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REBUILDINGADATA OBJECT USING 
PORTIONS OF THE DATA OBJECT 

CROSS-REFERENCE TO RELATED 
APPLICATION(S) 

0001. This application is a continuation of U.S. patent 
application Ser. No. 14/475,376, entitled “WIDESPREAD 
ING DATA STORAGE ARCHITECTURE, filed on Sep. 2, 
2014, which is incorporated by reference herein in its entirety. 

TECHNICAL FIELD 

0002. Several of the disclosed embodiments relate to data 
storage, and more particularly, to data storage architecture for 
enhanced storage resiliency. 

BACKGROUND 

0003 Commercial enterprises (e.g., companies) and oth 
ers gather, store, and analyze an increasing amount of data. 
The trend now is to store and archive almost all data before 
making a decision on whether or not to analyze the stored 
data. Although the per unit cost associated with storing data 
has declined over time, the total costs for storage has 
increased for many companies because of the Volumes of 
stored data. Hence, it is important for companies to find 
cost-effective ways to manage their data storage environ 
ments for storing and managing large quantities of data. There 
are several problems with traditional approaches to capacity 
storage. Most traditional storage systems have difficulty scal 
ing to support billions of values, which is far small than the 
trillions of objects that customers are storing today. 
0004 Traditional data protection mechanisms, e.g., 
RAID, are increasingly ineffective in petabyte-scale systems 
as a result of larger drive capacities (without commensurate 
increases in throughput), larger deployment sizes (mean time 
between faults is reduced) and lower quality drives. The 
trends from the hard drive vendors are making traditional 
RAID increasingly difficult to implement, and are requiring 
complex techniques, e.g., triple parity, declustering. Some of 
the storage device trends that push away from traditional data 
protection mechanisms include: increasing drive sizes, lower 
I/O limits on drives, varying latency (which can slow I/O), 
varying capacity (within a given model/drive line, which can 
increase inefficiency of traditional RAID, lower drive reli 
ability (increased failure rates, and more intense workload 
triggered failures). Thus, the traditional data protection 
mechanisms are ill-suited for the emerging capacity storage 
market needs. 
0005. Further, the current data storage systems have com 
plex data protection mechanisms, which typically involve 
performing a significant amount of I/O on the storage devices 
in order to provide a specified storage resiliency. This inten 
sive I/O for protection purposes together with the I/O per 
formed for providing data access to the customers wears the 
storage device much faster and therefore, decreases the 
lifespan of the device rapidly. In order to maintain the same 
storage resiliency, the storage devices may have to be 
replaced with new ones regularly, which can drive up the 
Storage costs. 
0006. In an object based storage system, certain meta 
data, e.g., object size, creation date, owner, etc., are main 
tained for each object. In most of the current object storage 
systems, this metadata is kept in a database separate from the 
object data. Typically, this database is maintained in one or 
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more different servers, e.g., meta-data servers. Ensuring that 
the objects themselves are consistent with the metadata in the 
metadata server is a difficult problem. The metadata servers 
themselves can become a bottleneck in the storage system, 
since they have to deal with updates every time an object is 
created, modified, or accessed. Typically, there is more than 
one meta-data server in order to address this bottleneck, but 
also to make sure that the meta-data is durable (not lost). The 
more such meta-data servers there are, the bigger the problem 
to keep them consistent with one anotheras well as the objects 
themselves. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007 FIG. 1A is a perspective plan view of a storage shelf 
and components therein, consistent with various embodi 
mentS. 

0008 FIG. 1B is a perspective view of a storage rack of 
storage shelves, consistent with various embodiments. 
0009 FIG. 2 is a block diagram of a storage shelf, in 
accordance with various embodiments. 
0010 FIG. 3 is a block diagram illustrating an environ 
ment in which a data storage architecture can be imple 
mented, consistent with various embodiments. 
0011 FIG. 4 is a block diagram of a storage system imple 
menting wide spreading storage architecture, consistent with 
various embodiments. 
0012 FIG. 5 is a block diagram for storing metadata of a 
data object with the data object in a storage system of FIG. 4. 
consistent with various embodiments. 
0013 FIG. 6 is a flow diagram of a process of storing data 
to an object-based storage system using the wide spreading 
storage architecture, consistent with various embodiments of 
the disclosed technology. 
0014 FIG. 7 is a flow diagram of a process of reading data 
from an object-based storage system using the wide spread 
ing storage architecture, consistent with various embodi 
ments of the disclosed technology. 
0015 FIG. 8 is a flow diagram of a process of rebuilding 
data fragments of a data object in the wide spreading Storage 
architecture, consistent with various embodiments of the dis 
closed technology. 
0016 FIG. 9 is a flow diagram of a process of storing 
metadata of a data object with the data object in the wide 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 
0017 FIG. 10 is a flow diagram of a process of processing 
metadata and data fragments of a data object in the wide 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 
0018 FIG. 11 is a block diagram of a storage system 
implementing hierarchical spreading storage architecture, 
consistent with various embodiments. 
0019 FIG. 12 is a block diagram for storing metadata of a 
data object with the data object in a storage system of FIG. 11, 
consistent with various embodiments. 
0020 FIG. 13 is a flow diagram of a process of storing data 
to an object-based storage system using the hierarchical 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 
0021 FIG. 14 is a flow diagram of a process of reading 
data from an object-based storage system using the hierarchi 
cal spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 



US 2016/0062833 A1 

0022 FIG. 15 is a flow diagram of a process of rebuilding 
data fragments of a data object in the hierarchical spreading 
storage architecture, consistent with various embodiments of 
the disclosed technology. 
0023 FIG. 16 is a flow diagram of a process of rebuilding 
data segments of a data object in the hierarchical spreading 
storage architecture, consistent with various embodiments of 
the disclosed technology. 
0024 FIG. 17 is a flow diagram of a process of deferred 
rebuilding of data segments of a data object in the hierarchical 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 
0025 FIG. 18 is a flow diagram of a process of processing 
metadata and data fragments of a data object in the hierarchi 
cal spreading storage architecture, consistent with various 
embodiments of the disclosed technology. 
0026 FIG. 19 is a block diagram of a computer system as 
may be used to implement features of some embodiments of 
the disclosed technology. 

DETAILED DESCRIPTION 

0027 Technology is related to a data storage architecture 
for providing enhanced storage resiliency. Storage resiliency 
or data durability can be defined as a resistance to loss of one 
or more storage devices storing a portion of a data objector as 
a resistance to loss of one or more portions of the data object. 
The data storage architecture can be implemented in a single 
tier configuration (also referred to as “wide spreading storage 
architecture') and/or a multi-tier configuration (also referred 
to as “hierarchical spreading storage architecture'). In either 
of the architecture, additional redundant portions of the data 
object are generated and stored across a number of Storage 
devices, e.g., to provide storage resiliency for the data object. 
In some embodiments, the number of redundant portions 
generated depends on a specified storage resiliency. In some 
embodiments, the redundant portions are generated by 
encoding the data object based on an erasure coding method. 
The encoding of the data object generates a number of data 
object fragments, which include redundant fragments. The 
encoded data fragments are stored across various storage 
devices. 
0028. In the single-tier configuration of the data storage 
architecture, a storage system includes a number of Storage 
devices, for example, hundreds or thousands of Storage 
devices. A data object can be split into a number of fragments 
and stored across the storage devices. In some embodiments, 
the data object is encoded based on an erasure coding method 
to generate a number of fragments. The fragments are distrib 
uted across the storage devices. In some embodiments, the 
storage resiliency of the data object depends on a storage 
layout of the fragments. For example, if most of the fragments 
are stored on the same storage device or storage devices in a 
same storage shelf, the storage resiliency can be lower, as loss 
of the storage device or the storage shelf can result in higher 
probability of data loss. In another example, spreading the 
fragments widely across a large number of storage devices or 
storage shelves can have a better storage resiliency. 
0029. The number of encoded data fragments generated 
depends on a specified storage resiliency. In some embodi 
ments, a ratio of the total number of fragments 'n' generated 
to a minimum number of fragments 'k' required for recon 
structing the object is a function of the specified storage 
resiliency. For example, if n/k is 130%, then the storage 
resiliency is 30%. That is, the storage system can tolerate or 
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resist loss of 30% of the data fragments without losing the 
data object. If the number of storage devices is more than n, 
the storage system can tolerate or resist loss of up to n of 
storage devices without losing the data. To obtain a storage 
resiliency of 30%, the storage system generates 30% redun 
dant fragments for the purposes of data protection. For 
example, if the minimum number of fragments, k, is “1000. 
then the total number of fragments generated, n, is “1300. 
and the same system above would be able to tolerate “300 
storage devices failing before data can be lost. This illustrates 
the importance to data protection of having a large n. The n 
data fragments are then spread widely across the storage 
devices. The storage resiliency can also be represented in the 
form of equation, n-k+m, where “k” is the original amount of 
data fragments or the minimum number of data fragments 
required to regenerate or rebuild the data object, and variable 
“m” stands for the extra or redundant fragments that are added 
to provide protection from failures. The variable “n” is the 
total number of fragments created after the encoding process. 
The data object can be reconstructed, e.g., in response to a 
request from a client system, by obtaining at least k encoded 
data fragments and decoding those to regenerate the data 
object. 
0030. In some embodiments, such storage resiliency can 
also be provided to metadata of the data object. The metadata 
of the data object can be stored with the data object and spread 
across various storage devices. This eliminates the need to 
store the metadata of the data objects in a separate repository 
from that of the data objects. 
0031. The single-tier storage architecture provides a num 
ber of benefits over existing architectures, e.g., RAID storage 
architecture. For example, in the single-tier architecture a 
write and/or read is spread across a large number of storage 
devices as opposed to a small set of storage devices in RAID. 
The writes and reads of the data fragments can be performed 
in parallel across the storage devices. Additionally, the num 
ber of reads performed on the storage devices can be further 
minimized as only a Subset of the total number of data frag 
ments is required to be read for regenerating the data object, 
thereby increasing a lifespan of the storage devices and low 
ering latency of access. 
0032. Further, the number of read-write operations per 
formed on a particular storage device to regenerate the data 
fragments due to loss of one or more storage devices is mini 
mized as the reads and writes are spread across the storage 
devices. For example, if a set of data fragments are lost due to 
failure of a storage device, the set of data fragments can be 
reconstructed by obtaining at least k data fragments from the 
remaining of the storage devices and generating the replace 
ment data fragments as a function of the obtained data frag 
ments. In some embodiments, the k data fragments are 
obtained from a first set of storage devices and the replace 
ment data fragments are stored on a different set of storage 
devices, which distributes the read/write operations across 
different set of storage devices, thereby minimizing the read 
write operations on a particular storage device and increasing 
the lifespan of the particular storage device. 
0033. Additionally, in the single-storage architecture, the 
mean-time-to-repair, which is how quickly the failed drive 
has to be repaired and the data stored in the failed drive to be 
reconstructed in order to provide a certain storage resiliency, 
is lower than that of current storage systems, e.g., RAID. 
Continuing with the above example of 30% storage resiliency 
with m equal to “300, the storage system can withstand loss 
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of up to “300' drives. So the repair process can defer opera 
tion until a high percentage of those drives have failed. Simi 
larly, the mean time between failure, which is a statistical 
measure of the time until a failure occurs, in the single-tier 
storage architecture is higher than that of current storage 
systems, e.g., RAID. For example, as described above since 
the storage system distributes the read/write operations 
across different sets of storage devices, the read-write opera 
tions on a particular storage device is minimized, which 
increases the lifespan of the particular storage device. 
0034. In the multi-tier configuration of the data storage 
architecture, the storage system includes a number of storage 
computer nodes which are each associated with a set of Stor 
age devices. The storage system encodes a data object into a 
number of data segments and distributes them to a number of 
storage computer nodes. Each of the storage computer nodes 
further encodes the data segment into a number of fragments 
and stores the fragments across storage devices associated 
with the storage computer node. For example, the storage 
system can encode the data object into “16' segments and 
send each of the “16' segments to different storage computer 
nodes. Each of the storage computer nodes can encode, inde 
pendent of the other storage computer nodes, the segment into 
“16' fragments and store them across a set of storage devices 
associated with the storage computer node. The storage sys 
tem can distribute the segments to a selected set of storage 
computer nodes and store the fragments at a selected set of 
storage devices based on a storage layout of the data object. 
The storage layout can be specified by a user, e.g., an admin 
istrator of the storage system, or calculated automatically 
based on operational characteristics of the storage system, 
e.g., capacity, load, wear, age and health. 
0035. The storage resiliency in multi-tier configuration of 
the data storage architecture is distributed between the tiers. 
For example, if storage resiliency in two level storage archi 
tecture is 30%, then the first tier of storage computer nodes 
could offer 15% storage resiliency, with the second tier of 
storage devices offering 15% storage resiliency. In some 
embodiments, this can mean that the storage system can 
generate 15% extra segments and 15% extra fragments for 
protection purposes. 
0036. In some embodiments, such storage resiliency can 
also be provided to metadata of the data object. The metadata 
of the data object can be stored with the data object and spread 
across various storage devices, which eliminates the need to 
store the metadata of the data objects in a separate repository 
from that of the data objects. For example, the metadata can 
be prefixed to the segments and/or fragments and stored 
across various storage devices. 
0037. One of the advantages of multi-tier storage architec 
ture is localized data regeneration process. For example, if a 
storage device of a particular storage computer node fails, a 
fragment of a particular segment stored on the failed Storage 
device can be regenerated using other fragments of the seg 
ment stored at other storage devices of the storage computer 
node. The storage system may not have to obtain fragments 
from other storage computer nodes. After the replacement 
fragment is generated, it can be stored at one of the remaining 
storage devices of the storage computer node. The reads and 
writes are restricted to the storage devices of a particular 
storage computer node. By restricting the reads and writes to 
the local storage devices of a storage computer node, the data 
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traffic in the network, e.g., between storage computer nodes, 
is minimized, as is the amount of data that must be read from 
storage devices. 
0038. The storage system can store the data object across 
two or more tiers. For example, the storage system can have 
two tiers of storage computer nodes, where a first tier storage 
computer node can be associated with a number of second tier 
storage computer nodes and each of the second tier storage 
computer nodes can be associated with a set of Storage 
devices. The data object is split into number of segments and 
the segments are sent to first tier storage computer nodes, 
where each first tier storage computer node splits the corre 
sponding data segment into a number of fragments and dis 
tributes the fragments to a number of second tier storage 
computer nodes. Each of the second tier computer storage 
nodes splits the data fragment to a number of Sub-fragments 
and stores the Sub-fragments across a set of storage devices 
associated with the second tier storage computer node. 
0039. The storage devices of the storage system can be 
organized as storage shelves and storage racks, where each 
storage rack includes a number of storage shelves and each 
storage shelf includes a number of storage devices. The stor 
age racks/shelves/devices can be distributed across various 
geographical locations. 

