
US 2016.0062833A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0062833 A1

Slik (43) Pub. Date: Mar. 3, 2016

(54) REBUILDING A DATA OBJECT USING (52) U.S. Cl.
PORTIONS OF THE DATA OBJECT CPC G06F 1 1/1076 (2013.01); G06F 17730312

(2013.01); G06F 3/0619 (2013.01); G06F
(71) Applicant: NetApp., Inc., Sunnyvale, CA (US) 3/064 (2013.01); G06F 3/0683 (2013.01)

(72) Inventor: David Slik, Northridge, CA (US) (57) ABSTRACT
Technology is disclosed for a data storage architecture for

(21) Appl. No.: 14/476,620 providing enhanced storage resiliency for a data object. The
data storage architecture can be implemented in a single-tier

(22) Filed: Sep. 3, 2014 configuration and/or a multi-tier configuration. In the single
tier configuration, a data object is encoded, e.g., based on an

Related U.S. Application Data erasure coding method, to generate many data fragments,
which are stored across many storage devices. In the multi

(63) Continuation of application No. 14/475,376, filed on tier configuration, a data object is encoded, e.g., based on an
Sep. 2, 2014. erasure coding method, to generate many data segments,

which are sent to one or more tiers of storage nodes. Each of
Publication Classification the storage nodes further encodes the data segment to gener

ate many data fragments representing the data segment,
(51) Int. Cl. which are stored across many storage devices associated with

G06F II/It (2006.01) the storage node. The I/O operations for rebuilding the data in
G06F 3/06 (2006.01) case of device failures is spread across many storage devices,
G06F 7/30 (2006.01) which minimizes the wear of a given storage device.

100
y

104

110

US 2016/0062833 A1 Sheet 2 of 21 Mar. 3, 2016 Patent Application Publication

FIG. IB

US 2016/0062833 A1 Mar. 3, 2016 Sheet 3 of 21 Patent Application Publication

Z POICH

OZ LISB|- ?OOR

Patent Application Publication Mar. 3, 2016 Sheet 4 of 21 US 2016/0062833 A1

s
9.
C
9.

.9)
T

C
d
er

US 2016/0062833 A1 Mar. 3, 2016 Sheet 5 of 21 Patent Application Publication

909

"ADIAH

[III]

007

US 2016/0062833 A1

Lif
C)

L
O

f
O

f
O

Mar. 3, 2016 Sheet 6 of 21

009

G07

Patent Application Publication

Patent Application Publication Mar. 3, 2016 Sheet 7 of 21 US 2016/0062833 A1

600

605
Storing Data Based on
Widespread Storage

Architecture

610

Receive a write request including a data object

615

EnCOde the data object (e.g., based on an erasure
coding technique to generate N number of encoded
data fragments out of which a minimum of Knumber

of encoded data fragments are required to
regenerate the data object

620
Determine a storage layout of the encoded data
fragments for storing them across a number of

Storage devices

625

Transmit the encoded data fragments to the storage
devices based on the storage layout

630
Store the encoded data fragments at the storage

devices which received the encoded data fragments

FIG. 6

Patent Application Publication Mar. 3, 2016 Sheet 8 of 21 US 2016/0062833 A1

705
Reading Data in

Widespread Storage
Architecture

700

710

Receive a read request for obtaining a data object
stored at a storage Subsystem

715

Determine using the object identifier the encoded
data fragments of the data object

720
Determine a storage layout of the encoded data

fragments, which includes identification information
of the storage devices storing the encoded data

fragments

725
Obtain at least "K" of a "N" total encoded data

fragments generated for the data object from the
identified storage devices

730

Decode the obtained encoded data fragments (e.g.,
based on an erasure Coding technique) to

regenerate the data object

735

Transmit the data object in response to the request

FIG. 7

Patent Application Publication Mar. 3, 2016 Sheet 9 of 21 US 2016/0062833 A1

805
Regenerating Encoded Data
Fragments in Widespread Storage Architecture .

810

Detect a failure of a storage device

815
ldentify one or more data objects corresponding to
the encoded data fragments stored at the storage

device

800

For each of the data objects
821

Determine a storage resiliency of the
data object

Storage resiliency
g

a specified threshold?

Obtain at least a minimum number of
encoded data fragments required to
regenerate the data object from other

storage devices which contain a
remaining set of encoded fragments of

the data object

Generate new replacement encoded
data fragments for the data object as a

function of the remaining set of
encoded fragments to obtain the

specified storage resilience of the data
object

FIG. 8

Patent Application Publication Mar. 3, 2016 Sheet 10 of 21 US 2016/0062833 A1

900

905 .
Storing Metadata with the

DataObject

910

Receive a Write request including a data object

915

Determine metadata of the object

920
Encode the data object to generate multiple encoded

data pieces representing the data object

925

Process the encoded data pieces and the metadata
for storage across a number of storage devices
associated with the storage management system

FIG. 9

Patent Application Publication Mar. 3, 2016 Sheet 11 of 21 US 2016/0062833 A1

1000

1005 .
Processing the Encoded
Data Pieces and the
Metadata for Storage

1010
Concatenate each of the encoded data pieces with
the metadata to generate corresponding combined

encoded data pieces

1015

Store the combined encoded data pieces across
different storage devices

FIG. I0

US 2016/0062833 A1 Mar. 3, 2016 Sheet 12 of 21 Patent Application Publication

||||||||||||||||||||| |||||||||||||||||||||
II (91 H.

[III]

©TF eInpo W ?senbex)

ZI POICH “º ?ae|| tae+| mae | tg | tg | tg | t? || Dae || No.

?TZT

US 2016/0062833 A1

pºpOOLIE

,
G07

Mar. 3, 2016 Sheet 13 of 21 Patent Application Publication

Patent Application Publication Mar. 3, 2016 Sheet 14 of 21

1305
Storing Data in

Hierarchical Storage
Architecture

1310

Receive a write request including a data object

1315
Encode the data object to generate a number of

encoded data segments (e.g., based on an erasure
coding technique) representing the data object

132O
Determine a storage layout for storing the encoded

data segments across a number of storage Computer
nodes associated with the storage management

System

1325

Transmit distinct encoded data segments to different
storage Computer nodes based on the storage layout

1330

At each of the storage computer nodes that receives
an encoded data segment

1331

Encode the encoded data segment to
generate a number of encode data
fragments representing the encoded

data Segment

Determine a storage layout for storing
the encoded data fragments across a
number of storage devices associated

with the storage computer node

Store the encoded data fragments
across the identified storage devices

US 2016/0062833 A1

13OO

.

FIG. I.3

Patent Application Publication Mar. 3, 2016 Sheet 15 of 21 US 2016/0062833 A1

1405
Reading Data Object in
Hierarchical Storage

Architecture

14OO

.
1410

Receive a read request for obtaining a data object
stored at a storage subsystem

1415

Determine multiple encoded data segments of the
data object

1420

Determine from a storage layout of the encoded data
segments a set of storage computer nodes to which

the encoded data segments are distributed

ldentify storage Computer nodes that store at least k
number of a total n' encoded data segments

generated from the data object, where k is the
minimum number o the encoded data segments
using which the data object can be regenerated

FIG. I.4

Patent Application Publication Mar. 3, 2016 Sheet 16 of 21 US 2016/0062833 A1

.
1400

At each of the storage computer nodes to which at
least k number of encoded data segments is

distributed

1431
Determine from a storage layout of the
encoded data fragments the storage
devices Which store at least Knumber
of a total of N encoded data fragments

generated for the encoded data
segment stored at the storage

computer node, K being the minimum
number of encoded data fragments
required for regenerating the data

object

Obtain at least Knumber of encoded
data segments from the storage

devices

Decode the encoded data fragments to
generate the encoded data segment
stored by the storage computer node

Generate the data object as a function of at least the
Knumber of encoded data segments

1440

Transmit the data object in response to the request

FIG. 14 (Continued)

Patent Application Publication Mar. 3, 2016 Sheet 17 of 21 US 2016/0062833 A1

1505 1500 Regenerating DataObject in .
Hierarchical Storage

Architecture

1510
Detect a failure of a storage device
asSociated with a storage Computer

node

1515

Determine a group of encoded data
fragments stored at the storage device

1520
Identify the encoded data segment to

which each of the encoded data
fragments correspond

For each encoded data segment

Determine the storage devices associated with the storage
computer node where the remaining encoded data fragments of the

identified encoded data segment are stored

Determine a storage
resiliency Of the enCOded Generate a replacement

data segment encoded data fragment as
a function of the

remaining encoded data
fragments stored

Storage resiliency
a

a specified threshold? Store the replacement
encoded data fragment in

the remaining set of
storage devices

Patent Application Publication Mar. 3, 2016 Sheet 18 of 21 US 2016/0062833 A1

1605
Regenerating DataObject

in Hierarchical Storage
Architecture

1610

Detect a failure of a storage computer node in a
storage management System

16OO

1615
ldentify an encoded data segment stored by the

storage computer node

1620

ldentify the data object to which the encoded data
segment corresponds

Storage
resiliency

of data object
a

a specified
threshold?

Obtain, from a remaining set of the storage computer
nodes, the remaining encoded data segments of the

data object

Generate a replacement encoded data segment as a
function of the remaining encoded data segments

Send the replacement encoded data segment to one
of the remaining set of the storage computer nodes

for further storage at a set of storage devices
associated with the storage computer node

FIG. I6

Patent Application Publication Mar. 3, 2016 Sheet 19 of 21 US 2016/0062833 A1

1705 1700
Deferred Regeneration in

Hierarchical Storage
Architecture

1710

Obtain historical information regarding a failure rate
of a storage device of a type of the storage devices

of a storage management System

1715
Determine predicted information regarding a failure
rate of the storage devices based on the historical

information

1720
Determine a lifespan of the storage devices as a

function of the historical information and the
predicted information

1725

Determine a statistical probability of a loss of a
storage computer node over the lifespan of the

storage devices

1730
Determine the number of redundant encoded data

segments to be generated for a data object based on
the statistical probability

FIG. I. 7

Patent Application Publication Mar. 3, 2016 Sheet 20 of 21 US 2016/0062833 A1

1805
Processing the Encoded Data
Pieces and the Metadata for

Storage

18OO

.
Concatenate each of the encoded data pieces with
the metadata to generate corresponding combined

encoded data pieces

Transmit the encoded data pieces to a number of
storage computer nodes associated with the storage

management system

At each of the storage computer nodes to which the
encoded data pieces are distributed

1821
Encode an encoded data piece to

generate a number of encoded data
sub-pieces representing the encoded

data piece

Concatenate each of the encoded data
sub-pieces with the metadata to

generate Corresponding Combined
encoded data sub-pieces

Store the Combined enCOded data Sub
pieces across a number of storage
devices associated with the storage

computer node

FIG. 18

Patent Application Publication Mar. 3, 2016 Sheet 21 of 21 US 2016/0062833 A1

,

s
:

s

US 2016/0062833 A1

REBUILDINGADATA OBJECT USING
PORTIONS OF THE DATA OBJECT

CROSS-REFERENCE TO RELATED
APPLICATION(S)

0001. This application is a continuation of U.S. patent
application Ser. No. 14/475,376, entitled “WIDESPREAD
ING DATA STORAGE ARCHITECTURE, filed on Sep. 2,
2014, which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

0002. Several of the disclosed embodiments relate to data
storage, and more particularly, to data storage architecture for
enhanced storage resiliency.

BACKGROUND

0003 Commercial enterprises (e.g., companies) and oth
ers gather, store, and analyze an increasing amount of data.
The trend now is to store and archive almost all data before
making a decision on whether or not to analyze the stored
data. Although the per unit cost associated with storing data
has declined over time, the total costs for storage has
increased for many companies because of the Volumes of
stored data. Hence, it is important for companies to find
cost-effective ways to manage their data storage environ
ments for storing and managing large quantities of data. There
are several problems with traditional approaches to capacity
storage. Most traditional storage systems have difficulty scal
ing to support billions of values, which is far small than the
trillions of objects that customers are storing today.
0004 Traditional data protection mechanisms, e.g.,
RAID, are increasingly ineffective in petabyte-scale systems
as a result of larger drive capacities (without commensurate
increases in throughput), larger deployment sizes (mean time
between faults is reduced) and lower quality drives. The
trends from the hard drive vendors are making traditional
RAID increasingly difficult to implement, and are requiring
complex techniques, e.g., triple parity, declustering. Some of
the storage device trends that push away from traditional data
protection mechanisms include: increasing drive sizes, lower
I/O limits on drives, varying latency (which can slow I/O),
varying capacity (within a given model/drive line, which can
increase inefficiency of traditional RAID, lower drive reli
ability (increased failure rates, and more intense workload
triggered failures). Thus, the traditional data protection
mechanisms are ill-suited for the emerging capacity storage
market needs.
0005. Further, the current data storage systems have com
plex data protection mechanisms, which typically involve
performing a significant amount of I/O on the storage devices
in order to provide a specified storage resiliency. This inten
sive I/O for protection purposes together with the I/O per
formed for providing data access to the customers wears the
storage device much faster and therefore, decreases the
lifespan of the device rapidly. In order to maintain the same
storage resiliency, the storage devices may have to be
replaced with new ones regularly, which can drive up the
Storage costs.
0006. In an object based storage system, certain meta
data, e.g., object size, creation date, owner, etc., are main
tained for each object. In most of the current object storage
systems, this metadata is kept in a database separate from the
object data. Typically, this database is maintained in one or

Mar. 3, 2016

more different servers, e.g., meta-data servers. Ensuring that
the objects themselves are consistent with the metadata in the
metadata server is a difficult problem. The metadata servers
themselves can become a bottleneck in the storage system,
since they have to deal with updates every time an object is
created, modified, or accessed. Typically, there is more than
one meta-data server in order to address this bottleneck, but
also to make sure that the meta-data is durable (not lost). The
more such meta-data servers there are, the bigger the problem
to keep them consistent with one anotheras well as the objects
themselves.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1A is a perspective plan view of a storage shelf
and components therein, consistent with various embodi
mentS.

