgccggcgtcg cgagactggg ggcgtacact ggatggcctt tgccctgaaac 21720
 ccgcactcaa aaacatgcta cctcttgag ccctttggct tttctgacca gcgactcaag 21780
 caggttacc agttttagta cgagtcaactc ctgcgcgtta gcgcattgc ttcttcccc 21840
 gaccgcgtgtta taacgctgga aaagtccacc caaagcgtac aggggcccac ctccggcc 21900
 tgtggactat tctgctgcat gtttctccac gcctttgcca actggcccca aactcccatg 21960
 gatcacaacc ccaccatgaa ctttattacc ggggtaccca actccatgct caacagtccc 22020
 caggtacagc ccaccctgog tcgcaaccag gaacagctct acagcttccct ggagcgccac 22080
 tcgcctact tccgcagcca cagtgcgcag attaggagcg ccacttctt ttgtcacttg 22140
 aaaaacatgt aaaaataatg tactagagac actttcaata aaggcaaatg ctttatttg 22200
 tacactctcg ggtgattatt tacccccacc cttgcgtct gcgcgttta aaaatcaaag 22260
 gggttctgcc ggcgcattcgat atgcgcact ggcaaggaca cgttgcgata ctgggttta 22320
 gtgctccact taaactcagg cacaaccatc cgccggcagct cggtaagtt ttcaactccac 22380
 aggctgcgca ccatcaccaa cgcgtttagc aggtcggcgc cggatatctt gaagtcgcag 22440
 ttggggcctc cgccctgcgc ggcgcagttt cgatacacag ggttgcagca ctggAACACT 22500
 atcagcgccg ggtgggtgcac gctggccagc acgctttgt cggagatcag atccgcgtcc 22560
 aggtcctccg ctttgctcag ggcgaacgga gtcaactttt gtagctgcct tccaaaaag 22620
 ggccgcgtgcc caggcttga gttgcactcg caccgtatgt gcatcaaaag gtgaccgtgc 22680
 ccggctctgg cgttaggata cagcgcctgc ataaaagcct tgatctgctt aaaagccacc 22740
 tgagcctttg cgccttcaga gaagaacatg ccgcacact tgccggaaaa ctgattggcc 22800
 ggacaggccg cgtcgtgcac gcagcacctt ggtcggtgt tggagatctg caccacattt 22860
 cggcccccacc ggttcttcac gatctggcc ttgttagact gtccttcag cgccgcgtgc 22920
 ccgtttcgc tcgtcacatc cattcaatc acgtgtctt tatttatcat aatgtttccg 22980
 tgttagacact taagctcgcc ttgcacatca gcgcacgggt gcagccacaa cgccgcagccc 23040
 gtgggctcgt gatgcttgta ggtcacctt gcaaaacact gcaggtacgc ctgcaggaat 23100
 cgccccatca tcgtcacaaa ggtttgtt gttgtgaagg tcagctgcaaa cccgcgtgc 23160
 tcctcggtca gccaggtctt gcatacggcc gcaagagctt ccacttggtc aggagtagt 23220
 ttgaagttcg ccttagatc gttatccacg ttgtacttgt ccatcagcgc gcgcgcagcc 23280

tccatgccct tctcccacgc agacacgatc ggcacactca gcgggttcat caccgtatt 23340
 tcactttccg ctcgcgtggg ctcttcctct tcctcttgcg tccgcatacc acgcgccact 23400
 gggtcgtctt cattcagccg cgcactgtg cgcttacctc cttgccatg cttgattagc 23460
 accgggtgggt tgctgaaacc caccattgt aggccacat cttcttttc ttcctcgctg 23520
 tccacgatta cctctggta tggcggcgc tcgggcttgg gagaaggcgc cttcttttc 23580
 ttcttggcgc caatggccaa atccgcgcgc gaggtcgatg gccgcggcgt gggtgtgcgc 23640
 ggcaccaagcg cgtcttgcga tgagtcttcc tcgtcctcgg actcgatacg ccgcctcatc 23700
 cgcttttttgc gggcgcccg gggaggcggc ggacgcgggg acggggacga cacgtcctcc 23760
 atggttgggg gacgtcgccgc cgacccgcgt ccgcgcgtcg gggtggttcc ggcgtgcgtcc 23820
 tcttccgcac tggccatttc cttctccat aggcaaaaa agatcatgga gtcagtcgag 23880
 aagaaggaca gcctaaccgc cccctctgag ttgccacca ccgcctccac cgatgccgc 23940
 aacgcgccta ccacccccc cgtcgaggca ccccgcttg aggaggagga agtgattatc 24000
 gagcaggacc caggtttgt aagcgaagac gacgaggacc gctcagtacc aacagaggat 24060
 aaaaagcaag accaggacaa cgcagaggca aacgaggaac aagtcggcgc gggggacgaa 24120
 aggcatggcg actacctaga tgtgggagac gacgtgtgt tgaagcatct gcagcgccag 24180
 tgcgcattta tctgcgacgc gttgcaagag cgcagcgatg tgccctcgc catagcggat 24240
 gtcagccttgc cctacgaacgc ccacccatttc tcaccgcgcg taccggccaa acgccaagaa 24300
 aacggcacat gcgcggccaa cccgcgcctc aacttctacc ccgtatttgc cgtgccagag 24360
 gtgcttgcca cctatcacat cttttccaa aactgcaaga tacccttac tcgtgcgtcc 24420
 aaccgcagcc gagcggacaa gcagctggcc ttgcggcagg ggcgtgtcat acctgatatc 24480
 gcctcgctca acgaagtgc aaaaatctt gagggtcttg gacgcgcacga gaagcgccgc 24540
 gcaaacgcgc tgcaacagga aaacagcgaa aatgaaagtc actctggagt gttggtgaa 24600
 ctcgagggtg acaacgcgcgc cctagccgtt ctaaaacgcgc gcatcgaggat caccacttt 24660
 gcctacccgg cacttaacct accccggccaa gtcatgagca cagtcatgag tgagctgatc 24720
 gtgcgcgtg cgccggccct ggagaggat gcaaatttgc aagaacaaac agaggaggc 24780
 ctacccgcgc ttggcgacgc gcagctagcg cgctggcttc aaacgcgcgc gcctgcccgc 24840
 ttggaggagc gacgcaaact aatgatggcc gcagtgctcg ttaccgttgg gcttgagtgc 24900
 atgcagcggt tcttgctga cccggagatg cagcgcaagc tagaggaaac attgcactac 24960
 acctttcgac agggctacgt acgcgcggcc tgcaagatct ccaacgttgg gctctgcaac 25020
 ctggtctcct accttggaaat ttgcacgaa aacccgccttgg gcaaaacgt gcttcattcc 25080
 acgctcaagg gcgcggccgc cgcgcactac gtccgcgcact gcgttactt atttctatgc 25140
 tacacctggc agacggccat gggcggttgg cagcagtgtt gggaggagtg caacctcaag 25200

gagctgcaga aactgctaaa gcaaaacttg aaggacctat ggacggcctt caacgagcgc 25260
 tccgtggccg cgcacctggc ggacatcatt ttccccgaac gcctgcttaa aaccctgcaa 25320
 cagggtctgc cagacttcac cagtcaaagc atgtgcaga acttttagaa ctttatccta 25380
 gagcgctcag gaatcttgcc cgccacctgc tgtgcacttc ctagcgactt tgtgcccatt 25440
 aagtaccgcg aatgccctcc gccgcttgg ggccactgct accttctgca gctagccaac 25500
 taccttgccc accactctga cataatggaa gacgtgagcg gtgacggct actggagtgt 25560
 cactgtcgct gcaacctatg caccggcac cgctccctgg tttgcaattc gcagctgctt 25620
 aacgaaagtc aaattatcggt tacctttgag ctgcagggtc cctgcctga cgaaaagtcc 25680
 gcccgtccgg ggttggaaact cactccgggg ctgtggacgt cggcttacct tcgcaaattt 25740
 gtacctgagg actaccacgc ccacgagatt aggttctacg aagaccaatc ccgccccct 25800
 aatgcggagc ttaccgcctg cgtcattacc cagggccaca ttcttggcca attgcaagcc 25860
 atcaacaaag cccgccaaga gtttctgcta cgaaagggac ggggggttta cttggacccc 25920
 cagtccggcg aggagctcaa cccaatcccc ccggccgcgc agccctatca gcagcagccg 25980
 cgggccccttgc ttcccccagga tggcacccaa aaagaagctg cagctgcccgc cgccacccac 26040
 ggacgaggag gaatactggg acagtcaggc agaggaggtt ttggacgagg aggaggagga 26100
 catgatggaa gactgggaga gcctagacga ggaagcttcc gaggtcgaag aggtgtcaga 26160
 cggaaacacccg tcaccctcggt tgcattccc ctgcggccgc cccagaaat cggcaaccgg 26220
 ttccagcatg gctacaaccccttcc cgccttcga ggcggccgcgc gcactgcccgc ttggccgacc 26280
 caaccgtaga tggacacca ctggAACCCAG ggccggtaag tccaaacgcgc cgccggcggtt 26340
 agcccaagag caacaacacgc gccaaggcttcc cgcctcatgg cgccggcaca agaacgcctt 26400
 agttgcttgc ttgcaagact gtgggggcaaa catcttcttc gcccggcgct ttcttctcta 26460
 ccatcacggc gtggcccttcc cccgtAACCAT cctgcatttttcc taccgtcatc tctacagcc 26520
 atactgcacc ggcggcagcg gcagcaacag cagccggccac acagaagcaa aggcgaccgg 26580
 atagcaagac tctgacaaag cccaaAGAAAT ccacagcgcc ggcagcagca ggaggaggag 26640
 cgctgcgtct ggcggccaaac gaacccgtat cgacccggcga gcttagaaac aggatttttc 26700
 ccactctgttgc tgctatattt caacagagca gggccaaaga acaagagctg aaaataaaaa 26760
 acaggctcttgc ggcgttccacc cccggcagct gcctgttatca caaaacgcga gatcagcttc 26820
 ggcgcacgct ggaagacgcg gaggctcttgc ttagttaata ctgcggcgtt actcttaagg 26880
 actagtttcg cggcccttcttcc caaatttaag cgcggaaact acgtcatctc cagccggccac 26940
 accccggccgc acccggcgcc gtcagcgcca ttatgagcaa ggaaattttcc acggccctaca 27000
 tgtggagtttgc ccagccacaa atggggacttg cggctggagc tgcccaagac tactcaaccc 27060
 gaataaaacta catgagcgcg ggacccacaa tgatatcccg ggtcaacggaa atacgcgccc 27120
 accgaaacccg aattctcctg gaacaggcggtt ctattaccac cacacccgtt aataacctta 27180

atccccgtag ttggcccgct gccctggtgt accaggaaag tcccgtccc accactgtgg 27240
 tacttcccag agacgcccag gccgaagttc agatgactaa ctcagggcg cagcttgcgg 27300
 gcggcttcg tcacagggtg cggtcgcccg ggcagggtat aactcacctg acaatcagag 27360
 ggcgaggtat tcagctcaac gacgagtcgg tgagctcctc gcttggtctc cgtccggacg 27420
 ggacattca gatcggcggc gccggccgct cttcattcac gcctcgtcag gcaatcctaa 27480
 ctctcagac ctcgtcctct gagccgcgct ctggaggcat tggaactctg caatttattg 27540
 aggagttgt gccatcggtc tacttaacc cttctcggt acctcccgcc cactatccgg 27600
 atcaatttat tcctaacttt gacgaggtaa aggactcgcc ggacggctac gactgaatgt 27660
 taagtggaga ggcagagcaa ctgcgcctga aacacctggt ccactgtcgc cgccacaagt 27720
 gctttgcccgg cgaactccggt gagtttgct actttgaatt gcccggaggat catatcgagg 27780
 gcccggcgcga cggcgtccgg cttaccgccc agggagagct tgcccgtagc ctgattcggt 27840
 agtttaccca ggcggccctg ctagttgagc gggacagggg accctgtgtt ctcactgtga 27900
 tttgcaactg tcctaaccct ggattacatc aagatcttg ttgccatctc tgtgctgagt 27960
 ataataaata cagaaattaa aatatactgg ggctcctatc gccatcctgt aaacgccacc 28020
 gtcttcaccc gccaagcaa accaaggcga accttacctg gtactttaa catctctccc 28080
 tctgtgattt acaacagttt caacccagac ggagtgagtc tacgagagaa cctctccgag 28140
 ctcagctact ccatcagaaa aaacaccacc ctccttacct gccgggaacg tacgagtgcg 28200
 tcaccggccg ctgcaccaca cctaccgcct gaccgtaaac cagactttt ccggacagac 28260
 ctcaataact ctgtttacca gaacaggagg tgagcttaga aaacccttag ggtattaggc 28320
 caaaggcgca gctactgtgg ggttatgaa caattcaagc aactctacgg gctattctaa 28380
 ttcaggttc tctagaaatg gacggaatta ttacagagca ggcgcctgcta gaaagacgca 28440
 gggcagcggc cgagcaacag cgcatgaatc aagagctcca agacatggtt aacttgcacc 28500
 agtcaaaaag ggttatcttt tgtctggtaa agcaggccaa agtcacctac gacagtaata 28560
 ccacccggaca cccgccttagc tacaagttgc caaccaagcg tcagaaattt gtggtcatgg 28620
 tgggagaaaaa gcccattacc ataactcagc actcggtaga aaccgaaggc tgcattcact 28680
 caccttgtca aggacctgag gatctctgca cccttattaa gaccctgtgc ggtctcaaag 28740
 atcttattcc cttaactaa taaaaaaaaaa taataaagca tcacttactt aaaatcagtt 28800
 agcaaatttc tgtccagttt attcagcagc acctccttgc cctcctccca gctctggtat 28860
 tgcagcttcc tcctggctgc aaactttctc cacaatctaa atggaatgtc agttcctcc 28920
 tgttcctgtc catccgcacc cactatctc atgttggtc agatgaagcg cgcaagaccc 28980
 tctgaagata cttcaaccc cgtgtatcca tatgacacgg aaaccggtcc tccaaactgtg 29040
 cctttctta ctccctccctt tgtatcccc aatgggttc aagagagtcc ccctggggta 29100

ctctcttgc gcctatccga acctctagtt acctccaatg gcatgctgc gctaaaaatg 29160
 ggcaacggcc tctctctgga cgaggccggc aacccttacct cccaaaatgt aaccactgtg 29220
 agcccacctc tcaaaaaaaac caagtcaaac ataaacctgg aaatatctgc acccctcaca 29280
 gttacctcag aagccctaac tgtggctgcc gccgcacctc taatggtcgc gggcaacaca 29340
 ctcaccatgc aatcacaggc cccgctaacc gtgcacgact ccaaacttag cattgccacc 29400
 caaggacccc tcacagtgtc agaaggaaag ctagccctgc aaacatcagg ccccctcacc 29460
 accaccgata gcagttaccct tactatcact gcctcaccct ctctaactac tgccactgg 29520
 agcttggca ttgacttgaa agagccatt tatacacaaa atggaaaact aggactaaag 29580
 tacgggctc ctttgcattgt aacagacgac ctaaacactt tgaccgtac aactggtcca 29640
 ggtgtgacta ttaataatac ttccctgcaa actaaagtta ctggagcctt gggttttgat 29700
 tcacaaggca atatgcaact taatgttagca ggaggactaa ggattgatc tcaaaacaga 29760
 cgccttatac ttgatgttag ttatccgttt gatgctaaa accaactaaa tctaagacta 29820
 ggacaggggcc ctcttttat aaactcagcc cacaacttgg atattaacta caacaaaggc 29880
 ctttacttgt ttacagcttc aaacaattcc aaaaagcttg aggttaacct aagcactgcc 29940
 aagggttga tggggcacgc tacagccata gccattaatg caggagatgg gcttgaattt 30000
 ggttcaccta atgcacccaa cacaatccc ctcaaaacaa aaattggcca tggcctagaa 30060
 tttgattcaa acaaggctat ggttcctaaa ctaggaactg gccttagtt tgacagcaca 30120
 ggtgccatta cagtaggaaa caaaaataat gataagctaa ctttgtggac cacaccagct 30180
 ccatctccta actgttagact aaatgcagag aaagatgcta aactcacttt ggtcttaaca 30240
 aaatgtggca gtcaaataact tgctacagtt tcagttttgg ctgttaaagg cagttggct 30300
 ccaatatctg gaacagttca aagtgctcat cttattataa gatttgacga aaatggagtg 30360
 ctactaaaca attccttcct ggacccagaa tatttggact ttagaaatgg agatcttact 30420
 gaaggcacag cctatacaaa cgctgttggc tttatgccta acctatcagc ttatccaaaa 30480
 tctcacggta aaactgccaa aagtaacatt gtcagtcaag tttactttaa cggagacaaa 30540
 actaaacctg taacactaac cattacacta aacggtacac agggaaacagg agacacaact 30600
 ccaagtgcatttactctatgtc attttcatgg gactggcttg gccacaacta cattaatgaa 30660
 atatttgccttgcatacctttca cacttttca tacattgccc aagaataaag aatcgatgtt 30720
 gttatgtttc aacgtgttta ttttcaatt gcccggatc ggtgatcacc gatccagaca 30780
 tgataagata cattgatgag tttggacaaa ccacaacttag aatgcagtga aaaaaatgct 30840
 ttatgttgcatacctttcatgg gactggcttg gccacaacta cattaatgaa aatcgatgtt 30900
 aagttcccgatccatcgatcc ggcccgaggc tgtagccgac gatggtgcgc caggagagtt 30960
 gttgatcat tttttgccttc cctgctgcgg ttttccatgg aagttcatgc cagttccagcg 31020
 tttttgcagc agaaaagccg ccgacttcgg tttgcggcgg cgagtgaaga tccctttttt 31080

ggaaaggaca	gtgggagtgg	caccttccag	ggtcaaggaa	ggcacgggg	aggggcaa	ac	33060
aacagatggc	tggcaactag	aaggcacagt	cgaggctgat	cagcgagctc	tagatgc	atg	33120
ctcgagcggc	cggccagtgt	atggatatct	gcagaattcc	agcacactgg	cggccgttac		33180
tagtggatcc	gagctcggt	ccggccgtt	ataacaccac	tcgacacggc	accagctcaa		33240
tcagtcacag	tgtaaaaaag	ggccaagtgc	agagcgagta	tatataggac	taaaaaatga		33300
cgtaacggtt	aaagtccaca	aaaaacaccc	agaaaaccgc	acgcgaacct	acgcccagaa		33360
acgaaagcca	aaaaacccac	aacttcctca	aatcgtca	tccgtttcc	cacgttacgt		33420
cacttccat	tttaagaaaa	ctacaattcc	caacacatac	aagttactcc	gccctaaaac		33480
ctacgtcacc	cggcccggtt	ccacgccccg	cggccacgtca	caaactccac	cccctcatta		33540
tcatattggc	ttcaatccaa	aataaggat	attattgtat	atg			33583

<210> 18
 <211> 33476
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adenoviral vector Adt.gp140dv12(B).11D