Environment 

0040 FIG. 1A is a perspective plan view of a storage shelf 
100 and components therein, consistent with various embodi 
ments. The storage shelf 100 includes an enclosure shell 102 
(partially shown) that encloses and protects multiple data 
storage devices 104. The data storage devices 104 may be 
hard drives, Solid-state drives, flash drives, tape drives, or any 
combination thereof. It is noted that the term "enclose' does 
not necessarily require sealing the enclosure and does not 
necessarily require enveloping all sides of the enclosure. 
0041. The storage shelf 100 further includes control cir 
cuitry 106 that manages the power Supply of the storage shelf 
100, the data access to and from the data storage devices 104, 
and other storage operations to the data storage devices 104. 
The control circuitry 106 may implement each of its functions 
as a single component or a combination of separate compo 
nentS. 

0042. As shown, the storage shelf 100 is adapted as a 
rectangular prism that sits on an elongated Surface 108 of the 
rectangular prism. Each of the data storage devices 104 may 
be stacked within the storage shelf 100. For example, the data 
storage devices 104 can stack on top of one another into 
columns. The control circuitry 106 can stack on top of one or 
more of the data storage devices 104 and one or more of the 
data storage devices 104 can also stack on top of the control 
circuitry 106. 
0043. In various embodiments, the enclosure shell 102 
encloses the data storage devices 104 without providing win 
dow openings to access individual data storage devices or 
individual columns of data storage devices. In these embodi 
ments, each of the storage shelves 100 is disposable such that 
after a specified number of the data storage devices 104 fail, 
the entire cartridge can be replaced as a whole instead of 
replacing individual failed data storage devices. Alterna 
tively, the storage shelf 100 may be replaced after a specified 
time, e.g., corresponding to an expected lifetime. 
0044) The illustrated stacking of the data storage devices 
104 in the storage shelf 100 enables a higher density of 
standard disk drives (e.g., 3.5 inch disk drives) in a standard 
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shelf (e.g., a 19 inch width rack shelf). Each storage shelf 100 
can store ten of the standard disk drives. In the cases that the 
data storage devices 104 are disk drives, the storage shelf 
100A can hold the disk drives “flat such that the spinning 
disks are parallel to the gravitational field. 
0045. The storage shelf 100 may include a handle 110 on 
one end of the enclosure shell 102 and a data connection port 
112 (not shown) on the other end. The handle 110 is attached 
on an outer surface of the enclosure shell 102 to facilitate 
carrying of the storage shelf 100. The enclosure shell 102 
exposes the handle 110 on its front surface. For example, the 
handle 110 may be a retractable handle that retracts to fit next 
to the front surface when not in use. 
0046 FIG. 1B is a perspective view of a storage rack 150 
of storage shelves, consistent with various embodiments. The 
storage shelves may be instances of the storage shelf 100 
illustrated in FIG. 1A. The storage rack 150, as illustrated, 
includes a tray structure 152 (e.g., a rack shelf) securing four 
instances of the storage shelf 100. The tray structure 152 can 
be a standard 2U 19" deep rack mount. The storage rack 150 
may include a stack of tray structures 152, each securely 
attached to a set of rails 162. Management devices 164 may be 
placed at the top shelves of the rack 150. For example, the 
management devices 164 may include network Switches, 
power regulators, front-end storage appliances, or any com 
bination thereof. 
0047 FIG. 2 is a block diagram of a storage shelf 200, in 
accordance with various embodiments. In some embodi 
ments, the storage shelf 200 is the storage shelf 100 of FIG. 
1A. The storage shelf 200 includes a processor 202, an opera 
tional memory 206, a boot flash 208, a data communication 
port 210, a power management module 212, storage inter 
faces 214, and data storage devices 216. 
0048. The processor 202 can be a microprocessor, a con 

troller, an application specific integrated circuit, a field pro 
grammable gate array, or any combination thereof. The boot 
flash 208 is a memory device storing an operating system 218. 
The processor 202 can load the operating system 218 into the 
operational memory 206 and run the operating system 218. A 
data access application programming interface (API) service 
220 can execute on this operating system to provide data 
access over a network to the data storage devices 216 for 
clients (e.g., devices, applications, or systems). 
0049. The data communication port 210 enables the stor 
age shelf 200 to connect with the network. For example, the 
data communication port 210 can be a Power-over-Ethernet 
module that connects to an Ethernet cable to both establish a 
network connection with the network and power the storage 
Shelf 200. 
0050. In various embodiments, the storage shelf 200 only 
turns on a subset (hereinafter the “active set) of data storage 
devices 216 at a time. The active set can be a single data 
storage device or more than one data storage devices. The 
data access API service 220 can determine the membership of 
the active set depending on client requests received through 
the network. A client can either specifically request access to 
a data storage device or request a data range for the data 
access API service 220 to determine which data storage 
device stores the data range. 
0051. The power management module 212 provides elec 
tronic circuitry to Switch on and off components of the storage 
shelf 200, e.g., to activate only one subset of the data storage 
devices at a time. The power management module 212 can 
receive instructions from the data processing module 202 
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(e.g., as part of the data access API service 220) to provide 
power to the designated active set, including a Subset of the 
storage interfaces 214 that enables data access to the active 
set. Once power is Supplied to the designated active set, the 
storage controller 222 can facilitate communicate between 
the data processing module 202 through the storage interface 
214 to the data storage devices. 
0.052 FIG. 3 is a block diagram illustrating an environ 
ment in which the data storage architecture can be imple 
mented, consistent with various embodiments. The environ 
ment 300 includes a number of storage devices, e.g., storage 
device 304, which are organized as a number of Storage 
shelves 306a-n (collectively referred to as “storage sub 
system 306). In some embodiments, each of the storage 
shelves in the storage subsystem 306 can be similar to the 
storage shelf 100 of FIG. 1A and each of the storage devices, 
including the storage device 304, can be similar to the data 
storage devices 104 or the data storage devices 216 of FIG. 2. 
Further, the storage shelves 306a-n can be part of one or more 
storage racks, e.g., storage rack 150. The storage Subsystem 
306 can be spread across various geographical locations. 
0053. The environment 300 includes one or more front 
end subsystem 310 that facilitates storing and/or retrieving 
data from the storage subsystem 306. The front-end sub 
system 310 processes the read/write requests from clients 
312a-c (collectively referred to as "clients 312). In some 
embodiments, the storage subsystem 306 is implemented as 
an object storage system, which manages data as data objects. 
The front-end subsystem 310 stores the data received from 
the clients as data objects in the storage subsystem 306. The 
front-end subsystem 310 can receive the data from the clients 
as data objects or in other formats. If the front-end subsystem 
310 receives the data in other formats, it can convert the data 
into data objects before storing the data in the storage Sub 
system 306. In some embodiments, the front-end subsystem 
310 also stores the metadata of the data with the data objects. 
0054 The environment 300 supports both single-tier con 
figuration and multi-tier configuration of the data storage 
architecture. In the single-tier storage architecture, the front 
end subsystem 310 encodes the data object, e.g., received 
from a client, to generate a number of data fragments and 
stores the data fragments across one or more of the storage 
devices of the storage subsystem 306. In some embodiments, 
the front-end Subsystem encodes the data object based on an 
erasure coding method. In some embodiments, an erasure 
coding method encodes the data object to generate n frag 
ments. The n fragments include Some redundant fragments 
which are generated for storage resiliency/data protection 
purpose. The erasure coding requires at least k out of n frag 
ments to generate the data object. In some embodiments, the 
ratio of n to kindicates a storage resiliency of the data object. 
0055. In the multi-tier storage configuration, the environ 
ment 300 includes one or more tiers of hierarchical storage 
nodes, e.g., hierarchical storage nodes 314-318. Each of the 
hierarchical storage nodes 314-318 can be associated with a 
set of storage devices. For example, the hierarchical storage 
node 314 is associated with storage devices from Storage 
shelves 306a and 306b, the hierarchical storage node 316 is 
associated with storage devices from storage shelf 306c, and 
the hierarchical storage node 318 is associated with storage 
devices from storage shelves 306d and 306e. 
0056. In the multi-tier storage configuration, the front-end 
Subsystem 310 encodes the data object, e.g., based on erasure 
coding, to generate a number of data segments and distributes 
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them to a number of hierarchical storage nodes, e.g., hierar 
chical storage nodes 314-318. Each of the hierarchical stor 
age nodes 314-318 further splits the data segment into a 
number of fragments and stores the fragments across storage 
devices associated with the hierarchical storage node. For 
example, the front-end subsystem 310 can split the data 
object into “3' segments and send each of the '3' segments to 
different hierarchical storage nodes 314-318. Each of the 
hierarchical storage nodes 314-318, e.g., hierarchical storage 
nodes 314 can split, independent of the other hierarchical 
storage nodes, the segment into “16' fragments and store 
them across a set of associated storage devices, e.g., storage 
devices from storage shelves 306a and 306b. The segments 
and fragments are distributed to a selected set of hierarchical 
storage nodes and storage devices, respectively, based on a 
storage layout of the data object. The storage layout can be 
specified by a user, e.g., an administrator of the storage sys 
tem, or calculated automatically based on operational char 
acteristics of the storage system, Such as capacity, load, wear, 
age and health. 
0057 When a client system, e.g., client 312a, requests to 
access the data object, a front-end subsystem 310 determines 
the storage layout of the data segments, requests the identified 
hierarchical storage nodes, e.g., one or more of the hierarchi 
cal storage nodes 314-318, to obtain the fragments of a seg 
ment from the storage devices and decode them to generate 
the segment, and decodes the segments to generate the data 
object. The front-end subsystem 310 returns the data object to 
the client 312a. In some embodiments, the front-end sub 
system 310 obtains at least the minimum number of segments 
required to regenerate the data object and the hierarchical 
storage nodes obtain at least the minimum number of frag 
ments required to regenerate the data segment. 
0058. In some embodiments, both the single-tier configu 
ration and multi-tier configuration of the data storage archi 
tecture can be implemented in the same storage system as 
illustrated in the environment 300. Further, in some embodi 
ments, one of the two configurations is automatically and/or 
dynamically chosen for performing the read/write operations. 
A particular configuration can be selected based on a number 
of factors, e.g., type of data to be written, a client from whom 
the data is received, included metadata, etc. In some embodi 
ments, the front-end subsystem 310 is configured to select the 
particular configuration based on the above factors. 
0059 FIG. 4 is a block diagram of storage system 400 
implementing widespreading storage architecture, consistent 
with various embodiments. In some embodiments, the Stor 
age system 400 can be implemented in the environment 300 
of FIG. 3. The storage system 400 includes the front-end 
subsystem 310 that facilitates data storage and retrieval from 
the storage subsystem 306. The front-end subsystem 310 can 
be one or more computer systems (e.g., the computing device 
1800 of FIG. 18), having either a shared nothing architecture 
or a shared database architecture, connected to the storage 
subsystems 306 over a network (e.g., a global network or a 
local network). The front-end subsystem 310 can be on a 
separate rack from the storage subsystem 306, or can be 
combined with the hierarchical storage node 314 or storage 
shelf 306. 
0060. The front-end subsystem 310 includes a protocol 
interfaces module 406. The protocol interfaces module 406 
defines one or more functional interfaces that applications 
and devices use to store, retrieve, update, and delete data 
elements from the storage system 400. For example, the pro 
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tocol interfaces module 406 can implement a Cloud Data 
Management Interface (CDMI), a Simple Storage Service 
(S3) interface, or both. The front-end subsystem 310 includes 
a staging area 408. The staging area 408 is a memory space 
implemented by one or more data storage devices within or 
accessible to the front-end subsystem 310. For example, the 
staging area 408 can be implemented by Solid-state drives, 
hard disks, volatile memory, or any combination thereof. The 
staging area 408 can maintain an object namespace 410 to 
facilitate client interactions through the protocol interfaces 
module 406. The object namespace 410 manages a set of data 
container identifiers, e.g., object identifiers of data received 
from clients of the front-end subsystem 310. The staging area 
408 also maintains a fragment namespace 412 corresponding 
to the object namespace 410. The fragment namespace 412 
manages a set of fragment identifiers, each corresponding to 
a data fragment stored in the storage subsystem 306. The 
staging area 408 can store a mapping structure 414 that stores 
associations between the data container identifiers of the 
object namespace 410 and the fragment identifiers of the 
fragment namespace 412. 
0061. In some embodiments, the front-end subsystem 310 
can be implemented as a distributed computing network 
including multiple computing nodes (e.g., computer servers). 
Each computing node can include an instance of the staging 
area 408. The namespaces (e.g., the object namespace 410 
and the fragment namespace 412) of each staging area 408 
can be implemented either as a share-nothing database or a 
shared database. 
0062. The staging area 408 can also serve as a temporary 
cache to process payload data from a write request received at 
the protocol interfaces module 406. The request module 416 
receives read/write requests from the clients of the storage 
system 400. The front-end subsystem 310 processes an 
incoming write request by performing a number of Storage 
efficiency processes on the payload data of the write request 
prior to sending the payload data into persistent storage in the 
storage Subsystem 306. In some embodiments, the storage 
efficiency processes include deduplication, compression, 
fragmentation, erasure coding and fragment encryption of the 
payload data. 
0063. The storage processing module 430 performs the 
deduplication process on the payload data, which removes 
duplicate data portions from the payload data. The storage 
processing module 430 can use a number of deduplication 
techniques for deduplicating the payload data. The storage 
processing module 430 can compress the payload data, e.g., 
to reduce the storage space occupied by the payload data. The 
storage processing module can implement one or more com 
pression algorithms for compressing the payload data. 
0064. The encode/decode module 418 fragments the pay 
load data into a number of fragments, which includes redun 
dant fragments for the purpose of data protection. In some 
embodiments, the encode/decode module 418 performs the 
encoding based on one or more erasure coding techniques. In 
Some embodiments, erasure coding is a method of data pro 
tection in which payload data is broken into fragments, 
expanded and encoded with redundant data fragments. For 
example, payload data can be broken into k fragments and 
erasure coded data to generate n fragments, where n>k, Such 
that the payload data can be recovered from a subset of then, 
e.g., at least k fragments. 
0065. The storage processing module 430 can further 
encrypt the data fragments using one or more encryption 
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techniques to generate encrypted data fragments. In some 
embodiments, the storage processing module 430 encrypts 
the fragments for data security purposes. 
0066 Note that the order of execution of storage efficiency 
processes is not restricted to the order described above. Alter 
native embodiments may perform these storage efficiency 
processes in a different order, and Some processes may be 
removed, moved, added, Subdivided, combined, and/or modi 
fied to provide alternatives or sub combinations. 
0067. The storage layout module 420 determines the stor 
age layout of the data fragments. The storage layout identifies 
one or more of the storage racks, storage shelves of a rack and 
storage devices of a storage shelf the data fragments have to 
be stored in. In some embodiments, the storage layout module 
420 determines the optimal layout of fragments to meet the 
service level object (SLO) promised to the client and/or to 
maximize storage resiliency, and sends the fragments to the 
selected storage devices of the storage subsystem 306 for 
storage. In some embodiments, a best storage layout stores 
each of the data fragments in a different storage device of the 
storage subsystem 306 to provide the best storage resiliency. 
In some embodiments, a worst storage layout stores all of the 
data fragments in the same storage device of the storage 
subsystem 306. Typically, the storage layout module 420 is 
configured to distribute the fragments across the storage 
devices as widely as possible, that is, to store distinct frag 
ments on distinct storage devices. 
0068. In some embodiments, the storage layout module 
420 selects the storage devices on a random basis. In some 
embodiments, the storage layout module 420 selects the stor 
age devices on a random weighted basis. The storage layout 
module 420 can weigh the storage devices based on a number 
of factors, e.g., available storage capacity, a write latency of 
the storage device, a read latency of the storage device, a type 
of the storage device. For example, the storage layout module 
420 can randomly select the storage devices from a set of 
storage devices that have at least Some specified percentage of 
storage capacity free. In some embodiments, the random 
weighted basis attempts to store the data fragments evenly 
across the available storage devices. For example, one type of 
weighting is to decrease the weight if there are already a 
specified number of fragments stored on the storage device. 
In some embodiments, the random weighted basis randomly 
identifies the storage devices at which the encoded data frag 
ments are to be stored as a function of decreasing the risk of 
data loss. For example, if a particular geographical region is 
prone to higher number of device failures, then the storage 
devices in that geographical region may be weighted less so 
that a lower number of fragments are written to the storage 
devices in that geographical region. 
0069. In some embodiments, the storage layout module 
420 can select the storage devices based on parameters 
defined by a user, e.g., metadata, a client of the storage system 
400, and/or an administrator of the storage system 400. 
0070 The following paragraphs describe additional 
details of writing data to the storage subsystem 306 in wide 
spreading storage architecture. 
0071. When a client, e.g., client 312a, sends a write 
request to the storage system 400, the request module 416 
receives the request and extracts the data object to be written 
from the request. The storage processing module 430 per 
forms a number of processes on the data object, e.g., as 
described above. The encode/decode module 418 encodes the 
data to generate n fragments. The encode/decode module 418 
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can use an erasure coding method, e.g., Reed-Solomon, FEC 
code, Fountain code, Raptor code, Tornado code. 
(0072. In FIG. 4, the encode/decode module 418 splits the 
data object 405 into n fragments, F to F. The storage layout 
module 420 determines the storage layout of the fragments 
and spreads the fragments, F to Facross the storage devices 
of the storage subsystem 306. For example, the storage layout 
module 420 determines that the fragments, F to Fo have to 
be sent to the storage devices of “storage shelf 1.” fragments, 
Foo to Foo to the storage devices of “storage shelf 2 and 
fragments, Foo to F to the storage devices of “storage shelf 
N.” In some embodiments, the storage layout module 420 also 
determines the storage devices of the storage shelves where 
the fragments have to be stored. After the storage layout 
module 420 determines the storage layout, the transceiver 
module 432 transmits the data fragments to the corresponding 
storage shelves, which store the data fragments at the storage 
devices. In some embodiments, the fragments can be written 
to the different storage devices in parallel. 
0073. The number of fragments generated by the encode/ 
decode module 418 depends on the required storage resil 
iency. The storage resiliency offered can be represented as 
n-k+m, where variable “k” is the original amount of data 
fragments or the minimum number of data fragments 
required to regenerate or rebuild the data object, and variable 
“m” stands for the extra or redundant fragments that are added 
to provide protection from failures. The variable “n” is the 
total number of fragments created after the encoding process. 
0074 Typically, in the wide spreading data storage archi 
tecture, the width to which the data object is split is wider, and 
the degree to which the data fragments are spread across the 
storage devices is wider, e.g., compared to current storage 
architecture such as RAID. For example, the number of frag 
ments to which the data object is split into can be in hundreds 
and the number of storage devices across which the hundreds 
offragments are spread across can be in the thousands to tens 
of thousands. 
0075. In some embodiments, a ratio of “n” to “k' indicates 
the storage resiliency provided for the data object. For 
example, if n/k is 130%, then the storage resiliency is 30%. 
That is, the storage system can tolerate or resist loss of 30% of 
the data fragments without losing the data object. If the num 
ber of storage devices is more than n, the storage system can 
tolerate or resist loss of up to n of storage devices without 
losing the data. For example, if the minimum number of 
fragments, k, is “1000, then the total number of fragments 
generated, n, is “1300.”, and the same system above would be 
able to tolerate “300' storage devices failing before data can 
be lost. This illustrates the importance to data protection of 
having a large n. To obtain a storage resiliency of 30%, the 
storage system generates 30% redundant fragments for the 
purposes of data protection. For example, if the minimum 
number of fragments, k, is “1000, then “m” is “300 and n is 
“1300.” Then data fragments are then spread widely across 
“4000 storage devices. 
0076. The object identifier of the data object and the frag 
ment identifiers of the fragments are stored in the staging area 
408 at the object namespace 410 and the fragment namespace 
412, respectively. Further, a mapping of the object identifier 
to the fragment identifiers can be stored in the mapping struc 
ture 414 of the staging area 408. 
0077. When a read request arrives at the storage system 
400 from the client 312a for the data object, the data object 
can be reconstructed by obtaining at least k number of the Fy 
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data fragments and decoding them to regenerate the data 
object. The transceiver module 432 obtains the storage layout 
of the fragments from the storage layout module 420 and 
obtains the data fragments from the identified storage devices 
of the storage subsystem 306. The storage layout module 420 
can use the mapping structure 414 to obtain the fragment 
identifiers of the data object and then determine the storage 
devices at which the corresponding fragments are stored. 
0078. The transceiver module 432 can obtain from k to n 
number of fragments. For example, the transceiver module 
432 can stop fetching the fragments after obtaining the first k 
fragments. In another example, the transceiver module 432 
can fetch all then fragments but use only the first k fragments 
for regenerating the data object. 
0079. Further, the transceiver module 432 can preferen 