0008 FIG. 1B is a perspective view of a storage rack of
storage shelves, consistent with various embodiments.
0009 FIG. 2 is a block diagram of a storage shelf, in
accordance with various embodiments.
0010 FIG. 3 is a block diagram illustrating an environ
ment in which a data storage architecture can be imple
mented, consistent with various embodiments.
0011 FIG. 4 is a block diagram of a storage system imple
menting wide spreading storage architecture, consistent with
various embodiments.
0012 FIG. 5 is a block diagram for storing metadata of a
data object with the data object in a storage system of FIG. 4.
consistent with various embodiments.
0013 FIG. 6 is a flow diagram of a process of storing data
to an object-based storage system using the wide spreading
storage architecture, consistent with various embodiments of
the disclosed technology.
0014 FIG. 7 is a flow diagram of a process of reading data
from an object-based storage system using the wide spread
ing storage architecture, consistent with various embodi
ments of the disclosed technology.
0015 FIG. 8 is a flow diagram of a process of rebuilding
data fragments of a data object in the wide spreading Storage
architecture, consistent with various embodiments of the dis
closed technology.
0016 FIG. 9 is a flow diagram of a process of storing
metadata of a data object with the data object in the wide
spreading storage architecture, consistent with various
embodiments of the disclosed technology.
0017 FIG. 10 is a flow diagram of a process of processing
metadata and data fragments of a data object in the wide
spreading storage architecture, consistent with various
embodiments of the disclosed technology.
0018 FIG. 11 is a block diagram of a storage system
implementing hierarchical spreading storage architecture,
consistent with various embodiments.
0019 FIG. 12 is a block diagram for storing metadata of a
data object with the data object in a storage system of FIG. 11,
consistent with various embodiments.
0020 FIG. 13 is a flow diagram of a process of storing data
to an object-based storage system using the hierarchical
spreading storage architecture, consistent with various
embodiments of the disclosed technology.
0021 FIG. 14 is a flow diagram of a process of reading
data from an object-based storage system using the hierarchi
cal spreading storage architecture, consistent with various
embodiments of the disclosed technology.

US 2016/0062833 A1

0022 FIG. 15 is a flow diagram of a process of rebuilding
data fragments of a data object in the hierarchical spreading
storage architecture, consistent with various embodiments of
the disclosed technology.
0023 FIG. 16 is a flow diagram of a process of rebuilding
data segments of a data object in the hierarchical spreading
storage architecture, consistent with various embodiments of
the disclosed technology.
0024 FIG. 17 is a flow diagram of a process of deferred
rebuilding of data segments of a data object in the hierarchical
spreading storage architecture, consistent with various
embodiments of the disclosed technology.
0025 FIG. 18 is a flow diagram of a process of processing
metadata and data fragments of a data object in the hierarchi
cal spreading storage architecture, consistent with various
embodiments of the disclosed technology.
0026 FIG. 19 is a block diagram of a computer system as
may be used to implement features of some embodiments of
the disclosed technology.

DETAILED DESCRIPTION

0027 Technology is related to a data storage architecture
for providing enhanced storage resiliency. Storage resiliency
or data durability can be defined as a resistance to loss of one
or more storage devices storing a portion of a data objector as
a resistance to loss of one or more portions of the data object.
The data storage architecture can be implemented in a single
tier configuration (also referred to as “wide spreading storage
architecture') and/or a multi-tier configuration (also referred
to as “hierarchical spreading storage architecture'). In either
of the architecture, additional redundant portions of the data
object are generated and stored across a number of Storage
devices, e.g., to provide storage resiliency for the data object.
In some embodiments, the number of redundant portions
generated depends on a specified storage resiliency. In some
embodiments, the redundant portions are generated by
encoding the data object based on an erasure coding method.
The encoding of the data object generates a number of data
object fragments, which include redundant fragments. The
encoded data fragments are stored across various storage
devices.
0028. In the single-tier configuration of the data storage
architecture, a storage system includes a number of Storage
devices, for example, hundreds or thousands of Storage
devices. A data object can be split into a number of fragments
and stored across the storage devices. In some embodiments,
the data object is encoded based on an erasure coding method
to generate a number of fragments. The fragments are distrib
uted across the storage devices. In some embodiments, the
storage resiliency of the data object depends on a storage
layout of the fragments. For example, if most of the fragments
are stored on the same storage device or storage devices in a
same storage shelf, the storage resiliency can be lower, as loss
of the storage device or the storage shelf can result in higher
probability of data loss. In another example, spreading the
fragments widely across a large number of storage devices or
storage shelves can have a better storage resiliency.
0029. The number of encoded data fragments generated
depends on a specified storage resiliency. In some embodi
ments, a ratio of the total number of fragments 'n' generated
to a minimum number of fragments 'k' required for recon
structing the object is a function of the specified storage
resiliency. For example, if n/k is 130%, then the storage
resiliency is 30%. That is, the storage system can tolerate or

Mar. 3, 2016

resist loss of 30% of the data fragments without losing the
data object. If the number of storage devices is more than n,
the storage system can tolerate or resist loss of up to n of
storage devices without losing the data. To obtain a storage
resiliency of 30%, the storage system generates 30% redun
dant fragments for the purposes of data protection. For
example, if the minimum number of fragments, k, is “1000.
then the total number of fragments generated, n, is “1300.
and the same system above would be able to tolerate “300
storage devices failing before data can be lost. This illustrates
the importance to data protection of having a large n. The n
data fragments are then spread widely across the storage
devices. The storage resiliency can also be represented in the
form of equation, n-k+m, where “k” is the original amount of
data fragments or the minimum number of data fragments
required to regenerate or rebuild the data object, and variable
“m” stands for the extra or redundant fragments that are added
to provide protection from failures. The variable “n” is the
total number of fragments created after the encoding process.
The data object can be reconstructed, e.g., in response to a
request from a client system, by obtaining at least k encoded
data fragments and decoding those to regenerate the data
object.
0030. In some embodiments, such storage resiliency can
also be provided to metadata of the data object. The metadata
of the data object can be stored with the data object and spread
across various storage devices. This eliminates the need to
store the metadata of the data objects in a separate repository
from that of the data objects.
0031. The single-tier storage architecture provides a num
ber of benefits over existing architectures, e.g., RAID storage
architecture. For example, in the single-tier architecture a
write and/or read is spread across a large number of storage
devices as opposed to a small set of storage devices in RAID.
The writes and reads of the data fragments can be performed
in parallel across the storage devices. Additionally, the num
ber of reads performed on the storage devices can be further
minimized as only a Subset of the total number of data frag
ments is required to be read for regenerating the data object,
thereby increasing a lifespan of the storage devices and low
ering latency of access.
0032. Further, the number of read-write operations per
formed on a particular storage device to regenerate the data
fragments due to loss of one or more storage devices is mini
mized as the reads and writes are spread across the storage
devices. For example, if a set of data fragments are lost due to
failure of a storage device, the set of data fragments can be
reconstructed by obtaining at least k data fragments from the
remaining of the storage devices and generating the replace
ment data fragments as a function of the obtained data frag
ments. In some embodiments, the k data fragments are
obtained from a first set of storage devices and the replace
ment data fragments are stored on a different set of storage
devices, which distributes the read/write operations across
different set of storage devices, thereby minimizing the read
write operations on a particular storage device and increasing
the lifespan of the particular storage device.
0033. Additionally, in the single-storage architecture, the
mean-time-to-repair, which is how quickly the failed drive
has to be repaired and the data stored in the failed drive to be
reconstructed in order to provide a certain storage resiliency,
is lower than that of current storage systems, e.g., RAID.
Continuing with the above example of 30% storage resiliency
with m equal to “300, the storage system can withstand loss

US 2016/0062833 A1

of up to “300' drives. So the repair process can defer opera
tion until a high percentage of those drives have failed. Simi
larly, the mean time between failure, which is a statistical
measure of the time until a failure occurs, in the single-tier
storage architecture is higher than that of current storage
systems, e.g., RAID. For example, as described above since
the storage system distributes the read/write operations
across different sets of storage devices, the read-write opera
tions on a particular storage device is minimized, which
increases the lifespan of the particular storage device.
0034. In the multi-tier configuration of the data storage
architecture, the storage system includes a number of storage
computer nodes which are each associated with a set of Stor
age devices. The storage system encodes a data object into a
number of data segments and distributes them to a number of
storage computer nodes. Each of the storage computer nodes
further encodes the data segment into a number of fragments
and stores the fragments across storage devices associated
with the storage computer node. For example, the storage
system can encode the data object into “16' segments and
send each of the “16' segments to different storage computer
nodes. Each of the storage computer nodes can encode, inde
pendent of the other storage computer nodes, the segment into
“16' fragments and store them across a set of storage devices
associated with the storage computer node. The storage sys
tem can distribute the segments to a selected set of storage
computer nodes and store the fragments at a selected set of
storage devices based on a storage layout of the data object.
The storage layout can be specified by a user, e.g., an admin
istrator of the storage system, or calculated automatically
based on operational characteristics of the storage system,
e.g., capacity, load, wear, age and health.
0035. The storage resiliency in multi-tier configuration of
the data storage architecture is distributed between the tiers.
For example, if storage resiliency in two level storage archi
tecture is 30%, then the first tier of storage computer nodes
could offer 15% storage resiliency, with the second tier of
storage devices offering 15% storage resiliency. In some
embodiments, this can mean that the storage system can
generate 15% extra segments and 15% extra fragments for
protection purposes.
0036. In some embodiments, such storage resiliency can
also be provided to metadata of the data object. The metadata
of the data object can be stored with the data object and spread
across various storage devices, which eliminates the need to
store the metadata of the data objects in a separate repository
from that of the data objects. For example, the metadata can
be prefixed to the segments and/or fragments and stored
across various storage devices.
0037. One of the advantages of multi-tier storage architec
ture is localized data regeneration process. For example, if a
storage device of a particular storage computer node fails, a
fragment of a particular segment stored on the failed Storage
device can be regenerated using other fragments of the seg
ment stored at other storage devices of the storage computer
node. The storage system may not have to obtain fragments
from other storage computer nodes. After the replacement
fragment is generated, it can be stored at one of the remaining
storage devices of the storage computer node. The reads and
writes are restricted to the storage devices of a particular
storage computer node. By restricting the reads and writes to
the local storage devices of a storage computer node, the data

Mar. 3, 2016

traffic in the network, e.g., between storage computer nodes,
is minimized, as is the amount of data that must be read from
storage devices.
0038. The storage system can store the data object across
two or more tiers. For example, the storage system can have
two tiers of storage computer nodes, where a first tier storage
computer node can be associated with a number of second tier
storage computer nodes and each of the second tier storage
computer nodes can be associated with a set of Storage
devices. The data object is split into number of segments and
the segments are sent to first tier storage computer nodes,
where each first tier storage computer node splits the corre
sponding data segment into a number of fragments and dis
tributes the fragments to a number of second tier storage
computer nodes. Each of the second tier computer storage
nodes splits the data fragment to a number of Sub-fragments
and stores the Sub-fragments across a set of storage devices
associated with the second tier storage computer node.
0039. The storage devices of the storage system can be
organized as storage shelves and storage racks, where each
storage rack includes a number of storage shelves and each
storage shelf includes a number of storage devices. The stor
age racks/shelves/devices can be distributed across various
geographical locations.

Environment

0040 FIG. 1A is a perspective plan view of a storage shelf
100 and components therein, consistent with various embodi
ments. The storage shelf 100 includes an enclosure shell 102
(partially shown) that encloses and protects multiple data
storage devices 104. The data storage devices 104 may be
hard drives, Solid-state drives, flash drives, tape drives, or any
combination thereof. It is noted that the term "enclose' does
not necessarily require sealing the enclosure and does not
necessarily require enveloping all sides of the enclosure.
0041. The storage shelf 100 further includes control cir
cuitry 106 that manages the power Supply of the storage shelf
100, the data access to and from the data storage devices 104,
and other storage operations to the data storage devices 104.
The control circuitry 106 may implement each of its functions
as a single component or a combination of separate compo
nentS.