<400> 18							
catcatcaat	aatatacctt	attttgatt	gaagccaata	tgataatgag	gggggtggagt		60
ttgtgacgtg	gcccggggcg	tgggAACGGG	gcgggtgacg	tagtagtgt	gcgaaagtgt		120
gatgttgc	aa	gtgtggcgga	acacatgtaa	gcgcacggatg	tggcaaaagt	gacgttttg	180
gtgtgcgc	cg	gtgtacacag	gaagtgacaa	tttcgcgc	gttttaggcg	gatgtttag	240
taaatttggg	cgttaaccgag	taagatttg	ccatttcgc	gggaaaactg	aataagagga		300
agtgaatct	gaataatttt	gtgttactca	tagcgctaa	tatttgc	gggcccggga		360
tcggtgatca	ccgatccaga	catgataaga	tacattgatg	agtttggaca	aaccacaact		420
agaatgcagt	gaaaaaaaaatg	ctttatttgt	gaaatttgc	atgcatttgc	tttatttgc		480
accattataa	gctgcaataa	acaagttccc	ggatcttct	agctagtcta	gactagctag		540
actcgagagc	ggccgcaatc	gataagctt	atatcgaa	ctcgagtat	caggatcct		600
caccacagcc	agttggat	gttgaaccag	ttccacaggc	tggccactt	gtccagctcc		660
agcagctct	gctcgttt	ctcggtct	tttgcgtct	cctcgatc	gctgtggatc		720
aggctgggt	agttgttgc	ctcgccgtcc	cactccatcc	aggtgggt	gttccagatc		780
tgctcgagca	gctgctggc	tttcaggtag	cgatccacgg	ccagggtgcg	ggcctgcagc		840
tgcttgc	cccacacgg	cagctgcagc	aggtgcgt	gggcctcgat	ggcgccgc		900
aggttgttct	gctgctgcac	gatgccgctc	agcagctggc	gggcctggac	ggtaagcttgc		960
gccttggtgg	gggccacgc	cagggctcg	atttcacca	ccttgcactt	gtacagctcg		1020
ctgcgc	cagt	tgtcgccat	gtcgccgc	cccaggcg	agatctcg	ctcggttg	1080

ctgttgcgc cgtcgcggt cagcagcagg ccggatgt tgctgctgca gcgatctgg	1140
ccgctgatgg gggggcgta catggccttg cccacattt gccacatgtt gatgatctgc	1200
ttgatgcggc agggcagggt gatggtgctg ctggcctgg tggtgttgc gcccctcggtg	1260
ctccaggtgc tggtaacca ggtgctgtt aacagctggg tgctggtgca gtagaagaac	1320
tcgcccgc agttgaagct gtgggtcactg atctcggtt ccggccgc gctgtgttg	1380
aacacgtgg tcttggcc gaaactgtcg cgca gtttca tcacgatctt gttcagggtg	1440
tcgttccact tggcgccgct caggttgcag tggcctggc ggtatgtcgcc gatgatctcg	1500
ccgggtgtt agaaggcgcg gcccggccg atgtggatgc tcttgcgggt gttgttgg	1560
gggcgggtgc agttgatctc cacgctctcg ttca gtttca cgatgatcac cttggcggtt	1620
tcggcgaagt tagcgctgca gatcaccacc tcctcctcg ccaggtaacc cgttaaccagc	1680
agctgggtgc tcaccacggg gggatgccc tgggtgcact gacgggtgtt cacgttgg	1740
cagggccct tggcggtt gtttgcacttca ggtatggcgaa gcccggccgg	1800
gcccggatgtt ggttggggat gggctgaa gtcacccctgg ggcaggccctg ggtatgtcact	1860
ctgggtgttgc agctgggtctt agcgtcggtg cacttcaggc tcacgcacag ggggtcagc	1920
ttcacgcagg gtttcaaggctt ctgggtccac aggctgatgt tgccctcgat catctgttcc	1980
accatgttgtt tttccacat gtcgaaggttc tcggtcacgt tcaccagcac cacccctgg	2040
gggttgggtt cgggtggcac gcaaggcggtt gtttgcacttca gtcggcgatc	2100
taggccttgg cgtcgctggc gcaaggcagg gtttgcacttca gtcggcgatc	2160
ccgttagtaca cggtcacccca cagttctcg gtggcgctgc agatcatcg catgcccagc	2220
agcatgggtgc cccagcgcca gccccagcgc cacagggtgtt ggtacttctc ttca gtcgc	2280
atgggtctta gagcggccgc gatggcgctgc agtggacact gggagtggac acctgtggag	2340
agaaaggcaaa agtggatgtc attgtactt aagtgtatgg ccagatctca agcctgcccac	2400
acctcaagtgc aagccaaaggg ggtggccata tagactctat aggccgtact tacgtcactc	2460
ttggcacggg gaatcccggt tccaaatgcac cgttccggc cgccggaggctt ggtatcggtcc	2520
cgggtgtttc tatggagggtc aaaacagcggtt ggtatggcgat tccaggcgat ctgacgggttc	2580
actaaacgag ctcgtcgacg atctctatca ctgataggga gatctctatc actgataggg	2640
agagctctgc ttatataagac ctcccaccgtt acacgcctac cggccatgg cgtcaatggg	2700
gcggagttgt tacgacattt tggaaagtcc cgttgatttt ggtgccaaaa caaactccca	2760
ttgacgtcaa tgggtggag acttggaaat ccccggtgatg caaaccgcta tccacgccc	2820
ttgatgtact gccaaaaccg catcaccatg gtaatagcga tgactaatac gtagatgtac	2880
tgccaaatgtt gaaagtccca taaggtcatg tactggcat aatgccaggc gggccattta	2940
ccgtcattga cgtcaatagg gggcgactt ggcataatgat acacttgatg tactgccaag	3000

tgggcagttt accgtaaata ctccacccat tgacgtcaat ggaaagtccc tattggcgtt	3060
actatggaa catacgtcat tattgacgtc aatgggcggg ggtcgttggg cggtcagcca	3120
ggcgggcat ttaccgtaag ttatgtaacg cggaactcca tatatggct atgaactaat	3180
gaccggtaa ttgattacta ttaataacta gtactgaaat gtgtggcgt ggcttaaggg	3240
tggaaagaa tatataaggt ggggtctta ttagttttgcagcagccg	3300
ccgcccacat gagcaccaac tcgtttgatg gaagcattgt gagctcatat ttgacaacgc	3360
gcatgcccc atggccggg gtgcgtcaga atgtatggg ctccagcatt gatggtcgccc	3420
ccgtccgtcc cgcaaaactct actacccatg cctacgagac cgtgtctgga acggcgatgg	3480
agactgcgc ctccggccg gcttcagccg ctgcagccac cgccgcggg atttgactg	3540
actttgtttt cctgagcccg cttgcaagca gtgcagcttc ccgttcatcc gcccgcgtatg	3600
acaagttgac ggcttttg gcacaattgg attcttgac ccggaaactt aatgtcgttt	3660
ctcagcagct gttggatctg cgccagcagg ttctgccttcaaggcttcc tccctccca	3720
atgcggttta aaacataaat aaaaaaccag actctgtttg gatttgatc aagcaagtgt	3780
cttgctgtct ttattttaggg gtttgcgcg cgccgttaggc ccgggaccag cggtctcggt	3840
cgttgggggt cctgtgtatt ttccagga cgtggtaaag gtgactctgg atgttcagat	3900
acatggccat aagccgtct ctgggggtgga ggttagcacca ctgcagagct tcattgtcg	3960
gggtgggtt gtagatgatc cagtcgttagc aggagcgctg ggcgtggcgt ctaaaaatgt	4020
cttcagtagt caagctgatt gccaggggca ggcccttggtaaagttttt acaaaagcggt	4080
taagctggtaaagttttt tgggtgcata cgtggggata tgagatgcat cttggactgt attttttaggt	4140
tggctatgtt cccagccata tccctccggg gattcatgtt gtgcagaacc accagcacag	4200
tgtatccgtt gcaactggaa aatttgcattt gtagcttgcgaaaggatgcg tgaaagaact	4260
tggagacgccc cttgtgaccc ccaagatttt ccatgcatttgcgtt gtcataatg atggcaatgg	4320
gcccacgggc ggcggcctgg gcgaagatat ttctggatc actaacgtca tagttgtgtt	4380
ccaggatgag atcgtcatag gccatttta caaagcgccgg gcggagggtg ccagactgcgt	4440
gtataatggt tccatccggc ccaggggcgt agttaccctc acagattgc atttcccacg	4500
ctttgagttt agatgggggg atcatgtcta cctgcggggc gatgaagaaa acggtttccg	4560
gggtggggaa gatcagctgg gaagaaagca ggttccttag cagctgcgcac ttaccgcgc	4620
cggtggggcc gtaaatcaca cctattaccg gctgcaactg gtagttaaga gagctgcgc	4680
tgcgtcattt cctgagcagg gggccactt cgttaagcat gtccctgact cgcatgtttt	4740
ccctgaccaaa atccgcccaga aggcgcgtcgccg cggccagcga tagcagttct tgcaagggaa	4800
caaagttttt caacggtttg agaccgtccg ccgtaggcat gctttgagc gtttgcacca	4860
gcagttccag ggggtccac agctcggtca cctgctctac ggcacatctcga tccagcatat	4920
ctcctcggtttt cgcgggttgg ggcggcttcc gctgtacggc agtagtcggt gctcgccag	4980

acgggccagg	gtcatgtctt	tccacggcg	cagggtcctc	gtcagcgtag	tctggtcac	5040
ggtaagggg	tgcgctccgg	gctgcgcgct	ggcagggtg	cgcttgggc	tggtcctgct	5100
ggtgcgtaa	cgctgcccgt	cttcgcctg	cgcgccggc	aggtagcatt	tgaccatgg	5160
gtcatagtcc	agccctccg	cggcggtggcc	cttggcgcc	agcttgcct	tggaggaggc	5220
gccgcacgag	gggcagtgca	gactttgag	ggcgtagagc	ttgggcgca	gaaataccga	5280
ttccggggag	taggcattccg	cgccgcaggc	cccgccagacg	gtctcgattt	ccacgagcca	5340
ggtgagctct	ggccgttcgg	ggtcaaaaac	caggtttccc	ccatgctttt	tgtgcgttt	5400
cttacctctg	gtttccatga	gccgggtgtcc	acgctcggtg	acgaaaaggc	tgtccgtgtc	5460
cccgatataca	gacttgagag	gcctgtcctc	gagcggtgtt	ccgcggtcct	cctcgatata	5520
aaactcgac	cactctgaga	caaaggctcg	cgtccaggcc	agcacgaagg	aggctaagt	5580
ggagggtag	cggtcgttgt	ccactagggg	gtccactcgc	tccagggtgt	gaagacacat	5640
gtcgccctct	tccgcattaa	ggaaggtgat	tggttttag	gtgtaggcca	cgtgaccggg	5700
tgttcctgaa	ggggggctat	aaaaggggg	gggggcgcgt	tcgtcctcac	tctttccgc	5760
atcgctgtct	gcgaggggcca	gctgttgggg	ttagtactcc	ctctgaaaag	cggcatgac	5820
ttctcgctta	agattgtcag	tttccaaaaaa	cgaggaggat	ttgatattca	cctggcccg	5880
ggtgatgcct	ttgagggtgg	cgcattccat	ctggtcagaa	aagacaatct	ttttgttgc	5940
aagcttggtg	gcaaaccgacc	cgtagagggc	gttggacagc	aacttggca	tggagcgcag	6000
ggtttggttt	ttgtcgcat	cggcgcgctc	cttggccgc	atgtttagct	gcacgtattc	6060
gcgcgcaacg	caccgcatt	cggaaagac	ggtggcgc	tcgtcggca	ccaggtgcac	6120
gcgcgcaacg	cgttgtgca	gggtgacaag	gtcaacgctg	gtggctacct	ctccgcgtag	6180
gcgcgtgttg	gtccagcaga	ggcggccg	cttgcgcag	cagaatggcg	gtaggggtc	6240
tagctcgctc	tgcgtccgggg	ggtctcgctc	cacggtaaag	accccgcc	gcaggcgc	6300
gtcgaagtag	tctatcttgc	atccttgc	gtctagcgcc	tgctgcatt	cgccggcg	6360
aagcgccgc	tctatgggt	ttagtgggg	acccatggc	atgggtgg	tgagcgcg	6420
ggcgtacatg	ccgcaaatgt	cgtaaacgta	gaggggctct	ctgagtattc	caagatatgt	6480
aggtagcat	cttccaccgc	ggatgctggc	gcgcacgtaa	tctatagtt	cgtgcgaggg	6540
agcgaggagg	tccggaccga	ggttgctacg	ggcgggctgc	tctgctcg	agactatct	6600
cctgaagatg	gcatgtgagt	tggatgat	ggttggacgc	tggaaagacgt	tgaagctgg	6660
gtctgtgaga	cctaccgcgt	cacgcacgaa	ggaggcgtag	gagtcgc	gcttgttgc	6720
cagctcgccg	gtgacctgca	cgtctaggc	gcagtagtcc	agggtttct	tgtatgtgc	6780
atacttatcc	tgtccctttt	tttccacag	ctcgccgtt	aggacaaact	cttcgcgg	6840
tttccagtag	tcttggatcg	gaaaccgc	ggcctccgaa	cggtaagagc	ctagcatgt	6900

gaactggttg acggcctggt	aggcgacagca	tccctttct acggtagcg	cgtatgcctg	6960		
cgccgccttc	cggagcgagg	tgtgggtgag	cgcaaagggtg	7020		
gtactggtat	ttgaagttag	tgtcgtagca	tccgcctgc	tcccagagca	aaaagtccgt	7080
gcgcttttg	gaacgcggat	ttggcagggc	gaaggtgaca	tcgttgaaga	gtatcttcc	7140
cgcgcgaggc	ataaaagttgc	gtgtgatgag	gaagggtccc	ggcacctcgg	aacggttgtt	7200
aattacctgg	gccccgagca	cgatctcgac	aaagccgtt	atgttgtggc	ccacaatgt	7260
aagttccaag	aagcgccgg	tgcccttgat	ggaaggcaat	tttttaagtt	cctcgttaggt	7320
gagctttca	ggggagctga	gccccgtgctc	tgaaagggcc	cagtctgcaa	gatgagggtt	7380
ggaagcgcac	aatgagctcc	acaggtcacg	ggccattagc	atttgcaggt	ggtcgcgaaa	7440
ggtcctaaac	tggcgtac	tggccatttt	ttctgggtg	atgcagtaga	aggttaagcgg	7500
gtcttggcc	cagcggtccc	atccaagggtt	cgccgctagg	tctcgccgg	cagtcactag	7560
aggctcatct	ccgcccgaact	tcatgaccag	catgaagggc	acgagctgct	tcccaaaggc	7620
ccccatccaa	gtataggct	ctacatcgta	ggtgacaaag	agacgctcgg	tgcgaggatg	7680
cgagccgatc	gggaagaact	ggatctcccg	ccaccaattt	gaggagtggc	tattgtatgt	7740
gtgaaagtag	aagtccctgc	gacggggccga	acactcgtgc	tggctttgt	aaaaaacgtgc	7800
gcagttactgg	cagcggtgca	cgggctgtac	atcctgcacg	aggttgaccc	gacgaccgcg	7860
cacaaggaag	cagagtggga	atttgagccc	ctcgccctggc	gggtttggct	gggtgtcttc	7920
tacttcggct	gcttgcctt	gaccgtctgg	ctgctcgagg	ggagttacgg	tggatcgac	7980
caccaccccg	cgcgagccca	aagtccagat	gtccgcgcgc	ggcggtcgg	gcttgcgtac	8040
aacatcgcc	agatgggagc	tgtccatgg	ctggagctcc	cgcggcgtca	ggtcaggcgg	8100
gagctcctgc	aggttaccc	cgcatacgtc	ggtcagggcg	cgggctagat	ccaggtgata	8160
cctaatttcc	aggggctgg	tggtggccgc	gtcgatggct	tgcaagaggg	cgcattcccg	8220
cggcgccact	acggtaccgc	gccccggccg	gtggcccgcg	gggggtgtcc	tggatgtgc	8280
atctaaaagc	ggtgacgcgg	gcgagccccc	ggaggttaggg	ggggctccgg	acccgcgggg	8340
agagggggca	ggggcacgtc	ggcgccgcgc	gcgggcagga	gctggtgctg	cgcgcgtagg	8400
ttgctggcga	acgcgacgac	gccccgggtt	atctcctgaa	tctggccct	ctgcgtgaag	8460
acgacggggcc	cggtgagctt	gaacctgaaa	gagagttcga	cagaatcaat	ttcggtgtcg	8520
ttgacggccgg	cctggcgc	aatctcctgc	acgtctcctg	agttgtctt	ataggcgatc	8580
tcggccatga	actgctcgat	ctttccctcc	tggagatctc	cgcgtccggc	tcgtccacg	8640
gtggcggcga	ggtcgttgga	aatgcgggccc	atgagctgcg	agaaggcg	ggggctccc	8700
tcgttccaga	cgcggctgt	gaccacgccc	ccttcggcat	cgcggccgcg	catgaccacc	8760
tgcgccagat	ttagctccac	gtgccggccg	aagacggcgt	agtttcgcag	gctgtgaaag	8820
aggttagttga	gggtggtgcc	ggtgtgttct	gccacgaaga	agtacataac	ccagcgctgc	8880

aacgtggatt	cgttgatatac	ccccaaaggcc	tcaaggcgct	ccatggcctc	gtagaagtcc	8940
acggcgaagt	tgaaaaactg	ggagttgcgc	gccgacacgg	ttaactcctc	ctccagaaga	9000
cgatgagct	cggcgacagt	gtcgcgacc	tcgcgctcaa	aggctacagg	ggcctttct	9060
tcttcttcaa	tctcctcttc	cataagggcc	tcccttctt	tttcttctgg	cgccgggtgg	9120
ggagggggga	cacggcgccg	acgacggcgc	accgggaggc	ggtcgacaaa	gcgctcgatc	9180
atctccccgc	ggcgacggcg	catggtctcg	gtgacggcgc	ggccgttctc	gcggggggcgc	9240
agttgaaaga	cgcgcggcgt	catgtcccg	ttatgggttgc	gcggggggct	gccccggcgc	9300
aggatacgg	cgctaacatgc	gcatctcaac	aattgttgc	taggtactcc	gcccggcagg	9360
gacctgagcg	agtccgcatac	gaccggatcg	aaaaacctct	cgagaaaggc	gtctaaaccag	9420
tcacagtgc	aaggtaggct	gagcaccgtg	gcggcgccga	gcggggcgcg	gtcggttgc	9480
tttctggcgg	aggtgctgct	gatgatgtaa	ttaaagttagg	cggtcttgc	acggcgatg	9540
gtcgacagaa	gcaccatgtc	cttgggtccg	gcctgctgaa	tgcgcaggcg	gtcgccatg	9600
ccccaggctt	cgttttgaca	tcggcgccagg	tctttgtagt	agtcttgc	gaggcttct	9660
accggcactt	tttcttctcc	ttctcttctgt	cctgcatactc	ttgcatactat	cgctcgcccg	9720
gcggcggagt	ttggccgtag	gtggcgccct	cttcctccca	tgcgtgtac	cccgaaagccc	9780
ctcatcggt	gaagcagggc	taggtcgccg	acaacgcgc	cggttaatat	ggcctgctgc	9840
acctgcgtga	gggttagactg	gaagtcatacc	atgtccacaa	agcggtgttgc	tgcggccgt	9900
ttgatgggt	aagtgcagtt	ggccataacg	gaccagttaa	cggtctggc	acccggctgc	9960
gagagctcgg	tgtacctgag	acgcgagtaa	gccctcgagt	caaatacgta	gtcggttgc	10020
gtccgcacca	ggtactggta	tcccacccaa	aagtgcggcg	gcggctggcg	gtagaggggc	10080
cagcgtaggg	tggccggggc	tccggggcg	agatcttcca	acataaggcg	atgatatccg	10140
tagatgtacc	tggacatcca	ggtgatgc	gcggcggtgg	tggaggcg	cgaaaagtgc	10200
cgacgcgg	tccagatgtt	gcgcagcg	aaaaagtgc	ccatggcgg	gacgctctgg	10260
ccggtcaggc	gcccccaatc	gttgcac	tagcgtgca	aaggagagcc	tgtaaaggcc	10320
cactcttccg	tggctctgg	gataaattcg	caagggtatc	atggcggacg	acccgggttc	10380
gagccccgt	tccggccgtc	cgccgtgatc	catgcggta	ccgccccgt	gtcgaaaccc	10440
ggtgtgcgac	gtcagacaac	gggggaggtc	tcctttggc	ttccttccag	gcggggcg	10500
tgctgcgcta	gttttttgg	ccactggccg	cgcgacgcgt	aagcggttag	gctggaaagc	10560
gaaagcatta	agtggctgc	tccctgttagc	cgagggtta	tttccaagg	gtttagtcgc	10620
gggacccccc	gttcgagtct	cgacccggcc	ggactgcggc	gaacgggggt	ttgcctcccc	10680
gtcatgcaag	accccgcttgc	caaattcctc	cgaaaacagg	gacgagcccc	tttttgctt	10740
ttcccaagatg	catccgggtgc	tgcggcagat	gcggccccc	cctcagcagc	ggcaagagca	10800