tially select a subset of the storage devices identified by the 
storage layout module 420 to obtain the fragments from. The 
transceiver module 432 selects a storage device based on a 
number of factors, e.g., read latency of storage device, type of 
the storage device, number of pending read requests ahead of 
the current read request in a read request queue of the storage 
device, how far away the storage device is. Accordingly, the 
transceiver module 432 may not even read some of the storage 
devices that contain the data fragments of the data object, 
thereby minimizing read/write operation on the storage 
device. In some embodiments, the transceiver module 432 
can obtain the fragments from different storage devices in 
parallel. 
0080. After obtaining the data fragments, the encode/de 
code module 418 decodes the data fragments, e.g., based on 
the erasure coding used to encode the data object, to generate 
the data object. In some embodiments, the storage processing 
module 430 may perform additional processes on the 
decoded object before returning the data object to the client 
312a. For example, the storage processing module 430 can 
perform decompression and de-deduplication on the decoded 
data object if the data object was deduplicated and com 
pressed. 
0081. The wide spreading storage architecture provides a 
robust storage resiliency to the data stored in the storage 
subsystem 306. The wide spreading storage architecture also 
provides an efficient way to rebuild the data fragments in case 
of storage device failures. When a storage device fails, the 
data fragments stored at the storage device may be lost. When 
a failure detection module 424 detects a failure or impending 
failure of a storage device, the failure detection module 424 
requests the regeneration module 428 to evacuate readable 
fragments or rebuild unreadable or lost data fragments to 
compensate for the ones that are no longer reliably stored. The 
regeneration module 428 facilitates rebuilding of new data 
fragments of a data object using the remaining data fragments 
of the data object stored at other storage devices. For example, 
if a storage device in “storage shelf 2 storing the data frag 
ments Fa-Flo fails, the regeneration module 428 can rebuild 
up to new six data fragments and writes the new data frag 
ments to any of the remaining set of storage devices. In some 
embodiments, the regeneration module 428 rebuilds the data 
fragments using Sufficient number of the remaining data frag 
ments F-F and F-F. The regeneration module 428 can 
use the encoding method used to generate the initial frag 
ments to generate the new replacement fragments. 
0082. The failed storage device can store data fragments of 
one or more data objects. The fragment/segment identifica 
tion module 422 can determine the fragments stored on the 
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storage device that failed, e.g., using the storage layout. The 
regeneration module 428 can rebuild the data fragments of all 
the data objects whose fragments are lost or for only a set of 
data objects that have lost the data fragments. For example, 
the regeneration module 428 can rebuild the data fragments of 
a data object whose current storage resiliency is lesser than a 
specified threshold for minimum storage resiliency. The cur 
rent storage resiliency is determined as a function of the 
remaining of “n” number of fragments and “k. For example, 
if the specified threshold for minimum storage resiliency of a 
data object is 10% and the current storage resiliency is less 
than 10%, then the data fragments can be rebuilt for the data 
object. Further, the regeneration module 428 can start 
rebuilding the data fragments of the data object whose current 
storage resiliency is lesser than the specified threshold instan 
taneously, e.g., in response to the failure of the storage device. 
The regeneration module 428 can rebuild the data fragments 
of other data objects whose current storage resiliency exceeds 
the specified threshold at a later time. In some embodiments, 
the regeneration module 428 executes the rebuilding process 
as a background process of the front-end subsystem 310. In 
Some embodiments, a user, e.g., administrator of the storage 
system 400 can manually execute the rebuilding process. 
I0083. The wide spreading storage architecture can resist 
higher number of storage device failures than that of current 
storage systems, e.g., RAID storage system. For example, if 
the storage system 400 offers a storage resiliency of 30% and 
has ak of 1000, then the storage system 400 can resista failure 
of “300' storage devices before the data is lost. So if one or 
more storage devices are lost, or even if an entire storage 
shelf/storage rack is lost, there may not be much impact on the 
storage resiliency. This provides a number of advantages. 
First, the rebuilding process may not have to be started imme 
diately; it can be done at a later time. The storage resiliency of 
the lost data fragments can be repaired over time, e.g., when 
the work load (data read-write operations) on the storage 
system 400 is below a threshold, or when the current storage 
resiliency drops below the specified threshold, e.g., when the 
current storage resiliency is less than 10%—which means the 
storage system 400 can only tolerate failure of "200 more 
storage devices. That is, the wide spreading storage architec 
ture offers a high meantime to repair, e.g., compared to RAID 
storage architecture. 
I0084. Second, the wide spreading storage architecture 
separates the rebuilding of data fragments from replacement 
of the failed storage devices. That is, the storage system 400 
may not have to wait until the failed storage devices are 
replaced to rebuild the data fragments. The rebuilding process 
reads the data fragments of the data object from the remaining 
storage devices, generates new data fragments as a function of 
the data fragments obtained from the other storage devices, 
and writes the new data fragments on one or more of the 
remaining storage devices. Accordingly, in the wide spread 
ing storage architecture, the storage system 400 does not have 
to wait for the failed storage device to be replaced to rebuild 
the data fragments, unlike current storage architectures, e.g., 
RAID storage architecture without hot spares, where a failed 
storage device may have to be replaced immediately upon 
failure. 