0042. As shown, the storage shelf 100 is adapted as a
rectangular prism that sits on an elongated Surface 108 of the
rectangular prism. Each of the data storage devices 104 may
be stacked within the storage shelf 100. For example, the data
storage devices 104 can stack on top of one another into
columns. The control circuitry 106 can stack on top of one or
more of the data storage devices 104 and one or more of the
data storage devices 104 can also stack on top of the control
circuitry 106.
0043. In various embodiments, the enclosure shell 102
encloses the data storage devices 104 without providing win
dow openings to access individual data storage devices or
individual columns of data storage devices. In these embodi
ments, each of the storage shelves 100 is disposable such that
after a specified number of the data storage devices 104 fail,
the entire cartridge can be replaced as a whole instead of
replacing individual failed data storage devices. Alterna
tively, the storage shelf 100 may be replaced after a specified
time, e.g., corresponding to an expected lifetime.
0044) The illustrated stacking of the data storage devices
104 in the storage shelf 100 enables a higher density of
standard disk drives (e.g., 3.5 inch disk drives) in a standard

US 2016/0062833 A1

shelf (e.g., a 19 inch width rack shelf). Each storage shelf 100
can store ten of the standard disk drives. In the cases that the
data storage devices 104 are disk drives, the storage shelf
100A can hold the disk drives “flat such that the spinning
disks are parallel to the gravitational field.
0045. The storage shelf 100 may include a handle 110 on
one end of the enclosure shell 102 and a data connection port
112 (not shown) on the other end. The handle 110 is attached
on an outer surface of the enclosure shell 102 to facilitate
carrying of the storage shelf 100. The enclosure shell 102
exposes the handle 110 on its front surface. For example, the
handle 110 may be a retractable handle that retracts to fit next
to the front surface when not in use.
0046 FIG. 1B is a perspective view of a storage rack 150
of storage shelves, consistent with various embodiments. The
storage shelves may be instances of the storage shelf 100
illustrated in FIG. 1A. The storage rack 150, as illustrated,
includes a tray structure 152 (e.g., a rack shelf) securing four
instances of the storage shelf 100. The tray structure 152 can
be a standard 2U 19" deep rack mount. The storage rack 150
may include a stack of tray structures 152, each securely
attached to a set of rails 162. Management devices 164 may be
placed at the top shelves of the rack 150. For example, the
management devices 164 may include network Switches,
power regulators, front-end storage appliances, or any com
bination thereof.
0047 FIG. 2 is a block diagram of a storage shelf 200, in
accordance with various embodiments. In some embodi
ments, the storage shelf 200 is the storage shelf 100 of FIG.
1A. The storage shelf 200 includes a processor 202, an opera
tional memory 206, a boot flash 208, a data communication
port 210, a power management module 212, storage inter
faces 214, and data storage devices 216.
0048. The processor 202 can be a microprocessor, a con

troller, an application specific integrated circuit, a field pro
grammable gate array, or any combination thereof. The boot
flash 208 is a memory device storing an operating system 218.
The processor 202 can load the operating system 218 into the
operational memory 206 and run the operating system 218. A
data access application programming interface (API) service
220 can execute on this operating system to provide data
access over a network to the data storage devices 216 for
clients (e.g., devices, applications, or systems).
0049. The data communication port 210 enables the stor
age shelf 200 to connect with the network. For example, the
data communication port 210 can be a Power-over-Ethernet
module that connects to an Ethernet cable to both establish a
network connection with the network and power the storage
Shelf 200.
0050. In various embodiments, the storage shelf 200 only
turns on a subset (hereinafter the “active set) of data storage
devices 216 at a time. The active set can be a single data
storage device or more than one data storage devices. The
data access API service 220 can determine the membership of
the active set depending on client requests received through
the network. A client can either specifically request access to
a data storage device or request a data range for the data
access API service 220 to determine which data storage
device stores the data range.
0051. The power management module 212 provides elec
tronic circuitry to Switch on and off components of the storage
shelf 200, e.g., to activate only one subset of the data storage
devices at a time. The power management module 212 can
receive instructions from the data processing module 202

Mar. 3, 2016

(e.g., as part of the data access API service 220) to provide
power to the designated active set, including a Subset of the
storage interfaces 214 that enables data access to the active
set. Once power is Supplied to the designated active set, the
storage controller 222 can facilitate communicate between
the data processing module 202 through the storage interface
214 to the data storage devices.
0.052 FIG. 3 is a block diagram illustrating an environ
ment in which the data storage architecture can be imple
mented, consistent with various embodiments. The environ
ment 300 includes a number of storage devices, e.g., storage
device 304, which are organized as a number of Storage
shelves 306a-n (collectively referred to as “storage sub
system 306). In some embodiments, each of the storage
shelves in the storage subsystem 306 can be similar to the
storage shelf 100 of FIG. 1A and each of the storage devices,
including the storage device 304, can be similar to the data
storage devices 104 or the data storage devices 216 of FIG. 2.
Further, the storage shelves 306a-n can be part of one or more
storage racks, e.g., storage rack 150. The storage Subsystem
306 can be spread across various geographical locations.
0053. The environment 300 includes one or more front
end subsystem 310 that facilitates storing and/or retrieving
data from the storage subsystem 306. The front-end sub
system 310 processes the read/write requests from clients
312a-c (collectively referred to as "clients 312). In some
embodiments, the storage subsystem 306 is implemented as
an object storage system, which manages data as data objects.
The front-end subsystem 310 stores the data received from
the clients as data objects in the storage subsystem 306. The
front-end subsystem 310 can receive the data from the clients
as data objects or in other formats. If the front-end subsystem
310 receives the data in other formats, it can convert the data
into data objects before storing the data in the storage Sub
system 306. In some embodiments, the front-end subsystem
310 also stores the metadata of the data with the data objects.
0054 The environment 300 supports both single-tier con
figuration and multi-tier configuration of the data storage
architecture. In the single-tier storage architecture, the front
end subsystem 310 encodes the data object, e.g., received
from a client, to generate a number of data fragments and
stores the data fragments across one or more of the storage
devices of the storage subsystem 306. In some embodiments,
the front-end Subsystem encodes the data object based on an
erasure coding method. In some embodiments, an erasure
coding method encodes the data object to generate n frag
ments. The n fragments include Some redundant fragments
which are generated for storage resiliency/data protection
purpose. The erasure coding requires at least k out of n frag
ments to generate the data object. In some embodiments, the
ratio of n to kindicates a storage resiliency of the data object.
0055. In the multi-tier storage configuration, the environ
ment 300 includes one or more tiers of hierarchical storage
nodes, e.g., hierarchical storage nodes 314-318. Each of the
hierarchical storage nodes 314-318 can be associated with a
set of storage devices. For example, the hierarchical storage
node 314 is associated with storage devices from Storage
shelves 306a and 306b, the hierarchical storage node 316 is
associated with storage devices from storage shelf 306c, and
the hierarchical storage node 318 is associated with storage
devices from storage shelves 306d and 306e.
0056. In the multi-tier storage configuration, the front-end
Subsystem 310 encodes the data object, e.g., based on erasure
coding, to generate a number of data segments and distributes

US 2016/0062833 A1

them to a number of hierarchical storage nodes, e.g., hierar
chical storage nodes 314-318. Each of the hierarchical stor
age nodes 314-318 further splits the data segment into a
number of fragments and stores the fragments across storage
devices associated with the hierarchical storage node. For
example, the front-end subsystem 310 can split the data
object into “3' segments and send each of the '3' segments to
different hierarchical storage nodes 314-318. Each of the
hierarchical storage nodes 314-318, e.g., hierarchical storage
nodes 314 can split, independent of the other hierarchical
storage nodes, the segment into “16' fragments and store
them across a set of associated storage devices, e.g., storage
devices from storage shelves 306a and 306b. The segments
and fragments are distributed to a selected set of hierarchical
storage nodes and storage devices, respectively, based on a
storage layout of the data object. The storage layout can be
specified by a user, e.g., an administrator of the storage sys
tem, or calculated automatically based on operational char
acteristics of the storage system, Such as capacity, load, wear,
age and health.
0057 When a client system, e.g., client 312a, requests to
access the data object, a front-end subsystem 310 determines
the storage layout of the data segments, requests the identified
hierarchical storage nodes, e.g., one or more of the hierarchi
cal storage nodes 314-318, to obtain the fragments of a seg
ment from the storage devices and decode them to generate
the segment, and decodes the segments to generate the data
object. The front-end subsystem 310 returns the data object to
the client 312a. In some embodiments, the front-end sub
system 310 obtains at least the minimum number of segments
required to regenerate the data object and the hierarchical
storage nodes obtain at least the minimum number of frag
ments required to regenerate the data segment.
0058. In some embodiments, both the single-tier configu
ration and multi-tier configuration of the data storage archi
tecture can be implemented in the same storage system as
illustrated in the environment 300. Further, in some embodi
ments, one of the two configurations is automatically and/or
dynamically chosen for performing the read/write operations.
A particular configuration can be selected based on a number
of factors, e.g., type of data to be written, a client from whom
the data is received, included metadata, etc. In some embodi
ments, the front-end subsystem 310 is configured to select the
particular configuration based on the above factors.
0059 FIG. 4 is a block diagram of storage system 400
implementing widespreading storage architecture, consistent
with various embodiments. In some embodiments, the Stor
age system 400 can be implemented in the environment 300
of FIG. 3. The storage system 400 includes the front-end
subsystem 310 that facilitates data storage and retrieval from
the storage subsystem 306. The front-end subsystem 310 can
be one or more computer systems (e.g., the computing device
1800 of FIG. 18), having either a shared nothing architecture
or a shared database architecture, connected to the storage
subsystems 306 over a network (e.g., a global network or a
local network). The front-end subsystem 310 can be on a
separate rack from the storage subsystem 306, or can be
combined with the hierarchical storage node 314 or storage
shelf 306.
0060. The front-end subsystem 310 includes a protocol
interfaces module 406. The protocol interfaces module 406
defines one or more functional interfaces that applications
and devices use to store, retrieve, update, and delete data
elements from the storage system 400. For example, the pro

Mar. 3, 2016

tocol interfaces module 406 can implement a Cloud Data
Management Interface (CDMI), a Simple Storage Service
(S3) interface, or both. The front-end subsystem 310 includes
a staging area 408. The staging area 408 is a memory space
implemented by one or more data storage devices within or
accessible to the front-end subsystem 310. For example, the
staging area 408 can be implemented by Solid-state drives,
hard disks, volatile memory, or any combination thereof. The
staging area 408 can maintain an object namespace 410 to
facilitate client interactions through the protocol interfaces
module 406. The object namespace 410 manages a set of data
container identifiers, e.g., object identifiers of data received
from clients of the front-end subsystem 310. The staging area
408 also maintains a fragment namespace 412 corresponding
to the object namespace 410. The fragment namespace 412
manages a set of fragment identifiers, each corresponding to
a data fragment stored in the storage subsystem 306. The
staging area 408 can store a mapping structure 414 that stores
associations between the data container identifiers of the
object namespace 410 and the fragment identifiers of the
fragment namespace 412.
0061. In some embodiments, the front-end subsystem 310
can be implemented as a distributed computing network
including multiple computing nodes (e.g., computer servers).
Each computing node can include an instance of the staging
area 408. The namespaces (e.g., the object namespace 410
and the fragment namespace 412) of each staging area 408
can be implemented either as a share-nothing database or a
shared database.
0062. The staging area 408 can also serve as a temporary
cache to process payload data from a write request received at
the protocol interfaces module 406. The request module 416
receives read/write requests from the clients of the storage
system 400. The front-end subsystem 310 processes an
incoming write request by performing a number of Storage
efficiency processes on the payload data of the write request
prior to sending the payload data into persistent storage in the
storage Subsystem 306. In some embodiments, the storage
efficiency processes include deduplication, compression,
fragmentation, erasure coding and fragment encryption of the
payload data.
0063. The storage processing module 430 performs the
deduplication process on the payload data, which removes
duplicate data portions from the payload data. The storage
processing module 430 can use a number of deduplication
techniques for deduplicating the payload data. The storage
processing module 430 can compress the payload data, e.g.,
to reduce the storage space occupied by the payload data. The
storage processing module can implement one or more com
pression algorithms for compressing the payload data.
0064. The encode/decode module 418 fragments the pay
load data into a number of fragments, which includes redun
dant fragments for the purpose of data protection. In some
embodiments, the encode/decode module 418 performs the
encoding based on one or more erasure coding techniques. In
Some embodiments, erasure coding is a method of data pro
tection in which payload data is broken into fragments,
expanded and encoded with redundant data fragments. For
example, payload data can be broken into k fragments and
erasure coded data to generate n fragments, where n>k, Such
that the payload data can be recovered from a subset of then,
e.g., at least k fragments.
0065. The storage processing module 430 can further
encrypt the data fragments using one or more encryption

US 2016/0062833 A1

techniques to generate encrypted data fragments. In some
embodiments, the storage processing module 430 encrypts
the fragments for data security purposes.
0066 Note that the order of execution of storage efficiency
processes is not restricted to the order described above. Alter
native embodiments may perform these storage efficiency
processes in a different order, and Some processes may be
removed, moved, added, Subdivided, combined, and/or modi
fied to provide alternatives or sub combinations.
0067. The storage layout module 420 determines the stor
age layout of the data fragments. The storage layout identifies
one or more of the storage racks, storage shelves of a rack and
storage devices of a storage shelf the data fragments have to
be stored in. In some embodiments, the storage layout module
420 determines the optimal layout of fragments to meet the
service level object (SLO) promised to the client and/or to
maximize storage resiliency, and sends the fragments to the
selected storage devices of the storage subsystem 306 for
storage. In some embodiments, a best storage layout stores
each of the data fragments in a different storage device of the
storage subsystem 306 to provide the best storage resiliency.
In some embodiments, a worst storage layout stores all of the
data fragments in the same storage device of the storage
subsystem 306. Typically, the storage layout module 420 is
configured to distribute the fragments across the storage
devices as widely as possible, that is, to store distinct frag
ments on distinct storage devices.
0068. In some embodiments, the storage layout module
420 selects the storage devices on a random basis. In some
embodiments, the storage layout module 420 selects the stor
age devices on a random weighted basis. The storage layout
module 420 can weigh the storage devices based on a number
of factors, e.g., available storage capacity, a write latency of
the storage device, a read latency of the storage device, a type
of the storage device. For example, the storage layout module
420 can randomly select the storage devices from a set of
storage devices that have at least Some specified percentage of
storage capacity free. In some embodiments, the random
weighted basis attempts to store the data fragments evenly
across the available storage devices. For example, one type of
weighting is to decrease the weight if there are already a
specified number of fragments stored on the storage device.
In some embodiments, the random weighted basis randomly
identifies the storage devices at which the encoded data frag
ments are to be stored as a function of decreasing the risk of
data loss. For example, if a particular geographical region is
prone to higher number of device failures, then the storage
devices in that geographical region may be weighted less so
that a lower number of fragments are written to the storage
devices in that geographical region.
0069. In some embodiments, the storage layout module
420 can select the storage devices based on parameters
defined by a user, e.g., metadata, a client of the storage system
400, and/or an administrator of the storage system 400.
0070 The following paragraphs describe additional
details of writing data to the storage subsystem 306 in wide
spreading storage architecture.
0071. When a client, e.g., client 312a, sends a write
request to the storage system 400, the request module 416
receives the request and extracts the data object to be written
from the request. The storage processing module 430 per
forms a number of processes on the data object, e.g., as
described above. The encode/decode module 418 encodes the
data to generate n fragments. The encode/decode module 418