agagcagcgg cagacatgca gggcacccctc ccctcctcct accgcgtcag gaggggcac 10860
 atccgcggtt gacgcggcag cagatggtga ttacgaaccc cgcggggcc gggccggca 10920
 ctacctggac ttggaggagg gcgagggcct ggccggcta ggagcgcctt ctcctgagcg 10980
 gcacccaagg gtgcagctga agcgtgatac gcgtgaggcg tacgtgccgc ggcagaacct 11040
 gtttcgcac cgcgagggag aggagcccga ggagatgcgg gatcgaaagt tccacgcagg 11100
 gcgcgagctg cggcatggcc tgaatcgcga gcgggtgctg cgcgaggagg actttgagcc 11160
 cgacgcgcga accgggatta gtcccgcgcg cgcacacgtg gcggccgcg acctggtaac 11220
 cgcatacgg cagacggtga accaggagat taacttcaa aaaagctta acaaccacgt 11280
 gcgtacgctt gtggcgcgcg aggaggtggc tataggactg atgcatctgt gggactttgt 11340
 aagcgcgctg gagcaaaacc caaatagcaa gccgctcatg gcgcagctgt tccttatagt 11400
 gcagcacacgc agggacaacg aggcatcag gcatgcgcgtg ctaaacatag tagagcccga 11460
 gggccgctgg ctgctcgatt tgataaacat cctgcagagc atagtggtgc aggagcgcag 11520
 cttgagcctg gctgacaagg tggccgcat caactattcc atgcttagcc tggcaagtt 11580
 ttacgcccgc aagatatacc ataccctta cgttccata gacaaggagg taaagatcga 11640
 ggggttctac atgcgcattgg cgctgaaggt gcttaccttgc agcgacgacc tggcggtta 11700
 tcgcaacgcg cgcattccaca aggcgtgag cgtgagccgg cggcgcgagc tcagcgaccg 11760
 cgagctgatg cacagcctgc aaagggccct ggctggcacg ggcagcggcg atagagaggc 11820
 cgagtcctac tttgacgcgg ggcgtgaccc ggcgtggcc ccaagccgac gcgcctgg 11880
 ggcagctggg gccggacctg ggctggcggt ggcaccccgcg cgcgctggca acgtcgccgg 11940
 cgtggaggaa tatgacgagg acgatgagta cgagccagag gacggcgagt actaagcggt 12000
 gatgtttctg atcagatgtat gcaagacgcac acggacccgg cggtgcgggc ggcgtgcag 12060
 agccagccgt ccggccttaa ctccacggac gactggcgcc aggtcatggc cgcacatcatg 12120
 tcgctgactg cgcgaatcc tgacgcgttc cggcagcagc cgcaggccaa ccggctctcc 12180
 gcaattctgg aagcggtggt cccggcgccg gcaaaccggc cgcacgagaa ggtgctggcg 12240
 atcgtaaacg cgctggccga aaacaggggcc atccggcccg acgaggccgg cctggtctac 12300
 gacgcgtgc ttacgcgtgt ggctcggtac aacagcggca acgtgcagac caacctggac 12360
 cggctggtgg gggatgtgcg cgaggccgtg ggcgcgcgtg agcgcgccgca gcagcaggc 12420
 aacctgggtccatggactaaacgc ttccctgatgta cacagccgc caacgtgccg 12480
 cggggacagg aggactacac caacttgcg agcgcactgc ggctaatggt gactgagaca 12540
 cgcacaaatgt aggtgtacca gtctggcca gactatttt tccagaccag tagacaaggc 12600
 ctgcagaccg taaacctgag ccaggcttc aaaaacttgc aggggctgtg ggggtgcgg 12660
 gctccacacg gcgaccgcgc gaccgtgtct agcttgcgtga cgcccaactc gcgcctgtt 12720
 ctgcgtctaa taggcgcctt cacggacagt ggcagcgtgt cccggacac ataccttaggt 12780

cacttgctga cactgttacgg cgaggccata ggtcaggcgc atgtggacga gcataacttgc 12840
 caggagatta caagtgtcag ccgcgcgcgtg gggcaggagg acacgggcag cctggaggca 12900
 accctaaact acctgctgac caaccggcgg cagaagatcc cctcggttgc cagtttaaac 12960
 agcgaggagg agcgcatgtt gcgcgtacgtg cagcagagcg tgagccttaa cctgtatgcgc 13020
 gacggggtaa cgcccagcgt ggcgctggac atgaccgcgc gcaacatgga accgggcattg 13080
 tatgcctcaa accggccgtt tatcaaccgc ctaatggact acttgcatcg cgccggccgccc 13140
 gtgaaccccg agtatttcac caatgccatc ttgaacccgc actggcttacc gccccctgg 13200
 ttctacacccg ggggattcga ggtgcggcggag ggtaacgttg gattccctctg ggacgacata 13260
 gacgacagcg tgttttcccc gcaaccgcag accctgcttag agttgcaaca gcgcgagcag 13320
 gcagaggcgg cgctgcgaaa ggaaagcttc cgcaaggccaa gcagcttgc cgtatctaggc 13380
 gctgcggccc cgccgtcaga tgctagtagc ccatttccaa gcttgatagg gtctcttacc 13440
 agcactcgca ccacccgccc ggcctgctg ggcgaggagg agtacctaaa caactcgctg 13500
 ctgcagccgc agcgcgaaaa aaacctgcct ccggcatttc ccaacaacgg gatagagagc 13560
 ctatggaca agatgagtag atggaagacg tacgcgcagg agcacaggga cgtgccaggc 13620
 ccgcgcggcc ccacccgtcg tcaaaggcac gaccgtcagc ggggtctgg 13680
 gatgactcgg cagacgacag cagcgtcctg gatttggag ggagtggcaa cccgtttgcg 13740
 caccccgcc ccaggctggg gagaatgttt taaaaaaaaaaa aaaagcatga tgcaaaataaa 13800
 aaaactcacc aaggccatgg caccgagcgt tggtttctt gtattccct tagtatgcgg 13860
 cgcgccgcga tgtatgagga aggtcctcct ccctcctacg agagtgtgg 13920
 ccagtggcgg cggcgctggg ttctcccttc gatgtcccc tggacccgcc gtttgcct 13980
 ccgcgttacc tgcggcctac cggggggaga aacagcatcc gttactctga gttggcacccc 14040
 ctattcgaca ccacccgtgt gtacctggtg gacaacaagt caacggatgt ggcattccctg 14100
 aactaccaga acgaccacag caactttctg accacggtca ttcaaaacaa tgactacagc 14160
 ccgggggagg caagcacaca gaccatcaat cttgacgacc ggtcgactg gggcggcgcac 14220
 ctgaaaaaccatccctgcataccaaacatgccaa aatgtgaacg agttcatgtt taccaataag 14280
 tttaaggcgc ggggtatgg 14340
 tacgagtggg tggagttcac gctgcggcggag ggcaactact ccgagaccat gaccatagac 14400
 cttatgaaca acgcgatcgt ggagcactac ttgaaagtgg gcagacagaa cggggttctg 14460
 gaaagcgaca tcggggtaaa gtttgacacc cgcaacttca gactggggtt tgaccccgcc 14520
 actgggttttgc tcatgcctgg ggtatataca aacgaaggct tccatccaga catcattttg 14580
 ctgccaggat gccccgtggc cttcacccac agccgcctga gcaacttgc gggcatccgc 14640
 aagcggcaac cttccagga gggcttttagg atcacctacg atgatctgga ggggtggtaac 14700

attccgcac tgttggatgt ggacgcctac caggcgagct tgaaagatga caccgaacag 14760
 ggcgggggtg ggcaggcg cagcaacagc agtggcagcg gcgccgaaga gaactccaac 14820
 gcgccagccg cggcaatgca gccgggtggag gacatgaacg atcatgccat tcgcggcgac 14880
 accttgcca cacgggctga ggagaagcgc gctgaggccg aagcagcggc cgaagctgcc 14940
 gccccgctg cgcaacccga ggtcgagaag cctcagaaga aaccggtgat caaaccctg 15000
 acagaggaca gcaagaaacg cagttacaac ctaataagca atgacagcac cttcacccag 15060
 taccgcagct ggtaccttgc atacaactac ggcgaccctc agaccggaat ccgctcatgg 15120
 accctgctt gcactcctga cgtaacctgc ggctcgagc aggtctactg gtctttggca 15180
 gacatgtgc aagacccgt gaccccccgc tccacgcgc agatcagcaa ctttccggtg 15240
 gtgggcgccg agctgttgcc cgtgcactcc aagagcttct acaacgacca ggccgtctac 15300
 tcccaactca tccgccttgt tacctctctg acccacgtgt tcaatcgctt tcccgagaac 15360
 cagattttgg cgcccccgcg agccccacc atcaccaccc tcagtaaaaa cgttccctgct 15420
 ctcacagatc acgggacgct accgctgcgc aacagcatcg gaggagtcca gcgagtgacc 15480
 attactgacg ccagacgcgc cacctcccc tacgtttaca aggcctggg catagtctcg 15540
 ccgcgcgtcc tatcgagccg cacttttgta gcaagcatgt ccatccttat atgcggcagc 15600
 aataacacag gctggggcct ggcgttccca agcaagatgt ttggcggggc caagaagcgc 15660
 tccgaccaac acccagtgcg cgtgcgcggg cactaccgcg cgccctggg cgccacaaaa 15720
 cgccggccgca ctgggcgcac caccgtcgat gacgcctcg acgcgggtgg ggaggaggcg 15780
 cgcaactaca cgccccacgcg gccaccagtgc tccacagtgg acgcggccat tcagaccgt 15840
 gtgcgcggag cccggcgcta tgctaaaatg aagagacggc ggaggcgcgt agcacgtcgc 15900
 caccgcgcgc gacccggcac tgccgcggc cgccgcggcgg cgccctgct taaccgcgca 15960
 cgtgcacccg gccgacgggc ggccatgcgg gcccgtcgaa ggctggccgc gggtattgtc 16020
 actgtgcccc ccaggtccag ggcacgagcg gcccggcag cagccgcggc cattagtgt 16080
 atgactcagg gtcgcagggg caacgtgtat tgggtgcgcg actcggttag cgccctgcgc 16140
 gtgcccgtgc gcacccgccc cccgcgcaac tagattgcaa gaaaaaacta cttagactcg 16200
 tactgttgcgta tgatccagc ggccggcgccg cgcaacgaaag ctatgtccaa ggcggccatc 16260
 aaagaagaga tgctccaggt catcgcccg gagatctatg gccccccgaa gaaggaagag 16320
 caggattaca agcccccggaa gctaaagcgg gtcaaaaaga aaaagaaaga tggatgtatg 16380
 gaacttgacg acgaggtgga actgctgcac gctaccgcgc ccaggcgacg ggtacagtgg 16440
 aaaggtcgac gctaaaacg tgtttgcga cccggcacca ccgtagtctt tacgcccgt 16500
 gagcgctcca cccgcaccta caagcgcgtg tatgtatgagg tgtacggcga cgaggacctg 16560
 cttgagcagg ccaacgagcg cctcggggag tttgcctacg gaaagcggca taaggacatg 16620
 ctggcgttgc cgctggacga gggcaacccca acacctagcc taaagccgt aacactgcag 16680

caggtgctgc ccgcgcttgc accgtccgaa gaaaagcgcg gcctaaagcg cgagtctgg 16740
 gacttggcac ccaccgtgca gctgatggta cccaaagcgcc agcgactgga agatgtcttg 16800
 gaaaaaatga ccgtggaacc tgggctggag cccgaggtcc gcgtgcggcc aatcaagcag 16860
 gtggcgccgg gactgggcgt gcagaccgtg gacgttcaga taccactac cagtagcacc 16920
 agtattgcca ccgcccacaga gggcatggag acacaaacgt ccccggttgc ctcagcggtg 16980
 gcggatgccc cggtgcaggc ggtcgctgcg gccgcgtcca agacctctac ggaggtgcaa 17040
 acggaccctg ggtatgttgc cgttcagcc ccccgccgccc cgccgcgttc gaggaaagtac 17100
 ggcgcgcgcca ggcgcgtact gcccgaatat gcctacatc cttccattgc gcctacccccc 17160
 ggctatcggt gctacaccta ccgcggcaga agacgagcaa ctacccgacg ccgaaccacc 17220
 actggaaaccc gccgcccggc tcgcccgtc cagcccggtc tggcccgat ttccgtgcgc 17280
 agggtggctc gcgaaggagg caggaccctg gtgctgccaa cagcgcgcta ccacccagc 17340
 atcgtttaaa agccggtctt tgtggttctt gcagatatgg ccctcacctg ccgcctccgt 17400
 ttcccggtgc cgggattccg aggaagaatg caccgttagga ggggcattggc cggccacggc 17460
 ctgacggggcg gcatgcgtcg tgccgcaccac cggcggccgc gcgcgtcgca ccgtcgcatg 17520
 cgcggcggtta tcctgcccct cttattcca ctgatcgccg cggcgattgg cgccgtgccc 17580
 ggaattgcatt ccgtggcatt gcaggcgcag agacactgtat taaaacaag ttgcattgtgg 17640
 aaaaatcaaa ataaaaagtc tggactctca cgctcgcttgc tccctgtAAC tattttgttag 17700
 aatggaaagac atcaactttg cgtctctggc cccgcgcacac ggctcgccgc cgttcatggg 17760
 aaactggcaa gatatcgca ccagcaatat gagcgggtggc gccttcagct gggctcgct 17820
 gtggagcggc attaaaaatt tcggttccac cgttaagaac tatggcagca aggctggaa 17880
 cagcagcaca gcccagatgc tgagggataa gttgaaagag caaaatttcc aacaaaaggt 17940
 ggtagatggc ctggcctctg gcattagcgg ggtgggtggac ctggccaaacc aggcaatgc 18000
 aaataagatt aacagtaagc ttgatccccg ccotcccgta gaggagcctc caccggccgt 18060
 ggagacagtgc tctccagagg ggcgtggcga aaagcgtccg cgcccccaca gggaaagaaac 18120
 tctgggtgacg caaatagacg agcctccctc gtacgaggag gcactaaagc aaggcctgccc 18180
 caccacccgt cccatcgccgc ccatggctac cggagggtctg ggccagcaca caccgtaaac 18240
 gctggacctg cttcccccccg ccgacaccca gcagaaacccgt gtcgtgccag gcccgcaccgc 18300
 cgttgggttgc acccgctcta gccgcgcgtc cctgcgcgcgc gcccgcaccgc gtcgcgtatc 18360
 gttggggccc gtagccagtgc gcaactggca aagcacactg aacagcatgc tgggtctggg 18420
 ggtgcaatcc ctgaagcgcc gacgatgctt ctgatagcta acgtgtcgta tgtgtgtcat 18480
 gtatgcgtcc atgtcgccgc cagaggagct gtcgtgccgc cgccgcaccgc cttccaaga 18540
 tggctacccc ttcgatgtgc ccgcagtggc cttacatgca catctcgccgc caggacgcct 18600

cgaggatcacct gagccccggg ctgggtgcagt ttgcccgcgc caccgagacg tacttcagcc 18660
 tgaataaaca gtttagaaac cccacgtgg cgcctacgca cgacgtgacc acagaccggt 18720
 cccagcggtt gacgctgcgg ttcatccctg tggaccgtga ggatactgcg tactcgtaca 18780
 aggcgcggtt caccctagct gtgggtgata accgtgtgct ggacatggct tccacgtact 18840
 ttgacatccg cggcgtgctg gacaggggcc ctactttaa gccctactct ggcactgcct 18900
 acaacgcctt ggctcccaag ggtgccccaa atccttgcga atggatgaa gctgctactg 18960
 ctcttggaaat aaacctagaa gaagaggacg atgacaacga agacgaagta gacgagcaag 19020
 ctgagcagca aaaaactcac gtatttggc aggccctta ttctggata aatattacaa 19080
 aggagggtat tcaaataatgt gtcgaaggc aaacacctaa atatgcogat aaaacattc 19140
 aacctgaacc tcaaataatgaa gaatctcagt ggtacgaaac agaaattaat catgcagctg 19200
 ggagagtcct aaaaaagact accccaatga aaccatgtta cggttcatat gcaaaaccca 19260
 caaatgaaaaa tggagggcaa ggcattctg taaagcaaca aaatggaaag ctagaaagtc 19320
 aagtggaaat gcaatttttc tcaactactg aggccagccgc aggcaatggt gataacttga 19380
 ctcctaaagt ggtattgtac agtgaagatg tagatataga aaccccagac actcatattt 19440
 cttacatgcc cactattaag gaaggttaact caggagaact aatggccaa caatctatgc 19500
 ccaacaggcc taattacatt gcttttaggg acaattttat tggtctaattg tattacaaca 19560
 gcacgggtaa tatgggtgtt ctggcgggcc aagcatcgca gttgaatgct gtttagatt 19620
 tgcaagacag aaacacagag ctttcataacc agctttgct tgattccatt ggtgatagaa 19680
 ccaggtactt ttctatgtgg aatcaggctg ttgacagcta tgatccagat gttagaatta 19740
 ttgaaaatca tggaaactgaa gatgaacttc caaattactg ctttccactg ggaggtgtga 19800
 ttaatacaga gactcttacc aaggtaaaac ctaaaacagg tcaggaaaat ggatggaaa 19860
 aagatgctac agaattttca gataaaaatg aaataagagt tggaaataat tttccatgg 19920
 aaatcaatct aaatgccaac ctgtggagaa atttcctgtt ctccaaacata gcgcgttatt 19980
 tgcccgacaa gctaaagtac agtccttcca acgtaaaaat ttctgataac ccaaacacct 20040
 acgactacat gaacaagcga gtggtggtc ccgggctagt ggactgctac attaacctt 20100
 gagcacgctg gtcccttgac tatatggaca acgtcaaccc atttaaccac caccgcaatg 20160
 ctggcctgctg ctaccgctca atgttgcgtt gcaatggctcg ctatgtgccc ttccacatcc 20220
 aggtgcctca gaagttcttt gccattaaaa acctccttct cctggccggc tcatacacct 20280
 acgagtggaa cttcaggaag gatgttaaca tgggtctgca gagctcccta ggaaatgacc 20340
 taagggttga cggagccagc attaagtttgc atagcatttg cctttacgccc accttcttcc 20400
 ccatggccca caacaccgccc tccacgcttgc agggcatgct tagaaacgac accaacgacc 20460
 agtcctttaa cgactatctc tccggccca acatgctcta ccctataccc gccaacgcta 20520
 ccaacgtgcc catatccatc ccctcccgca actggggccgc tttccggggc tgggccttca 20580

cgccgcctaa gactaaggaa accccatcac tgggctcggg ctacgaccct tattacacct 20640
 actctggctc tataccctac ctagatggaa cctttaccc caaccacacc tttaagaagg 20700
 tggccattac ctttgactct tctgtcagct ggctggcaa tgaccgcctg cttaccccca 20760
 acgagttga aatTAAGCgc tcagttgacg gggagggtta caacgttgcc cagtgtaa 20820
 tgaccaaaga ctggttcctg gtacaaatgc tagctaacta taacattggc taccagggt 20880
 tctatatccc agagagctac aaggaccgca tgcactcctt ctttagaaac ttccagccca 20940
 tgagccgtca ggtgggtggat gatactaaat acaaggacta ccaacagggt ggcattcctac 21000
 accaacacaa caactctgga ttgttggct accttgcggc caccatgcgc gaaggacagg 21060
 cctaccctgc taacttcccc tatccgctta taggcaagac cgcatgtac agcattaccc 21120
 agaaaaagtt tctttgcgtat cgcccccattt ggcgcattcc attctccagt aactttatgt 21180
 ccatgggcgc actcacagac ctgggccaaa accttctcta cgccaaactcc gcccacgcgc 21240
 tagacatgac ttttgaggtg gatcccatgg acgagccac cttttttat gttttgttg 21300
 aagtcttga cgtggccgt gtgcaccaggc cgccaccggc cgtcatcgaa accgtgtacc 21360
 tgccgcacgccc cttctggcc ggcaacgcca caacataaag aagcaagcaa catcaacaac 21420
 agctgcccgc atgggctcca gtgagcagga actgaaagcc attgtcaaag atcttgggt 21480
 tggccatat ttttggca cctatgacaa ggccttcca ggctttttt ctccacacaa 21540
 gctcgctgc gccatagtca atacggccgg tcgcgagact gggggctac actggatggc 21600
 ctgtgcctgg aacccgcact caaaaacatg ctacctttt gagcccttg gctttctga 21660
 ccagcgactc aagcagggtt accagttga gtacgagtca ctccctgcgc gtagcgccat 21720
 tgcttcttcc cccgaccgct gtataacgct ggaaaagtcc acccaaagcg tacaggggcc 21780
 caactcggcc gcctgtggac tattctgctg cattttctc cacgccttg ccaactggcc 21840
 ccaaactccc atggatcaca accccaccat gaaccttatt accggggctac ccaactccat 21900
 gctcaacagt ccccagggtac agcccaccct gcgtcgcaac caggaacagc tctacagtt 21960
 cctggagcgc cactcgccct acttccgcag ccacagtgcg cagattagga ggcgcacttc 22020
 tttttgtcac ttgaaaaaca tgaaaaata atgtactaga gacactttca ataaaggcaa 22080
 atgctttat ttgtacactc tcgggtgatt atttacccctt acccttgcgc tctgcgcgt 22140
 taaaaatca aaggggttct gccgcgcattc gctatgcgc actggcaggg acacgttgcg 22200
 atactggtgt ttagtgctcc acttaaactc aggccacaacc atccgcggca gtcgggtgaa 22260
 gttttcactc cacaggctgc gcaccatcac caacgcgtt agcaggctgg ggcgcgatat 22320
 cttgaagtgc cagttgggc ctccgcctg cgccgcgcag ttgcgataca cagggttgca 22380
 gcactggaac actatcagcg ccgggtgggtg cacgcgtggcc agcacgcctt tgtcggagat 22440
 cagatccgcg tccaggtcct ccgcgttgct cagggcgaac ggagtcaact ttggtagctg 22500