I0085. However, if the failed storage device is replaced 
immediately upon failure, the storage system 400 can use the 
replacement storage device as additional capacity, e.g., to 
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store new data. Further, the replacement storage device can be 
of different storage capacity and/or type from that of the 
failed storage device. 
I0086. The wide spreading storage architecture also mini 
mizes the number of read-write operations required per Stor 
age device for rebuilding the data fragments of a particular 
data object. The regeneration module 428 obtains the remain 
ing data fragments of the particular data object from other 
storage devices of the storage subsystem 306. Since the data 
fragments are spread over a number of storage devices, the 
number of read operations performed for the rebuilding pro 
cess is spread across many storage devices and therefore, the 
number of read operations performed on a particular storage 
device is limited. Further, in some embodiments, the regen 
eration module 428 obtains less than the remaining number of 
fragments, e.g., k fragments of the remaining fragments, to 
rebuild the lost data fragments, which further minimizes the 
read operations performed on the storage devices. By mini 
mizing the read operations on a given storage device, the wear 
of the storage device is minimized and the lifespan of the 
storage device is therefore, increased. Further, as rebuild can 
be deferred and performed after many failures have occurred, 
rebuild operations are minimized compared to architectures 
were rebuilds are initiated for each failure operation. 
0087 Furthermore, after rebuilding the new data frag 
ments, the new data fragments are written to a set of storage 
devices. In some embodiments, the set of storage devices to 
which the data is written is different from the set of storage 
devices from which the data fragments are read to rebuild the 
data fragments. Accordingly, the read-write operations per 
formed on any given storage device is minimized, which 
minimizes the wear of the storage device and therefore, 
increases the lifespan of the storage device. 
0088 As described above, the wide spreading storage 
architecture provides optimum storage resiliency to data 
stored in the storage devices of the storage subsystem 306 
while minimizing the wear of the storage devices. 
0089. The widespreading storage architecture can also be 
used to store metadata of the data object. FIG. 5 is a block 
diagram 500 for storing metadata of a data object with the 
data object in a storage system 400 of FIG.4, consistent with 
various embodiments. The wide spreading storage architec 
ture can provide the same storage resiliency to the metadata of 
a data object that is provided to the data object. Examples of 
metadata can include, object ID, object size, object owner, 
creation time, created by, modified by, etc. The metadata can 
also include client-specified metadata, e.g., author of an 
object, name of entity, etc. Typically, current storage archi 
tectures store metadata separate from the data object. The 
wide spreading storage architecture enables storing the meta 
data with data object, thereby eliminating the need to have a 
separate database for the metadata, the need to have specific 
infrastructure to ensure the metadata is consistent with the 
data, etc. 
0090 When a write request is received, the payload data in 
the write request is analyzed to obtain the metadata 510 and 
the data portion, e.g., data object 405. The data object 405 is 
then encoded, e.g., using encode/decode module 418 as 
described with reference to FIG. 4, to generate a number of 
fragments 505. The metadata 510 is combined with some or 
each of the fragments 505, e.g., concatenated or prefixed to 
each of the fragments 505, to generate composite fragments 
515. The composite fragments 515 can then be stored in the 
storage Subsystem 306 by spreading them across a number of 
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storage devices, e.g., similar to storing the data fragments as 
described with reference to FIG. 4. In some embodiments, the 
metadata 510 can be a subset of the metadata of the data 
object 405. 
0091. In some embodiments, by including the metadata 
510 with the data object, the possibility of inconsistency 
between the metadata 510 and the data object 405 is elimi 
nated. Further, since the metadata 510 is attached to the frag 
ments 505, the composite fragments 515 can be moved across 
locations/storage devices without having to update the meta 
data 510 and without risking the consistency between the 
metadata 510 and the data object 405. 
0092 Another benefit of storing the metadata 510 with the 
data object 405 is that since a separate database and/or meta 
data server is not needed to maintain the metadata 510, the 
read and write operations are relatively faster since no sepa 
rate read/write is required to read/write the metadata 510. In 
Some embodiments, metadata retrieval is also simplified 
since a method call that is used for retrieving the data object 
405 can be modified to use retrieve the metadata 510, which 
can simplify a number of functions performed related to the 
metadata 510. 
0093 FIG. 6 is a flow diagram of a process 600 of storing 
data to an object-based storage system using wide spreading 
storage architecture, consistent with various embodiments of 
the disclosed technology. In some embodiments, the process 
600 may be implemented in environment 300 of FIG. 3, and 
using the storage system 400 of FIG. 4. The process 600 
begins at block 605, and at block 610, a request module 416 
of the frontend subsystem 310 receives a write request includ 
ing payload data. In some embodiments, the payload data 
includes data portion and metadata of the data. If the data 
portion is not in a format Suitable for storing in an object 
storage system, e.g., Storage subsystem 306, the frontend 
subsystem 310 converts the data portion to the suitable for 
mat, e.g., as the data object. 
0094. At block 615, the encode/decode module 418 
encodes the data object to generate a number of encoded data 
fragments, e.g., encoded data fragments F1-FN. In some 
embodiments, the encode/decode module 418 encodes the 
data object based on an erasure coding technique. The num 
ber of encoded data fragments generated can be expressed as 
a function, e.g., n-k+m, where variable “k” is the original 
amount of data fragments or the minimum number of data 
fragments required to regenerate or rebuild the data object, 
and variable “m' is the number of extra or redundant frag 
ments added to provide protection from storage device fail 
ures. The variable “n” is the total number of fragments created 
after the encoding process. 
0095. After the encoded data fragments are generated, a 
mapping of the object identifier of the data object and frag 
ment identifiers of the encoded data fragments are stored in 
the mapping structure 414. 
0096. In some embodiments, apart from encoding the data 
object to generate the fragments, various other processes may 
be performed on the data object, e.g., deduplication, compres 
Sion, encryption. One or more of these processes can be 
performed by the storage processing module. 
(0097. At block 620, the storage layout module 420 deter 
mines a storage layout for storing the encoded data fragments 
across a number of storage devices, e.g., storage devices of 
storage Subsystem 306. In some embodiments, the storage 
layout module 420 is configured to spread the encoded data 
fragments across as many storage devices as possible, e.g., to 
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provide betterstorage resiliency to the data object. That is, the 
storage layout module 420 attempts to identify different stor 
age devices for storing different encoded data fragments. In 
Some embodiments, the storage layout module 420 selects the 
storage devices on a random basis. In some embodiments, the 
storage layout module 420 selects the storage devices on a 
random weighted basis. 
0098. At block 625, the transceiver module 432 transmits 
the encoded data fragments to the identified storage devices. 
For example, the transceiver module 432 can transmit the 
encoded data fragments to the storage shelves and/or the 
storage racks which contain the storage devices. 
0099. At block 630, the storage shelves and/or the storage 
racks store the encoded data fragments at the identified Stor 
age devices, and the process 600 returns. In some embodi 
ments, the front-end subsystem 310 also stores the metadata 
of the data object with the data object. Additional details with 
respect to the process of storing the metadata are described at 
least with reference to FIGS. 9 and 10. 

0100 FIG. 7 is a flow diagram of a process 700 of reading 
data from an object-based storage system using wide spread 
ing storage architecture, consistent with various embodi 
ments of the disclosed technology. In some embodiments, the 
process 700 may be implemented in environment 300 of FIG. 
3, and using the storage system 400 of FIG. 4. The process 
700 begins at block 705, and at block 710, a request module 
416 of the frontend subsystem 310 receives a read request, 
e.g., from a client system 312a, for obtaining a data object. In 
some embodiments, the read request includes an object iden 
tifier of the data object. 
0101. At block 715, the fragment/segment identification 
module 422, determines the encoded data fragments of the 
data object using the object identifier. In some embodiments, 
a mapping of the object identifier and the fragment identifiers 
of the encoded data fragments are stored in the mapping 
structure 414. 

0102 At block 720, the storage layout module 420 deter 
mines the storage layout of the encoded data fragments using 
the mapping obtained from the mapping structure. The Stor 
age layout can include identification information of the Stor 
age devices where each of the encoded data fragments is 
stored. In some embodiments, the storage layout information 
can also include identification information of the storage 
racks and/or storage shelves of the storage devices where the 
encoded data fragments are stored. 
(0103 At block 725, the transceiver module 432 obtains 
Sufficient number of the encoded data fragments required to 
generate the data object from the identified storage devices. In 
some embodiments, the sufficient number of encoded data 
fragments is knumber of the encoded data fragments. In some 
embodiments, the transceiver module 432 can obtain k to n 
number of fragments. For example, the transceiver module 
432 can stop fetching the fragments after obtaining the first k 
fragments. In another example, the transceiver module 432 
can fetch all then fragments but use only the first k fragments 
for regenerating the data object. 
0104 Further, the transceiver module 432 can preferen 

tially select a subset of the identified storage devices to obtain 
the fragments from. The transceiver module 432 can select a 
storage device based on a number of factors, e.g., read latency 
of a storage device, type of the storage device, number of 
pending read requests ahead of the current read request in a 
read request queue of the storage device, a geographical loca 
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tion of the storage device. In some embodiments, the trans 
ceiver module 432 can obtain the fragments from different 
storage devices in parallel. 
0105. After obtaining the encoded data fragments, at 
block 730, the encode/decode module 418 decodes the 
encoded data fragments, e.g., based on the erasure coding 
method used to encode the data object, to generate the data 
object. 
01.06. At block 735, the transceiver module 432 transmits 
the data object in response to the read request, e.g., to the 
client system 312a, and the process 700 returns. In some 
embodiments, additional processes may be performed before 
decoding the data fragments. For example, the storage pro 
cessing module 430 can decrypt the encoded data fragments 
if they were encrypted before being stored. In some embodi 
ments, additional processes may be performed on the 
decoded data object before returning the data object to the 
client 312a. For example, the storage processing module 430 
can perform decompression and de-deduplication on the 
decoded data object if the data object was deduplicated and 
compressed. 
0107 FIG. 8 is a flow diagram of a process 800 of rebuild 
ing data fragments of a data object in wide spreading Storage 
architecture, consistent with various embodiments of the dis 
closed technology. In some embodiments, the process 800 
may be implemented in environment 300 of FIG.3, and using 
the storage system 400 of FIG. 4. In some embodiments, the 
data fragments stored in the storage Subsystem 306 may be 
lost due to a failure of a storage device. The process 800 
begins at block 805, and at block 810, a failure detection 
module 424 of the frontend subsystem 310 detects a failure of 
a storage device, e.g., storage device 304. In some embodi 
ments, the failure can be one or more of the storage device 
being not accessible, the storage device being physically 
damaged, etc. 
0108. At block 815, the fragment/segment identification 
module 422 identifies the encoded data fragments that were 
stored at the storage device. For example, the fragment/seg 
ment identification module 422 can refer to the storage layout 
module 420 to determine the fragments stored at the storage 
device that has failed. Further, the fragment/segment identi 
fication module 422 identifies the one or more data objects 
corresponding to the identified encoded data fragments. For 
example, the fragment/segment identification module 422 
can refer to the mapping structure 414 to determine the data 
objects associated with the identified encoded data frag 
mentS. 

0109. At block 820, the regeneration module 428 rebuilds 
Some or all of the encoded data fragments that was stored at 
the storage device that failed. In some embodiments, rebuild 
ing the data fragments include performing the method 
described in association with blocks 821-824 for each of the 
identified data objects. At block 821, the regeneration module 
428 computes the current storage resiliency of the data object. 
In Some embodiments, storage resiliency is defined as a resis 
tance to loss of one or more storage devices storing a portion 
of a data object or resistance to loss of one or more portions of 
the data object. In some embodiments, a current storage resil 
iency of a data object is determined as a function of the 
number of fragments remaining out of “n” fragments and “k.” 
For example, if n is “130, k is “100, then the number of 
redundant fragments, m is “30 and therefore, the storage 
resiliency can be calculated as 30% (100*m/k). Note that the 
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storage resiliency can be calculated using other functions and 
based on several other parameters. 
0110. The storage system 400 may guarantee a storage 
resiliency range to the clients of the storage system, for 
example, a minimum storage resiliency and a maximum stor 
age resiliency. In some embodiments, the storage resiliency 
range is part of the SLO guaranteed to the clients. In some 
embodiments, the storage system 400 may not rebuild the lost 
data fragments until the current storage resiliency of the data 
object drops below the minimum storage resiliency. 
0111. At determination block 822, the regeneration mod 
ule 428 determines if the current storage resiliency of the data 
object is less than the minimum storage resiliency. Continu 
ing with the above example of a storage resiliency of 30%, if 
the minimum storage resiliency is 10%, then the storage 
system 400 can withstand loss of "20 data fragments, in 
which case m is '10.' 