Mar. 3, 2016

can use an erasure coding method, e.g., Reed-Solomon, FEC
code, Fountain code, Raptor code, Tornado code.
(0072. In FIG. 4, the encode/decode module 418 splits the
data object 405 into n fragments, F to F. The storage layout
module 420 determines the storage layout of the fragments
and spreads the fragments, F to Facross the storage devices
of the storage subsystem 306. For example, the storage layout
module 420 determines that the fragments, F to Fo have to
be sent to the storage devices of “storage shelf 1.” fragments,
Foo to Foo to the storage devices of “storage shelf 2 and
fragments, Foo to F to the storage devices of “storage shelf
N.” In some embodiments, the storage layout module 420 also
determines the storage devices of the storage shelves where
the fragments have to be stored. After the storage layout
module 420 determines the storage layout, the transceiver
module 432 transmits the data fragments to the corresponding
storage shelves, which store the data fragments at the storage
devices. In some embodiments, the fragments can be written
to the different storage devices in parallel.
0073. The number of fragments generated by the encode/
decode module 418 depends on the required storage resil
iency. The storage resiliency offered can be represented as
n-k+m, where variable “k” is the original amount of data
fragments or the minimum number of data fragments
required to regenerate or rebuild the data object, and variable
“m” stands for the extra or redundant fragments that are added
to provide protection from failures. The variable “n” is the
total number of fragments created after the encoding process.
0074 Typically, in the wide spreading data storage archi
tecture, the width to which the data object is split is wider, and
the degree to which the data fragments are spread across the
storage devices is wider, e.g., compared to current storage
architecture such as RAID. For example, the number of frag
ments to which the data object is split into can be in hundreds
and the number of storage devices across which the hundreds
offragments are spread across can be in the thousands to tens
of thousands.
0075. In some embodiments, a ratio of “n” to “k' indicates
the storage resiliency provided for the data object. For
example, if n/k is 130%, then the storage resiliency is 30%.
That is, the storage system can tolerate or resist loss of 30% of
the data fragments without losing the data object. If the num
ber of storage devices is more than n, the storage system can
tolerate or resist loss of up to n of storage devices without
losing the data. For example, if the minimum number of
fragments, k, is “1000, then the total number of fragments
generated, n, is “1300.”, and the same system above would be
able to tolerate “300' storage devices failing before data can
be lost. This illustrates the importance to data protection of
having a large n. To obtain a storage resiliency of 30%, the
storage system generates 30% redundant fragments for the
purposes of data protection. For example, if the minimum
number of fragments, k, is “1000, then “m” is “300 and n is
“1300.” Then data fragments are then spread widely across
“4000 storage devices.
0076. The object identifier of the data object and the frag
ment identifiers of the fragments are stored in the staging area
408 at the object namespace 410 and the fragment namespace
412, respectively. Further, a mapping of the object identifier
to the fragment identifiers can be stored in the mapping struc
ture 414 of the staging area 408.
0077. When a read request arrives at the storage system
400 from the client 312a for the data object, the data object
can be reconstructed by obtaining at least k number of the Fy

US 2016/0062833 A1

data fragments and decoding them to regenerate the data
object. The transceiver module 432 obtains the storage layout
of the fragments from the storage layout module 420 and
obtains the data fragments from the identified storage devices
of the storage subsystem 306. The storage layout module 420
can use the mapping structure 414 to obtain the fragment
identifiers of the data object and then determine the storage
devices at which the corresponding fragments are stored.
0078. The transceiver module 432 can obtain from k to n
number of fragments. For example, the transceiver module
432 can stop fetching the fragments after obtaining the first k
fragments. In another example, the transceiver module 432
can fetch all then fragments but use only the first k fragments
for regenerating the data object.
0079. Further, the transceiver module 432 can preferen

tially select a subset of the storage devices identified by the
storage layout module 420 to obtain the fragments from. The
transceiver module 432 selects a storage device based on a
number of factors, e.g., read latency of storage device, type of
the storage device, number of pending read requests ahead of
the current read request in a read request queue of the storage
device, how far away the storage device is. Accordingly, the
transceiver module 432 may not even read some of the storage
devices that contain the data fragments of the data object,
thereby minimizing read/write operation on the storage
device. In some embodiments, the transceiver module 432
can obtain the fragments from different storage devices in
parallel.
0080. After obtaining the data fragments, the encode/de
code module 418 decodes the data fragments, e.g., based on
the erasure coding used to encode the data object, to generate
the data object. In some embodiments, the storage processing
module 430 may perform additional processes on the
decoded object before returning the data object to the client
312a. For example, the storage processing module 430 can
perform decompression and de-deduplication on the decoded
data object if the data object was deduplicated and com
pressed.
0081. The wide spreading storage architecture provides a
robust storage resiliency to the data stored in the storage
subsystem 306. The wide spreading storage architecture also
provides an efficient way to rebuild the data fragments in case
of storage device failures. When a storage device fails, the
data fragments stored at the storage device may be lost. When
a failure detection module 424 detects a failure or impending
failure of a storage device, the failure detection module 424
requests the regeneration module 428 to evacuate readable
fragments or rebuild unreadable or lost data fragments to
compensate for the ones that are no longer reliably stored. The
regeneration module 428 facilitates rebuilding of new data
fragments of a data object using the remaining data fragments
of the data object stored at other storage devices. For example,
if a storage device in “storage shelf 2 storing the data frag
ments Fa-Flo fails, the regeneration module 428 can rebuild
up to new six data fragments and writes the new data frag
ments to any of the remaining set of storage devices. In some
embodiments, the regeneration module 428 rebuilds the data
fragments using Sufficient number of the remaining data frag
ments F-F and F-F. The regeneration module 428 can
use the encoding method used to generate the initial frag
ments to generate the new replacement fragments.
0082. The failed storage device can store data fragments of
one or more data objects. The fragment/segment identifica
tion module 422 can determine the fragments stored on the

Mar. 3, 2016

storage device that failed, e.g., using the storage layout. The
regeneration module 428 can rebuild the data fragments of all
the data objects whose fragments are lost or for only a set of
data objects that have lost the data fragments. For example,
the regeneration module 428 can rebuild the data fragments of
a data object whose current storage resiliency is lesser than a
specified threshold for minimum storage resiliency. The cur
rent storage resiliency is determined as a function of the
remaining of “n” number of fragments and “k. For example,
if the specified threshold for minimum storage resiliency of a
data object is 10% and the current storage resiliency is less
than 10%, then the data fragments can be rebuilt for the data
object. Further, the regeneration module 428 can start
rebuilding the data fragments of the data object whose current
storage resiliency is lesser than the specified threshold instan
taneously, e.g., in response to the failure of the storage device.
The regeneration module 428 can rebuild the data fragments
of other data objects whose current storage resiliency exceeds
the specified threshold at a later time. In some embodiments,
the regeneration module 428 executes the rebuilding process
as a background process of the front-end subsystem 310. In
Some embodiments, a user, e.g., administrator of the storage
system 400 can manually execute the rebuilding process.
I0083. The wide spreading storage architecture can resist
higher number of storage device failures than that of current
storage systems, e.g., RAID storage system. For example, if
the storage system 400 offers a storage resiliency of 30% and
has ak of 1000, then the storage system 400 can resista failure
of “300' storage devices before the data is lost. So if one or
more storage devices are lost, or even if an entire storage
shelf/storage rack is lost, there may not be much impact on the
storage resiliency. This provides a number of advantages.
First, the rebuilding process may not have to be started imme
diately; it can be done at a later time. The storage resiliency of
the lost data fragments can be repaired over time, e.g., when
the work load (data read-write operations) on the storage
system 400 is below a threshold, or when the current storage
resiliency drops below the specified threshold, e.g., when the
current storage resiliency is less than 10%—which means the
storage system 400 can only tolerate failure of "200 more
storage devices. That is, the wide spreading storage architec
ture offers a high meantime to repair, e.g., compared to RAID
storage architecture.
I0084. Second, the wide spreading storage architecture
separates the rebuilding of data fragments from replacement
of the failed storage devices. That is, the storage system 400
may not have to wait until the failed storage devices are
replaced to rebuild the data fragments. The rebuilding process
reads the data fragments of the data object from the remaining
storage devices, generates new data fragments as a function of
the data fragments obtained from the other storage devices,
and writes the new data fragments on one or more of the
remaining storage devices. Accordingly, in the wide spread
ing storage architecture, the storage system 400 does not have
to wait for the failed storage device to be replaced to rebuild
the data fragments, unlike current storage architectures, e.g.,
RAID storage architecture without hot spares, where a failed
storage device may have to be replaced immediately upon
failure.

I0085. However, if the failed storage device is replaced
immediately upon failure, the storage system 400 can use the
replacement storage device as additional capacity, e.g., to

US 2016/0062833 A1

store new data. Further, the replacement storage device can be
of different storage capacity and/or type from that of the
failed storage device.
I0086. The wide spreading storage architecture also mini
mizes the number of read-write operations required per Stor
age device for rebuilding the data fragments of a particular
data object. The regeneration module 428 obtains the remain
ing data fragments of the particular data object from other
storage devices of the storage subsystem 306. Since the data
fragments are spread over a number of storage devices, the
number of read operations performed for the rebuilding pro
cess is spread across many storage devices and therefore, the
number of read operations performed on a particular storage
device is limited. Further, in some embodiments, the regen
eration module 428 obtains less than the remaining number of
fragments, e.g., k fragments of the remaining fragments, to
rebuild the lost data fragments, which further minimizes the
read operations performed on the storage devices. By mini
mizing the read operations on a given storage device, the wear
of the storage device is minimized and the lifespan of the
storage device is therefore, increased. Further, as rebuild can
be deferred and performed after many failures have occurred,
rebuild operations are minimized compared to architectures
were rebuilds are initiated for each failure operation.
0087 Furthermore, after rebuilding the new data frag
ments, the new data fragments are written to a set of storage
devices. In some embodiments, the set of storage devices to
which the data is written is different from the set of storage
devices from which the data fragments are read to rebuild the
data fragments. Accordingly, the read-write operations per
formed on any given storage device is minimized, which
minimizes the wear of the storage device and therefore,
increases the lifespan of the storage device.
0088 As described above, the wide spreading storage
architecture provides optimum storage resiliency to data
stored in the storage devices of the storage subsystem 306
while minimizing the wear of the storage devices.
0089. The widespreading storage architecture can also be
used to store metadata of the data object. FIG. 5 is a block
diagram 500 for storing metadata of a data object with the
data object in a storage system 400 of FIG.4, consistent with
various embodiments. The wide spreading storage architec
ture can provide the same storage resiliency to the metadata of
a data object that is provided to the data object. Examples of
metadata can include, object ID, object size, object owner,
creation time, created by, modified by, etc. The metadata can
also include client-specified metadata, e.g., author of an
object, name of entity, etc. Typically, current storage archi
tectures store metadata separate from the data object. The
wide spreading storage architecture enables storing the meta
data with data object, thereby eliminating the need to have a
separate database for the metadata, the need to have specific
infrastructure to ensure the metadata is consistent with the
data, etc.
0090 When a write request is received, the payload data in
the write request is analyzed to obtain the metadata 510 and
the data portion, e.g., data object 405. The data object 405 is
then encoded, e.g., using encode/decode module 418 as
described with reference to FIG. 4, to generate a number of
fragments 505. The metadata 510 is combined with some or
each of the fragments 505, e.g., concatenated or prefixed to
each of the fragments 505, to generate composite fragments
515. The composite fragments 515 can then be stored in the
storage Subsystem 306 by spreading them across a number of