cttcccaaa aagggcgcgt gcccaggct tgagttgcac tcgcaccgta gtggcatcaa 22560
 aaggtgaccg tgcccggtct gggcgtagg atacagcgcc tgcataaaag ccttgatctg 22620
 cttaaaagcc acctgagcct ttgcgccttc agagaagaac atgcccgaag acttgcggaa 22680
 aaactgattg gccggacagg ccgcgtcgac cacgcagcac cttgcgtcg 22740
 ctgcaccaca ttgcggcccc accgggtctt cacgatcttgc 22800
 cagcgcgcgc tgcccgcccc cgctcgac atccatttca atcacgtgct ctttatttt 22860
 cataatgctt ccgtgttagac acttaagctc gccttcgatc tcagcgcagc ggtgcagcca 22920
 caacgcgcag cccgtgggct cgtgatgctt gtaggtcacc tctgcaaacg actgcaggta 22980
 cgccctgcagg aatgcgcctt tcatcgacaa aggtcttgc 23040
 caacccgcgg tgctcctcg 23100
 gtcaggcagt agtttgaagt tcgccttgc 23160
 cgccgcgcga gcctccatgc ctttccca cgcagacacg atcggcacac tcagcgggtt 23220
 catcaccgta atttcaactt ccgttcgcttcc 23280
 accacgcgc 23340
 actgggtcg 23400
 atgcttgatt agcaccgg 23460
 ttcttcctcg 23520
 ctgtccacga 23580
 ttacctctgg 23640
 tgatggcg 23700
 cgcttctttt 23760
 ttcttcttgg 23820
 gogcaatggc 23880
 caaatccg 23940
 gcccgcctc 24000
 atccgcctttt 24060
 ttgggggcgc 24120
 ccggggaggc 24180
 ggacacgtcc 24240
 tccatgg 24300
 gggacgtcg 24360
 cgccatagcg 24420
 gatgtcagcc 24480
 ttatctgcga 24480
 cgcgttgc 24480
 gagcgcagcg 24480
 atgtgc 24480
 tgcgcgttgc 24480
 ccacccatca 24480
 catcttttc 24480
 caaaactgca 24480
 agataccct 24480
 atcctgcctgt 24480
 gccaaccgca 24480
 gcccgg 24480
 caagcagctg 24480
 gccttgcggc 24480
 agggcgctgt 24480
 catacctgat 24480
 atcgcctcg 24480
 tcaacgaagt 24480
 gccaaaaatc 24480
 tttgagggtc 24480
 ttggacgcga 24480
 cgagaagcgc 24480
 gcccgg 24480
 ctctgcaaca 24480
 ggaaaacagc 24480
 gaaaatgaaa 24480
 gtcactctgg 24480

agtgttggtg gaactcgagg gtgacaacgc gcgcctagcc gtactaaaac gcagcatcga 24540
 ggtcacccac ttgcctacc cggcacttaa cctacccccc aaggtcatga gcacagtc 24600
 gagtgagctg atcgtgcgcc gtgcgcagcc cctggagagg gatgcaaatt tgcaagaaca 24660
 aacagaggag ggcctacccg cagttggcga cgagcagcta gcgcgctggc ttcaaacgcg 24720
 cgagcctgcc gacttggagg agcgacgcaa actaatgatg gccgcagtgc tcgttaccgt 24780
 ggagcttgag tgcatgcagc ggttcttgc tgacccggag atgcagcogca agctagagga 24840
 aacattgcac tacaccttgc gacagggcta cgtacgcccag gcctgcaaga tctccaacgt 24900
 ggagctctgc aacctggctc cctacccggc aattttgcac gaaaaccgccc ttgggcaaaa 24960
 cgtgcttcat tccacgctca agggcgaggc gcgcgcgcac tacgtccgcg actgcgttta 25020
 cttatttcta tgctacaccc ggcagacggc catggcggtt tggcagcagt gcttggagga 25080
 gtgcaacctc aaggagctgc agaaaactgct aaagcaaaaac ttgaaggacc tatggacggc 25140
 cttcaacgag cgctccgtgg ccgcgcaccc ggccggacatc atttccccc aacgcctgct 25200
 taaaaccctg caacagggtc tgccagactt caccagtcaa agcatgttgc agaactttag 25260
 gaactttatc ctagagcgct caggaatctt gcccggccacc tgctgtgcac ttcctagcga 25320
 ctttgtgccc attaagtacc gcgaatgccc tccgcgcctt tggggccact gctacccct 25380
 gcagctagcc aactacccctg cctaccactc tgacataatg gaagacgtga gcggtgacgg 25440
 tctactggag tgcactgtc gctgcaaccc atgcaccccg caccgctccc tggtttgc 25500
 ttgcagctg cttaacgaaa gtcaaattat cggtaacctt gagctgcagg gtccctcgcc 25560
 tgacgaaaag tccgcggctc cgggggtgaa actcactccg gggctgtggc cgtcggctta 25620
 ctttcgcaaa tttgtacctg aggactacca cgcggccacgat taggttct acgaagacca 25680
 atcccgcccg cctaattgcgg agcttaccgc ctgcgtcatt acccaggggcc acattttgg 25740
 ccaattgcaa gccatcaaca aagccgcacca agagttctg ctacgaaagg gacgggggg 25800
 ttacttggac ccccgatccg gcgaggagct caacccaaatc ccccgccgc cgccgccta 25860
 tcagcagcag ccgcggggccc ttgcctccca ggatggcacc caaaaagaag ctgcagctgc 25920
 cgccggccacc cacggacgag gaggaatact gggacagtca ggcagaggag gttttggacg 25980
 aggaggagga ggacatgatg gaagactggg agagcctaga cgaggaagct tccgaggtcg 26040
 aagagggtgc agacgaaaca ccttcaccct cggtcgcatt cccctcgccg gcggcccaaga 26100
 aatcgcaac cggttccagc atggctacaa cctccgcgtcc tcaggcgccg ccggcactgc 26160
 ccttcgcgc acccaaccgt agatggaca ccaactggaaac cagggccgggt aagtccaaagc 26220
 agccggccgc gtttagccaa gagcaacaac agcgccaaagg ctaccgctca tggcgccggc 26280
 acaagaacgc catagttgct tgcttgcaag actgtggggg caacatctcc ttcgcccggcc 26340
 gctttttctt ctaccatcac ggcgtggcct tccccgtaa catcctgcac tactaccgtc 26400

atctctacag cccatactgc accggcggca gcggcagcaa cagcagcggc cacacagaag 26460
 caaaggcgac cgatagcaa gactctgaca aagccaaaga aatccacagc ggccgcagca 26520
 gcaggaggag gagcgctgcg tctggcgccc aacgaacccg tatcgacccg cgagctaga 26580
 aacaggattt ttcccactct gtatgctata tttcaacaga gcagggcca agaacaagag 26640
 ctgaaaataa aaaacaggc tctgcgatcc ctcacccgca gctgcctgta tcacaaaagc 26700
 gaagatcagc ttccggcgcac gctggaagac gcggaggctc tcttcagtaa atactgcgct 26760
 ctgactctta aggactagtt tcgcgcctt tctcaaattt aagcgcgaaa actacgtcat 26820
 ctccagcggc cacacccggc gccagcacct gttgtcagcg ccattatgag caaggaaatt 26880
 cccacgcct acatgtggag ttaccagcca caaatggac ttgcggctgg agctgcccaa 26940
 gactactcaa cccgaataaa ctacatgagc gcgggacccc acatgatatc ccgggtcaac 27000
 ggaatacgcg cccacccgaaa ccgaattctc ctgaaacagg cggctattac caccacacct 27060
 cgtaataacc ttaatccccg tagttggccc gctgcctgg tgtaccagga aagtcccgt 27120
 cccaccactg tggtaacttcc cagagacgcc caggccgaag ttcagatgac taactcaggg 27180
 ggcgcagctt cggcggctt tcgtcacagg gtgcggcgc ccgggcaggg tataactcac 27240
 ctgacaatca gagggcgagg tattcagctc aacgacgagt cggtgagctc ctgcgttgg 27300
 ctccgtccgg acggacatt tcagatcggc ggcgcggcc gctttcatt cacgcctcgt 27360
 caggcaatcc taactctgca gacctcgcc tctgagccgc gctctggagg cattggaact 27420
 ctgcaatttta ttgaggagtt tgtgccatcg gtctacttta accccttctc gggacctccc 27480
 ggccactatc cggatcaatt tattcctaac tttgacgcgg taaaggactc ggccggacggc 27540
 tacgactgaa tgtaagtgg agaggcagag caactgcgcc tgaaacacct ggtccactgt 27600
 cggccgcaca agtgctttgc ccgcgcactcc ggtgagttt gctacttga attgcccgg 27660
 gatcatatcg agggcccgcc gcacggcgcc cggcttaccg cccagggaga gcttgcctgt 27720
 agcctgattc gggagtttac ccagcgcggcc ctgctagttg agcgggacag gggaccctgt 27780
 gttctcaactg tgatttgc aa ctgccttaac cctggattac atcaagatct ttgttgcct 27840
 ctctgtgctg agtataataa atacagaaat taaaatatac tggggctcct atgcctatcc 27900
 tgttaaacgcc accgtcttca cccgcccag caaaccaagg cgaacacctac ctggacttt 27960
 taacatctct ccctctgtga tttacaacag tttcaacccca gacggagtga gtctacgaga 28020
 gaacctctcc gagctcagct actccatcag aaaaaacacc accctccctt cctgcccgg 28080
 acgtacgagt gcgtcaccgg ccgctgcacc acacctaccg cctgaccgta aaccagactt 28140
 tttccggaca gacctaata actctgttta ccagaacagg aggtgagctt agaaaaccct 28200
 tagggtatta ggccaaaggc gcagctactg tggggtttat gaacaattca agcaactcta 28260
 cgggctattc taattcaggt ttctctagaa atggacggaa ttattacaga gcagcgcctg 28320
 ctagaaagac gcagggcagc ggccgagcaa cagcgcatga atcaagagct ccaagacatg 28380

gttaacttc accagtgc aaagggtatc tttgtctgg taaagcaggc caaagtcacc 28440
 tacgacagta ataccaccgg acaccgcctt agctacaagt tgccaaacca gcgtcagaaa 28500
 ttggtgtca tggtggaga aaagccatt accataactc agcactcggt agaaaccgaa 28560
 ggctgcattc actcacccitg tcaaggacct gaggatctct gcacccttat taagaccctg 28620
 tgcggctctca aagatcttat tcccttaac taataaaaaa aaataataaa gcatcactta 28680
 cttaaaatca gttagcaaat ttctgtccag ttattcagc agcacccct tgccctcctc 28740
 ccagctctgg tattgcagct tcctcctggc tgcaaacttt ctccacaatc taaatggaaat 28800
 gtcagttcc tcctgttccct gtccatccgc acccaactatc ttcatgttgc tgcaagatgaa 28860
 gcgcgcaaga ccgtctgaag ataccttcaa ccccggtat ccatatgaca cggaaaccgg 28920
 tcctccaact gtgcctttc ttactcctcc ctttgtatcc cccaatgggt ttcaagagag 28980
 tccccctggg gtactctctt tgccctatc cgaacctcta gttacctcca atggcatgct 29040
 tgcgctcaaa atgggcaacg gcctctctt ggacgaggcc ggcaacctta cctccaaaaa 29100
 tgtaaccact gtgagcccac ctctcaaaaaa aaccaagtca aacataaacc tggaaatatc 29160
 tgcacccctc acagttacct cagaaggccct aactgtggct gcccggcac ctctaattgg 29220
 cgcggcaac acactcacca tgcaatcaca ggccccgcta accgtgcacg actccaaact 29280
 tagcatgcc acccaaggac ccctcacagt gtcagaagga aagctagccc tgcaaacatc 29340
 aggccccctc accaccacccg atagcagttac ccttactatc actgcctcac cccctctaac 29400
 tactgccact ggtagcttgg gcattgactt gaaagagccc atttatacac aaaatggaaa 29460
 actaggacta aagtacgggg ctcccttgca tgtaacagac gacctaaca ctttgaccgt 29520
 agcaactggt ccaggtgtga ctattaataa tacttccttg caaaactaaag ttactggagc 29580
 ctgggtttt gattcacaag gcaatatgca acttaatgtt gcaaggaggac taaggattga 29640
 ttctcaaaac agacgcctta tacttgatgt tagttatccg tttgatgctc aaaaccaact 29700
 aaatctaaga cttaggacagg gcccctttt tataaactca gcccacaact tggatattaa 29760
 ctacaacaaa ggccttact tgtttacagc ttcaaacaat tccaaaaagc ttgaggttaa 29820
 cctaagact gccaagggggt tgatgttga cgctacagcc atagccatta atgcaggaga 29880
 tgggctgaa tttggttcac ctaatgcacc aaacacaaat cccctcaaaa caaaaattgg 29940
 ccatggccta gaatttgatt caaacaaggc tatggttccct aaacttaggaa ctggccttag 30000
 ttttgacagc acaggtgcca ttacagtagg aaacaaaaat aatgataagc taactttgtg 30060
 gaccacacca gctccatctc ctaactgttag actaaatgca gagaaagatg ctaaactcac 30120
 tttggctta acaaaaatgtt gcaagtcaaactt acttgctaca gtttcagttt tggatgtttaa 30180
 aggcagtttgc gctccaaatctt ctggaaacagt tcaaagtgtt catcttattttttaa 30240
 cgaaaatggaa gtgtactaa acaattccctt cctggaccca gaatatttggaa acttttagaaa 30300

tggagatctt actgaaggca cagcctatac aaacgctgtt ggatttatgc ctaacctatc 30360
agcttatcca aaatctcacg gtaaaaactgc caaaaagtaac attgtcagtc aagtttactt 30420
aaacggagac aaaactaaac ctgtaacact aaccattaca ctaaacggta cacagggaaac 30480
aggagacaca actccaagtg catactctat gtcatttca tggactggt ctggccacaa 30540
ctacattaat gaaatatttg ccacatcctc ttacacttt tcatacattg cccaagaata 30600
aagaatcggt tggtttatgt ttcaacgtgt ttattttca attgcccggg atcggtgatc 30660
accgatccag acatgataag atacattgat gagttggac aaaccacaac tagaatgcag 30720
tgaaaaaaat gcttatttg tgaaatttg gatgctattg ctattttgt aaccattata 30780
agctgcaata aacaagttcc cgatcgca tccggccga ggctgttagcc gacgatggt 30840
cgccaggaga gttgttgcatttgc ctccctgctg cggttttca ccgaagttca 30900
tgccagtcca gcgttttgc agcagaaaag ccggcactt cggttgcgg tcgcagtg 30960
agatccctt ctgttaccg ccaacgcgca atatgccttgcgagtttca 31020
aattccatac ctgttacccg acgacggcgc tgacgcgatc aaagacgcgg tgatacatat 31080
ccagccatgc acactgatac tcttcactcc acatgtcggt gtacattgag tgccgg 31140
ctaacgtatc cacggcgatc tcggtgatga taatcggtgcgatc 31200
ccagaagttc ttttccagt accttctctg ccgtttccaa atcgccgctt tggacatacc 31260
atccgtaata acggttcagg cacagcacat caaagagatc gctgatggta tcgggtgag 31320
cgtcgcagaa cattacattg acgcaggta tcggacgcgt cggtcgagt ttacgcgttgcg 31380
cttccggccag tggcgcgaaa tattcccgatc caccattgcgg acgggtatcc gggtcggttgcg 31440
caatactcca catcaccacg ctgggtggc ttttgcacg cgctatcagc tctttaatcg 31500
cctgttaagtgcgatc 31560
gcttgcgttgcgatc 31620
catcaatcac cacgatgcca tggttcatctg cccagtcgag catctttca gcgttgcgttgcg 31680
aatgcgaggt acggtaggag ttggcccaatccat taatgcgtgg tcgtgcacca 31740
tcagcacgtt atcgaatcct ttgccacgca agtccgcacgc 31800
taaagttagaa cggttgcgttgcgatc 31860
tgccgcgttgcgatc 31920
catagagata accttcaccc ggttgcgttgcgatc 31980
tagtgccttgcgatc 32040
caccattggc caccacgttgcgatc 32100
tcaccacgttgcgatc 32160
ggattccggc atagttaaatccat 32220
cggttaatcac cattccggc gggatagttgcgatc 32280

tgatacgtac acttttcccg gcaataacat acggcgtgac atcggcttca aatggcgtat	32340
agccgcccctg atgctccatc acttcctgtat tattgaccca cactttgccg taatgagtga	32400
ccgcacatcgaa acgcagcacg atacgctggc ctgccccacc tttcggtata aagacttcgc	32460
gctgataccca gacgttgccc gcataattac gaatatctgc atcggcgaac tgatcgtaa	32520
aactgcctgg cacagcaatt gccccggctt cttgtAACgc gctttcccac caacgctgtat	32580
caattccaca gttttcgcga tccagactga atgcccacag gccgtcgagt tttttgattt	32640
cacgggttgg ggtttctaca ggacggacca tgcgttcgac ctttctcttc ttttttggc	32700
ccatgatggc agatccgtat agtgagtcgt attagctggt tctttccgcc tcagaagcca	32760
tagagcccac cgcatccccca gcatgcctgc tattgtcttc ccaatcctcc cccttgctgt	32820
cctgccccac cccacccccc agaatagaat gacacctact cagacaatgc gatgcaattt	32880
cctcatttta ttaggaaagg acagtggag tggcaccttc cagggtcaag gaaggcacgg	32940
gggaggggca aacaacagat ggctggcaac tagaaggcac agtcgaggct gatcagcgag	33000
ctctagatgc atgctcgagc ggccgcccagt gtgatggata tctgcagaat tccagcacac	33060
tggcggccgt tactagtggc tccgagctcg gtacccggcc gttataacac cactcgacac	33120
ggcaccagct caatcagtca cagtgtaaaa aaggggccaag tgcagagcga gtatatatag	33180
gactaaaaaa tgacgtaacg gttaaagtcc acaaaaaaca cccagaaaac cgcacgcgaa	33240
cctacgccccca gaaacgaaag ccaaaaaacc cacaacttcc tcaaatcgac acttccgttt	33300
tcccacgtta cgtcacttcc cattttaaaga aaactacaat tcccaacaca tacaagttac	33360
tccgccccctaa aacctacgtc acccgccccg ttcccacgccc ccgcgcacg tcacaaaactc	33420
caccccccctca ttatcatatt ggcttcaatc caaaaataagg tatattattt atgatg	33476

```
<210> 19
<211> 33589
<212> DNA
<213> Artificial sequence
```