0112 Responsive to a determination that the current stor 
age resiliency of the data object is not less than the minimum 
storage resiliency, the process 800 returns. On the other hand, 
responsive to a determination that the current storage resil 
iency is less than the minimum storage resiliency, at block 
823, the transceiver module 432 obtains sufficient number of 
fragments of the data object from remaining of the storage 
devices. The transceiver module 432 may use the storage 
layout to identify the storage devices that store the data frag 
ments of the data object. In some embodiments, the trans 
ceiver module 432 can obtain the minimum number of frag 
ments required to rebuild the data fragments. 
0113. At block 824, the regeneration module 428 regen 
erates the data fragments as a function of the obtained data 
fragments and stores the regenerated data fragments in at least 
a Subset of the remaining storage devices. In some embodi 
ments, the regeneration module 428 regenerates as many data 
fragments as required to meet a specified Storage resiliency, 
which can be up to the maximum storage resiliency. In some 
embodiments, regenerating the data fragments as a function 
of the obtained data fragments includes encoding the 
obtained data fragments to generate the new/replacement/ 
additional data fragments. In some embodiments, regenerat 
ing the data fragments as a function of the obtained data 
fragments includes decoding the obtained data fragments to 
generate the data object and encoding the generated data 
object to generate the specified number of data fragments. 
0114 FIG. 9 is a flow diagram of a process 900 of storing 
metadata of a data object with the data object in wide spread 
ing storage architecture, consistent with various embodi 
ments of the disclosed technology. In some embodiments, the 
process 900 may be implemented in environment 300 of FIG. 
3, and using the storage system 400 of FIG. 4. The process 
900 begins at block 905, and at block 910, a request module 
416 of the frontend subsystem 310 receives a write request 
including payload data. In some embodiments, the payload 
data includes data portion and metadata of the data. If the data 
portion is not in a format Suitable for storing in an object 
storage system, e.g., storage Subsystem 306, the frontend 
subsystem 310 converts the data portion to the suitable for 
mat, e.g., as the data object. 
0115. At block 915, the metadata processing module 426 
analyzes the payload data to obtain the metadata of the data 
object, e.g., metadata 510 of FIG. 5. Examples of metadata 
can include, object ID, object size, object owner, creation 
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time, created by, modified by, etc. The metadata can also 
include client-specified metadata, e.g., author of an object, 
name of entity, etc. 
0116. At block 920, the encode/decode module 418 
encodes the data object to generate a number of encoded data 
pieces, e.g., segments and/or fragments. In some embodi 
ments, the encode/decode module 418 encodes the data 
object as described at least with reference to FIGS. 4-6. 
0117. At block 925, after the encoded data pieces are 
generated, the metadata processing module 426 processes the 
encoded data pieces and the metadata for storage across a 
number of storage devices, e.g., storage devices of the storage 
subsystem 306, and the process 900 returns. Additional 
details with respect to the method of processing the metadata 
are described at least with reference to FIG. 10. 
0118 FIG. 10 is a flow diagram of a process 1000 of 
processing metadata and data fragments of a data object in 
wide spreading storage architecture, consistent with various 
embodiments of the disclosed technology. In some embodi 
ments, the process 1000 may be implemented in environment 
300 of FIG. 3, and using the storage system 400 of FIG. 4. In 
some embodiments, the process 1000 implements the method 
of block 925 of FIG.9. The data piece generated in the process 
900 of FIG.9, e.g., in block 920, can be considered as a data 
fragment in the wide spreading storage architecture. The pro 
cess 1000 begins at block 1005, and at block 1010, the meta 
data processing module 426 combines each of the data frag 
ments of the data object with the metadata, e.g., metadata 510, 
to generate composite encoded data fragments, e.g., compos 
ite encoded data fragments 515. In some embodiments, com 
bining the metadata with each of the fragments includes con 
catenating or prefixing the metadata to each of the fragments. 
0119. After the composite fragments are generated, at 
block 1015, the transceiver module 432 transmits the com 
posite fragments to the storage Subsystem 306 for storing 
across a number of storage devices, e.g., similar to storing the 
data fragments as described at least with reference to blocks 
620-630 of FIG. 6, and the process 1000 returns. Prior to 
transmitting the composite fragments to the storage Sub 
system 306, the storage layout module 420 determines a 
storage layout for storing the composite data fragments 
across the number of storage devices, e.g., similar to deter 
mining the storage layout for storing the data fragments as 
described at least with reference to FIG. 4 and block 620 of 
FIG. 6. The transceiver module 432 then transmits the com 
posite data fragments to the identified storage devices. 
I0120 FIG. 11 is a block diagram of storage system 1100 
implementing hierarchical spreading storage architecture, 
consistent with various embodiments. In some embodiments, 
the storage system 1100 can be implemented in the environ 
ment 300 of FIG. 3. Further, in some embodiments, the stor 
age system 1100 includes at least some of the characteristics, 
behavior/functionalities of the storage system 400 of FIG. 4. 
In some embodiments, the wide spreading storage architec 
ture of storage system 400 can also be implemented in the 
storage system 1100. The storage system 1100 includes the 
front-end subsystem 310 and a tier of hierarchical storage 
nodes, e.g., hierarchical storage nodes 314-318 that facilitate 
data storage and retrieval from the storage subsystem 306, 
which includes storage shelves 306a-n. The hierarchical stor 
age nodes can be implemented in a similar configuration to 
that of the front-end subsystem 310. For example, a hierar 
chical storage node can include the modules/components of 
the front-end subsystem 310 depicted in FIG. 3. Note that 
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although FIG. 11 depicts one tier of hierarchical storage 
nodes, the hierarchical spreading storage architecture can 
have more than one tier of hierarchical storage nodes. 
0121 Each of the hierarchical storage nodes 314-318 can 
be associated with a set of storage devices. For example, the 
hierarchical storage node 314 is associated with storage 
devices from storage shelves 306a and 306b, the hierarchical 
storage node 316 is associated with storage devices from 
storage shelf 306c, and the hierarchical storage node 318 is 
associated with storage devices from storage shelves 306d 
and 306e. In some embodiments, the hierarchical storage 
nodes are spread across various geographical locations. In 
other embodiments, the hierarchical storage nodes are inte 
grated into each storage shelf. 
0122) The following paragraphs describe additional 
details of writing data to the storage subsystem 306 in hier 
archical spreading storage architecture. 
0123. When a client, e.g., client 312a, sends a write 
request to the storage system 1100, the request module 416 
receives the request and extracts the data object to be written 
from the request. The encode/decode module 418 encodes the 
data object to generate a number of segments, e.g., “S1.”“S2. 
and 'S3'. In some embodiments, the encode/decode module 
418 can use wide spreading, or an erasure coding method 
directly, e.g., Reed-Solomon, FEC coding, Fountain code, 
Raptor code, Tornado code, to generate the segments. In some 
embodiments, the number of segments generated is a function 
of the number of hierarchical storage nodes. 
0.124. The transceiver module 432 distributes the data seg 
ments to a number of hierarchical storage nodes, e.g., hierar 
chical storage nodes 314-318. The storage layout module 420 
determines the storage layout of the segments, that is, the 
hierarchical storage nodes to which the segments have to be 
distributed, and the transceiver module 432 spreads the seg 
ments to the identified the hierarchical storage nodes. In some 
embodiments, the storage layout module 420 is configured to 
select different hierarchical storage nodes for different seg 
ments, e.g., to maximize storage resiliency of the data object. 
However, in Some embodiments, more than one segment may 
be transmitted to a hierarchical storage node. In some 
embodiments, the storage layout module 420 determines the 
hierarchical storage nodes to which the segments have to be 
distributed on a random basis. The storage layout can also be 
specified by a user, e.g., an administrator of the storage sys 
tem 1100. In FIG. 11, the segment, “S1 is sent to the hierar 
chical storage node 314, the segment “S2 is sent to the 
hierarchical storage node 316 and the segment “S3' is sent to 
the hierarchical storage node 318. In some embodiments, the 
segments are transmitted to the hierarchical storage nodes in 
parallel. 
0.125. The number of segments generated by the encode/ 
decode module 418 can also depend on the required storage 
resiliency. The storage resiliency offered can be represented 
as n'-k+m', where variable k is the original amount of data 
segments or the minimum number of data segments required 
to rebuild the data object, and variable m' stands for the extra 
or redundant segments added to provide protection from fail 
ures, e.g., failures of hierarchical storage nodes and/or stor 
age devices associated with hierarchical storage nodes. The 
variable n' is the total number of segments created after the 
encoding process. 
0126 The segment identifiers of the data object may be 
stored in the fragment namespace 412. The mapping structure 
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414 can store a mapping of the object identifier of the data 
object to the segment identifiers of the segments of the data 
object. 
I0127. In some embodiments, prior to encoding the data 
object, the storage processing module 430 can perform a 
number of storage efficiency processes on the data object, 
e.g., as described at least with reference to FIG. 4. 
I0128. Each of the hierarchical storage nodes 314-318 can 
encode, independent of the other hierarchical storage nodes, 
the segment, e.g., based on an erasure coding method, to 
generate a number of fragments of the segment. In some 
embodiments, the hierarchical storage node encodes the seg 
ment using an encode/decode module similar to the encode/ 
decode module 418. In FIG. 11, the segments “S1,”“S2,” and 
“S3' are each encoded to generate eight fragments F1-F8. 
Each of the hierarchical storage node stores the fragments, F1 
to F8, across the storage devices of the storage Subsystem 
306. In some embodiments, the techniques involved in encod 
ing a data segment to generate the fragments of a segment and 
storing the fragments across the storage devices is similar to 
the techniques involved in encoding a data object to generate 
the fragments of the data object and storing the fragments 
across the storage devices in wide spreading storage archi 
tecture, e.g., as described at least with reference to FIGS. 4 
and 6. 
I0129. For storing the fragments across a set of storage 
devices, the hierarchical storage node determines a storage 
layout of the fragments. The storage layout identifies one or 
more of the storage racks, storage shelves of a rack and 
storage devices of a storage shelf the data fragments have to 
be stored in. In some embodiments, the hierarchical storage 
node determines the storage layout of the fragments using a 
storage layout module similar to the storage layout module 
420. After the storage layout is determined, the hierarchical 
storage node stores the fragments in the identified storage 
devices. In some embodiments, the hierarchical storage node 
writes the fragments to the different storage devices in paral 
lel. In the hierarchical spreading storage architecture, the 
writes are more efficient than current storage systems. For 
example, in addition to writing the fragments of a particular 
segment in parallel, all the hierarchical storage nodes can 
write the fragments of their corresponding segments in par 
allel. 
0.130. The hierarchical storage node stores the segment 
identifier of the data segment and the fragment identifiers of 
the fragments of the data segment in a staging area similar to 
the staging area 408. Further, the hierarchical storage node 
stores a mapping of the segment identifier of a segment to the 
fragment identifiers of the segment in a mapping structure 
similar to the mapping structure 414. 
I0131. In the hierarchical spreading storage architecture, 
the storage resiliency provided for a data object is split across 
the tiers of a storage system. For example, if the storage 
resiliency offered for a data object by the storage system 1100 
is 30%, then the first tier hierarchical storage node 314-318 
provides 15% of the storage resiliency and the second tier— 
storage devices provided the other 15%. The amount of stor 
age resiliencies provided by each of the tiers can be config 
urable. However, the sum of storage resiliencies offered by 
the tiers may not exceed the total storage resiliency offered by 
the storage system 1100. 
I0132 Referring to the read requests, when a read request 
arrives at the storage system 1100 from the client 312a for a 
particular data object, the data object can be reconstructed by 
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obtaining at least k number of the n'data segments and decod 
ing them to regenerate the data object. The transceiver mod 
ule 432 obtains the storage layout of the segments from the 
storage layout module 420 and obtains the data segments 
from the identified hierarchical storage nodes. The storage 
layout module 420 can obtain the segment identifiers of the 
segments of the data object from the mapping structure 414 
and then determine from the storage layout the hierarchical 
storage nodes at which the corresponding segments are 
stored. 
0133. After the hierarchical storage nodes are identified, 
the transceiver module 432 requests the hierarchical storage 
nodes to return the data segments of the data object. The 
transceiver module 432 can obtaink' to n' number of segments 
for generating the data object. For example, the transceiver 
module 432 can stop fetching the segments after obtaining the 
first k'segments. In another example, the transceiver module 
432 can fetch all the n'segments but use only the first 
k'segments for regenerating the data object. Further, the trans 
ceiver module 432 can preferentially select a subset of iden 
tified the hierarchical storage nodes to obtain the segments 
from. The transceiver module 432 selects a hierarchical stor 
age node based on a number of factors, e.g., a latency of the 
hierarchical storage node, a workload of the hierarchical Stor 
age node, a geographical location of the storage device. In 
some embodiments, the transceiver module 432 can obtain 
the segments from different storage nodes in parallel. 
0134. When a particular hierarchical storage node 
receives a request from the front-end subsystem 310 for a data 
segment, the hierarchical storage node obtains the fragments 
of the data segment from the storage devices associated with 
the hierarchical storage node. The hierarchical storage node 
determines the storage layout of the fragments and obtains a 
Sufficient number of the data fragments, e.g., the minimum 
number data fragments required to generate the data segment, 
from the identified storage devices. 
0135 Further, the hierarchical storage node can preferen 

tially select a subset of the storage devices to obtain the 
fragments from. The hierarchical storage node selects a stor 
age device based on a number of factors, e.g., read latency of 
storage device, type of the storage device, number of pending 
read requests ahead of the current read request in a read 
request queue of the storage device, how far the storage 
device is. Accordingly, the hierarchical storage node may not 
even read some of the storage devices that contain the data 
fragments of the data object, thereby minimizing read/write 
operations on a particular storage device. In some embodi 
ments, the hierarchical storage node can obtain the fragments 
in parallel. 
0136. After obtaining the data fragments, the hierarchical 
storage node decodes the data fragments, e.g., based on the 
erasure coding used to encode the data segment, to generate 
the data segment, and then returns the data segment to the 
front-end subsystem 310. In some embodiments, the hierar 
chical storage node may perform additional processes on the 
decoded data segment before returning it to the front-end 
subsystem 310. For example, the hierarchical storage node 
can perform decompression and de-deduplication on the 
decoded data segment if the data segment was deduplicated 
and compressed. 
0137 After the front-end subsystem 310 obtains sufficient 
number of the data segments from the hierarchical storage 
nodes, the front-end subsystem 310 decodes the data seg 
ments to generate the data object, and returns the data object 
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to the client system 312a. In some embodiments, the storage 
processing module 430 may perform additional processes on 
the decoded data object before returning the data object to the 
client 312a. For example, the storage processing module 430 
can perform decompression and de-deduplication on the 
decoded data object if the data object was deduplicated and 
compressed. 
0.138. As described above, the hierarchical spreading stor 
age architecture distributes the storage resiliency provided to 
the data across the storage tiers—hierarchical storage nodes 
314-318 and storage devices of the storage subsystem 306. 
One of the advantages of Such a distributed storage resiliency 
is that the storage system 1100 can withstand the loss of either 
Some of the hierarchical storage nodes or some of the storage 
devices of a hierarchical storage node, or in some cases, both. 
0.139. Another advantage of the hierarchical spreading 
storage architecture is that the rebuilding process can be 
localized in some cases. That is, when a storage device asso 
ciated with a particular hierarchical storage node fails, the 
data fragments of a segment stored at the failed storage device 
may be rebuilt using the remaining data fragments of the 
segment stored within the storage shelves of the particular 
hierarchical storage node. The storage system 1100 may not 
have to obtain the fragments from the storage devices asso 
ciated with another hierarchical storage node. For example, 
when a fragment F1 of the segment S1 is lost due to a failure 
of a storage device in the storage shelves 306a-b, the hierar 
chical storage node rebuilds a new data fragment for the data 
segment S1 using the remaining data fragments, F2-F8. 
stored at other storage devices within the storage shelves 
306a-b. In some embodiments, the hierarchical storage node 
uses sufficient number of the data fragments, e.g., k number 
of the remaining data fragments to rebuild the new data frag 
ment. The hierarchical storage node can use the encoding 
method used to generate the initial fragments to regenerate 
the new data fragment. 
0140 Localizing the rebuilding process to a particular 
hierarchical storage node minimizes the network traffic, e.g., 
between the hierarchical storage nodes and the front-end 
subsystem 310, between the hierarchical storage nodes, that 
might otherwise occur if the fragments are to be read from 
storage devices apart from that of the particular hierarchical 
storage node. This saves the time required for the fragments to 
traverse the network and therefore, can make the rebuilding 
process faster and more efficient. Further, localizing the 
rebuilding process to the storage devices of the particular 
hierarchical storage node, the read-write operations per 
formed on storage devices of other hierarchical storage nodes 
is minimized, and therefore the wear of other storage devices 
is minimized. 