Mar. 3, 2016

storage devices, e.g., similar to storing the data fragments as
described with reference to FIG. 4. In some embodiments, the
metadata 510 can be a subset of the metadata of the data
object 405.
0091. In some embodiments, by including the metadata
510 with the data object, the possibility of inconsistency
between the metadata 510 and the data object 405 is elimi
nated. Further, since the metadata 510 is attached to the frag
ments 505, the composite fragments 515 can be moved across
locations/storage devices without having to update the meta
data 510 and without risking the consistency between the
metadata 510 and the data object 405.
0092 Another benefit of storing the metadata 510 with the
data object 405 is that since a separate database and/or meta
data server is not needed to maintain the metadata 510, the
read and write operations are relatively faster since no sepa
rate read/write is required to read/write the metadata 510. In
Some embodiments, metadata retrieval is also simplified
since a method call that is used for retrieving the data object
405 can be modified to use retrieve the metadata 510, which
can simplify a number of functions performed related to the
metadata 510.
0093 FIG. 6 is a flow diagram of a process 600 of storing
data to an object-based storage system using wide spreading
storage architecture, consistent with various embodiments of
the disclosed technology. In some embodiments, the process
600 may be implemented in environment 300 of FIG. 3, and
using the storage system 400 of FIG. 4. The process 600
begins at block 605, and at block 610, a request module 416
of the frontend subsystem 310 receives a write request includ
ing payload data. In some embodiments, the payload data
includes data portion and metadata of the data. If the data
portion is not in a format Suitable for storing in an object
storage system, e.g., Storage subsystem 306, the frontend
subsystem 310 converts the data portion to the suitable for
mat, e.g., as the data object.
0094. At block 615, the encode/decode module 418
encodes the data object to generate a number of encoded data
fragments, e.g., encoded data fragments F1-FN. In some
embodiments, the encode/decode module 418 encodes the
data object based on an erasure coding technique. The num
ber of encoded data fragments generated can be expressed as
a function, e.g., n-k+m, where variable “k” is the original
amount of data fragments or the minimum number of data
fragments required to regenerate or rebuild the data object,
and variable “m' is the number of extra or redundant frag
ments added to provide protection from storage device fail
ures. The variable “n” is the total number of fragments created
after the encoding process.
0095. After the encoded data fragments are generated, a
mapping of the object identifier of the data object and frag
ment identifiers of the encoded data fragments are stored in
the mapping structure 414.
0096. In some embodiments, apart from encoding the data
object to generate the fragments, various other processes may
be performed on the data object, e.g., deduplication, compres
Sion, encryption. One or more of these processes can be
performed by the storage processing module.
(0097. At block 620, the storage layout module 420 deter
mines a storage layout for storing the encoded data fragments
across a number of storage devices, e.g., storage devices of
storage Subsystem 306. In some embodiments, the storage
layout module 420 is configured to spread the encoded data
fragments across as many storage devices as possible, e.g., to

US 2016/0062833 A1

provide betterstorage resiliency to the data object. That is, the
storage layout module 420 attempts to identify different stor
age devices for storing different encoded data fragments. In
Some embodiments, the storage layout module 420 selects the
storage devices on a random basis. In some embodiments, the
storage layout module 420 selects the storage devices on a
random weighted basis.
0098. At block 625, the transceiver module 432 transmits
the encoded data fragments to the identified storage devices.
For example, the transceiver module 432 can transmit the
encoded data fragments to the storage shelves and/or the
storage racks which contain the storage devices.
0099. At block 630, the storage shelves and/or the storage
racks store the encoded data fragments at the identified Stor
age devices, and the process 600 returns. In some embodi
ments, the front-end subsystem 310 also stores the metadata
of the data object with the data object. Additional details with
respect to the process of storing the metadata are described at
least with reference to FIGS. 9 and 10.

0100 FIG. 7 is a flow diagram of a process 700 of reading
data from an object-based storage system using wide spread
ing storage architecture, consistent with various embodi
ments of the disclosed technology. In some embodiments, the
process 700 may be implemented in environment 300 of FIG.
3, and using the storage system 400 of FIG. 4. The process
700 begins at block 705, and at block 710, a request module
416 of the frontend subsystem 310 receives a read request,
e.g., from a client system 312a, for obtaining a data object. In
some embodiments, the read request includes an object iden
tifier of the data object.
0101. At block 715, the fragment/segment identification
module 422, determines the encoded data fragments of the
data object using the object identifier. In some embodiments,
a mapping of the object identifier and the fragment identifiers
of the encoded data fragments are stored in the mapping
structure 414.

0102 At block 720, the storage layout module 420 deter
mines the storage layout of the encoded data fragments using
the mapping obtained from the mapping structure. The Stor
age layout can include identification information of the Stor
age devices where each of the encoded data fragments is
stored. In some embodiments, the storage layout information
can also include identification information of the storage
racks and/or storage shelves of the storage devices where the
encoded data fragments are stored.
(0103 At block 725, the transceiver module 432 obtains
Sufficient number of the encoded data fragments required to
generate the data object from the identified storage devices. In
some embodiments, the sufficient number of encoded data
fragments is knumber of the encoded data fragments. In some
embodiments, the transceiver module 432 can obtain k to n
number of fragments. For example, the transceiver module
432 can stop fetching the fragments after obtaining the first k
fragments. In another example, the transceiver module 432
can fetch all then fragments but use only the first k fragments
for regenerating the data object.
0104 Further, the transceiver module 432 can preferen

tially select a subset of the identified storage devices to obtain
the fragments from. The transceiver module 432 can select a
storage device based on a number of factors, e.g., read latency
of a storage device, type of the storage device, number of
pending read requests ahead of the current read request in a
read request queue of the storage device, a geographical loca

Mar. 3, 2016

tion of the storage device. In some embodiments, the trans
ceiver module 432 can obtain the fragments from different
storage devices in parallel.
0105. After obtaining the encoded data fragments, at
block 730, the encode/decode module 418 decodes the
encoded data fragments, e.g., based on the erasure coding
method used to encode the data object, to generate the data
object.
01.06. At block 735, the transceiver module 432 transmits
the data object in response to the read request, e.g., to the
client system 312a, and the process 700 returns. In some
embodiments, additional processes may be performed before
decoding the data fragments. For example, the storage pro
cessing module 430 can decrypt the encoded data fragments
if they were encrypted before being stored. In some embodi
ments, additional processes may be performed on the
decoded data object before returning the data object to the
client 312a. For example, the storage processing module 430
can perform decompression and de-deduplication on the
decoded data object if the data object was deduplicated and
compressed.
0107 FIG. 8 is a flow diagram of a process 800 of rebuild
ing data fragments of a data object in wide spreading Storage
architecture, consistent with various embodiments of the dis
closed technology. In some embodiments, the process 800
may be implemented in environment 300 of FIG.3, and using
the storage system 400 of FIG. 4. In some embodiments, the
data fragments stored in the storage Subsystem 306 may be
lost due to a failure of a storage device. The process 800
begins at block 805, and at block 810, a failure detection
module 424 of the frontend subsystem 310 detects a failure of
a storage device, e.g., storage device 304. In some embodi
ments, the failure can be one or more of the storage device
being not accessible, the storage device being physically
damaged, etc.
0108. At block 815, the fragment/segment identification
module 422 identifies the encoded data fragments that were
stored at the storage device. For example, the fragment/seg
ment identification module 422 can refer to the storage layout
module 420 to determine the fragments stored at the storage
device that has failed. Further, the fragment/segment identi
fication module 422 identifies the one or more data objects
corresponding to the identified encoded data fragments. For
example, the fragment/segment identification module 422
can refer to the mapping structure 414 to determine the data
objects associated with the identified encoded data frag
mentS.

0109. At block 820, the regeneration module 428 rebuilds
Some or all of the encoded data fragments that was stored at
the storage device that failed. In some embodiments, rebuild
ing the data fragments include performing the method
described in association with blocks 821-824 for each of the
identified data objects. At block 821, the regeneration module
428 computes the current storage resiliency of the data object.
In Some embodiments, storage resiliency is defined as a resis
tance to loss of one or more storage devices storing a portion
of a data object or resistance to loss of one or more portions of
the data object. In some embodiments, a current storage resil
iency of a data object is determined as a function of the
number of fragments remaining out of “n” fragments and “k.”
For example, if n is “130, k is “100, then the number of
redundant fragments, m is “30 and therefore, the storage
resiliency can be calculated as 30% (100*m/k). Note that the

US 2016/0062833 A1

storage resiliency can be calculated using other functions and
based on several other parameters.
0110. The storage system 400 may guarantee a storage
resiliency range to the clients of the storage system, for
example, a minimum storage resiliency and a maximum stor
age resiliency. In some embodiments, the storage resiliency
range is part of the SLO guaranteed to the clients. In some
embodiments, the storage system 400 may not rebuild the lost
data fragments until the current storage resiliency of the data
object drops below the minimum storage resiliency.
0111. At determination block 822, the regeneration mod
ule 428 determines if the current storage resiliency of the data
object is less than the minimum storage resiliency. Continu
ing with the above example of a storage resiliency of 30%, if
the minimum storage resiliency is 10%, then the storage
system 400 can withstand loss of "20 data fragments, in
which case m is '10.'

0112 Responsive to a determination that the current stor
age resiliency of the data object is not less than the minimum
storage resiliency, the process 800 returns. On the other hand,
responsive to a determination that the current storage resil
iency is less than the minimum storage resiliency, at block
823, the transceiver module 432 obtains sufficient number of
fragments of the data object from remaining of the storage
devices. The transceiver module 432 may use the storage
layout to identify the storage devices that store the data frag
ments of the data object. In some embodiments, the trans
ceiver module 432 can obtain the minimum number of frag
ments required to rebuild the data fragments.
0113. At block 824, the regeneration module 428 regen
erates the data fragments as a function of the obtained data
fragments and stores the regenerated data fragments in at least
a Subset of the remaining storage devices. In some embodi
ments, the regeneration module 428 regenerates as many data
fragments as required to meet a specified Storage resiliency,
which can be up to the maximum storage resiliency. In some
embodiments, regenerating the data fragments as a function
of the obtained data fragments includes encoding the
obtained data fragments to generate the new/replacement/
additional data fragments. In some embodiments, regenerat
ing the data fragments as a function of the obtained data
fragments includes decoding the obtained data fragments to
generate the data object and encoding the generated data
object to generate the specified number of data fragments.
0114 FIG. 9 is a flow diagram of a process 900 of storing
metadata of a data object with the data object in wide spread
ing storage architecture, consistent with various embodi
ments of the disclosed technology. In some embodiments, the
process 900 may be implemented in environment 300 of FIG.
3, and using the storage system 400 of FIG. 4. The process
900 begins at block 905, and at block 910, a request module
416 of the frontend subsystem 310 receives a write request
including payload data. In some embodiments, the payload
data includes data portion and metadata of the data. If the data
portion is not in a format Suitable for storing in an object
storage system, e.g., storage Subsystem 306, the frontend
subsystem 310 converts the data portion to the suitable for
mat, e.g., as the data object.
0115. At block 915, the metadata processing module 426
analyzes the payload data to obtain the metadata of the data
object, e.g., metadata 510 of FIG. 5. Examples of metadata
can include, object ID, object size, object owner, creation

Mar. 3, 2016

time, created by, modified by, etc. The metadata can also
include client-specified metadata, e.g., author of an object,
name of entity, etc.
0116. At block 920, the encode/decode module 418
encodes the data object to generate a number of encoded data
pieces, e.g., segments and/or fragments. In some embodi
ments, the encode/decode module 418 encodes the data
object as described at least with reference to FIGS. 4-6.
0117. At block 925, after the encoded data pieces are
generated, the metadata processing module 426 processes the
encoded data pieces and the metadata for storage across a
number of storage devices, e.g., storage devices of the storage
subsystem 306, and the process 900 returns. Additional
details with respect to the method of processing the metadata
are described at least with reference to FIG. 10.
0118 FIG. 10 is a flow diagram of a process 1000 of
processing metadata and data fragments of a data object in
wide spreading storage architecture, consistent with various
embodiments of the disclosed technology. In some embodi
ments, the process 1000 may be implemented in environment
300 of FIG. 3, and using the storage system 400 of FIG. 4. In
some embodiments, the process 1000 implements the method
of block 925 of FIG.9. The data piece generated in the process
900 of FIG.9, e.g., in block 920, can be considered as a data
fragment in the wide spreading storage architecture. The pro
cess 1000 begins at block 1005, and at block 1010, the meta
data processing module 426 combines each of the data frag
ments of the data object with the metadata, e.g., metadata 510,
to generate composite encoded data fragments, e.g., compos
ite encoded data fragments 515. In some embodiments, com
bining the metadata with each of the fragments includes con
catenating or prefixing the metadata to each of the fragments.
0119. After the composite fragments are generated, at
block 1015, the transceiver module 432 transmits the com
posite fragments to the storage Subsystem 306 for storing
across a number of storage devices, e.g., similar to storing the
data fragments as described at least with reference to blocks
620-630 of FIG. 6, and the process 1000 returns. Prior to
transmitting the composite fragments to the storage Sub
system 306, the storage layout module 420 determines a
storage layout for storing the composite data fragments
across the number of storage devices, e.g., similar to deter
mining the storage layout for storing the data fragments as
described at least with reference to FIG. 4 and block 620 of
FIG. 6. The transceiver module 432 then transmits the com
posite data fragments to the identified storage devices.
I0120 FIG. 11 is a block diagram of storage system 1100
implementing hierarchical spreading storage architecture,
consistent with various embodiments. In some embodiments,
the storage system 1100 can be implemented in the environ
ment 300 of FIG. 3. Further, in some embodiments, the stor
age system 1100 includes at least some of the characteristics,
behavior/functionalities of the storage system 400 of FIG. 4.
In some embodiments, the wide spreading storage architec
ture of storage system 400 can also be implemented in the
storage system 1100. The storage system 1100 includes the
front-end subsystem 310 and a tier of hierarchical storage
nodes, e.g., hierarchical storage nodes 314-318 that facilitate
data storage and retrieval from the storage subsystem 306,
which includes storage shelves 306a-n. The hierarchical stor
age nodes can be implemented in a similar configuration to
that of the front-end subsystem 310. For example, a hierar
chical storage node can include the modules/components of
the front-end subsystem 310 depicted in FIG. 3. Note that