<220>
<223> Adenoviral vector Adgp140(C).11D

```
<400> 19
catcatcaat aatacacctt attttggatt gaagccaata tgataatgag ggggtggagt 60
tttgacgtg gcgcccccg tggaaacggg gcgggtgacg tagtagtgtg gcggaaagtgt 120
gatgttgcaa gtgtggcgga acacatgtaa gcgcacggatg tggcaaaagt gacgttttg 180
gtgtgcgcgg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240
taaatttggg cgttaaccgag taagatttgg ccatttcgcg gggaaaactg aataagagga 300
agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggccccgggaa 360
tcqqtqatca ccqatccaqa catgataaqa tacattqatq aqtttqqaaca aaccacaact 420
```

agaatgcagt gaaaaaaatg ctttatttgc	480
accattataa gctgcaataa acaagttccc	540
actcgagagc ggccgcaatc gataagcttgc	600
ggagatgtcg aaccaggacc acagggtttt	660
gttttttcc tgctgggtct gggagtcttc	720
ggagattca cggtcccatt ccatccaggt	780
tttcaggtaa cgttcgatag ccagaacacg	840
cagctgcagc atgtgctgct gagcttcgat	900
gatggaggac agcagctgac gagcctgaac	960
cagcggtttc agttcgataa ctttgtattt	1020
gttaccacca cccggacgga agatttcttc	1080
cagcagcaga ccgggtatgt tggatttgca	1140
catagcacga ccaacaccct gccacatgtt	1200
gatggtttcg tcttcggtag cgttgttgg	1260
ttcaccacgg cagttgaagg agtgggtgg	1320
gaatttgcata gttttgttgc tttcttcata	1380
gttgcgttc catttggAAC cggagatgtt	1440
gtcacccgta gcgttagaagg tctgacccgg	1500
gttcggacgg gtgcaaacga ttcaacgg	1560
gttgcggtc aggttttcgg aacggatgtt	1620
cagcagctgg gtggaaacaa ccgggttgc	1680
gttgcacgg ccttaccgg agaagggttt	1740
cggagcgcag tagtggatcg ggatcgggtc	1800
gttgaaagcg ttgcagttga tcaggatgtt	1860
tttcagcaga acgtatgtccg gacggtagaa	1920
gatttcggtg gtgggttgc aggagcagtt	1980
gttgcggcgtt aaggttagcgt tggcagttgc	2040
gcacggtttc agggactggt cccacaggga	2100
gtcggttttc cacatgttgc agttttcggt	2160
cgggtcggtc ggaacgcaag cgtgggtgc	2220
tttgggtgcg gaagcgcaga acagggtgg	2280
gtaaacggta acccacatgt taccacaac	2340
gataccccac atccaccact gcggccagtt	2400

gatatctcta	gtcatcgaaat	tctgcagtga	tcagggatcc	cagatccgta	tagtgagtgc	2460
tattaggtac	cggctgcagt	tggacctggg	agtggacacc	tgtggagaga	aaggcaaagt	2520
ggatgtcatt	gtcactcaag	tgtatggcca	gatctcaagc	ctgccacacc	tcaagtgaag	2580
ccaagggggt	gggcctatacg	actctatagg	cgtacttac	gtcactcttgc	gcacggggaa	2640
tccgcgttcc	aatgcaccgt	tcccggccgc	ggaggctgg	tcggtcccg	tgtcttctat	2700
ggaggtcaaa	acagcgtgg	tggcgtctcc	aggcgatctg	acggttcact	aaacgagctc	2760
tgcttatata	gacctcccac	cgtacacgcc	taccgcccatt	ttgcgtcaat	ggggcggagt	2820
tgttacgaca	ttttggaaag	tcccggttat	tttggtgcca	aaacaaactc	ccattgacgt	2880
caatggggtg	gagacttgga	aatccccgt	agtcaaaccg	ctatccacgc	ccattgatgt	2940
actgccaaaa	ccgcatcacc	atggtaatag	cgtactaa	tacgttagatg	tactgccaag	3000
taggaaagtc	ccataaggc	atgtactgg	cataatgcca	ggcggccat	ttaccgtcat	3060
tgacgtcaat	agggggcgta	cttggcata	gatacacttg	atgtactgcc	aagtggcag	3120
tttaccgtaa	atactccacc	cattgacgtc	aatggaaagt	ccctattggc	gttactatgg	3180
gaacatacgt	cattattgac	gtcaatggc	gggggtcg	gggcggtcag	ccaggcgggc	3240
catttaccgt	aagttatgta	acgcggaaact	ccatatatgg	gctatgaact	aatgaccccg	3300
taattgatta	ctattaataa	ctagtactga	aatgtgtgg	cgtggctaa	gggtggaaaa	3360
gaatatataa	ggtgggggtc	ttatgttagt	ttgtatctgt	tttgcagcag	ccggccggc	3420
catgagcacc	aactcggttgc	atgaaagcat	tgtgagctca	tatgtacaa	cgcgcacg	3480
cccatggggcc	gggggtgcgtc	agaatgtgat	gggctccagc	attgtatgtc	gccccgtcct	3540
gcccgcacaaac	tctactacct	tgacctacga	gaccgtgtct	ggaacgcgt	tggagactgc	3600
agcctccgccc	gccgcattcag	cgcgtgcagc	caccgcggc	gggattgtga	ctgactttgc	3660
tttcctgagc	ccgcttgcaa	gcagtgcagc	ttcccggtca	tccgcccgcg	atgacaagtt	3720
gacggcttt	ttggcacaat	tggattttt	gaccggggaa	cttaatgtcg	tttctcagca	3780
gctgttggat	ctgcgcgcagc	aggttctgc	cctgaaggct	tcctccctc	ccaatgcgg	3840
ttaaaacata	aataaaaaac	cagactctgt	ttggatttg	atcaagcaag	tgtcttgctg	3900
tctttatata	ggggtttgc	gcgcgcggta	ggccgggac	cagcggcttc	ggtcgttgag	3960
ggtcctgtgt	atttttcca	ggacgtggta	aaggtgactc	tggatgtca	gatacatgg	4020
cataagcccg	tctctggggt	ggaggttagca	ccactgcaga	gcttcatgt	gcgggggtgg	4080
gtttagatg	atccagtcgt	agcaggagcg	ctggcgtgg	tgcctaaaaa	tgtctttcag	4140
tagcaagctg	attgccaggg	gcaggccctt	ggtgttaagt	tttacaaagc	ggttaagctg	4200
ggatgggtgc	atacgtgggg	atatgagatg	catcttggac	tgtatttta	ggttggctat	4260
gttcccagcc	atatccctcc	ggggattcat	gttgtgcaga	accaccagca	cagtgtatcc	4320

ggtgcacttg ggaaatttgt catgtagctt agaaggaaat gcgtggaaga acttggagac 4380
 gccc ttgtga cctccaagat tttccatgca ttctgtccata atgatggcaa tgggcccacg 4440
 ggcggcggcc tgggcgaaga tatttctggg atcactaacg tcatagttgc gttccaggat 4500
 gagatcgta taggcattt ttacaaagcg cggcggagg gtgccagact gcggtataat 4560
 ggttccatcc ggcccagggg cgtagttacc ctcacagatt tgcatttccc acgctttgag 4620
 ttcagatggg gggatcatgt ctacctgcgg ggcgtgaag aaaacggttt ccgggttagg 4680
 ggagatcagc tggaaagaaa gcaggttccct gagcagctgc gacttaccgc agccgggtgg 4740
 cccgtaaatc acaccttattt ccggctgcaa ctggtagtta agagagctgc agctgcgcgc 4800
 atccctgagc agggggggcca cttcgttaag catgtccctg actcgcatgt tttccctgac 4860
 caaatccgcc agaaggcgct cgccgcccag cgatagcagt tcttgcagg aagcaaagtt 4920
 tttcaacggt ttgagaccgt ccggcgttagg catgttttg agcgtttgc caagcagttc 4980
 caggcggtcc cacagctcgg tcacctgctc tacggcatct cgatccagca tatctcctcg 5040
 tttcgcgggt tggggcggct ttcgtgtac ggcagttagt ggtgctcgctc cagacgggccc 5100
 agggtcatgt ctttccacgg ggcgcagggtc ctcgtcagcg tagtctgggt cacggtgaag 5160
 gggtgcgctc cgggctgcgc gctggccagg gtgcgttga ggctggctt gctgggtgtg 5220
 aagcgctgcc ggtttcgcc ctgcgcgtcg gccaggtagc atttgaccat ggtgtcatag 5280
 tccagccctt ccgcggcgtg gccc ttggcgc cgcaggcttc ccttggagga ggcgcgcac 5340
 gagggcagt gcagactttt gagggcgtag agcttggcgc cgagaaatac cgattccggg 5400
 gagtaggcat ccgcgcgcgc ggcggccag acggctcgc attccacag ccaggtgagc 5460
 tctggccgtt cggggtaaaa aaccaggttt ccccatgct ttttgcgtcg tttttacct 5520
 ctggtttcca tgagccgggt tccacgctcg gtgacaaaa ggctgtccgt gtcccccgtat 5580
 acagacttga gaggcctgtc ctcgagcgg gttccgcgg cctcctcgta tagaaactcg 5640
 gaccactctg agacaaaggc tcgcgtccag gccagcacga aggaggctaa gtgggagggg 5700
 tagcggcgt tgcgtactag ggggtccact cgctccagg gttgtggaca catgtcgccc 5760
 ttttcggcat caaggaaggt gattggttt taggtgttagg ccacgtgacc ggggtttct 5820
 gaaggggggc tataaaaggc ggtggggcgc cgtcgtccct cactcttttc cgcatcgctg 5880
 tctgcgaggg ccagctgttg gggtgagtagc tccctctgaa aagcgggcat gacttctgcg 5940
 ctaagattgt cagttccaa aaacgaggag gatttgatat tcacctggcc cgcgggtgt 6000
 cctttgaggg tggccgcattc catctggta gaaaagacaa tctttttgtt gtcaagctt 6060
 gtggcaacg acccgtagag ggcgttggac agcaacttgg cgatggagcg cagggtttgg 6120
 tttttgtcgc gatcggtcg ctccttggcc gcgatgttta gctgcacgta ttccgcgcga 6180
 acgcaccgc attcgggaaa gacggtggtg cgctcgtcgg gcaccagggtg cacgcgcaca 6240
 ccgcgggtgt gcagggtgac aaggtaacg ctggtggcta cctctccgcg taggcgtcg 6300

ttggtccagc agaggcggcc gcccttgcgc gagcagaatg gcggtagggg gtctagctgc	6360
gtctcgccg ggggtctgc gtccacgta aagaccccg gcagcaggcg cgctcgaaag	6420
tagtctatct tgcacccctg caagtctagc gcctgctgcc atgcgcggc ggcaagcg	6480
cgctcgatg ggttgagtgg gggacccat ggcattgggt ggttgagcgc ggaggcgtac	6540
atgcgcacaa tgcgtaaac gtagagggc tctctgagta ttccaagata tgttaggtag	6600
catctccac cgccgatgct ggccgcacg taatcgata gttcggtcgaa gggagcgg	6660
aggtcgggac cgagggttgc acgggcggc tgctctgctc ggaagactat ctgcctgaag	6720
atggcatgtg agttggatga tatggttgga cgctggaaga cgttgaagct ggcgtctgt	6780
agacacctcg cgtcacgcac gaaggaggcg taggagtcgc gcagcttgc gaccagctcg	6840
gcggtgacct gcacgtctag ggccagtag tccagggtt cttgtatgt gtcataactta	6900
tcctgtccct ttttttcca cagctcgcc ttgaggacaa actcttcgcg gtctttccag	6960
tactcttggaaacctt gtcggcctcc gaacggtaag agcctagcat gttagaactgg	7020
ttgacggcct ggttaggcgc gcatccctt tctacggta gcgcgtatgc ctgcgcggcc	7080
ttccggagcg aggtgtgggt gagcgaaag gtgtccctga ccatgacttt gaggtactgg	7140
tatttgaagt cagtgtcg tc gcatccccc tgctccaga gcaaaaagtc cgtgcgttt	7200
ttggAACGCG gatttggcag ggcgaagggtg acatcggttga agagtatctt tcccgccgca	7260
ggcataaaagt tgcgtgtat gccaagggtt cccggcacct cggAACGGTT gttaattacc	7320
tgggcggcga gcacgatctc gtccaaagccg ttgatgttgcg ggcggcacaat gtaaagtcc	7380
aagaagcgcg ggtatccctt gatggaaaggc aattttttaa gttcctcgta ggtgagctct	7440
tcaggggagc tgagccctgt ctctgaaagg gcccagtctg caagatgagg gttggaaagcg	7500
acgaatgagc tccacaggc acgggcattt agcatttgc ggtggcgcc aaaggccctta	7560
aactggcgac ctatggccat ttttctggg gtatgcagt agaaggtaag cgggtcttgc	7620
tcccagcggt cccatccaag gttcgccgtt aggtctcgcc cggcagtcac tagaggctca	7680
tctcccccga acttcatgac cagcatgaag ggcacgagct gttcccaaa ggccccatc	7740
caagtatagg tctctacatc gtaggtgaca aagagacgct cggtgccagg atgcgagccg	7800
atcgggaaga actggatctc ccgcacccaa ttggaggagt ggctattgtat gttggaaag	7860
tagaagtccc tgcgcacggc cgaacactcg tgctggctt tgtaaaaacg tgccgcgtac	7920
tggcagcggt gcacgggctg tacatccctgc acgagggttga cctgacgacc ggcacaagg	7980
aagcagagtg ggaatttgag cccctcgctt ggcgggttg gctggtggtc ttctacttcg	8040
gctgcttggtc cttgaccgtc tggctgtatcg aggggagttt cgggtggatcg gaccaccacg	8100
ccgcgcgagc ccaaagtcca gatgtccgcg cgcggcggtc ggagcttgc gacaacatcg	8160
cgcagatggg agctgtccat ggtctggagc tcccgccggc tcaggtcagg cggagctcc	8220

tgccagggtta cctcgcatag acgggtcagg gcgccggcta gatccagggtg atacctaatt	8280
tccaggggct ggttggtggc ggcgtcgatg gcttgcaaga ggccgcacatcc ccgcggcg	8340
actacggtac cgccggcg ggccgtggcc gccccgggtgt cttggatga tgcacatctaaa	8400
agccggtgacg cggcgagcc cccggaggtt gggggggctc cggacccgcc gggagagggg	8460
gcaggggcac gtccggcgccg cgccggca ggagctggtg ctgcgcgcgt aggttgcgtgg	8520
cgaacgcgac gacgcggcg ttgatctcct gaatctggcg cctctgcgtg aagacgacgg	8580
gccccgtgag cttgaacctg aaagagagtt cgacagaatc aatttcggtg tcgttgcgg	8640
cgccctggcg caaaatctcc tgcacgtctc ctgagttgtc ttgataggcg atctcgccca	8700
tgaactgctc gatctttcc tcctggagat ctccgcgtcc ggctcgctcc acgggtggcg	8760
cgaggtcggtt ggaaatgcgg gccatgagct gcgagaaggc gttgaggcct ccctcggtcc	8820
agacgcggct gtagaccacg cccccttcgg catcgccggc gcgcgtgacc acctgcgcga	8880
gattgagctc cacgtgcccgg gcgaagacgg cgtagttcg caggcgctga aagaggtagt	8940
tgagggtggt ggccgtgtgt tctgccacga agaagtacat aacccagcgt cgcaacgtgg	9000
attcggttcatatcccccaag gcctcaaggc gctccatggc ctcgtagaag tccacggcga	9060
agttgaaaaaa ctgggagttt cgccggacaca cggtaactc ctccctccaga agacggatga	9120
gctcggcgac agtgcgcgc acctcgcgct caaaggctac aggggcctct tcttcttctt	9180
caatctccctc ttccataagg gcctccctt cttttcttc tggcgccggt gggggagggg	9240
ggacacggcg ggcacgacgg cgacccggga ggccgtcgac aaagcgctcg atcatctccc	9300
cgccggcgacg gcgcgtggc tcggtgacgg cgccggcggtt ctcgcggggg cgcaatgg	9360
agacgcgcgc cgtcatgtcc cggatgttttggg ttggcgccgg gctgccatgc ggcaggata	9420
cggcgctaac gatgcacatctc aacaattgtt gtgttaggtac tccgcgcgcg agggacctga	9480
gcgagtcgc atcgaccgga tcggaaaacc tctcgagaaa ggcgtctaacc cagtcacagt	9540
cgcaaggtag gctgagcacc gtggcgccgg gcaagcgccg gccgtcgccg ttgtttctgg	9600
cggaggtgct gctgatgatg taattaaagt aggcggctt gagacggcg atggtcgaca	9660
gaagcaccat gtccttgggt ccggcctgct gaatgcgcag gccgtcgccg atgccccagg	9720
cttcgttttgc acatcgccgc aggtctttgt agtagtcttgc catgagcctt tctaccggca	9780
cttcttcttc tccttccttc tgcctgcatt ctctgcattc tatcgctgcg gccggcgccg	9840
agtttggccg taggtggcgc cctcttcctc ccatgcgtgt gaccccgaaag cccctcatcg	9900
gctgaagcag ggcttaggtcg gcaacacgc gctcggtaa tatggcctgc tgcacctgcg	9960
tgagggtaga ctggaaagtca tccatgtcca caaagcggtg gatgcgcgc gttgtatgg	10020
tgtaaatgcgatgttggccata acggaccagt taacggctcg gatgcgcgc gtcgagagct	10080
ccgtgtacct gagaacgcgag taagccctcg agtcaaatac gtagtcgttg caagtccgca	10140
ccaggtactg gatcccacc aaaaagtgcg gccggcgctg gccgttagagg ggcacgcgt	10200

gggtgtggccgg ggctccgggg gcgagatctt ccaacataag gcgatgatat ccgtatgt 10260
 acctggacat ccaggtgatg ccggcggcgg tggtgaggc gcgcggaaag tcgcggacgc 10320
 ggttccagat gttgcgcagc ggcaaaaagt gctccatggt cgggacgctc tggccggtca 10380
 ggcgcgcgca atcggtgacg ctctagcgtg caaaaggaga gcctgttaagc gggcaacttt 10440
 ccgtggtctg gtggataaat tcgcaagggt atcatggcgg acgaccgggg ttcgagcccc 10500
 gtatccggcc gtccgcgtg atccatgcgg ttaccgcccc cgtgtcgaac ccaggtgtgc 10560
 gacgtcagac aacgggggag tgctccttt ggcttccttc caggcgcggc ggctgctgctg 10620
 ctatccggcc ttggccactgg ccgcgcgcag cgtaagcggt taggctggaa agcgaagaca 10680
 ttaagtggct cgatccctgt agccggaggg ttatttcca agggttgagt cgccggaccc 10740
 ccggttcgag tctcgaccg gccggactgc ggcaacggg ggtttccttc cccgtcatgc 10800
 aagacccgc ttgcaaattc ctccggaaac agggacgagc cccttttttgc cttttccag 10860
 atgcatccgg tgcgtgcggca gatgcgcggcc cctcctcagc agcggcaaga gcaagagcag 10920
 cggcagacat gcagggcacc ctcccctcct cctaccgcgt caggagggc gacatccgcg 10980
 gttgacgcgg cagcagatgg tgattacgaa ccccccgcggc gcccggcccg gcactacctg 11040
 gacttggagg agggcgaggg cctggcgcgg ctaggagcgc cctctcctga gcggcaccc 11100
 agggtgcagc tgaagcgtga tacgcgtgag gcgtacgtgc cgccggcagaa cctgtttcgc 11160
 gaccgcgagg gagaggagcc cgaggagatg cgggatcgaa agttccacgc agggcgcgag 11220
 ctgcggcatg gcctgaatcg cgagcggttg ctgcgcgagg aggacttga gcccgcgcg 11280
 cgaacccggaa ttagtccgc gcgcgcacac gtggcggccg ccgaccttgtt aaccgcatac 11340
 gagcagacgg tgaaccagga gattaacttt caaaaaagct ttaacaacca cgtgcgtacg 11400
 cttgtggcgc gcgaggagggt ggctatacgtt ctgtatgcatt tggggactt tgtaagcg 11460
 ctggagcaaa acccaaatacg caagccgcctc atggcgcagc tggttccttat agtgcagcac 11520
 agcaggagaca acgaggcatt cagggatgcg ctgctaaaca tagtagagcc cgagggccgc 11580
 tggctgcctcg atttgataaa catcctgcag agcatagtg tgcaggagcg cagcttgagc 11640
 ctggctgaca aggtggccgc catcaactat tccatgctta gcctggccaa gttttacgcc 11700
 cgcaagatat accataccccc ttacgttccc atagacaagg aggtaaagat cgaggggttc 11760
 tacatgcgcga tggcgctgaa ggtgcttacc ttgagcgcacg acctggcggt ttatcgcaac 11820
 gagcgcaccc acaaggccgt gagcgtgagc cggcggcgcg agctcagcga ccgcgcgactg 11880
 atgcacagcc tgcaaaagggc cctggctggc acgggcagcg gcgtatagaga ggccgagtc 11940
 tactttgacg cggcgctga cctgcgttgtt gccccaaagcc gacgcgcctt ggaggcagct 12000
 ggggcccggac ctgggctggc ggtggcaccc gcgccgcgtg gcaacgtcgg cggcgtggag 12060
 gaatatgacg aggacgatga gtacgagcca gaggacggcg agtactaagc ggtgatgttt 12120