0.141. The hierarchical storage node can rebuild the data 
fragments of all the data segments whose storage resiliency is 
affected or a Subset of those data segments. In some embodi 
ments, the hierarchical storage node rebuilds the data frag 
ments for a particular data segment if the current storage 
resiliency of the data segment is below the minimum storage 
resiliency to be provided for the data segment, e.g., as 
described with reference to rebuilding the data fragments in 
FIGS. 4 and 8. 
0142. However, when a particular hierarchical storage 
node fails or a current storage resiliency of a data segment 
stored by the particular hierarchical storage node drops below 
the minimum storage resiliency the storage system 1100 uses 
the fragments from other hierarchical storage nodes to rebuild 
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the lost fragments. For example, when the hierarchical stor 
age node 314 fails, the front-end subsystem 310 obtains all or 
Some of the remaining segments S2 and S3 from the remain 
ing hierarchical storage nodes, generates a new segment S4 
(not illustrated) and transmits it to another hierarchical stor 
age node or one of the hierarchical storage nodes 316 and 318, 
which further encodes the new segment into fragments and 
stores them at its associated storage devices. 
0143. The hierarchical spreading storage architecture can 
also be used to store metadata of the data received from a 
client of the storage system 1100. FIG. 12 is a block diagram 
1200 for storing metadata of a data object with the data object 
in a storage system 1100 of FIG. 11, consistent with various 
embodiments. The hierarchical spreading storage architec 
ture can provide the same storage resiliency to the metadata of 
a data object that is provided to the data object. Examples of 
metadata can include, object ID, object size, object owner, 
creation time, created by, modified by, client-specified meta 
data, etc. Typically, metadata is stored separate from the data 
object. The hierarchical spreading storage architecture 
enables storing the metadata with the data object, thereby 
eliminating the need to have a separate database for metadata, 
the need to have specific infrastructure in place to ensure the 
metadata is consistent with the data, etc. 
0144. When a write request is received at the storage sys 
tem 1100, the payload data in the write request is analyzed to 
obtain the metadata 510 and the data portion, e.g., data object 
405. The data object 405 is then encoded, e.g., using encode/ 
decode module 418, to generate a number of segments 1205, 
e.g., as described with reference to FIG. 11. The metadata 510 
is combined with each of the segments 1205, e.g., concat 
enated or prefixed to each of the segments 1205, to generate 
composite segments 1210. In some embodiments, the meta 
data 510 can be a subset of the metadata of the data object 405. 
The composite segments 1210 can then be sent to a number of 
hierarchical storage nodes, e.g., as described with reference 
to FIG. 11 for further storage at a set of storage devices 
associated with the hierarchical storage nodes. 
0145 When a particular hierarchical storage node 
receives a composite data segment, it encodes the composite 
data segment to generate a number of data fragments such as 
fragments 1215. The metadata 510 is combined with each of 
the fragments 1215, e.g., concatenated or prefixed to each of 
the fragments 1215, to generate composite fragments 1220. 
The composite fragments 1220 can then be stored at the 
storage devices associated with the hierarchical storage node, 
e.g., as described with reference to FIG. 11. 
0146 Note that though FIG. 12 illustrates combining 
metadata 510 with both the data segments and the fragments, 
the metadata 510 can be combined with either the data seg 
ments or the data fragments. 
0147 In some embodiments, by storing the metadata 510 
with the data object 405, the possibility of inconsistency 
between the metadata 510 and the data object 405 is elimi 
nated. Further, since the metadata 510 is attached to the seg 
ments 1205 and/or fragments 1215, the composite segments 
1210 can be moved across hierarchical storage nodes and the 
composite fragments 1220 can be moved across storage 
devices without having to update the metadata 510 and with 
out risking the consistency between the metadata 510 and the 
data object 405. 
0148. In some embodiments, another benefit of storing the 
metadata 510 with the data object 405 is that since a separate 
database and/or metadata server is not needed to maintain the 
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metadata 510, the read and write operations are relatively 
faster since no separate read/write is required to read/write the 
metadata 510. In some embodiments, metadata retrieval is 
also simplified since a method call that is used for retrieving 
the data object 405 can be modified to use retrieve the meta 
data 510, which can simplify a number of functions per 
formed related to the metadata 510. 
0149 FIG. 13 is a flow diagram of a process 1300 of 
storing data to an object-based storage system using hierar 
chical spreading storage architecture, consistent with various 
embodiments of the disclosed technology. In some embodi 
ments, the process 1300 may be implemented in environment 
300 of FIG.3, and using the storage system 1100 of FIG. 11. 
The process 1300 begins at block 1305, and at block 1310, a 
request module 416 of the frontend subsystem 310 receives a 
write request including payload data. In some embodiments, 
the payload data includes data portion and metadata of the 
data. If the data portion is not in a format suitable for storing 
in an object storage system, e.g., storage Subsystem 306, the 
frontend subsystem 310 converts the data portion to the suit 
able format, e.g., as the data object. 
0150. At block 1315, the encode/decode module 418 
encodes the data object to generate a number of encoded data 
segments, e.g., encoded data segments S1-S3. In some 
embodiments, the encode/decode module 418 encodes the 
data object based on an erasure coding technique. The num 
ber of encoded data segments generated can be expressed as 
a function, e.g., n-k+m', where variable k is the original 
amount of data segments or the minimum number of data 
segments required to regenerate or rebuild the data object, and 
variable m'stands for the extra or redundant segments that are 
added to provide protection from storage device/storage node 
failures. The variable n' is the total number of segments cre 
ated after the encoding process. 
0151. After the encoded data segments are generated, a 
mapping of the object identifier and the segment identifiers of 
the encoded data segments are stored in the mapping structure 
414 in the staging area 408. 
0152. In some embodiments, apart from encoding the data 
object to generate the fragments, various other storage effi 
ciency processes may be performed on the data object, e.g., 
deduplication, compression, encryption. One or more of 
these processes can be performed by the storage processing 
module 430. 

0153. At block 1320, the storage layout module 420 deter 
mines a storage layout for sending the encoded data segments 
across a number of hierarchical storage nodes, e.g., hierarchi 
cal storage nodes 314-318. In some embodiments, the storage 
layout module 420 is configured to spread the encoded data 
segments across as many hierarchical storage nodes as pos 
sible, e.g., to provide better storage resiliency to the data 
object. That is, the storage layout module 420 attempts to 
identify different hierarchical storage nodes for storing dif 
ferent encoded data segments. In some embodiments, the 
storage layout module 420 selects the hierarchical storage 
nodes on a random basis. In some embodiments, the storage 
layout module 420 selects the hierarchical storage nodes on a 
random weighted basis. In some embodiments, the random 
weighted basis attempts to store the data segments evenly 
across the hierarchical storage nodes. For example, one type 
of weighting is to decrease the weight if there are already a 
specified number of segments stored at the hierarchical stor 
age node. In some embodiments, the random weighted basis 
randomly identifies the hierarchical storage nodes at which 
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the encoded data segments are to be stored as a function of 
decreasing the risk of data loss. For example, if a particular 
geographical region is prone to higher number of device 
failures, then the storage nodes in that geographical region 
may be weighted less so that a lower number of segments are 
written to the storage nodes in that geographical region. 
0154. At block 1325, the transceiver module 432 transmits 
the encoded data segments to the identified hierarchical Stor 
age nodes. For example, the transceiver module 432 can 
transmit the encoded data segments S1-S3 to hierarchical 
storage nodes 314-318, respectively. 
0155. At block 1330, each of the hierarchical storage that 
receives an encoded data segment, processes the encoded data 
segment to store it at a set of storage devices associated with 
the hierarchical storage node, and the process 1300 returns. 
The processing can include encoding the data segment to 
generate a number of data fragments (block 1331). For 
example, the hierarchical storage node 314 encodes the data 
segment to generate fragments F1-F8. In some embodiments, 
the hierarchical storage node encodes the data segment based 
on an erasure coding technique. Also, the erasure coding 
technique used to generate the data segments can be different 
from that used for generating the fragments from the segment. 
0156 The hierarchical storage node includes a storage 
layout module, e.g., similar to the storage layout module 420, 
that determines a storage layout for storing the data fragments 
at a set of storage devices associated with the hierarchical 
storage node (block 1332). In some embodiments, the storage 
layout module is configured to spread the encoded data frag 
ments across as many storage devices as possible, e.g., to 
provide better storage resiliency to the data object. After the 
storage layout is determined, the hierarchical storage node 
stores the encoded data fragments at the identified storage 
devices (block 1333). 
0157. In some embodiments, the front-end subsystem 310 
also stores the metadata of the data object with the data 
segments and/or fragments. Additional details with respect to 
the process of storing the metadata is described at least with 
reference to FIGS. 9 and 17. 
0158 FIG. 14 is a flow diagram of a process 1400 of 
reading data from an object-based storage system using hier 
archical spreading storage architecture, consistent with vari 
ous embodiments of the disclosed technology. In some 
embodiments, the process 1400 may be implemented in envi 
ronment 300 of FIG.3, and using the storage system 1100 of 
FIG. 11. The process 1400 begins at block 1405, and at block 
1410, a request module 416 of the frontend subsystem 310 
receives a read request, e.g., from a client system 312a, for 
obtaining a data object. In some embodiments, the read 
request includes an object identifier of the data object. 
0159. At block 1415, the fragment/segment identification 
module 422, determines the encoded data segments of the 
data object using the object identifier. In some embodiments, 
a mapping of the object identifier and the encoded data seg 
ments are stored in the mapping structure 414 in the staging 
area 408. 

0160. At block 1420, the storage layout module 420 deter 
mines the storage layout of the encoded data segments using 
the mapping obtained from the mapping structure 414. The 
storage layout can include identification information of the 
hierarchical storage nodes where each of the encoded data 
segments are stored. 
(0161. At block 1425, the transceiver module 432 identifies 
the hierarchical storage nodes that store sufficient number of 
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the encoded data segments required to generate the data 
object. In some embodiments, the sufficient number of 
encoded data segments is k number of the encoded data 
segments. In some embodiments, the transceiver module 432 
can obtain k to n' number of segments. For example, the 
transceiver module 432 can stop fetching the segments after 
obtaining the first k'segments. In another example, the trans 
ceiver module 432 can fetch all the n' segments but use only 
the first k'segments for regenerating the data object. 
0162. Further, the transceiver module 432 can preferen 

tially select a subset of the identified hierarchical storage 
nodes to obtain the segments from. The transceiver module 
432 can select a hierarchical storage node based on a number 
of factors, e.g., a read latency of the hierarchical storage node, 
type of the storage devices associated with hierarchical Stor 
age node, number of pending read requests ahead of the 
current read requestina read request queue of the hierarchical 
storage node, a geographical location of the hierarchical stor 
age node. 
0163. After the hierarchical storage nodes are identified, 
the transceiver module 432 requests each of the hierarchical 
storage nodes for the data segment. 
(0164. At block 1430, each of the identified hierarchical 
storage nodes performs a number of steps, e.g., 1431-1433, to 
obtain the data segment. At block 1431, the hierarchical stor 
age node determines from a storage layout of the fragments, 
the set of storage devices that store sufficient number of the 
encoded data fragments required to generate the data seg 
ment. In some embodiments, the Sufficient number of 
encoded data fragments is k number of the encoded data 
fragments. In some embodiments, the hierarchical storage 
node can obtaink to n number of fragments. For example, the 
hierarchical storage node can stop fetching the fragments 
after obtaining the first k fragments. In another example, the 
hierarchical storage node can fetch all then fragments but use 
only the first k fragments for regenerating the data segment. 
0.165. Further, the hierarchical storage node can preferen 

tially select a subset of the identified storage devices to obtain 
the fragments from. The hierarchical storage node can select 
a storage device based on a number of factors, e.g., a read 
latency of the storage device, a type of the storage device, 
number of pending read requests ahead of the current read 
request in a read request queue of the storage device, a geo 
graphical location of the storage device. At block 1432, the 
hierarchical storage node obtains the sufficient number of 
fragments from the identified set of storage devices. 
0166. At block 1433, after obtaining the encoded data 
fragments, the hierarchical storage node decodes the encoded 
data fragments, e.g., based on the erasure coding method used 
to encode the data segment, to generate the data segment. 
After generating the data segment, the hierarchical storage 
node returns the data segment to the front-end subsystem 310. 
In some embodiments, additional processes may be per 
formed before decoding the data fragments. For example, the 
hierarchical storage node can decrypt the encoded data frag 
ments if they were encrypted before being stored. In some 
embodiments, additional processes may be performed on the 
decoded data segment before the data segment is returned to 
the front-end subsystem 310. For example, the hierarchical 
storage node can perform decompression and dededuplica 
tion on the decoded data segment if the data segment was 
deduplicated and compressed. 
0167. After obtaining sufficient number of the encoded 
data segments, at block 1435, the encode/decode module 418 
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of the front-end subsystem 310 decodes the encoded data 
segments, e.g., based on the erasure coding method used to 
encode the data object, to generate the data object. 
0168. At block 1440, the transceiver module 432 transmits 
the data object in response to the read request, e.g., to the 
client system 312a, and the process 1400 returns. In some 
embodiments, additional processes may be performed before 
decoding the data segments. For example, the storage pro 
cessing module 430 can decrypt the encoded data segments if 
they were encrypted before being stored. In some embodi 
ments, additional processes may be performed on the 
decoded data object before it is returned to the client 312a. 
For example, the storage processing module 430 can perform 
decompression and de-deduplication on the decoded data 
object if the data object was deduplicated and compressed. 
(0169 FIG. 15 is a flow diagram of a process 1500 of 
rebuilding data fragments of a data object in hierarchical 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. In some embodi 
ments, the process 1500 may be implemented in environment 
300 of FIG. 3, and using the storage system 1100 of FIG. 11. 
In some embodiments, the data fragments stored in the Stor 
age subsystem 306 may be lost due to a failure of a storage 
device. The process 1500 begins at block 1505, and at block 
1510, a hierarchical storage node detects a failure of a storage 
device, e.g., storage device 304, associated with the hierar 
chical storage node. In some embodiments, the failure can be 
one or more of the storage device being not accessible, the 
storage device being physically damaged, the storage device 
determined to fail in a specified period, the storage device 
determined to fail in a specified number of read/write opera 
tions, etc. 
(0170 At block 1515, the hierarchical storage node identi 
fies the encoded data fragments that were stored at the storage 
device. For example, the hierarchical storage node can refer 
to the storage layout to determine the fragments stored at the 
storage device that has failed. 
0171 At block 1520, the hierarchical storage node identi 

fies the one or more data segments corresponding to the 
identified encoded data fragments. For example, the hierar 
chical storage node can refer to the mapping structure to 
determine the data segments associated with the identified 
encoded data fragments. 
(0172. At block 1525, the hierarchical storage node 
rebuilds some or all of the encoded data fragments that was 
stored at the storage device that failed. In some embodiments, 
rebuilding the data fragments include performing the method 
described in association with blocks 1526-1530 for each of 
the identified data segments. 
0173 At block 1526, the hierarchical storage node identi 