US 2016/0062833 A1

although FIG. 11 depicts one tier of hierarchical storage
nodes, the hierarchical spreading storage architecture can
have more than one tier of hierarchical storage nodes.
0121 Each of the hierarchical storage nodes 314-318 can
be associated with a set of storage devices. For example, the
hierarchical storage node 314 is associated with storage
devices from storage shelves 306a and 306b, the hierarchical
storage node 316 is associated with storage devices from
storage shelf 306c, and the hierarchical storage node 318 is
associated with storage devices from storage shelves 306d
and 306e. In some embodiments, the hierarchical storage
nodes are spread across various geographical locations. In
other embodiments, the hierarchical storage nodes are inte
grated into each storage shelf.
0122) The following paragraphs describe additional
details of writing data to the storage subsystem 306 in hier
archical spreading storage architecture.
0123. When a client, e.g., client 312a, sends a write
request to the storage system 1100, the request module 416
receives the request and extracts the data object to be written
from the request. The encode/decode module 418 encodes the
data object to generate a number of segments, e.g., “S1.”“S2.
and 'S3'. In some embodiments, the encode/decode module
418 can use wide spreading, or an erasure coding method
directly, e.g., Reed-Solomon, FEC coding, Fountain code,
Raptor code, Tornado code, to generate the segments. In some
embodiments, the number of segments generated is a function
of the number of hierarchical storage nodes.
0.124. The transceiver module 432 distributes the data seg
ments to a number of hierarchical storage nodes, e.g., hierar
chical storage nodes 314-318. The storage layout module 420
determines the storage layout of the segments, that is, the
hierarchical storage nodes to which the segments have to be
distributed, and the transceiver module 432 spreads the seg
ments to the identified the hierarchical storage nodes. In some
embodiments, the storage layout module 420 is configured to
select different hierarchical storage nodes for different seg
ments, e.g., to maximize storage resiliency of the data object.
However, in Some embodiments, more than one segment may
be transmitted to a hierarchical storage node. In some
embodiments, the storage layout module 420 determines the
hierarchical storage nodes to which the segments have to be
distributed on a random basis. The storage layout can also be
specified by a user, e.g., an administrator of the storage sys
tem 1100. In FIG. 11, the segment, “S1 is sent to the hierar
chical storage node 314, the segment “S2 is sent to the
hierarchical storage node 316 and the segment “S3' is sent to
the hierarchical storage node 318. In some embodiments, the
segments are transmitted to the hierarchical storage nodes in
parallel.
0.125. The number of segments generated by the encode/
decode module 418 can also depend on the required storage
resiliency. The storage resiliency offered can be represented
as n'-k+m', where variable k is the original amount of data
segments or the minimum number of data segments required
to rebuild the data object, and variable m' stands for the extra
or redundant segments added to provide protection from fail
ures, e.g., failures of hierarchical storage nodes and/or stor
age devices associated with hierarchical storage nodes. The
variable n' is the total number of segments created after the
encoding process.
0126 The segment identifiers of the data object may be
stored in the fragment namespace 412. The mapping structure

Mar. 3, 2016

414 can store a mapping of the object identifier of the data
object to the segment identifiers of the segments of the data
object.
I0127. In some embodiments, prior to encoding the data
object, the storage processing module 430 can perform a
number of storage efficiency processes on the data object,
e.g., as described at least with reference to FIG. 4.
I0128. Each of the hierarchical storage nodes 314-318 can
encode, independent of the other hierarchical storage nodes,
the segment, e.g., based on an erasure coding method, to
generate a number of fragments of the segment. In some
embodiments, the hierarchical storage node encodes the seg
ment using an encode/decode module similar to the encode/
decode module 418. In FIG. 11, the segments “S1,”“S2,” and
“S3' are each encoded to generate eight fragments F1-F8.
Each of the hierarchical storage node stores the fragments, F1
to F8, across the storage devices of the storage Subsystem
306. In some embodiments, the techniques involved in encod
ing a data segment to generate the fragments of a segment and
storing the fragments across the storage devices is similar to
the techniques involved in encoding a data object to generate
the fragments of the data object and storing the fragments
across the storage devices in wide spreading storage archi
tecture, e.g., as described at least with reference to FIGS. 4
and 6.
I0129. For storing the fragments across a set of storage
devices, the hierarchical storage node determines a storage
layout of the fragments. The storage layout identifies one or
more of the storage racks, storage shelves of a rack and
storage devices of a storage shelf the data fragments have to
be stored in. In some embodiments, the hierarchical storage
node determines the storage layout of the fragments using a
storage layout module similar to the storage layout module
420. After the storage layout is determined, the hierarchical
storage node stores the fragments in the identified storage
devices. In some embodiments, the hierarchical storage node
writes the fragments to the different storage devices in paral
lel. In the hierarchical spreading storage architecture, the
writes are more efficient than current storage systems. For
example, in addition to writing the fragments of a particular
segment in parallel, all the hierarchical storage nodes can
write the fragments of their corresponding segments in par
allel.
0.130. The hierarchical storage node stores the segment
identifier of the data segment and the fragment identifiers of
the fragments of the data segment in a staging area similar to
the staging area 408. Further, the hierarchical storage node
stores a mapping of the segment identifier of a segment to the
fragment identifiers of the segment in a mapping structure
similar to the mapping structure 414.
I0131. In the hierarchical spreading storage architecture,
the storage resiliency provided for a data object is split across
the tiers of a storage system. For example, if the storage
resiliency offered for a data object by the storage system 1100
is 30%, then the first tier hierarchical storage node 314-318
provides 15% of the storage resiliency and the second tier—
storage devices provided the other 15%. The amount of stor
age resiliencies provided by each of the tiers can be config
urable. However, the sum of storage resiliencies offered by
the tiers may not exceed the total storage resiliency offered by
the storage system 1100.
I0132 Referring to the read requests, when a read request
arrives at the storage system 1100 from the client 312a for a
particular data object, the data object can be reconstructed by

US 2016/0062833 A1

obtaining at least k number of the n'data segments and decod
ing them to regenerate the data object. The transceiver mod
ule 432 obtains the storage layout of the segments from the
storage layout module 420 and obtains the data segments
from the identified hierarchical storage nodes. The storage
layout module 420 can obtain the segment identifiers of the
segments of the data object from the mapping structure 414
and then determine from the storage layout the hierarchical
storage nodes at which the corresponding segments are
stored.
0133. After the hierarchical storage nodes are identified,
the transceiver module 432 requests the hierarchical storage
nodes to return the data segments of the data object. The
transceiver module 432 can obtaink' to n' number of segments
for generating the data object. For example, the transceiver
module 432 can stop fetching the segments after obtaining the
first k'segments. In another example, the transceiver module
432 can fetch all the n'segments but use only the first
k'segments for regenerating the data object. Further, the trans
ceiver module 432 can preferentially select a subset of iden
tified the hierarchical storage nodes to obtain the segments
from. The transceiver module 432 selects a hierarchical stor
age node based on a number of factors, e.g., a latency of the
hierarchical storage node, a workload of the hierarchical Stor
age node, a geographical location of the storage device. In
some embodiments, the transceiver module 432 can obtain
the segments from different storage nodes in parallel.
0134. When a particular hierarchical storage node
receives a request from the front-end subsystem 310 for a data
segment, the hierarchical storage node obtains the fragments
of the data segment from the storage devices associated with
the hierarchical storage node. The hierarchical storage node
determines the storage layout of the fragments and obtains a
Sufficient number of the data fragments, e.g., the minimum
number data fragments required to generate the data segment,
from the identified storage devices.
0135 Further, the hierarchical storage node can preferen

tially select a subset of the storage devices to obtain the
fragments from. The hierarchical storage node selects a stor
age device based on a number of factors, e.g., read latency of
storage device, type of the storage device, number of pending
read requests ahead of the current read request in a read
request queue of the storage device, how far the storage
device is. Accordingly, the hierarchical storage node may not
even read some of the storage devices that contain the data
fragments of the data object, thereby minimizing read/write
operations on a particular storage device. In some embodi
ments, the hierarchical storage node can obtain the fragments
in parallel.
0136. After obtaining the data fragments, the hierarchical
storage node decodes the data fragments, e.g., based on the
erasure coding used to encode the data segment, to generate
the data segment, and then returns the data segment to the
front-end subsystem 310. In some embodiments, the hierar
chical storage node may perform additional processes on the
decoded data segment before returning it to the front-end
subsystem 310. For example, the hierarchical storage node
can perform decompression and de-deduplication on the
decoded data segment if the data segment was deduplicated
and compressed.
0137 After the front-end subsystem 310 obtains sufficient
number of the data segments from the hierarchical storage
nodes, the front-end subsystem 310 decodes the data seg
ments to generate the data object, and returns the data object

Mar. 3, 2016

to the client system 312a. In some embodiments, the storage
processing module 430 may perform additional processes on
the decoded data object before returning the data object to the
client 312a. For example, the storage processing module 430
can perform decompression and de-deduplication on the
decoded data object if the data object was deduplicated and
compressed.
0.138. As described above, the hierarchical spreading stor
age architecture distributes the storage resiliency provided to
the data across the storage tiers—hierarchical storage nodes
314-318 and storage devices of the storage subsystem 306.
One of the advantages of Such a distributed storage resiliency
is that the storage system 1100 can withstand the loss of either
Some of the hierarchical storage nodes or some of the storage
devices of a hierarchical storage node, or in some cases, both.
0.139. Another advantage of the hierarchical spreading
storage architecture is that the rebuilding process can be
localized in some cases. That is, when a storage device asso
ciated with a particular hierarchical storage node fails, the
data fragments of a segment stored at the failed storage device
may be rebuilt using the remaining data fragments of the
segment stored within the storage shelves of the particular
hierarchical storage node. The storage system 1100 may not
have to obtain the fragments from the storage devices asso
ciated with another hierarchical storage node. For example,
when a fragment F1 of the segment S1 is lost due to a failure
of a storage device in the storage shelves 306a-b, the hierar
chical storage node rebuilds a new data fragment for the data
segment S1 using the remaining data fragments, F2-F8.
stored at other storage devices within the storage shelves
306a-b. In some embodiments, the hierarchical storage node
uses sufficient number of the data fragments, e.g., k number
of the remaining data fragments to rebuild the new data frag
ment. The hierarchical storage node can use the encoding
method used to generate the initial fragments to regenerate
the new data fragment.
0140 Localizing the rebuilding process to a particular
hierarchical storage node minimizes the network traffic, e.g.,
between the hierarchical storage nodes and the front-end
subsystem 310, between the hierarchical storage nodes, that
might otherwise occur if the fragments are to be read from
storage devices apart from that of the particular hierarchical
storage node. This saves the time required for the fragments to
traverse the network and therefore, can make the rebuilding
process faster and more efficient. Further, localizing the
rebuilding process to the storage devices of the particular
hierarchical storage node, the read-write operations per
formed on storage devices of other hierarchical storage nodes
is minimized, and therefore the wear of other storage devices
is minimized.

0.141. The hierarchical storage node can rebuild the data
fragments of all the data segments whose storage resiliency is
affected or a Subset of those data segments. In some embodi
ments, the hierarchical storage node rebuilds the data frag
ments for a particular data segment if the current storage
resiliency of the data segment is below the minimum storage
resiliency to be provided for the data segment, e.g., as
described with reference to rebuilding the data fragments in
FIGS. 4 and 8.
0142. However, when a particular hierarchical storage
node fails or a current storage resiliency of a data segment
stored by the particular hierarchical storage node drops below
the minimum storage resiliency the storage system 1100 uses
the fragments from other hierarchical storage nodes to rebuild

US 2016/0062833 A1

the lost fragments. For example, when the hierarchical stor
age node 314 fails, the front-end subsystem 310 obtains all or
Some of the remaining segments S2 and S3 from the remain
ing hierarchical storage nodes, generates a new segment S4
(not illustrated) and transmits it to another hierarchical stor
age node or one of the hierarchical storage nodes 316 and 318,
which further encodes the new segment into fragments and
stores them at its associated storage devices.
0143. The hierarchical spreading storage architecture can
also be used to store metadata of the data received from a
client of the storage system 1100. FIG. 12 is a block diagram
1200 for storing metadata of a data object with the data object
in a storage system 1100 of FIG. 11, consistent with various
embodiments. The hierarchical spreading storage architec
ture can provide the same storage resiliency to the metadata of
a data object that is provided to the data object. Examples of
metadata can include, object ID, object size, object owner,
creation time, created by, modified by, client-specified meta
data, etc. Typically, metadata is stored separate from the data
object. The hierarchical spreading storage architecture
enables storing the metadata with the data object, thereby
eliminating the need to have a separate database for metadata,
the need to have specific infrastructure in place to ensure the
metadata is consistent with the data, etc.
0144. When a write request is received at the storage sys
tem 1100, the payload data in the write request is analyzed to
obtain the metadata 510 and the data portion, e.g., data object
405. The data object 405 is then encoded, e.g., using encode/
decode module 418, to generate a number of segments 1205,
e.g., as described with reference to FIG. 11. The metadata 510
is combined with each of the segments 1205, e.g., concat
enated or prefixed to each of the segments 1205, to generate
composite segments 1210. In some embodiments, the meta
data 510 can be a subset of the metadata of the data object 405.
The composite segments 1210 can then be sent to a number of
hierarchical storage nodes, e.g., as described with reference
to FIG. 11 for further storage at a set of storage devices
associated with the hierarchical storage nodes.
0145 When a particular hierarchical storage node
receives a composite data segment, it encodes the composite
data segment to generate a number of data fragments such as
fragments 1215. The metadata 510 is combined with each of
the fragments 1215, e.g., concatenated or prefixed to each of
the fragments 1215, to generate composite fragments 1220.
The composite fragments 1220 can then be stored at the
storage devices associated with the hierarchical storage node,
e.g., as described with reference to FIG. 11.
0146 Note that though FIG. 12 illustrates combining
metadata 510 with both the data segments and the fragments,
the metadata 510 can be combined with either the data seg
ments or the data fragments.
0147 In some embodiments, by storing the metadata 510
with the data object 405, the possibility of inconsistency
between the metadata 510 and the data object 405 is elimi
nated. Further, since the metadata 510 is attached to the seg
ments 1205 and/or fragments 1215, the composite segments
1210 can be moved across hierarchical storage nodes and the
composite fragments 1220 can be moved across storage
devices without having to update the metadata 510 and with
out risking the consistency between the metadata 510 and the
data object 405.
0148. In some embodiments, another benefit of storing the
metadata 510 with the data object 405 is that since a separate
database and/or metadata server is not needed to maintain the