ctgatcagat gatgcaagac gcaacggacc cggcggtgcg ggcggcgctg cagagccagc 12180
 cgtccggcct taactccacg gacgactggc gccaggtcat ggaccgcacat atgtcgctga 12240
 ctgcgcgcaa tcctgacgcg ttccggcagc agccgcaggc caaccggctc tccgcaattc 12300
 tggaaagcggt ggtcccgccg cgcgcaaacc ccacgcacga gaaggtgctg gcgatcgtaa 12360
 acgcgcgtggc cgaaaacagg gccatccggc ccgacgaggc cggcctggc tacgacgcgc 12420
 tgcttcagcg cgtggctcg tacaacagcg gcaacgtgca gaccaacctg gaccggctgg 12480
 tggggatgt gcgcgaggcc gtggcgccagc gtgagcgccgc gcagcagcag ggcaacctgg 12540
 gctccatggt tgcaactaac gccttcctga gtacacagcc cgccaaacgtg ccgcggggac 12600
 aggaggacta caccaacttt gtgagcgcac tgccgctaatt ggtgactgag acaccgcaaa 12660
 gtgaggtgta ccagtctggg ccagactatt tttccagac cagtagacaa ggcctgcaga 12720
 ccgtaaacct gagccaggct ttcaaaaact tgcaggggct gtgggggtg cgggctccca 12780
 caggcgaccg cgcgaccgtg tctagcttgc tgacgccc aa ctgcgcctg ttgctgctgc 12840
 taatagcgcc cttcacggac agtggcagcg tggccggga cacataccta ggtcacttgc 12900
 tgacactgta cgcgaggcc ataggtcagg cgcatgtgga cgagcatact ttccaggaga 12960
 ttacaagtgt cagccgcgcg ctggggcagg aggacacggg cagcctggag gcaaccctaa 13020
 actacctgct gaccaaccgg cggcagaaga tccctcggt gcacagtta aacagcgagg 13080
 aggagcgcatttttgcgtac gtgcagcaga gcgtgaggct taacctgatg cgacgcgggg 13140
 taacgcccag cgtggcgctg gacatgaccg cgcgcaacat ggaaccggc atgtatgcct 13200
 caaaccggcc gtttatcaac cgcctaatttgcgacttgc tgcgcggcc ggcgtgaacc 13260
 ccgagtattt caccaatgcc atcttgaacc cgcaactggct accgccccct gtttctaca 13320
 ccgggggatt cgaggtgccc gaggtaacg atggattcct ctgggacgac atagacgaca 13380
 gcgtgtttc cccgcaaccg cagaccctgc tagagttgc acagcgcgag caggcagagg 13440
 cggcgctgca aaaggaaagc ttccgcaggc caagcagctt gtccgatcta ggcgtgcgg 13500
 ccccgccggtc agatgttagt agcccatatttgc caagcttgcgat agggtctttt accagcactc 13560
 gcaccaccccg cccgcccctg ctggcgagg aggagtacct aaacaactcg ctgctgcagc 13620
 cgcagcgcga aaaaaacctg cctccggcat ttcccaacaa cgggatagag agcctagtg 13680
 acaagatgag tagatggaag acgtacgcgc aggacacag ggacgtgcca ggcccgcc 13740
 cggccaccccg tcgtcaaagg cacgaccgtc agcggggct ggtgtggag gacgtact 13800
 cggcagacga cagcagcgac ctggatttgg gagggagtgg caaccgttt ggcacccctc 13860
 gccccaggct ggggagaatg tttaaaaaaa aaaaaaagca tggatgaaaaa taaaaaactc 13920
 accaaggcca tggcaccgag cggtgggtttt ctgttattcc ctttagtgcgatg cggcgccgg 13980
 cgatgtatga ggaagggtcct cttcccttcc acgagagtgt ggtgagcgcc ggcgcagg 14040
 cggcgccgct gggttctccc ttgcgtatgcgc ccctggaccc ggcgtttgtg cctccgcgg 14100

acctgcccc tacccgggggg agaaacagca tccgttactc tgagttggca cccctattcg 14160
 acaccacccg tgtgtacctg gtggacaaca agtcaacgga tgtggcatcc ctgaactacc 14220
 agaacgacca cagcaacttt ctgaccacgg tcattcaaaa caatgactac agcccgaaaa 14280
 aggcaagcac acagaccatc aatcttgacg accggctgca ctggggcgcc gacctgaaaa 14340
 ccatcctgca taccaacatg ccaaattgtga acgagttcat gtttaccaat aagttaagg 14400
 cgccgggtgat ggtgtcgcc ttgcctacta aggacaatca ggtggagctg aaatacgagt 14460
 gggtgagtt cacgctgccc gaggcaact actccgagac catgaccata gaccttatga 14520
 acaacgcgt cgtggagcac tacttgaaag tggcagaca gaacggggtt ctggaaagcg 14580
 acatcggggt aaagtttgcac acccgcaact tcagactggg gtttgcaccc gtcactggc 14640
 ttgtcatgcc tgggttatata acaaacgaag cttccatcc agacatcatt ttgctgccag 14700
 gatgcggggt ggacttcacc cacagccccc tgagcaactt gttggcattc cgcaagcgcc 14760
 aacccttcca ggagggctt aggatcacct acgatgatct ggagggtggt aacattcccg 14820
 cactgttgg tggacgccc taccaggcga gcttggaaaga tgacaccgaa cagggcgaaaa 14880
 gtggcgccagg cggcagcaac agcagtggca gcggcgccgg agagaactcc aacgcggcag 14940
 ccgcggcaat gcagccggtg gaggacatga acgatcatgc cattcgccgc gacaccttg 15000
 ccacacgggc tgaggagaag cgcgtgagg ccgaagcagc ggccgaagct gccgcccccg 15060
 ctgcgcacc accgggtcgag aagcctcaga agaaaccggt gatcaaaccct ctgacagagg 15120
 acagcaagaa acgcgttac aacctaataa gcaatgacag cacccattcacc cagtaccgca 15180
 gctggtaccc tgcatacaac tacggcgacc ctcagaccgg aatccgtca tggaccctgc 15240
 tttgcactcc tgacgtaacc tgcggctcg agcaggtcta ctggtcgttg ccagacatga 15300
 tgcaagaccc cgtgacccttc cgctccacgc gccagatcag caactttccg gtgggtggcg 15360
 ccgagctgtt gcccgtgcac tccaagagct tctacaacga ccaggccgtc tactcccaac 15420
 tcattccgcca gtttacctct ctgaccacg tggtaatcg ctttcccgag aaccagattt 15480
 tggcgcccc gccagcccc accatcacca ccgtcagtga aaacgttccct gctctcacag 15540
 atcacgggac gtcaccgtg cgcaacacgca tcggaggagt ccagcgagtg accattactg 15600
 acgcccacgc ccgcacccgc ccctacgtt acaaggccct gggcatagtc tcgcccggcg 15660
 tcctatcgag ccgcacttt tgagcaagca tggccatcc tatatcgccc agcaataaca 15720
 caggctgggg cctgcgttcc ccaagcaaga tggggccgg ggccaagaag cgctccgacc 15780
 aacaccagt ggcgtgcgc gggcactacc ggcgcctcg gggcgccac aaacgcggcc 15840
 gcactggcg caccaccgtc gatgacgcca tcgacgccc ggtggaggag ggcgcact 15900
 acacgcccac gcccacca gttccacag tggacgccc cattcagacc gtggcgcc 15960
 gagccggcg ctatgctaaa atgaagagac ggcggaggcg cgtacgtcgcc cgcacccgc 16020

gccgaccgg cactgcccgc caacgcgcgg cggggccct gcttaaccgc gcacgtcgca 16080
ccggccgacg ggcggccatg cggggccgtc gaaggctggc cgcgggtatt gtcactgtgc 16140
cccccaggtc caggcgacga gcggccgccc cagcagccgc ggccattagt gctatgactc 16200
agggtcgcag gggcaacgtg tattgggtgc gcgactcggt tagcggcctg cgcgtgccc 16260
tgcgcacccg ccccccgccg aactagattg caagaaaaaa ctacttagac tcgtactgtt 16320
gtatgtatcc agcggggcg ggcgcacaacg aagctatgtc caagcgaaa atcaaagaag 16380
agatgctcca ggtcatcgcg ccggagatct atggccccc gaagaaggaa gagcaggatt 16440
acaagccccg aaagctaaag cgggtcaaaa agaaaaagaa agatgtatgt gatgaacttg 16500
acgacgaggt ggaactgctg cacgctaccg cgcccaggcg acgggtacag tggaaaggtc 16560
gacgcgtaaa acgtgttttgcg acggccggca ccaccgtagt ctttacgccc ggtgagcgct 16620
ccaccgcac ctacaagcgc gtgtatgtatg aggtgtacgg cgacgaggac ctgcttgagc 16680
aggccaaacga gcgcctcggg gagttgcct acgaaaagcg gcataaggac atgctggcgt 16740
tgccgctgga cgagggcaac ccaacaccta gcctaaagcc cgtaacactg cagcaggtgc 16800
tgcccgctc tgacccgtcc gaagaaaagc gcggcctaaa ggcgcagatct ggtgacttgg 16860
caccaccgt gcagctgatg gtacccaagc gccagcgact ggaagatgtc ttggaaaaaa 16920
tgaccgtgga acctgggctg gagcccgagg tccgcgtgcg gccaatcaag caggtggcgc 16980
cgggactggg cgtgcagacc gtggacgttc agataccac taccagttagc accagtattt 17040
ccaccgcac agagggcatg gagacacaaa cgtcccggt tgccctcagcg gtggcggatg 17100
ccgcggtgca ggcggtcgt gcggcccggt ccaagacctc tacggaggtg caaacggacc 17160
cgtggatgtt tcgcgtttca gccccccggc gcccgcgcg ttgcggaaag tacggcgcgc 17220
ccagcgcgtc actgcccgaat tatgcctac atccttccat tgccctcacc cccggctatc 17280
gtggctacac ctaccgcacc agaagacgag caactaccgc acgccgaacc accactggaa 17340
ccgcggccg cgtgcgtccgt cgccagcccg tgctggccccc gatttccgtg cgcaagggtgg 17400
ctcgcgaagg aggcaggacc ctggtgctgc caacagcgcg ctaccacccc agcatcggtt 17460
aaaagccgtt ctttgtggtt cttgcagata tggccctcac ctgcccgcctc cgttcccg 17520
tgccgggatt ccgaggaaga atgcaccgtt ggagggcat ggccggccac ggcctgacgg 17580
gcggcatgcg tcgtgcgcac cacggggggc ggccgcgcgc gcaccgtcgat atgcgcggcg 17640
gtatccgtcc cctccttatt ccactgatcg ccgcggcgat tggccgcgtg cccggaaattt 17700
catccgtggc cttgcaggcg cagagacact gataaaaaac aagttgcatg tggaaaaatc 17760
aaaataaaaaa gtctggactc tcacgctcgc ttggcctgt aactattttg tagaatggaa 17820
gacatcaact ttgcgtctct ggccccggcga cacggctcgc gcccgttcat gggaaaactgg 17880
caagatatcg gcaccagcaa tatgagcggtt ggcgcctca gctggggctc gctgtggagc 17940
ggcattaaaaa atttcgggttc caccgttaag aactatggca gcaaggcctg gaacagcagc 18000

acaggccaga tgctgaggga taagttaaaa gagcaaaatt tccaacaaaa ggtggtagat 18060
 ggcctggcct ctggcattag cgggggtggtg gacctggcca accaggcagt gcaaaataag 18120
 attaacagta agcttgcattcc cgcgcctccc gtagaggagc ctccacccggc cgtggagaca 18180
 gtgtctccag aggggcgtgg cgaaaagcgt cgcgcgcgc acagggaaaga aactctggtg 18240
 acgcaaatacg acgagcctcc ctgcgtacgag gaggcactaa agcaaggcct gccaccacc 18300
 cgtcccatcg cgcccatggc taccggagtg ctggggccagc acacaccgt aacgctggac 18360
 ctgcctcccc ccgcccacac ccagcagaaa cctgtgctgc caggccgcac cgccgttgtt 18420
 gtaaccgcgc ctagccgcgc gtccctgcgc cgccgcgcac gcggtccgcg atcgttgogg 18480
 cccgttagcca gtggcaactg gcaaaagcaca ctgaacagca tcgtgggtct gggggtgcaa 18540
 tccctgaagc gcccacgtatg cttctgtatag ctaacgtgtc gtatgtgtt catgtatgcg 18600
 tccatgtcgc cgccagagga gctgctgagc cgccgcgcgc cgcctttcca agatggctac 18660
 cccttcgatg atgcccacgt ggtcttacat gcacatctcg ggccaggacg cctcggagta 18720
 cctgagccccc gggctggtgc agtttgcgcg cgccaccgag acgtacttca gcctgaataa 18780
 caagtttaga aaccccacgg tggcgctac gcacgacgtg accacagacc ggtcccagcg 18840
 tttgacgctg cggttcatcc ctgtggaccg tgaggatact gcgtactcgt acaaggcgcg 18900
 gttcacccctt gctgtgggtt ataaccgtgt gctggacatg gcttccacgt actttgacat 18960
 ccgcggcgtg ctggacaggg gcccacttt taagccctac tctggcactg cctacaacgc 19020
 cctggctccc aagggtgccc caaatccctt cgaatggat gaagctgcta ctgctttga 19080
 aataaaccta gaagaagagg acgtacaca cgaagacgaa gtagacgacg aagctgagca 19140
 gcaaaaaact cacgtatcc ggcaggcgcc ttattctgtt ataaatatta caaaggaggg 19200
 tattcaaata ggtgtcgaag gtcaaaccacc taaatatgcc gataaaacat ttcaacctga 19260
 acctcaaata ggagaatctc agtggtaacg aacagaaatt aatcatgcag ctgggagagt 19320
 cctaaaaaact actaccccaa tgaaaccatg ttacggttca tatgcaaaac ccacaatga 19380
 aaatggaggg caaggcattc ttgtaaagca acaaaatgga aagctagaaa gtcaagtgg 19440
 aatgcaattt ttctcaacta ctgaggcagc cgccaggcaat ggtgataact tgactcctaa 19500
 agtggattt tacagtgaag atgttagat agaaacccca gacactcata tttcttacat 19560
 gcccactatt aaggaaggta actcaccgaga actaatggc caacaatcta tgcccaacag 19620
 gcctaattac attgctttta gggacaattt tattggtcta atgtattaca acagcacggg 19680
 taatatgggt gttctggcgg gccaagcattc gcagttgaat gctgttgtag atttgcaaga 19740
 cagaaacaca gagctttcat accagcttt gcttgattcc attgggtata gaaccaggta 19800
 cttttctatg tggaaatcagg ctgttgacag ctatgatcca gatgttagaa ttattgaaaa 19860
 tcatggaact gaagatgaac ttccaaatata ctgccttcca ctgggaggtg tgattaatac 19920

agagactttt accaaggtaa aacctaaaac aggtcaggaa aatggatggg aaaaagatgc 19980
 tacagaattt tcagataaaa atgaaataag agttggaaat aattttgcca tggaaatcaa 20040
 tctaaatgcc aacctgtgga gaaatttcct gtactccaac atagcgctgt atttgcccga 20100
 caagctaaag tacagtcctt ccaacgtaaa aatttctgat aacccaaaca cctacgacta 20160
 catgaacaag cgagtggtgg ctcccggtct agtggactgc tacattaacc ttggagcacg 20220
 ctggccctt gactatatgg acaacgtcaa cccatttaac caccaccgca atgctggcct 20280
 gcgctaccgc tcaatgttgc tggcaatgg tcgctatgtg cccttccaca tccaggtgcc 20340
 tcagaagttc tttgccatta aaaacctcct tctcctgccc ggctcataaca cctacgagt 20400
 gaacctcagg aaggatgtta acatggttct gcagagctcc ctaggaaatg acctaagggt 20460
 tgacggagcc agcattaagt ttgatagcat ttgcctttac gccacccctt tccccatggc 20520
 ccacaacacc gcctccacgc ttgaggccat gcttagaaac gacaccaacg accagtcctt 20580
 taacgactat ctctccgccc ccaacatgct ctaccctata cccgccaacg ctaccaacgt 20640
 gcccataatcc atcccctccc gcaactgggc ggcttccgc ggctggcct tcacgcgcct 20700
 taagactaag gaaacccat cactgggctc gggctacgac ctttattaca cctactctgg 20760
 ctctatacc tacctagatg gaaccttta cctcaaccac accttaaga aggtggccat 20820
 taccttgac tcttctgtca gctggctgg caatgaccgc ctgcttaccc ccaacgagtt 20880
 tgaaattaag cgctcagttt acggggaggg ttacaacggtt gcccagtgtt acatgaccaa 20940
 agactggttc ctggtacaaa tgcttagctaa ctataacatt ggctaccagg gcttctat 21000
 cccagagagc tacaaggacc gcatgtactc cttctttaga aacttccagc ccatgagccg 21060
 tcaggtggtg gatgatacta aatacaagga ctaccaacag gtggcatcc tacaccaaca 21120
 caacaactct ggatttggc gctaccttgc cccaccatg cgcaaggac aggcttaccc 21180
 tgctaacttc ccctatccgc ttataggcaa gaccgcagtt gacagcatta cccagaaaaa 21240
 gtttcttgc gatgcaccc tttggcgcat cccattctcc agtaacttta tgtccatgg 21300
 cgcaactcaca gacctgggcc aaaaccttct ctacgccaac tccgcccacg cgctagacat 21360
 gacttttgag gtggatccca tggacgagcc cacccttctt tatgttttgt ttgaagtctt 21420
 tgacgtggtc cgtgtgcacc agccgcaccc cggcgcatc gaaaccgtgt acctgcgcac 21480
 gcccctctcg gccggcaacg ccacaacata aagaagcaag caacatcaac aacagctgcc 21540
 gccatggct ccagtggca ggaactgaaa gccattgtca aagatctgg ttgtggcca 21600
 tatttttgg gcacctatga caagcgctt ccaggcttg tttctccaca caagctgcc 21660
 tgcgcctatag tcaatacggc cggcgccgag actggggcg tacactggat ggccttgc 21720
 tggacccgc actcaaaaac atgctacctc tttgagccct ttggctttc tgaccagcga 21780
 ctcaaggcagg tttaccagtt tgagtacgag tcactcctgc gccgtacgc cattgcttct 21840
 tcccccgacc gctgtataac gctggaaaag tccacccaaa gcgtacaggg gcccaactcg 21900

gcccctgtg gactattctg ctgcattgtt ctccacgcct ttgccaactg gccccaaact 21960
cccatggatc acaacccac catgaacctt attaccgggg tacccaactc catgctcaac 22020
agtccccagg tacagcccac cctgcgtcgc aaccaggaac agctctacag cttcctggag 22080
cgccactcgc cctacttccg cagccacagt gcgagatata ggagcgccac ttcttttgt 22140
cacttgaaaa acatgtaaaa ataatgtact agagacactt tcaataaagg caaatgcttt 22200
tatttgatac ctctcgggtg attatattacc cccacccttg ccgtctgcgc cgttaaaaaa 22260
tcaaagggtt tctgcgcgc atcgctatgc gccactggca gggacacgtt gcgatactgg 22320
tgtttagtgc tcoacttaaa ctcaggcaca accatccgcg gcagctcggt gaagtttca 22380
ctccacaggc tgccgaccat caccaacgcg tttacgggtt cgggcgcgcg tatcttgaag 22440
tcgcagggtgg ggccctccgccc ctgcgcgcgc gagttgcgtt acacagggtt gcagcactgg 22500
aacactatca gcgcgggtg gtgcacgctg gccagcacgc tcttgcgga gatcagatcc 22560
gcgtccaggt cctccgcgtt gctcaggcg aacggagtca actttggtag ctgccttccc 22620
aaaaagggcg cgtgcccagg ctttgagttg cactgcacc gtatggcat caaaaggtga 22680
ccgtgcccgg tctggcggtt aggatacagc gcctgcataa aagccttgat ctgcttaaaa 22740
gccacctgag ccttgcgc ttcagagaag aacatgcgc aagacttgcc ggaaaactga 22800
ttggccggac aggccgcgtc gtgcacgcag cacctgcgtt cggtgttggaa gatctgcacc 22860
acatttcggc cccacccgtt cttcacgatc ttggccttgc tagactgctc cttoagcgcg 22920
cgctgcccgt tttcgctcgat cacatccatt tcaatcacgt gtccttattt tataatgt 22980
cttccgtgtt gacacttaag ctcgccttcg atctcagcgc agcgggtcag ccacaacgcg 23040
cagccgtgg gctcgtgtatg cttgttaggtc acctctgcaaa acgactgcag gtacgcctgc 23100
aggaatcgcc ccatcatcgat cacaagggtc ttgttgcgtt tgaagggtcag ctgcaccccg 23160
cggtgcgtt cgttcagcca ggtttgcgtt acggccgc tgggttccac ttggcaggc 23220
agtagttga agtgcgttt tagatcgat tccacgtgtt acttgcgtt cagcgccgc 23280
gcagcctcca tggcccttc ccacgcagac acgatcgca cactcagcggtt gttcatcacc 23340
gtaatttcac tttccgtttc gctgggtct tccttttctt ctgcgtccg cataccacgc 23400
gccactgggt cgtcttcatt cagccgcgc actgtgcgtt tacctcctt gccatgcgtt 23460
attagcaccg gtgggttgct gaaacccacc atttgcgtt ccacatctt tctttttcc 23520
tcgcgttcca cgattaccc tcgtgtatggc gggcgctcggt gcttgggaga agggcgcttc 23580
tttttcttctt tggcgcaat ggccaaatcc gccgcgcagg tcgtggccg cgggtgggt 23640
gtgcgcggca ccagcgccgtc ttgtgtatggc tcttcgtt cctcgactc gatacgccgc 23700
ctcatccgtt ttttgggggg cggccgggggaa ggccgcggcg acggggacgg ggacgacacg 23760
tcctccatgg ttgggggacg tcgcgcgc cccgcgtccgc gtcgggggt ggttcgcc 23820