fies the storage devices where the data fragments of the iden 
tified data segment are stored. The hierarchical storage node 
may use the storage layout determined by the storage layout 
module of the node to identify the storage devices that store 
the data fragments of the data segment. At block 1527, the 
hierarchical storage node computes the current storage resil 
iency of the data segment. In some embodiments, storage 
resiliency is defined as a resistance to loss of one or more 
storage devices storing a portion of a data segment or resis 
tance to loss of one or more fragments of the data segment. In 
Some embodiments, a current storage resiliency of a data 
segment is determined as a function of the number of frag 
ments remaining out of n fragments and k. For example, if n 
is “10. k is “8” the number of redundant fragments, m is “2. 
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and therefore, the storage resiliency can be calculated as 25% 
(m/k* 100). Note that the storage resiliency can be calculated 
using other functions and based on several other parameters. 
The storage system 1100 may guarantee a storage resiliency 
range to the clients of the storage system, for example, a 
minimum storage resiliency and a maximum storage resil 
iency. In some embodiments, the storage resiliency range is 
part of the SLO guaranteed to the clients. In some embodi 
ments, the storage system 1100 may not rebuild the lost data 
fragments until the current storage resiliency of the data seg 
ment is or below the minimum storage resiliency. 
0.174. At determination block 1528, the hierarchical stor 
age node determines if the current storage resiliency of the 
data segment is less than the minimum storage resiliency. 
Responsive to a determination that the current storage resil 
iency of the data segment is not less than the minimum storage 
resiliency, the process 1500 returns. On the other hand, 
responsive to a determination that the current storage resil 
iency is less than the minimum storage resiliency, at block 
1529, the hierarchical storage node obtains sufficient number 
of fragments of the data segment stored at the identified 
storage devices (e.g., identified in block 1526). In some 
embodiments, the hierarchical storage node can obtain the 
minimum number of fragments required to rebuild the data 
fragments. 
0.175. At block 1529, the hierarchical storage node gener 
ates the replacement data fragments as a function of the 
obtained data fragments, and at block 1530, the hierarchical 
storage node stores the regenerated data fragments in at least 
a Subset of the remaining storage devices. In some embodi 
ments, the hierarchical storage node regenerates as many data 
fragments as required to meet a specified Storage resiliency, 
which can be up to maximum storage resiliency. In some 
embodiments, regenerating the data fragments as a function 
of the obtained data fragments includes decoding the 
obtained data fragments to generate the data segment and 
encoding the generated data segment to generate the specified 
number of data fragments. In some embodiments, the hierar 
chical spreading storage performs the encoding and decoding 
using an erasure coding method. 
(0176 FIG. 16 is a flow diagram of a process 1600 of 
rebuilding data segments of a data object in hierarchical 
spreading storage architecture, consistent with various 
embodiments of the disclosed technology. In some embodi 
ments, the process 1600 may be implemented in environment 
300 of FIG.3, and using the storage system 1100 of FIG. 11. 
In some embodiments, the data segments stored by a hierar 
chical storage node may be lost due to a failure of a storage 
device and/or a hierarchical storage node. The process 1600 
begins at block 1605, and at block 1610, a failure detection 
module 424 of front-end subsystem 310 detects a failure of a 
hierarchical storage node and/or a failure of one or more 
storage devices of the hierarchical storage node that caused 
the storage resiliency of a particular data segment to drop. In 
some embodiments, the failure can be one or more of the 
storage device being not accessible, the storage device being 
physical damaged, the hierarchical storage node not being 
accessible, the storage device determined to fail in a specified 
period, the storage device determined to fail in a specified 
number of read/write operations, etc. 
0177. At block 1615, the fragment/segment identification 
module 422 identifies the encoded data segment stored by the 
hierarchical storage device. For example, the fragment/seg 
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ment identification module 422 can refer to the storage layout 
to determine the segments stored at the particular hierarchical 
storage node that has failed. 
0.178 At block 1620, the fragment/segment identification 
module 422 identifies the data object to which the encoded 
data segment corresponds. For example, the fragment/seg 
ment identification module 422 can refer to the mapping 
structure to determine the data segments associated with the 
identified data object. 
0179 At determination block 1625, the regeneration mod 
ule 428 computes the current storage resiliency of the data 
object and determines if the storage resiliency of the object is 
below the specified minimum storage resiliency. In some 
embodiments, a current storage resiliency of a data object is 
determined as a function of the number of segments remain 
ing out of n'segments and k". For example, if n' is “10 k' is 
“8” the number of redundant segments, m' is 2, and therefore, 
the storage resiliency can be calculated as 25% (m/k* 100). 
Note that the storage resiliency can be calculated using other 
functions and based on several other parameters. In some 
embodiments, the storage system 1100 may not rebuild the 
lost data segments until the current storage resiliency of the 
data object is or below the minimum storage resiliency. 
0180 Responsive to a determination that the current stor 
age resiliency of the data object is not less than the minimum 
storage resiliency, the process 1600 returns. On the other 
hand, responsive to a determination that the current storage 
resiliency is less than the minimum storage resiliency, at 
block 1630, the transceiver module 432 obtains sufficient 
number of segments of the data object stored at other hierar 
chical storage nodes. In some embodiments, the transceiver 
module 432 obtains the segments of the data object stored at 
other hierarchical storage nodes as described with at least 
with reference to blocks 1425-1433 of FIG. 14. 
0181 At block 1635, the regeneration module 428 gener 
ates the replacement data segment as a function of the 
obtained data segments. In some embodiments, the regenera 
tion module 428 generates as many data segments as required 
to meet a specified storage resiliency for the data object, 
which can be up to a specified maximum storage resiliency of 
the data object. In some embodiments, regenerating the data 
segments as a function of the obtained data segments includes 
decoding the obtained data segments to generate the data 
object and encoding the generated data object to generate the 
specified number of data segments. In some embodiments, 
the hierarchical spreading storage performs the encoding and 
decoding using an erasure coding method. 
0182. At block 1640, the transceiver module 432 sends the 
regenerated data segments to one or more of the remaining 
storage devices for storage at their associated storage devices. 
In some embodiments, the transceiver module 432 transmits 
the replacement data segments of the data object to other 
hierarchical storage nodes as described with at least with 
reference to blocks 1320-1333 of FIG. 13. 
0183 FIG. 17 is a flow diagram of a process 1700 of 
deferred rebuilding of data segments of a data object in the 
hierarchical spreading storage architecture, consistent with 
various embodiments of the disclosed technology. In some 
embodiments, the process 1700 may be implemented in envi 
ronment 300 of FIG.3, and using the storage system 1100 of 
FIG. 11. The rebuilding/regeneration process 1600 can con 
Sume significant system resources for regenerating the 
encoded data segments, e.g., network resources for reading at 
least k number of encoded data segments from other hierar 
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chical storage nodes, computing resources of the correspond 
ing hierarchical storage nodes in obtaining the fragments of 
the corresponding data segment and decoding them to gener 
ate the encoded data segment, etc. In some embodiments, the 
consumption of the system resources can be minimized by 
postponing or deferring the regeneration process 1600 until a 
later time, e.g., when the storage devices are replaced with 
new storage devices, when the data in the storage devices is 
migrated, etc. 
0184. In some embodiments, the generation of replace 
ment data segments for the lost data segments is deferred until 
after one or more of the failed storage devices and/or one or 
more of the hierarchical storage nodes is replaced. That is, the 
regeneration process may not be executed during the lifetime 
of the storage devices and/or the hierarchical storage nodes. 
In some embodiments, the timing of the regeneration process 
is controlled based on m', the number of redundant encoded 
data segments to be generated. As described above at least 
with reference to the regeneration process 1600, the regen 
eration process 1600 is triggered when the current storage 
resiliency of the data object drops below the minimum stor 
age resiliency. The storage resiliency of a data object is a 
function of the total number of encoded data segments, n', 
stored across the hierarchical storage nodes, which is a func 
tion of m'. The m' can be determined such that the storage 
resiliency of the data object does not drop below the mini 
mum storage resiliency during the lifespan of one or more of 
the storage devices. In other words, the number of encoded 
data segments generated are such that a loss of a subset of the 
encoded data segments does not drop the storage resiliency of 
the data object below the minimum storage resiliency during 
the lifespan of one or more of the storage devices. The fol 
lowing paragraphs describe the process 1700 in further detail. 
0185. The process 1700 begins at block 1705, and at block 
1710, the regeneration module 428 obtains the historical 
information regarding a failure rate of storage devices of the 
type of the storage devices in the environment 300. The his 
torical information can include a number of parameters that 
can describe and/or help determine the failure information of 
a storage device, e.g., an annual failure rate (AFR) of the 
storage device of a particular type, an AFR of the storage 
device based on a particular workload on the storage device, 
how long a storage device is expected to Survive based on a 
particular workload. Such historical information can be gath 
ered from various sources, gathered from the environment 
300 over a period and/or can be input by a user such as an 
administrator of the environment 300. 
0186. At block 1715, the regeneration module 428 pre 
dicts the failure rate of the storage devices in the environment 
300 and generates the predicted information. The regenera 
tion module 428 can interpolate the historical information 
with various parameters of the storage devices in the environ 
ment 300, e.g., the number of storage devices in the environ 
ment 300, a workload of the storage devices, the number of 
read/write operations performed on the storage devices, a 
remaining life of the storage devices, and determine the pre 
dicted failure rate of the storage devices. 
0187. At block 1720, the regeneration module 428 deter 
mines the lifespan of the storage devices as a function of the 
historical information and the predicted information. At 
block 1725, the regeneration module 428 determines a statis 
tical probability of a loss of a failure of one or more hierar 
chical storage nodes based on the determined lifespan of the 
storage devices. In some embodiments, a failure/loss of a 
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hierarchical storage node is a function of the lifespan of the 
set of storage devices associated with the hierarchical storage 
node since a failure of one or more storage devices from the 
set can result in a failure of the hierarchical storage node. 
Further, a failure of the hierarchical storage node can result in 
a loss of the encoded data segment stored at the hierarchical 
storage node. 
0188 At block 1730, the regeneration module 428 deter 
mines the redundant number of encoded data segments, m', to 
be generated for the data object based on the statistical prob 
ability of the loss of the hierarchical storage node. The regen 
eration module 428 notifies the encode/decode module 418 
regarding the determined m', and the encode/decode module 
418 encodes the data object to generate the encoded data 
segments accordingly. 
0189 In some embodiments, the regeneration module 428 
may continuously adjust m', e.g., based on a specified sched 
ule or certain events such as when storage devices are added 
or removed, to factor in any change in the parameters of the 
environment 300, e.g., change in workload on the storage 
devices, addition or removal or storage devices, etc. 
(0190. Note that although the process 1700 is described as 
being performed by the regeneration module 428, the process 
1700 can be performed by a combination of modules of the 
front-end subsystem 310 and/or sub-modules of the regen 
eration module 428 (not illustrated). 
(0191 FIG. 18 is a flow diagram of a process 1800 of 
processing metadata and data fragments of a data object in 
hierarchical spreading storage architecture, consistent with 
various embodiments of the disclosed technology. In some 
embodiments, the process 1800 may be implemented in envi 
ronment 300 of FIG.3, and using the storage system 1100 of 
FIG. 11. In some embodiments, the process 1800 is an imple 
mentation of the method of block 925 of FIG. 9. The data 
piece generated in the process 900 of FIG. 9, e.g., in block 
920, can be considered as a data segment in the hierarchical 
spreading storage architecture. The process 1800 begins at 
block 1805, and at block 1810, the metadata processing mod 
ule 426 combines the metadata of a data object, e.g., metadata 
510, with each of the segments, e.g., segments 1205, togen 
erate composite segments, e.g., composite segments 1210. In 
Some embodiments, combining the metadata with data seg 
ment can include concatenating the metadata with segment or 
prefixing a segment with the metadata. In some embodi 
ments, the metadata 510 combined with segment can be a 
subset of the metadata of the data object 405. 
0.192 After the composite segments are generated, at 
block 1815, the transceiver module 432 transmits the com 
posite segments to a number of hierarchical storage nodes, 
e.g., as described at least with reference to blocks 1320 and 
1325 of FIG. 13 for further storage at a set of storage devices 
associated with the hierarchical storage nodes. 
0193 At block 1820, when a particular hierarchical stor 
age node receives a composite data segment, it encodes the 
composite data segment to generate a number of data frag 
ments, e.g., fragments 1215 (block 1821). In some embodi 
ments, the composite data segment is encoded to generate a 
number of data fragments as described at least with reference 
to block 1331 of FIG. 13. 
0194 At block 1822, the particular hierarchical storage 
node combines each of the fragments with the metadata, e.g., 
concatenates or prefixes the fragments 1215 with the meta 
data 510, to generate the composite fragments, e.g., compos 
ite fragments 1220. 
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0.195. After the composite fragments are generated, at 
block 1823, the particular hierarchical storage node stores the 
composite fragments at a set of storage devices associated 
with the hierarchical storage node, e.g., as described with 
reference to blocks 1332 and 1333 of FIG. 13. 
0196. Note that although FIG. 18 illustrates combining 
metadata 510 with both the data segments and the fragments, 
the metadata 510 can be combined with either the data seg 
ments or the data fragments. 
0.197 FIG. 19 is a block diagram of a computer system as 
may be used to implement features of Some embodiments of 
the disclosed technology. The computing system 1900 may 
be used to implement any of the entities, components or 
services depicted in the examples of FIGS. 1-17 (and any 
other components described in this specification). The com 
puting system 1900 may include one or more central process 
ing units (“processors') 1905, memory 1910, input/output 
devices 1925 (e.g., keyboard and pointing devices, display 
devices), storage devices 1920 (e.g., disk drives), and net 
work adapters 1930 (e.g., network interfaces) that are con 
nected to an interconnect 1915. The interconnect 1915 is 
illustrated as an abstraction that represents any one or more 
separate physical buses, point to point connections, or both 
connected by appropriate bridges, adapters, or controllers. 
The interconnect 1915, therefore, may include, for example, 
a system bus, a Peripheral Component Interconnect (PCI) bus 
or PCI-Express bus, a HyperTransport or industry standard 
architecture (ISA) bus, a small computer system interface 
(SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an 
Institute of Electrical and Electronics Engineers (IEEE) stan 
dard 1394 bus, also called “Firewire'. 
(0198 The memory 1910 and storage devices 1920 are 
computer-readable storage media that may store instructions 
that implement at least portions of the described technology. 
In addition, the data structures and message structures may be 
stored or transmitted via a data transmission medium, Such as 
a signal on a communications link. Various communications 
links may be used, such as the Internet, a local area network, 
a wide area network, or a point-to-point dial-up connection. 
Thus, computer readable media can include computer-read 
able storage media (e.g., “non-transitory' media) and com 
puter-readable transmission media. 
(0199 The instructions stored in memory 1910 can be 
implemented as Software and/or firmware to program the 
processor(s) 1905 to carry out actions described above. In 
Some embodiments, such software or firmware may be ini 
tially provided to the computing system 1900 by download 
ing it from a remote system through the computing system 
1900 (e.g., via network adapter 1930). 
0200. The technology introduced herein can be imple 
mented by, for example, programmable circuitry (e.g., one or 
more microprocessors) programmed with Software and/or 
firmware, or entirely in special-purpose hardwired (non-pro 
grammable) circuitry, or in a combination of Such forms. 
Special-purpose hardwired circuitry may be in the form of 
for example, one or more ASICs, PLDs, FPGAs, etc. 