Mar. 3, 2016

metadata 510, the read and write operations are relatively
faster since no separate read/write is required to read/write the
metadata 510. In some embodiments, metadata retrieval is
also simplified since a method call that is used for retrieving
the data object 405 can be modified to use retrieve the meta
data 510, which can simplify a number of functions per
formed related to the metadata 510.
0149 FIG. 13 is a flow diagram of a process 1300 of
storing data to an object-based storage system using hierar
chical spreading storage architecture, consistent with various
embodiments of the disclosed technology. In some embodi
ments, the process 1300 may be implemented in environment
300 of FIG.3, and using the storage system 1100 of FIG. 11.
The process 1300 begins at block 1305, and at block 1310, a
request module 416 of the frontend subsystem 310 receives a
write request including payload data. In some embodiments,
the payload data includes data portion and metadata of the
data. If the data portion is not in a format suitable for storing
in an object storage system, e.g., storage Subsystem 306, the
frontend subsystem 310 converts the data portion to the suit
able format, e.g., as the data object.
0150. At block 1315, the encode/decode module 418
encodes the data object to generate a number of encoded data
segments, e.g., encoded data segments S1-S3. In some
embodiments, the encode/decode module 418 encodes the
data object based on an erasure coding technique. The num
ber of encoded data segments generated can be expressed as
a function, e.g., n-k+m', where variable k is the original
amount of data segments or the minimum number of data
segments required to regenerate or rebuild the data object, and
variable m'stands for the extra or redundant segments that are
added to provide protection from storage device/storage node
failures. The variable n' is the total number of segments cre
ated after the encoding process.
0151. After the encoded data segments are generated, a
mapping of the object identifier and the segment identifiers of
the encoded data segments are stored in the mapping structure
414 in the staging area 408.
0152. In some embodiments, apart from encoding the data
object to generate the fragments, various other storage effi
ciency processes may be performed on the data object, e.g.,
deduplication, compression, encryption. One or more of
these processes can be performed by the storage processing
module 430.

0153. At block 1320, the storage layout module 420 deter
mines a storage layout for sending the encoded data segments
across a number of hierarchical storage nodes, e.g., hierarchi
cal storage nodes 314-318. In some embodiments, the storage
layout module 420 is configured to spread the encoded data
segments across as many hierarchical storage nodes as pos
sible, e.g., to provide better storage resiliency to the data
object. That is, the storage layout module 420 attempts to
identify different hierarchical storage nodes for storing dif
ferent encoded data segments. In some embodiments, the
storage layout module 420 selects the hierarchical storage
nodes on a random basis. In some embodiments, the storage
layout module 420 selects the hierarchical storage nodes on a
random weighted basis. In some embodiments, the random
weighted basis attempts to store the data segments evenly
across the hierarchical storage nodes. For example, one type
of weighting is to decrease the weight if there are already a
specified number of segments stored at the hierarchical stor
age node. In some embodiments, the random weighted basis
randomly identifies the hierarchical storage nodes at which

US 2016/0062833 A1

the encoded data segments are to be stored as a function of
decreasing the risk of data loss. For example, if a particular
geographical region is prone to higher number of device
failures, then the storage nodes in that geographical region
may be weighted less so that a lower number of segments are
written to the storage nodes in that geographical region.
0154. At block 1325, the transceiver module 432 transmits
the encoded data segments to the identified hierarchical Stor
age nodes. For example, the transceiver module 432 can
transmit the encoded data segments S1-S3 to hierarchical
storage nodes 314-318, respectively.
0155. At block 1330, each of the hierarchical storage that
receives an encoded data segment, processes the encoded data
segment to store it at a set of storage devices associated with
the hierarchical storage node, and the process 1300 returns.
The processing can include encoding the data segment to
generate a number of data fragments (block 1331). For
example, the hierarchical storage node 314 encodes the data
segment to generate fragments F1-F8. In some embodiments,
the hierarchical storage node encodes the data segment based
on an erasure coding technique. Also, the erasure coding
technique used to generate the data segments can be different
from that used for generating the fragments from the segment.
0156 The hierarchical storage node includes a storage
layout module, e.g., similar to the storage layout module 420,
that determines a storage layout for storing the data fragments
at a set of storage devices associated with the hierarchical
storage node (block 1332). In some embodiments, the storage
layout module is configured to spread the encoded data frag
ments across as many storage devices as possible, e.g., to
provide better storage resiliency to the data object. After the
storage layout is determined, the hierarchical storage node
stores the encoded data fragments at the identified storage
devices (block 1333).
0157. In some embodiments, the front-end subsystem 310
also stores the metadata of the data object with the data
segments and/or fragments. Additional details with respect to
the process of storing the metadata is described at least with
reference to FIGS. 9 and 17.
0158 FIG. 14 is a flow diagram of a process 1400 of
reading data from an object-based storage system using hier
archical spreading storage architecture, consistent with vari
ous embodiments of the disclosed technology. In some
embodiments, the process 1400 may be implemented in envi
ronment 300 of FIG.3, and using the storage system 1100 of
FIG. 11. The process 1400 begins at block 1405, and at block
1410, a request module 416 of the frontend subsystem 310
receives a read request, e.g., from a client system 312a, for
obtaining a data object. In some embodiments, the read
request includes an object identifier of the data object.
0159. At block 1415, the fragment/segment identification
module 422, determines the encoded data segments of the
data object using the object identifier. In some embodiments,
a mapping of the object identifier and the encoded data seg
ments are stored in the mapping structure 414 in the staging
area 408.

0160. At block 1420, the storage layout module 420 deter
mines the storage layout of the encoded data segments using
the mapping obtained from the mapping structure 414. The
storage layout can include identification information of the
hierarchical storage nodes where each of the encoded data
segments are stored.
(0161. At block 1425, the transceiver module 432 identifies
the hierarchical storage nodes that store sufficient number of

Mar. 3, 2016

the encoded data segments required to generate the data
object. In some embodiments, the sufficient number of
encoded data segments is k number of the encoded data
segments. In some embodiments, the transceiver module 432
can obtain k to n' number of segments. For example, the
transceiver module 432 can stop fetching the segments after
obtaining the first k'segments. In another example, the trans
ceiver module 432 can fetch all the n' segments but use only
the first k'segments for regenerating the data object.
0162. Further, the transceiver module 432 can preferen

tially select a subset of the identified hierarchical storage
nodes to obtain the segments from. The transceiver module
432 can select a hierarchical storage node based on a number
of factors, e.g., a read latency of the hierarchical storage node,
type of the storage devices associated with hierarchical Stor
age node, number of pending read requests ahead of the
current read requestina read request queue of the hierarchical
storage node, a geographical location of the hierarchical stor
age node.
0163. After the hierarchical storage nodes are identified,
the transceiver module 432 requests each of the hierarchical
storage nodes for the data segment.
(0164. At block 1430, each of the identified hierarchical
storage nodes performs a number of steps, e.g., 1431-1433, to
obtain the data segment. At block 1431, the hierarchical stor
age node determines from a storage layout of the fragments,
the set of storage devices that store sufficient number of the
encoded data fragments required to generate the data seg
ment. In some embodiments, the Sufficient number of
encoded data fragments is k number of the encoded data
fragments. In some embodiments, the hierarchical storage
node can obtaink to n number of fragments. For example, the
hierarchical storage node can stop fetching the fragments
after obtaining the first k fragments. In another example, the
hierarchical storage node can fetch all then fragments but use
only the first k fragments for regenerating the data segment.
0.165. Further, the hierarchical storage node can preferen

tially select a subset of the identified storage devices to obtain
the fragments from. The hierarchical storage node can select
a storage device based on a number of factors, e.g., a read
latency of the storage device, a type of the storage device,
number of pending read requests ahead of the current read
request in a read request queue of the storage device, a geo
graphical location of the storage device. At block 1432, the
hierarchical storage node obtains the sufficient number of
fragments from the identified set of storage devices.
0166. At block 1433, after obtaining the encoded data
fragments, the hierarchical storage node decodes the encoded
data fragments, e.g., based on the erasure coding method used
to encode the data segment, to generate the data segment.
After generating the data segment, the hierarchical storage
node returns the data segment to the front-end subsystem 310.
In some embodiments, additional processes may be per
formed before decoding the data fragments. For example, the
hierarchical storage node can decrypt the encoded data frag
ments if they were encrypted before being stored. In some
embodiments, additional processes may be performed on the
decoded data segment before the data segment is returned to
the front-end subsystem 310. For example, the hierarchical
storage node can perform decompression and dededuplica
tion on the decoded data segment if the data segment was
deduplicated and compressed.
0167. After obtaining sufficient number of the encoded
data segments, at block 1435, the encode/decode module 418

US 2016/0062833 A1

of the front-end subsystem 310 decodes the encoded data
segments, e.g., based on the erasure coding method used to
encode the data object, to generate the data object.
0168. At block 1440, the transceiver module 432 transmits
the data object in response to the read request, e.g., to the
client system 312a, and the process 1400 returns. In some
embodiments, additional processes may be performed before
decoding the data segments. For example, the storage pro
cessing module 430 can decrypt the encoded data segments if
they were encrypted before being stored. In some embodi
ments, additional processes may be performed on the
decoded data object before it is returned to the client 312a.
For example, the storage processing module 430 can perform
decompression and de-deduplication on the decoded data
object if the data object was deduplicated and compressed.
(0169 FIG. 15 is a flow diagram of a process 1500 of
rebuilding data fragments of a data object in hierarchical
spreading storage architecture, consistent with various
embodiments of the disclosed technology. In some embodi
ments, the process 1500 may be implemented in environment
300 of FIG. 3, and using the storage system 1100 of FIG. 11.
In some embodiments, the data fragments stored in the Stor
age subsystem 306 may be lost due to a failure of a storage
device. The process 1500 begins at block 1505, and at block
1510, a hierarchical storage node detects a failure of a storage
device, e.g., storage device 304, associated with the hierar
chical storage node. In some embodiments, the failure can be
one or more of the storage device being not accessible, the
storage device being physically damaged, the storage device
determined to fail in a specified period, the storage device
determined to fail in a specified number of read/write opera
tions, etc.
(0170 At block 1515, the hierarchical storage node identi
fies the encoded data fragments that were stored at the storage
device. For example, the hierarchical storage node can refer
to the storage layout to determine the fragments stored at the
storage device that has failed.
0171 At block 1520, the hierarchical storage node identi

fies the one or more data segments corresponding to the
identified encoded data fragments. For example, the hierar
chical storage node can refer to the mapping structure to
determine the data segments associated with the identified
encoded data fragments.
(0172. At block 1525, the hierarchical storage node
rebuilds some or all of the encoded data fragments that was
stored at the storage device that failed. In some embodiments,
rebuilding the data fragments include performing the method
described in association with blocks 1526-1530 for each of
the identified data segments.
0173 At block 1526, the hierarchical storage node identi

fies the storage devices where the data fragments of the iden
tified data segment are stored. The hierarchical storage node
may use the storage layout determined by the storage layout
module of the node to identify the storage devices that store
the data fragments of the data segment. At block 1527, the
hierarchical storage node computes the current storage resil
iency of the data segment. In some embodiments, storage
resiliency is defined as a resistance to loss of one or more
storage devices storing a portion of a data segment or resis
tance to loss of one or more fragments of the data segment. In
Some embodiments, a current storage resiliency of a data
segment is determined as a function of the number of frag
ments remaining out of n fragments and k. For example, if n
is “10. k is “8” the number of redundant fragments, m is “2.