tgctcctctt cccgactggc catttccttc tcctataggc agaaaaaagat catggagtca 23880
 gtcgagaaga aggacagcct aaccggcccc tctgagttcg ccaccaccgc ctccaccgat 23940
 gccgccaacg cgccctaccac cttcccggtc gaggcacccc cgcttgagga ggaggaagtg 24000
 attatcgagc aggacccagg ttttgtaagc gaagacgacg aggaccgctc agtaccaaca 24060
 gaggataaaa agcaagacca ggacaacgca gaggcaaacg aggaacaagt cgggcggggg 24120
 gacgaaaggc atggcgacta cctagatgtg ggagacgacg tgctgttcaa gcacatctgcag 24180
 cgccagtgcg ccattatctg cgacgcgttg caagagcgca gcgtatgtgcc cctcgccata 24240
 gcggatgtca gccttgccta cgaacgcccac ctattctcac cgccgcgtacc ccccaaacgc 24300
 caagaaaacg gcacatgcga gcccaacccg cgccctcaact tctacccgt atttgcgtg 24360
 ccagagggtgc ttgccaccta tcacatcttt ttccaaaact gcaagatacc cctatcctgc 24420
 cgtgc当地 cccatgcgca ggacaaggcag ctggccttgc ggcaggcgcg tgtcatacct 24480
 gatatcgccct cgctcaacga agtgc当地 atcttgagg tgcttgacg cgacgagaag 24540
 cgccgc当地 acgctctgca acaggaaaac agc当地atg aaagtcaact tggagtgtt 24600
 gtggaactcg agggtgacaa cgccgc当地 gccgtactaa aacgc当地at cgaggtcacc 24660
 cactttgcct acccggcact taacctaccc cccaaagggtca tgagcacagt catgagtgag 24720
 ctgatcgtgc gccgtgc当地 gccc当地ggag agggatgcaa atttgc当地 acaaacaagag 24780
 gagggcctac cc当地cgttgg cgacgagcag ct当地cgcttgc ggcttcaaac gccgc当地gctt 24840
 gccgacttgg aggagc当地gacg caaaactaatg atggccgc当地 tgctcg当地tac cgtggagctt 24900
 gagtgcatgc agc当地gttctt tgctgacccg gagatgc当地 gcaagctaga ggaaacattg 24960
 cactacacct ttc当地gacaggc ctacgtacgc caggc当地tgc当地 agatctccaa cgtggagctc 25020
 tgcaacctgg tctc当地tacct tggaaattttg cacgaaaacc gc当地tgggca aaacgtgctt 25080
 cattccacgc tcaagggc当地 ggc当地gc当地ccgc gactacgtcc ggc当地actgc当地 ttacttattt 25140
 ctatgctaca cctggc当地gacg ggc当地atggc当地 gttggc当地agc agtgc当地ttggaa ggagtgcaac 25200
 ctcaaggagc tgca当地gaaact gctaaagcaa aacttgaagg acctatggac ggc当地ttaac 25260
 gagcgctccg tggccgc当地 cctggc当地ggac atcattttcc cc当地aacgc当地ctt gcttaaaacc 25320
 ctgcaacagg gtctgccaga cttc当地accagg caaaggcatgt tgca当地actt taggaacttt 25380
 atcctagagc gctc当地aggaat cttgccc当地cc acctgctgtg cacttc当地ctt tagcttgc当地 25440
 cccattaatg acccgcaatg cc当地tccgc当地ccg ctttgggcc当地 actgctactt tctgc当地actt 25500
 gccaactacc ttgc当地tacca ctctgacata atggaagacg tgagc当地ggta cggtctactg 25560
 gagtgc当地act gtc当地gtccaa cctatgc当地cc cc当地gaccgc当地 ct当地tgggttgc caattc当地gc当地 25620
 ctgcttaacg aaagtcaaat tatcggtacc tttgagctgc agggccctc gc当地tgc当地gaa 25680
 aagtccgc当地gg cttccggggtt gaaactcact cc当地gggctgt ggacgtccgc ttaccttc当地c 25740
 aaatttgc当地tac ctgaggacta ccacgc当地ccac gagatagg tctacgaaga ccaatccgc 25800

ccgcctaattt cggagcttac cgccgcgtc attacccagg gccacattct tggccaattt 25860
 caagccatca acaaagcccg ccaagagttt ctgtacgaa agggacgggg ggttacttg 25920
 gaccccccagt ccggcgagga gctcaaccca atccccccgc cgccgcagcc ctatcagcag 25980
 cagccgcggg cccttgcttc ccaggatggc accaaaaaag aagctgcagc tgccgcgc 26040
 acccacggac gaggaggaat actggacag tcagggcagag gaggttttg acgaggagga 26100
 ggaggacatg atgaaagact gggagacct agacgaggaa gcttccgagg tcgaagaggt 26160
 gtcagacgaa acaccgtcac cctcggtcgc attccccctcg ccggcgcccc agaaatcgcc 26220
 aaccggttcc agcatggcta caacccctcgc tcctcaggcg ccggccggcac tgccgcgttgc 26280
 ccgacccaaac cgtagatggg acaccactgg aaccaggggcc ggttaagtcca agcagccgc 26340
 gccgttagcc caagagcaac aacagcgcca aggctaccgc tcatggcgcg ggcacaagaa 26400
 cgccatagtt gcttgcttgc aagactgtgg gggcaacatc tccttcgcgc gccgcttct 26460
 tctctaccat cacggcgtgg cttcccccg taacatcctg cattactacc gtcatctcta 26520
 cagcccatac tgcaccggcg gcagcggcag caacagcagc ggccacacag aagcaaaggc 26580
 gaccggatag caagactctg acaaagccca agaaatccac agcggcggca gcagcaggag 26640
 gaggagcgct gcgtctggcg cccaacgaac ccgtatcgac ccgcgagctt agaaacagga 26700
 tttttccac tctgtatgtt atatttcaac agagcagggg ccaagaacaa gagctgaaaa 26760
 taaaaaaacag gtctctgcga tccctcaccc gcagctgcct gtatcacaaa agcgaagatc 26820
 agcttcggcg cacgctggaa gacgcggagg ctctcttcag taaatactgc gcgctgactc 26880
 ttaaggacta gtttcgcgc ctttctcaaa tttaagcgcg aaaactacgt catctccagc 26940
 ggccacaccc ggccgcagca cctgttgtca gcgcattat gagcaaggaa attcccacgc 27000
 cctacatgtg gagttaccag ccacaaatgg gacttgcggc tggagctgcc caagactact 27060
 caacccgaat aaactacatg agcgcggac cccacatgtat atcccggttc aacgaaatac 27120
 ggcgcacccg aaaccgaatt ctccctggaaac aggccgttat taccaccaca cctcgtaata 27180
 accttaatcc ccgtatgttgg cccgctgcgc tgggtacca gggaaatccc gctcccacca 27240
 ctgtgtact tcccaagagac gcccaggccg aagttcagat gactaactca ggggcgcagc 27300
 ttgcggcg ctttcgtcac agggtgcggt cgcccgccg gggataact cacctgacaa 27360
 tcagaggcg aggtatttcag ctcaacgcac agtcggtag ctcctcgctt ggtctccgtc 27420
 cggacgggac atttcagatc ggcggcgccg gccgctcttc attcacgcct cgtcaggcaa 27480
 tccttaactct gcagacactcg tcctctgagc cgcgtctgg aggcatttggaa actctgcaat 27540
 ttattgagga gtttgcgttact ttaaccctt ctcggacact cccggccact 27600
 atccggatca atttatttcct aactttgacg cggtaaagga ctcggcggac ggctacgact 27660
 gaatgttaag tggagaggca gagcaactgc gcctgaaaca cctggccac tgcgcgc 27720

acaagtgtt tgcccgcgac tccggtgagt tttgtactt tgaattgcc gaggatcata 27780
 tcgagggccc ggccgcacggc gtccggctta ccgcccaggg agagttgcc cgtagcctga 27840
 ttcgggagtt taccaggcgc cccctgctag ttgagcggga caggggaccc tgtgttctca 27900
 ctgtgatttg caactgtcct aaccctggat tacatcaaga tctttgtgc catctctgt 27960
 ctgagtataa taaatacaga aattaaaata tactgggct cctatcgcca tcctgtaaac 28020
 gccaccgtct tcacccgccc aagcaaacca aggcaaccc tacctggtac ttttaacatc 28080
 ttcctctg tgatttacaa cagttcaac ccagacggag tgagtctacg agagaacctc 28140
 tccgagctca gctactccat cagaaaaaac accaccctcc ttacctgccc ggaacgtacg 28200
 agtgcgtcac cggccgctgc accacaccta ccgcctgacc gtaaaccaga cttttccgg 28260
 acagacctca ataactctgt ttaccagaac aggaggttag cttagaaaac ccttagggta 28320
 ttaggc当地 ggcgcagcta ctgtggggt tatgaacaat tcaagcaact ctacgggcta 28380
 ttctaattca ggttctcta gaaatggacg gaattattac agagcagcgc ctgctagaaa 28440
 gacgcaggc当地 agcggccgag caacagcgc tgaatcaaga gctccaagac atggtaact 28500
 tgcaccagt当地 caaaaagggt atctttgtc tggtaaagca ggccaaagtc acctacgaca 28560
 gtaataccac cggacaccgc cttagctaca agtgccaaac caagcgtcag aaattggtgg 28620
 tcatggtggg agaaaagccc attaccataa cttagcactc ggtagaaacc gaaggctgca 28680
 ttcactcacc ttgtcaagga cctgaggatc tctgcaccct tattaagacc ctgtcggtc 28740
 tcaaagatct tattccctt aactaataaa aaaaataat aaagcatcac ttactaaaa 28800
 tcagttagca aatttctgtc cagtttattc agcagcacct cttgcctc ctcctcagctc 28860
 tggtattgca gtttcctcct ggctgcaaac tttctccaca atctaaatgg aatgtcagtt 28920
 tcctcctgtt cctgtccatc cgcacccact atcttcatgt tggtagat gaagcgcgca 28980
 agaccgtctg aagatacctt caacccctg tatccatatg acacggaaac cggcctcca 29040
 actgtgcctt ttcttactcc tcccttgtt tcccccaatg ggttcaaga gagtccccct 29100
 ggggtactct ctttgcgcct atccgaacct ctagttaccc ccaatggcat gttgcgc当地 29160
 aaaatggca acggcctc当地 tctggacgag gccggcaacc ttacctccca aaatgtaaacc 29220
 actgtgagcc cacctctcaa aaaaaccaag tcaaacataa acctggaaat atctgcaccc 29280
 ctcacagttt cctcagaagc ccttaactgtg gctgccggc当地 cacctctaatt ggtcgccggc 29340
 aacacactca ccatgcaatc acaggccccg ctaaccgtgc acgactccaa acttagcatt 29400
 gccacccaag gacccctcac agtgcagaa ggaaagctag ccctgcaaac atcaggcccc 29460
 ctcaccacca ccgatagcag tacccttact atcactgcct cacccctct aactactgcc 29520
 actggtagct tggcattga cttgaaagag cccattata cacaatgg aaaacttagga 29580
 ctaaaagtacg gggctcctt gcatgtaaca gacgacctaa acacttgac cgtagcaact 29640
 ggtccaggtg tgactattaa taatacttcc ttgcaaacta aagttactgg agccttgggt 29700

tttgattcac aaggcaatat gcaacttaat gtagcaggag gactaaggat tgattctcaa 29760
 aacagacgcc ttatacttga tgtagttat ccgtttgatg ctcaaaacca actaaatcta 29820
 agactaggac agggccctct ttttataaac tcagcccaca acttggatataactacaac 29880
 aaaggcctt acttgtttac agcttcaaacc aattccaaaa agcttgaggt taacctaagc 29940
 actgccaagg ggttgatgtt tgacgctaca gccatagcca ttaatgcagg agatgggctt 30000
 gaatttggtt cacctaattgc accaaacaca aatcccctca aaacaaaaat tggccatggc 30060
 ctagaatttgc attcaaacaa ggctatggtt cctaaactag gaactggcct tagtttgac 30120
 agcacaggtg ccattacagt agggaaacaaa aataatgata agctaacttt gtggaccaca 30180
 ccagctccat ctccctaactg tagactaaat gcagagaaag atgctaaact cactttggtc 30240
 ttaacaaaat gtggcagtca aatacttgct acagtttcag ttttggctgt taaaggcagt 30300
 ttggctccaa tatctggAAC agttcaaagt gtcatactta ttataagatt tgacaaaaat 30360
 ggagtgtac taaacaattc cttcctggac ccagaatatt ggaacttttag aaatggagat 30420
 cttactgaag gcacagccta tacaaacgct gttggattta tgcctaacct atcagcttat 30480
 ccaaaatctc acggtaaaac tgccaaaagt aacattgtca gtcaagttt cttaaacggg 30540
 gacaaaaacta aacctgtAAC actaaccatt acactaaacg gtacacagga aacaggagac 30600
 acaactccaa gtgcataactc tatgtcattt tcatggact ggtctggcca caactacatt 30660
 aatgaaatata ttgccacatc ctcttacact ttttcataca ttgcccaga ataaaagatc 30720
 gtttgttta tgtttcaacg tgtttatttt tcaattgccc gggatcggtg atcaccgatc 30780
 cagacatgt aagatacatt gatgagtttgc gacaaaccac aactagaatg cagtggaaaa 30840
 aatgctttat ttgtgaaatt tgcatactt ttgtttattt tgtaaccatt ataagctgca 30900
 ataaaacaagt tcccgatcg cgatccggcc cgaggctgta gccgacgatg gtgcggcagg 30960
 agagttgttgc attcattgtt tgcctccctg ctgcggtttt tcaccgaatg tcatggcagt 31020
 ccagcgaaaa tgcagcagaa aagccgcgaa cttcggtttcg cggtcgccag tgaagatccc 31080
 tttcttgttta ccgccaacgc gcaatatgcc ttgcgggttc gcaaaatcg cgaaattcca 31140
 tacctgttca ccgacgacgg cgctgacgacg atcaaagacg cggtgataca tatccagcca 31200
 tgcacactga tactcttcac tccacatgtc ggtgtacatt gagtgcagcc cggctaacgt 31260
 atccacgccc tattcggtga tgataatcg ctgtatcgatgt ttctccgtcc aggccagaag 31320
 ttcttttcc agtaccttct ctgccgtttc caaatcgccg ctttggacat accatccgt 31380
 ataacggttc aggcacagca catcaaagag atcgctgatg gtatcggtgt gagcgtcgca 31440
 gaacattaca ttgacgcagg tgatcgacg cgctcggtcg agtttacgcg ttgctccgc 31500
 cagtggcgcg aaatattccc gtgcacccgt cggacgggtt tccgggtcgt tggcaatact 31560
 ccacatcacc acgcttgggt ggttttgtc acgcgtatc agctcttaa tcgcctgtaa 31620

gtgcgcttgc ttagtttccc cggtgactgc ctcttcgctg tacagttctt tcggcttgg 31680
 gcccgcgtcg aaaccaatgc ctaaaagagag gttaaagccg acagcagcag tttcatcaat 31740
 caccacgatg ccatgttcat ctgcccagtc gagcatctct tcagcgtaag ggtaatgcga 31800
 ggtacggtag gagttggccc caatccagtc cattaatgcg tggtcgtgca ccatcagcac 31860
 gttatcgaat ccttgccac gcaagtccgc atcttcatga cgaccaaagc cagtaaagta 31920
 gaacggtttgc tggttaatca ggaactgttc gcccttcaact gccactgacc ggatgccgac 31980
 gcgaaaggccc tagatatcac actctgtctg gctttggct gtgacgcaca gttcatagag 32040
 ataacccatca cccgggttgcc agaggtgcgg attcaccact tgcaaagtcc cgctagtgcc 32100
 ttgtccagtt gcaaccaccc gttgatccgc atcacgcagt tcaacgctga catcaccatt 32160
 ggccaccacc tgccagtc当地 cagacgcgtg gttacagtct tgcgcgacat gogtcaccac 32220
 ggtgatatcg tccacccagg tggtcggt ggttagagc attacgctgc gatggattcc 32280
 ggcatagtta aagaaatcat ggaagtaaga ctgcttttc ttgcccgttt cgtcgtaat 32340
 caccattccc ggccggatag tctgccagtt cagttcggtt ttcacacaaa cggtgatacg 32400
 tacacttttc cccggcaataa catacggcgt gacatcggt tcaaattggcg tatagccgcc 32460
 ctgatgctcc atcacttcct gattattgac ccacactttg ccgtaatgag tgaccgcattc 32520
 gaaacgcagc acgatacgct ggcctgccc acctttcggt ataaagactt cgcgctgata 32580
 ccagacgttgc cccgcataat tacgaatatc tgcatcggt aactgatcgta taaaactgcc 32640
 tggcacagca attgcccggc tttcttgc当地 cgcgtttcc caccaacgct gatcaattcc 32700
 acagtttgc cgatccagac tgaatgccc当地 caggccgtcg agtttttgc tttcacgggt 32760
 tggggtttct acaggacgga ccatgcgttc gacctttctc ttcttttgc ggccatgat 32820
 ggcagatccg tatagtgagt cgtattagct ggttcttcc gcctcagaag ccatagagcc 32880
 caccgcattcc ccagcatgcc tgctattgtc ttcccaatcc tcccccttgc tgtcctgccc 32940
 cacccaccc cccagaatag aatgacaccc actcagacaa tgcgatgca tttcctcatt 33000
 ttatttagaa aggacagtgg gagtggcacc ttccagggtc aaggaaggca cgggggaggg 33060
 gcaaacaaca gatggctggc aactagaagg cacagtcgag gctgatcagc gagctctaga 33120
 tgcatgctcg agcggccgccc agtgtgatgg atatctgcag aattccagca cactggcggc 33180
 cgttactagt ggatccgagc tcggtacccg gccgttataa caccactcgac cacggcacca 33240
 gctcaatcag tcacagtgtc aaaaaggccc aagtgcagag cgagttataa taggactaaa 33300
 aatgacgta acggtaaag tccacaaaaa acacccagaa aaccgcacgc gaaacctacgc 33360
 ccagaaacga aagccaaaaa acccacaact tcctcaaattc gtcacttccg ttttccacg 33420
 ttacgtcact tcccattta agaaaactac aattcccaac acatacaagt tactccgccc 33480
 taaaacctac gtcacccggcc ccgttccac gccccgccc acgtcacaataa ctccacccccc 33540
 tcattatcat attggcttca atccaaaata aggtatatta ttgatgatg 33589

<210> 20
<211> 500
<212> PRT
<213> HIV

<400> 20

Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp
1 5 10 15

Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys
20 25 30

His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro
35 40 45

Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu
50 55 60

Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn
65 70 75 80

Thr Val Ala Thr Leu Tyr Cys Val His Gln Arg Ile Glu Ile Lys Asp
85 90 95

Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Gln Asn Lys Ser Lys
100 105 110

Lys Lys Ala Gln Gln Ala Ala Asp Thr Gly His Ser Asn Gln Val
115 120 125

Ser Gln Asn Tyr Pro Ile Val Gln Asn Ile Gln Gly Gln Met Val His
130 135 140

Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu
145 150 155 160

Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser
165 170 175

Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly
180 185 190

Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu
195 200 205

Ala Ala Glu Trp Asp Arg Val His Pro Val His Ala Gly Pro Ile Ala
210 215 220

Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr
225 230 235 240

Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn Pro Pro Ile
245 250 255

Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys
260 265 270

Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Arg Gln Gly
275 280 285

Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu
290 295 300

Arg Ala Glu Gln Ala Ser Gln Glu Val Lys Asn Trp Met Thr Glu Thr
305 310 315 320

Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala
325 330 335

Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly
340 345 350

Val Gly Gly Pro Gly His Lys Ala Arg Val Leu Ala Glu Ala Met Ser
355 360 365

Gln Val Thr Asn Ser Ala Thr Ile Met Met Gln Arg Gly Asn Phe Arg
370 375 380

Asn Gln Arg Lys Ile Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His
385 390 395 400

Thr Ala Arg Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys
405 410 415

Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
420 425 430

Phe Leu Gly Lys Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe
435 440 445

Leu Gln Ser Arg Pro Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg
450 455 460