Remarks 

0201 The above description and drawings are illustrative 
and are not to be construed as limiting. Numerous specific 
details are described to provide a thorough understanding of 
the disclosure. However, in some instances, well-known 
details are not described in order to avoid obscuring the 
description. Further, various modifications may be made 
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without deviating from the scope of the embodiments. 
Accordingly, the embodiments are not limited except as by 
the appended claims. 
0202 Reference in this specification to “one embodiment' 
or “an embodiment’ means that aparticular feature, structure, 
or characteristic described in connection with the embodi 
ment is included in at least one embodiment of the disclosure. 
The appearances of the phrase “in one embodiment in vari 
ous places in the specification are not necessarily all referring 
to the same embodiment, nor are separate or alternative 
embodiments mutually exclusive of other embodiments. 
Moreover, various features are described which may be 
exhibited by some embodiments and not by others. Similarly, 
various requirements are described which may be require 
ments for some embodiments but not for other embodiments. 
0203 The terms used in this specification generally have 
their ordinary meanings in the art, within the context of the 
disclosure, and in the specific context where each term is 
used. Some terms that are used to describe the disclosure are 
discussed below, or elsewhere in the specification, to provide 
additional guidance to the practitioner regarding the descrip 
tion of the disclosure. For convenience, some terms may be 
highlighted, for example usingitalics and/or quotation marks. 
The use of highlighting has no influence on the scope and 
meaning of a term; the scope and meaning of a term is the 
same, in the same context, whether or not it is highlighted. It 
will be appreciated that the same thing can be said in more 
than one way. One will recognize that “memory” is one form 
of a “storage” and that the terms may on occasion be used 
interchangeably. 
0204 Consequently, alternative language and synonyms 
may be used for any one or more of the terms discussed 
herein, nor is any special significance to be placed upon 
whether or not a term is elaborated or discussed herein. Syn 
onyms for some terms are provided. A recital of one or more 
synonyms does not exclude the use of other synonyms. The 
use of examples anywhere in this specification including 
examples of any term discussed herein is illustrative only, and 
is not intended to further limit the scope and meaning of the 
disclosure or of any exemplified term. Likewise, the disclo 
Sure is not limited to various embodiments given in this speci 
fication. 
0205 Those skilled in the art will appreciate that the logic 
illustrated in each of the flow diagrams discussed above, may 
be altered in various ways. For example, the order of the logic 
may be rearranged, Substeps may be performed in parallel, 
illustrated logic may be omitted; other logic may be included, 
etc. 

0206 Without intent to further limit the scope of the dis 
closure, examples of instruments, apparatus, methods and 
their related results according to the embodiments of the 
present disclosure are given below. Note that titles or subtitles 
may be used in the examples for convenience of a reader, 
which in no way should limit the scope of the disclosure. 
Unless otherwise defined, all technical and scientific terms 
used herein have the same meaning as commonly understood 
by one of ordinary skill in the art to which this disclosure 
pertains. In the case of conflict, the present document, includ 
ing definitions will control. 

I/we claim: 
1. A computer-implemented method comprising: 
identifying, at a storage management computer node of a 

storage management system, a specified storage device, 
the specified storage device being one of multiple stor 
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age devices associated with the storage management 
system, the storage management system storing a data 
object of multiple data objects as a first set of encoded 
data fragments, the first set of encoded data fragments 
stored across the storage devices; 

identifying, by the storage management computer node, 
one or more of the data objects to which multiple 
encoded data fragments stored at the specified storage 
device correspond, the identifying including identifying 
that a group of the encoded data fragments correspond to 
the data object, the group of the encoded data fragments 
being part of the first set of encoded data fragments; and 

regenerating, by the storage management computer node, a 
Subset of the encoded data fragments as a function of a 
second set of encoded fragments representing the data 
object, the second set of encoded fragments being a 
difference between the first set of encoded data frag 
ments and the group of the encoded data fragments, the 
second set of encoded data fragments stored at a first set 
of the storage devices, the first set of the storage devices 
excluding the specified storage device. 

2. The computer-implemented method of claim 1 further 
comprising: 

storing, by the storage management computer node, the 
regenerated Subset of the encoded data fragments at a 
second set of the storage devices, the second set of the 
storage devices excluding the specified storage device. 

3. The computer-implemented method of claim 2, wherein 
the first set of the storage devices from which the storage 
management computer node obtains the Subset of the 
encoded data fragments is same as the second set of the 
storage devices. 

4. The computer-implemented method of claim 2, wherein 
the first set of the storage devices from which the storage 
management computer node obtains the Subset of the 
encoded data fragments is different from the second set of the 
storage devices. 

5. The computer-implemented method of claim 1, wherein 
the first set of encoded fragments is generated by encoding the 
data object, the first set of encoded fragments including a first 
specified number of encoded data fragments out of which a 
second specified number of encoded data fragments is 
required for regenerating the data object. 

6. The computer-implemented method of claim 5, wherein 
regenerating the Subset of the encoded data fragments 
includes: 

obtaining, from the first set of the storage devices, at least 
the second specified number of encoded fragments from 
the second set of encoded data fragments, 

decoding, by the storage management computer node, the 
at least the second specified number of encoded data 
fragments to regenerate the Subset of the encoded data 
fragments, and 

storing, by the storage management computer node, the 
Subset of the encoded data fragments at a second set of 
the storage devices, the second set of the storage devices 
excluding the specified storage device. 

7. The computer-implemented method of claim 6, wherein 
the decoding is executed as a function of an erasure coding 
technique. 

8. The computer-implemented method of claim 5, wherein 
the regenerating includes: 

determining a specified storage resiliency of the data 
object, 
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determining a current storage resiliency of the data object, 
and 

generating the Subset of the encoded data fragments corre 
sponding to the data object if the current storage resil 
iency is below the specified storage resiliency by a speci 
fied value. 

9. The computer-implemented method of claim 8, wherein 
the specified storage resiliency is a function of the first speci 
fied number of encoded data fragments and the second speci 
fied number of encoded data fragments. 

10. The computer-implemented method of claim 8, 
wherein the current storage resiliency is a function of a num 
ber of encoded fragments in the second set of encoded data 
fragments and the second specified number of encoded data 
fragments. 

11. The computer-implemented method of claim 1, 
wherein regenerating the group of the encoded data frag 
ments includes regenerating the Subset of the encoded frag 
ments as a background process in the storage management 
computer node. 

12. The computer-implemented method of claim 1, 
wherein regenerating the group of the encoded data frag 
ments includes regenerating the Subset of the encoded frag 
ments before the specified storage device is replaced with a 
replacement storage device. 

13. The computer-implemented method of claim 12, 
wherein the replacement storage device is used for storing a 
collection of encoded data fragments other than the subset of 
the encoded data fragments. 

14. The computer-implemented method of claim 1 further 
comprising: 

detecting, by the storage management computer node, an 
addition of a replacement storage device, the replace 
ment storage device replacing the specified storage 
device; and 

using, by the storage management computer node, the first 
storage device to store a collection of encoded data 
fragments other than the subset of the encoded data 
fragments. 

15. The computer-implemented method of claim 14, 
wherein the replacement storage device has a different Stor 
age capacity from that of the specified storage device. 

16. The computer-implemented method of claim 1, 
wherein identifying the one or more of the data objects to 
which the encoded data fragments stored at the specified 
storage device correspond includes: 

determining, by the storage management computer node, a 
storage layout of the encoded data fragments, the storage 
layout including an identification information of the 
storage devices at which each of the encoded data frag 
ments is stored. 

17. The computer-implemented method of claim 16, 
wherein identifying that the group of the encoded data frag 
ments correspond to the data object includes: 

determining, by the storage management computer node, 
the data object based on a mapping in the storage layout, 
the mapping including a mapping of the data object to 
the subset of the encoded data fragments of the data 
object. 

18. The computer-implemented method of claim 16 further 
comprising: 

updating, by the storage management computer node, the 
storage layout to indicate that the Subset of the encoded 
data fragments is stored at a second set of the storage 
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devices, the second set of the storage devices excluding 
the specified storage device. 

19. The computer-implemented method of claim 1, 
wherein the data object is encoded to the first set of encoded 
data fragments as a function of an erasure coding technique. 

20. The computer-implemented method of claim 1, 
wherein identifying the specified storage device includes 
identifying at least one of the storage devices that has failed, 
inaccessible or determined to fail. 

21. A computer-implemented method comprising: 
identifying, at a storage management computer node of a 

storage management system, a specified storage device 
of a set of storage devices associated with a storage 
computer node, the storage management computer node 
encoding a data object of multiple data objects to gen 
erate multiple encoded data segments, the storage com 
puter node storing an encoded data segment of the 
encoded data segments as a set of encoded data frag 
ments in the set of storage devices, the set of encoded 
data fragments including a first specified number of 
encoded data fragments out of which a second specified 
number of encoded data fragments is required for regen 
erating the encoded data segment, 

wherein the storage computer node is one of multiple stor 
age computer nodes, each of the storage computer nodes 
encoding at least one of the encoded data segments to 
generate a corresponding set of encoded data fragments 
and storing the corresponding set of encoded data frag 
ments in a corresponding set of Storage devices: 

determining, using the storage computer node, an encoded 
data fragment of a group of encoded data fragments 
stored at the specified storage device, the group of 
encoded data fragments corresponding to one or more 
encoded data segments of one or more of the data 
objects; 

identifying, by the storage computer node, the encoded 
data segment to which the encoded data fragment cor 
responds; and 

generating, by the storage computer node, a replacement 
encoded data fragment as a function of at least the Sec 
ond specified number of encoded data fragments stored 
at one or more of a remaining set of the set of storage 
devices. 

22. The computer-implemented method of claim 21 further 
comprising: 

storing, by the storage management computer node, the 
replacement encoded data fragment at one of the one or 
more of the remaining set of the set of storage devices. 

23. The computer-implemented method of claim 21, 
wherein generating the replacement encoded data fragment 
includes: 

obtaining, the at least the second specified number of 
encoded data fragments from the one or more of the 
remaining set of the set of storage devices, 

encoding, by the storage computer node, the at least the 
second specified number of the encoded data fragments 
to generate the replacement encoded data fragment, and 

storing, by the storage computer node, the replacement 
encoded data fragment at one of the one or more of the 
remaining set of the set of storage devices. 

24. The computer-implemented method of claim 23, 
wherein the encoding is executed as a function of an erasure 
coding technique. 
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25. The computer-implemented method of claim 21, 
wherein the generating includes: 

determining a specified storage resiliency of the encoded 
data segment, 

determining a current storage resiliency of the encoded 
data segment, and 

generating the replacement encoded data fragment if the 
current storage resiliency is below the specified storage 
resiliency by a specified value. 

26. The computer-implemented method of claim 21 further 
comprising: 

detecting, by the storage management computer node, a 
failure of the storage computer node: 

identifying, by the storage management computer node, 
the data object to which the encoded data segment stored 
by the storage computer node corresponds; and 

generating, by the storage management computer node, a 
replacement encoded data segment for the data object as 
a function of at least a third specified number of encoded 
data segments of the data object stored at a remaining set 
of the storage computer nodes. 

27. The computer-implemented method of claim 26, 
wherein generating the replacement encoded data segment 
includes: 

obtaining, from the remaining set of the storage computer 
nodes, at least the third specified number of encoded 
data segments, wherein the data object is encoded to 
generate a fourth specified number of encoded data seg 
ments, which includes the third specified number of 
encoded data segments required for generating the 
encoded data segment, 

encoding, by the storage management computer node, the 
at least the third specified number of encoded data seg 
ments to generate the replacement encoded data seg 
ment, and 

sending, by the storage management computer node, the 
replacement encoded data segment to one of the remain 
ing set of the storage computer nodes for further storage 
at a first set of storage devices associated with the one of 
the remaining set of the storage computer nodes. 

28. The computer-implemented method of claim 27, 
wherein obtaining a first encoded data segment of the at least 
the third specified number of encoded data segments 
includes: 

obtaining, from a first storage computer node of the 
remaining set of the storage computer nodes that stores 
the first encoded data segment, a first set of encoded data 
fragments corresponding to the first encoded data seg 
ment, and 

decoding the first set of encoded data fragments to generate 
the first encoded data segment. 

29. The computer-implemented method of claim 26 further 
comprising: 

storing, by one of the remaining set of the storage computer 
nodes, the replacement encoded data segment as a first 
set of encoded data fragments. 
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30. A system comprising: 
a processor; 
a first module configured to identify a specified storage 

device, the specified storage device being one of mul 
tiple storage devices associated with the system, the 
System storing a data object of multiple data objects as a 
first set of encoded data fragments, the set of encoded 
data fragments stored across the storage devices; 

a second module configured to identify one or more of the 
data objects to which multiple encoded data fragments 
stored at the specified storage device correspond, the 
identifying including identifying that a subset of the 
encoded data fragments correspond to the data object, 
the subset of the encoded data fragments being part of 
the first set of encoded data fragments; and 

a third module configured to regenerate the subset of the 
encoded data fragments as a function of a second set of 
encoded fragments representing the data object, the sec 
ond set of encoded fragments being a difference between 
the first set of encoded data fragments and the subset of 
the encoded data fragments, the second set of encoded 
data fragments stored at a first set of the storage devices, 
the first set of the storage devices excluding the specified 
storage device. 

31. A system comprising: 
a processor; 
a first module configured to identify a specified storage 

device of a set of storage devices associated with a 
storage computer node, the system encoding a data 
object to generate multiple encoded data segments, the 
storage computer node storing an encoded data segment 
of the encoded data segments as a set of encoded data 
fragments in the set of storage devices, the set of 
encoded data fragments including a first specified num 
ber of encoded data fragments out of which a second 
specified number of encoded data fragments is required 
for regenerating the encoded data segment, 
wherein the storage computer node is one of multiple 

storage computer nodes, each of the storage computer 
nodes encoding at least one of the encoded data seg 
ments to generate a corresponding set of encoded data 
fragments and storing the corresponding set of 
encoded data fragments in a corresponding set of 
storage devices: 

a second module configured to cause the storage computer 
node to determine an encoded data fragment of a group 
of encoded data fragments stored at the specified storage 
device; 

a third module configured to cause the storage computer 
node to identify the encoded data segment to which the 
encoded data fragment corresponds; and 

a fourth module configured to cause the storage computer 
node to generate a replacement encoded data fragment 
as a function of at least the second specified number of 
encoded data fragments stored at one or more of a 
remaining set of the set of storage devices. 
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