Phe Gly Glu Glu Thr Thr Pro Ser Gln Lys Gln Glu Pro Ile Asp
465 470 475 480

Lys Glu Leu Tyr Pro Leu Ala Ser Leu Arg Ser Leu Phe Gly Ser Asp
Page 124

485

490

495

Pro Ser Ser Gln
500

<210> 21
<211> 1002
<212> PRT
<213> HIV

<400> 21

Met Arg Glu Asp Leu Ala Phe Pro Gln Gly Lys Ala Arg Glu Phe Ser
1 5 10 15

Ser Glu Gln Thr Arg Ala Asn Ser Pro Thr Arg Arg Glu Leu Gln Val
20 25 30

Trp Gly Arg Asp Asn Asn Ser Leu Ser Glu Ala Gly Ala Asp Arg Gln
35 40 45

Gly Thr Val Ser Phe Ser Phe Pro Gln Ile Thr Leu Trp Gln Arg Pro
50 55 60

Leu Val Thr Ile Lys Ile Gly Gly Gln Leu Lys Glu Ala Leu Leu Asp
65 70 75 80

Thr Gly Ala Asp Asp Thr Val Leu Glu Glu Met Asn Leu Pro Gly Arg
85 90 95

Trp Lys Pro Lys Met Ile Gly Gly Ile Gly Gly Phe Ile Lys Val Gly
100 105 110

Gln Tyr Asp Gln Ile Leu Ile Glu Ile Cys Gly His Lys Ala Ile Gly
115 120 125

Thr Val Leu Val Gly Pro Thr Pro Val Asn Ile Ile Gly Arg Asn Leu
130 135 140

Leu Thr Gln Ile Gly Cys Thr Leu Asn Phe Pro Ile Ser Pro Ile Glu
145 150 155 160

Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys
165 170 175

Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys
180 185 190

Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn
195 200 205

Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys
210 215 220

Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp
225 230 235 240

Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Gln
245 250 255

Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val
260 265 270

Pro Leu Asp Lys Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser
275 280 285

Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro
290 295 300

Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Cys Ser Met Thr Lys
305 310 315 320

Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln
325 330 335

Tyr Met Asp His Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His
340 345 350

Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly Phe
355 360 365

Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp Met
370 375 380

Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val Leu
385 390 395 400

Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly
405 410 415

Lys Leu Asn Trp Ala Ser Gln Ile Tyr Ala Gly Ile Lys Val Arg Gln
420 425 430

Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Val Pro
435 440 445

Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu
450 455 460

Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile
465 470 475 480

Ala Glu Ile Gln Lys Gln Gly Gln Gln Trp Thr Tyr Gln Ile Tyr
485 490 495

Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Lys
500 505 510

Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln Lys
515 520 525

Ile Ala Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Lys
530 535 540

Leu Pro Ile Gln Lys Glu Thr Trp Glu Ala Trp Trp Thr Glu Tyr Trp
545 550 555 560

Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro Leu
565 570 575

Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Ile Gly Ala Glu
580 585 590

Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys
595 600 605

Ala Gly Tyr Val Thr Asp Arg Gly Arg Gln Lys Val Val Pro Leu Thr
610 615 620

Asp Thr Thr Asn Gln Lys Thr Glu Leu Gln Ala Ile His Leu Ala Leu
625 630 635 640

Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Gln Tyr Ala
645 650 655

Leu Gly Ile Ile Gln Ala Gln Pro Asp Lys Ser Glu Ser Glu Leu Val
660 665 670

Ser Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala
675 680 685

Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Gly
690 695 700

Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp
705 710 715 720

Lys Ala Gln Glu Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met
Page 127

725	730	735
Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala		
740	745	750
Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val		
755	760	765
Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His Leu Glu Gly		
770	775	780
Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala		
785	790	795
Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu		
805	810	815
Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Val His Thr Asp Asn Gly		
820	825	830
Ser Asn Phe Thr Ser Thr Thr Val Lys Ala Ala Cys Trp Trp Ala Gly		
835	840	845
Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val		
850	855	860
Ile Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val Arg		
865	870	875
Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe Ile		
885	890	895
His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu		
900	905	910
Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln		
915	920	925
Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser		
930	935	940
Arg Asp Pro Val Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu		
945	950	955
Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro Arg		
965	970	975
Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp		
980	985	990

Asp Cys Val Ala Ser Arg Gln Asp Glu Asp
995 1000

<210> 22
<211> 204
<212> PRT
<213> HIV

<400> 22

Met Lys Trp Ser Lys Ser Ser Val Ile Gly Trp Pro Ala Val Arg Glu
1 5 10 15

Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Gly Val Gly Ala Val Ser
20 25 30

Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala
35 40 45

Asn Asn Ala Ala Cys Ala Trp Leu Glu Ala Gln Glu Glu Glu Val
50 55 60

Gly Phe Pro Val Thr Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys
65 70 75 80

Ala Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu
85 90 95

Gly Leu Ile His Ser Gln Arg Arg Gln Asp Ile Leu Asp Leu Trp Ile
100 105 110

Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly
115 120 125

Pro Gly Val Arg Tyr Pro Leu Thr Phe Gly Trp Cys Tyr Lys Leu Val
130 135 140

Pro Val Glu Pro Asp Lys Val Glu Glu Ala Asn Lys Gly Glu Asn Thr
145 150 155 160

Ser Leu Leu His Pro Val Ser Leu His Gly Met Asp Asp Pro Glu Arg
165 170 175

Glu Val Leu Glu Trp Arg Phe Asp Ser Arg Leu Ala Phe His His Val
180 185 190

Ala Arg Glu Leu His Pro Glu Tyr Phe Lys Asn Cys
195 200

<210> 23
<211> 626
<212> PRT
<213> HIV

<400> 23

Met Arg Val Arg Gly Ile Gln Thr Ser Trp Gln Asn Leu Trp Arg Trp
1 5 10 15

Gly Thr Met Ile Leu Gly Met Leu Val Ile Tyr Ser Ala Ala Glu Asn
20 25 30

Leu Trp Val Ala Val Tyr Tyr Gly Val Pro Val Trp Lys Asp Ala Glu
35 40 45

Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr Glu Val
50 55 60

His Asn Val Trp Glu Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro
65 70 75 80

Gln Glu Ile His Leu Glu Asn Val Thr Glu Asp Phe Asn Met Trp Arg
85 90 95

Asn Asn Met Val Glu Gln Met His Thr Asp Ile Ile Ser Leu Trp Asp
100 105 110

Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
115 120 125

Asp Cys Asn Ala Thr Ala Ser Asn Val Thr Asn Glu Met Arg Asn Cys
130 135 140

Ser Phe Asn Ile Thr Thr Glu Leu Lys Asp Lys Lys Gln Gln Val Tyr
145 150 155 160

Ser Leu Phe Tyr Lys Leu Asp Val Val Gln Ile Asn Glu Lys Asn Glu
165 170 175

Thr Asp Lys Tyr Arg Leu Ile Asn Cys Asn Thr Ser Ala Ile Thr Gln
180 185 190

Ala Cys Pro Lys Val Ser Phe Glu Pro Ile Pro Ile His Tyr Cys Ala
195 200 205

Pro Ala Gly Phe Ala Ile Leu Lys Cys Lys Asp Thr Glu Phe Asn Gly
210 215 220

Thr Gly Pro Cys Lys Asn Val Ser Thr Val Gln Cys Thr His Gly Ile
225 230 235 240

Arg Pro Val Ile Ser Thr Gln Leu Leu Leu Asn Gly Ser Leu Ala Glu
245 250 255

Glu Gly Ile Gln Ile Arg Ser Glu Asn Ile Thr Asn Asn Ala Lys Thr
260 265 270

Ile Ile Val Gln Leu Asp Lys Ala Val Lys Ile Asn Cys Thr Arg Pro
275 280 285

Asn Asn Asn Thr Arg Lys Gly Val Arg Ile Gly Pro Gly Gln Ala Phe
290 295 300

Tyr Ala Thr Gly Gly Ile Ile Gly Asp Ile Arg Gln Ala His Cys His
305 310 315 320

Val Ser Arg Ala Lys Trp Asn Asp Thr Leu Arg Gly Val Ala Lys Lys
325 330 335

Leu Arg Glu His Phe Lys Asn Lys Thr Ile Ile Phe Glu Lys Ser Ser
340 345 350

Gly Gly Asp Ile Glu Ile Thr Thr His Ser Phe Ile Cys Gly Gly Glu
355 360 365

Phe Phe Tyr Cys Asn Thr Ser Gly Leu Phe Asn Ser Thr Trp Glu Ser
370 375 380

Asn Ser Thr Glu Ser Asn Asn Thr Thr Ser Asn Asp Thr Ile Thr Leu
385 390 395 400

Thr Cys Arg Ile Lys Gln Ile Asn Met Trp Gln Lys Val Gly Gln
405 410 415

Ala Met Tyr Pro Pro Pro Ile Gln Gly Val Ile Arg Cys Glu Ser Asn
420 425 430

Ile Thr Gly Leu Leu Leu Thr Arg Asp Gly Gly Asn Asn Ser Thr Asn
435 440 445

Glu Ile Phe Arg Pro Gly Gly Asn Met Arg Asp Asn Trp Arg Ser
450 455 460

Glu Leu Tyr Lys Tyr Lys Val Val Lys Ile Glu Pro Leu Gly Val Ala
465 470 475 480

Pro Ser Arg Ala Lys Leu Thr Ala Gln Ala Arg Gln Leu Leu Ser Gly
485 490 495

Ile Val Gln Gln Gln Ser Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln
500 505 510

His Met Leu Lys Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg
515 520 525

Val Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Glu Ile Trp
530 535 540

Asp Asn Met Thr Trp Leu Gln Trp Asp Lys Glu Ile Ser Asn Tyr Thr
545 550 555 560

Gln Ile Ile Tyr Asn Leu Ile Glu Glu Ser Gln Asn Gln Gln Glu Lys
565 570 575

Asn Glu Gln Asp Leu Leu Ala Leu Asp Lys Trp Ala Ser Leu Trp Asn
580 585 590

Trp Phe Asp Ile Ser Arg Trp Leu Trp Tyr Ile Lys Ile Phe Ile Met
595 600 605

Ile Val Gly Gly Leu Ile Gly Leu Arg Ile Val Phe Ala Val Leu Ser
610 615 620

Val Ile
625

<210> 24
<211> 642
<212> PRT
<213> HIV

<400> 24

Met Arg Val Lys Glu Lys Tyr Gln His Leu Trp Arg Trp Gly Trp Arg
1 5 10 15

Trp Gly Thr Met Leu Leu Gly Met Leu Met Ile Cys Ser Ala Thr Glu
20 25 30

Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala
35 40 45

Thr Thr Thr Leu Leu Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr Glu
50 55 60

Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn
65 70 75 80

Pro Gln Glu Val Val Leu Val Asn Val Thr Glu Asn Phe Asp Met Trp
Page 132

85	90	95
.		
Lys Asn Asp Met Val Glu Gln Met His Glu Asp Ile Ile Ser Leu Trp		
100	105	110
Asp Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Ser		
115	120	125
Leu Lys Cys Thr Asp Leu Lys Asn Asp Thr Asn Thr Asn Ser Ser Ser		
130	135	140
Gly Arg Met Ile Met Glu Lys Gly Glu Ile Lys Asn Cys Ser Phe Asn		
145	150	155
160		
Ile Ser Thr Ser Ile Arg Gly Lys Val Gln Lys Glu Tyr Ala Phe Phe		
165	170	175
Tyr Lys Leu Asp Ile Ile Pro Ile Asp Asn Asp Thr Thr Ser Tyr Ser		
180	185	190
Leu Thr Ser Cys Asn Thr Ser Val Ile Thr Gln Ala Cys Pro Lys Val		
195	200	205
Ser Phe Glu Pro Ile Pro Asn His Tyr Cys Ala Pro Ala Gly Phe Ala		
210	215	220
220		
Ile Leu Lys Cys Lys Asp Lys Phe Asn Gly Lys Gly Pro Cys Thr		
225	230	235
240		
Asn Val Ser Thr Val Gln Cys Thr His Gly Ile Arg Pro Val Val Ser		
245	250	255
Thr Gln Leu Leu Val Thr Gly Asn Leu Ala Glu Glu Val Val Ile		
260	265	270
Arg Ser Ala Asn Phe Ala Asp Asn Ala Lys Val Ile Ile Val Gln Leu		
275	280	285
Asn Glu Ser Val Glu Ile Asn Cys Thr Arg Pro Asn Asn Asn Thr Arg		
290	295	300
Lys Ser Ile His Ile Gly Pro Gly Arg Ala Phe Tyr Thr Thr Gly Glu		
305	310	315
320		
Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Leu Ser Arg Ala Lys		
325	330	335
Trp Asn Asp Thr Leu Asn Lys Ile Val Ile Lys Leu Arg Glu Gln Phe		
340	345	350

Gly Asn Lys Thr Ile Val Phe Lys His Ser Ser Gly Gly Asp Pro Glu
355 360 365

Ile Val Thr His Ser Phe Asn Cys Gly Gly Glu Phe Phe Tyr Cys Asn
370 375 380

Ser Thr Gln Leu Phe Asn Ser Thr Trp Phe Asn Ser Thr Trp Ser Thr
385 390 395 400

Glu Gly Ser Asn Asn Thr Glu Gly Ser Asp Thr Ile Thr Leu Pro Cys
405 410 415

Arg Ile Lys Gln Ile Ile Asn Met Trp Gln Lys Val Gly Lys Ala Met
420 425 430

Tyr Ala Pro Pro Ile Ser Gly Gln Ile Arg Cys Ser Ser Asn Ile Thr
435 440 445

Gly Leu Leu Leu Thr Arg Asp Gly Gly Asn Ser Asn Asn Glu Ser Glu
450 455 460

Ile Phe Arg Leu Gly Gly Asp Met Arg Asp Asn Trp Arg Ser Glu
465 470 475 480

Leu Tyr Lys Tyr Lys Val Val Lys Ile Glu Pro Leu Gly Val Ala Pro
485 490 495

Thr Lys Ala Lys Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile
500 505 510

Val Gln Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His
515 520 525

Leu Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Thr
530 535 540

Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Glu Gln Ile
545 550 555 560

Trp Asn His Thr Thr Trp Met Glu Trp Asp Arg Glu Ile Asn Asn Tyr
565 570 575

Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln His Glu
580 585 590

Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp
595 600 605

Asn Trp Phe Asn Ile Thr Asn Trp Leu Trp Tyr Ile Lys Leu Phe Ile
610 615 620

Met Ile Val Gly Gly Leu Val Gly Leu Arg Ile Val Phe Ala Val Leu
625 630 635 640

Ser Ile

<210> 25

<211> 626

<212> PRT

<213> HIV

<400> 25

Met Arg Val Arg Gly Ile Pro Arg Asn Trp Pro Gln Trp Trp Met Trp
1 5 10 15

Gly Ile Leu Gly Phe Trp Met Ile Ile Ile Cys Arg Val Val Gly Asn
20 25 30

Met Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Thr Asp Ala Lys
35 40 45

Thr Thr Leu Phe Cys Ala Ser Asp Thr Lys Ala Tyr Asp Arg Glu Val
50 55 60

His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro
65 70 75 80

Gln Glu Ile Val Leu Glu Asn Val Thr Glu Asn Phe Asn Met Trp Lys
85 90 95

Asn Asp Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp
100 105 110

Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
115 120 125

His Cys Thr Asn Ala Thr Phe Lys Asn Asn Val Thr Asn Asp Met Asn
130 135 140

Lys Glu Ile Arg Asn Cys Ser Phe Asn Thr Thr Thr Glu Ile Arg Asp
145 150 155 160

Lys Lys Gln Gln Gly Tyr Ala Leu Phe Tyr Arg Pro Asp Ile Val Leu
165 170 175

Leu Lys Glu Asn Arg Asn Asn Ser Asn Asn Ser Glu Tyr Ile Leu Ile
Page 135

180	185	190
Asn Cys Asn Ala Ser Thr Ile Thr Gln Ala Cys Pro Lys Val Asn Phe		
195	200	205
Asp Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Tyr Ala Ile Leu		
210	215	220
Lys Cys Asn Asn Lys Thr Phe Ser Gly Lys Gly Pro Cys Asn Asn Val		
225	230	235
Ser Thr Val Gln Cys Thr His Gly Ile Lys Pro Val Val Ser Thr Gln		
245	250	255
Leu Leu Leu Asn Gly Ser Leu Ala Glu Lys Glu Ile Ile Ile Arg Ser		
260	265	270
Glu Asn Leu Thr Asp Asn Val Lys Thr Ile Ile Val His Leu Asn Lys		
275	280	285
Ser Val Glu Ile Val Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser		
290	295	300
Met Arg Ile Gly Pro Gly Gln Thr Phe Tyr Ala Thr Gly Asp Ile Ile		
305	310	315
320		
Gly Asp Ile Arg Gln Ala Tyr Cys Asn Ile Ser Gly Ser Lys Trp Asn		
325	330	335
Glu Thr Leu Lys Arg Val Lys Glu Lys Leu Gln Glu Asn Tyr Asn Asn		
340	345	350
Asn Lys Thr Ile Lys Phe Ala Pro Ser Ser Gly Gly Asp Leu Glu Ile		
355	360	365
Thr Thr His Ser Phe Asn Cys Arg Gly Glu Phe Phe Tyr Cys Asn Thr		
370	375	380
Thr Arg Leu Phe Asn Asn Asn Ala Thr Glu Asp Glu Thr Ile Thr Leu		
385	390	395
400		
Pro Cys Arg Ile Lys Gln Ile Ile Asn Met Trp Gln Gly Val Gly Arg		
405	410	415
Ala Met Tyr Ala Pro Pro Ile Ala Gly Asn Ile Thr Cys Lys Ser Asn		
420	425	430
Ile Thr Gly Leu Leu Leu Val Arg Asp Gly Gly Glu Asp Asn Lys Thr		
435	440	445

Glu Glu Ile Phe Arg Pro Gly Gly Gly Asn Met Lys Asp Asn Trp Arg
 450 455 460

Ser Glu Leu Tyr Lys Tyr Lys Val Ile Glu Leu Lys Pro Leu Gly Ile
 465 470 475 480

Ala Pro Thr Gly Ala Lys Leu Thr Val Gln Ala Arg Gln Leu Leu Ser
 485 490 495

Ser Ile Val Gln Gln Ser Asn Leu Leu Arg Ala Ile Glu Ala Gln
 500 505 510

Gln His Met Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Thr
 515 520 525

Arg Val Leu Ala Ile Glu Arg Tyr Leu Lys Asp Gln Gln Leu Glu Ile
 530 535 540

Trp Asn Asn Met Thr Trp Met Glu Trp Asp Arg Glu Ile Ser Asn Tyr
 545 550 555 560

Thr Asp Thr Ile Tyr Arg Leu Leu Glu Asp Ser Gln Thr Gln Gln Glu
 565 570 575

Lys Asn Glu Lys Asp Leu Leu Ala Leu Asp Ser Trp Lys Asn Leu Trp
 580 585 590

Ser Trp Phe Asp Ile Ser Asn Trp Leu Trp Tyr Ile Lys Ile Phe Ile
 595 600 605

Met Ile Val Gly Gly Leu Ile Gly Leu Arg Ile Ile Phe Ala Val Leu
 610 615 620

Ser Ile
 625

<210> 26
 <211> 973
 <212> DNA
 <213> Artificial sequence

<220>
 <223> CMV/R promoter

<400> 26
 ccattgcata cgttgtatcc atatcataat atgtacattt atattggctc atgtccaaca 60
 ttaccgocat gttgacattg attattgact agttattaaat agtaatcaat tacggggtca 120
 ttagttcata gcccataat ggagttccgc gttacataac ttacggtaaa tggcccgct 180

ggctgaccgc ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta	240
acgccaatag ggactttcca ttgacgtcaa tgggtggagt atttacggt aactgcccac	300
ttggcagtagc atcaagtgt a tcatatgcc a agtacgcccc ctattgacgt caatgacggt	360
aaatggcccg cctggcatta tgcccagtagc atgaccttat gggacttcc tacttggcag	420
tacatctacg tattagtcat cgctattacc atggtgatgc gggtttggca gtacatcaat	480
gggcgtggat agcggttga ctcacgggaa ttccaagtc tccacccat tgacgtcaat	540
gggagttgt tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgccc	600
ccattgacgc aaatgggcgg taggcgtgt a cggtgggagg tctatataag cagagctcg	660
ttagtgaacc gtcagatcgc ctggagacgc catccacgct gttttgacct ccatagaaga	720
caccgggacc gatccagcct ccatcggctc gcatctctcc ttcacgcgcc cgccgcctca	780
cctgaggccg ccatccacgc cggttgagtc gcgttctgcc gcctccgc tgggtgcct	840
cctgaactgc gtccgcccgtc taggtaagtt taaagctcag gtcgagaccc ggccttgc	900
cggcgctccc ttggagccta cctagactca gccggctctc cacgcttgc ctgaccctgc	960
ttgctcaact cta	973