Mar. 3, 2016

and therefore, the storage resiliency can be calculated as 25%
(m/k* 100). Note that the storage resiliency can be calculated
using other functions and based on several other parameters.
The storage system 1100 may guarantee a storage resiliency
range to the clients of the storage system, for example, a
minimum storage resiliency and a maximum storage resil
iency. In some embodiments, the storage resiliency range is
part of the SLO guaranteed to the clients. In some embodi
ments, the storage system 1100 may not rebuild the lost data
fragments until the current storage resiliency of the data seg
ment is or below the minimum storage resiliency.
0.174. At determination block 1528, the hierarchical stor
age node determines if the current storage resiliency of the
data segment is less than the minimum storage resiliency.
Responsive to a determination that the current storage resil
iency of the data segment is not less than the minimum storage
resiliency, the process 1500 returns. On the other hand,
responsive to a determination that the current storage resil
iency is less than the minimum storage resiliency, at block
1529, the hierarchical storage node obtains sufficient number
of fragments of the data segment stored at the identified
storage devices (e.g., identified in block 1526). In some
embodiments, the hierarchical storage node can obtain the
minimum number of fragments required to rebuild the data
fragments.
0.175. At block 1529, the hierarchical storage node gener
ates the replacement data fragments as a function of the
obtained data fragments, and at block 1530, the hierarchical
storage node stores the regenerated data fragments in at least
a Subset of the remaining storage devices. In some embodi
ments, the hierarchical storage node regenerates as many data
fragments as required to meet a specified Storage resiliency,
which can be up to maximum storage resiliency. In some
embodiments, regenerating the data fragments as a function
of the obtained data fragments includes decoding the
obtained data fragments to generate the data segment and
encoding the generated data segment to generate the specified
number of data fragments. In some embodiments, the hierar
chical spreading storage performs the encoding and decoding
using an erasure coding method.
(0176 FIG. 16 is a flow diagram of a process 1600 of
rebuilding data segments of a data object in hierarchical
spreading storage architecture, consistent with various
embodiments of the disclosed technology. In some embodi
ments, the process 1600 may be implemented in environment
300 of FIG.3, and using the storage system 1100 of FIG. 11.
In some embodiments, the data segments stored by a hierar
chical storage node may be lost due to a failure of a storage
device and/or a hierarchical storage node. The process 1600
begins at block 1605, and at block 1610, a failure detection
module 424 of front-end subsystem 310 detects a failure of a
hierarchical storage node and/or a failure of one or more
storage devices of the hierarchical storage node that caused
the storage resiliency of a particular data segment to drop. In
some embodiments, the failure can be one or more of the
storage device being not accessible, the storage device being
physical damaged, the hierarchical storage node not being
accessible, the storage device determined to fail in a specified
period, the storage device determined to fail in a specified
number of read/write operations, etc.
0177. At block 1615, the fragment/segment identification
module 422 identifies the encoded data segment stored by the
hierarchical storage device. For example, the fragment/seg

US 2016/0062833 A1

ment identification module 422 can refer to the storage layout
to determine the segments stored at the particular hierarchical
storage node that has failed.
0.178 At block 1620, the fragment/segment identification
module 422 identifies the data object to which the encoded
data segment corresponds. For example, the fragment/seg
ment identification module 422 can refer to the mapping
structure to determine the data segments associated with the
identified data object.
0179 At determination block 1625, the regeneration mod
ule 428 computes the current storage resiliency of the data
object and determines if the storage resiliency of the object is
below the specified minimum storage resiliency. In some
embodiments, a current storage resiliency of a data object is
determined as a function of the number of segments remain
ing out of n'segments and k". For example, if n' is “10 k' is
“8” the number of redundant segments, m' is 2, and therefore,
the storage resiliency can be calculated as 25% (m/k* 100).
Note that the storage resiliency can be calculated using other
functions and based on several other parameters. In some
embodiments, the storage system 1100 may not rebuild the
lost data segments until the current storage resiliency of the
data object is or below the minimum storage resiliency.
0180 Responsive to a determination that the current stor
age resiliency of the data object is not less than the minimum
storage resiliency, the process 1600 returns. On the other
hand, responsive to a determination that the current storage
resiliency is less than the minimum storage resiliency, at
block 1630, the transceiver module 432 obtains sufficient
number of segments of the data object stored at other hierar
chical storage nodes. In some embodiments, the transceiver
module 432 obtains the segments of the data object stored at
other hierarchical storage nodes as described with at least
with reference to blocks 1425-1433 of FIG. 14.
0181 At block 1635, the regeneration module 428 gener
ates the replacement data segment as a function of the
obtained data segments. In some embodiments, the regenera
tion module 428 generates as many data segments as required
to meet a specified storage resiliency for the data object,
which can be up to a specified maximum storage resiliency of
the data object. In some embodiments, regenerating the data
segments as a function of the obtained data segments includes
decoding the obtained data segments to generate the data
object and encoding the generated data object to generate the
specified number of data segments. In some embodiments,
the hierarchical spreading storage performs the encoding and
decoding using an erasure coding method.
0182. At block 1640, the transceiver module 432 sends the
regenerated data segments to one or more of the remaining
storage devices for storage at their associated storage devices.
In some embodiments, the transceiver module 432 transmits
the replacement data segments of the data object to other
hierarchical storage nodes as described with at least with
reference to blocks 1320-1333 of FIG. 13.
0183 FIG. 17 is a flow diagram of a process 1700 of
deferred rebuilding of data segments of a data object in the
hierarchical spreading storage architecture, consistent with
various embodiments of the disclosed technology. In some
embodiments, the process 1700 may be implemented in envi
ronment 300 of FIG.3, and using the storage system 1100 of
FIG. 11. The rebuilding/regeneration process 1600 can con
Sume significant system resources for regenerating the
encoded data segments, e.g., network resources for reading at
least k number of encoded data segments from other hierar

Mar. 3, 2016

chical storage nodes, computing resources of the correspond
ing hierarchical storage nodes in obtaining the fragments of
the corresponding data segment and decoding them to gener
ate the encoded data segment, etc. In some embodiments, the
consumption of the system resources can be minimized by
postponing or deferring the regeneration process 1600 until a
later time, e.g., when the storage devices are replaced with
new storage devices, when the data in the storage devices is
migrated, etc.
0184. In some embodiments, the generation of replace
ment data segments for the lost data segments is deferred until
after one or more of the failed storage devices and/or one or
more of the hierarchical storage nodes is replaced. That is, the
regeneration process may not be executed during the lifetime
of the storage devices and/or the hierarchical storage nodes.
In some embodiments, the timing of the regeneration process
is controlled based on m', the number of redundant encoded
data segments to be generated. As described above at least
with reference to the regeneration process 1600, the regen
eration process 1600 is triggered when the current storage
resiliency of the data object drops below the minimum stor
age resiliency. The storage resiliency of a data object is a
function of the total number of encoded data segments, n',
stored across the hierarchical storage nodes, which is a func
tion of m'. The m' can be determined such that the storage
resiliency of the data object does not drop below the mini
mum storage resiliency during the lifespan of one or more of
the storage devices. In other words, the number of encoded
data segments generated are such that a loss of a subset of the
encoded data segments does not drop the storage resiliency of
the data object below the minimum storage resiliency during
the lifespan of one or more of the storage devices. The fol
lowing paragraphs describe the process 1700 in further detail.
0185. The process 1700 begins at block 1705, and at block
1710, the regeneration module 428 obtains the historical
information regarding a failure rate of storage devices of the
type of the storage devices in the environment 300. The his
torical information can include a number of parameters that
can describe and/or help determine the failure information of
a storage device, e.g., an annual failure rate (AFR) of the
storage device of a particular type, an AFR of the storage
device based on a particular workload on the storage device,
how long a storage device is expected to Survive based on a
particular workload. Such historical information can be gath
ered from various sources, gathered from the environment
300 over a period and/or can be input by a user such as an
administrator of the environment 300.
0186. At block 1715, the regeneration module 428 pre
dicts the failure rate of the storage devices in the environment
300 and generates the predicted information. The regenera
tion module 428 can interpolate the historical information
with various parameters of the storage devices in the environ
ment 300, e.g., the number of storage devices in the environ
ment 300, a workload of the storage devices, the number of
read/write operations performed on the storage devices, a
remaining life of the storage devices, and determine the pre
dicted failure rate of the storage devices.
0187. At block 1720, the regeneration module 428 deter
mines the lifespan of the storage devices as a function of the
historical information and the predicted information. At
block 1725, the regeneration module 428 determines a statis
tical probability of a loss of a failure of one or more hierar
chical storage nodes based on the determined lifespan of the
storage devices. In some embodiments, a failure/loss of a

US 2016/0062833 A1

hierarchical storage node is a function of the lifespan of the
set of storage devices associated with the hierarchical storage
node since a failure of one or more storage devices from the
set can result in a failure of the hierarchical storage node.
Further, a failure of the hierarchical storage node can result in
a loss of the encoded data segment stored at the hierarchical
storage node.
0188 At block 1730, the regeneration module 428 deter
mines the redundant number of encoded data segments, m', to
be generated for the data object based on the statistical prob
ability of the loss of the hierarchical storage node. The regen
eration module 428 notifies the encode/decode module 418
regarding the determined m', and the encode/decode module
418 encodes the data object to generate the encoded data
segments accordingly.
0189 In some embodiments, the regeneration module 428
may continuously adjust m', e.g., based on a specified sched
ule or certain events such as when storage devices are added
or removed, to factor in any change in the parameters of the
environment 300, e.g., change in workload on the storage
devices, addition or removal or storage devices, etc.
(0190. Note that although the process 1700 is described as
being performed by the regeneration module 428, the process
1700 can be performed by a combination of modules of the
front-end subsystem 310 and/or sub-modules of the regen
eration module 428 (not illustrated).
(0191 FIG. 18 is a flow diagram of a process 1800 of
processing metadata and data fragments of a data object in
hierarchical spreading storage architecture, consistent with
various embodiments of the disclosed technology. In some
embodiments, the process 1800 may be implemented in envi
ronment 300 of FIG.3, and using the storage system 1100 of
FIG. 11. In some embodiments, the process 1800 is an imple
mentation of the method of block 925 of FIG. 9. The data
piece generated in the process 900 of FIG. 9, e.g., in block
920, can be considered as a data segment in the hierarchical
spreading storage architecture. The process 1800 begins at
block 1805, and at block 1810, the metadata processing mod
ule 426 combines the metadata of a data object, e.g., metadata
510, with each of the segments, e.g., segments 1205, togen
erate composite segments, e.g., composite segments 1210. In
Some embodiments, combining the metadata with data seg
ment can include concatenating the metadata with segment or
prefixing a segment with the metadata. In some embodi
ments, the metadata 510 combined with segment can be a
subset of the metadata of the data object 405.
0.192 After the composite segments are generated, at
block 1815, the transceiver module 432 transmits the com
posite segments to a number of hierarchical storage nodes,
e.g., as described at least with reference to blocks 1320 and
1325 of FIG. 13 for further storage at a set of storage devices
associated with the hierarchical storage nodes.
0193 At block 1820, when a particular hierarchical stor
age node receives a composite data segment, it encodes the
composite data segment to generate a number of data frag
ments, e.g., fragments 1215 (block 1821). In some embodi
ments, the composite data segment is encoded to generate a
number of data fragments as described at least with reference
to block 1331 of FIG. 13.
0194 At block 1822, the particular hierarchical storage
node combines each of the fragments with the metadata, e.g.,
concatenates or prefixes the fragments 1215 with the meta
data 510, to generate the composite fragments, e.g., compos
ite fragments 1220.

Mar. 3, 2016

0.195. After the composite fragments are generated, at
block 1823, the particular hierarchical storage node stores the
composite fragments at a set of storage devices associated
with the hierarchical storage node, e.g., as described with
reference to blocks 1332 and 1333 of FIG. 13.
0196. Note that although FIG. 18 illustrates combining
metadata 510 with both the data segments and the fragments,
the metadata 510 can be combined with either the data seg
ments or the data fragments.
0.197 FIG. 19 is a block diagram of a computer system as
may be used to implement features of Some embodiments of
the disclosed technology. The computing system 1900 may
be used to implement any of the entities, components or
services depicted in the examples of FIGS. 1-17 (and any
other components described in this specification). The com
puting system 1900 may include one or more central process
ing units (“processors') 1905, memory 1910, input/output
devices 1925 (e.g., keyboard and pointing devices, display
devices), storage devices 1920 (e.g., disk drives), and net
work adapters 1930 (e.g., network interfaces) that are con
nected to an interconnect 1915. The interconnect 1915 is
illustrated as an abstraction that represents any one or more
separate physical buses, point to point connections, or both
connected by appropriate bridges, adapters, or controllers.
The interconnect 1915, therefore, may include, for example,
a system bus, a Peripheral Component Interconnect (PCI) bus
or PCI-Express bus, a HyperTransport or industry standard
architecture (ISA) bus, a small computer system interface
(SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an
Institute of Electrical and Electronics Engineers (IEEE) stan
dard 1394 bus, also called “Firewire'.
(0198 The memory 1910 and storage devices 1920 are
computer-readable storage media that may store instructions
that implement at least portions of the described technology.
In addition, the data structures and message structures may be
stored or transmitted via a data transmission medium, Such as
a signal on a communications link. Various communications
links may be used, such as the Internet, a local area network,
a wide area network, or a point-to-point dial-up connection.
Thus, computer readable media can include computer-read
able storage media (e.g., “non-transitory' media) and com
puter-readable transmission media.
(0199 The instructions stored in memory 1910 can be
implemented as Software and/or firmware to program the
processor(s) 1905 to carry out actions described above. In
Some embodiments, such software or firmware may be ini
tially provided to the computing system 1900 by download
ing it from a remote system through the computing system
1900 (e.g., via network adapter 1930).
0200. The technology introduced herein can be imple
mented by, for example, programmable circuitry (e.g., one or
more microprocessors) programmed with Software and/or
firmware, or entirely in special-purpose hardwired (non-pro
grammable) circuitry, or in a combination of Such forms.
Special-purpose hardwired circuitry may be in the form of
for example, one or more ASICs, PLDs, FPGAs, etc.

Remarks

0201 The above description and drawings are illustrative
and are not to be construed as limiting. Numerous specific
details are described to provide a thorough understanding of
the disclosure. However, in some instances, well-known
details are not described in order to avoid obscuring the
description. Further, various modifications may be made

US 2016/0062833 A1

without deviating from the scope of the embodiments.
Accordingly, the embodiments are not limited except as by
the appended claims.
0202 Reference in this specification to “one embodiment'
or “an embodiment’ means that aparticular feature, structure,
or characteristic described in connection with the embodi
ment is included in at least one embodiment of the disclosure.
The appearances of the phrase “in one embodiment in vari
ous places in the specification are not necessarily all referring
to the same embodiment, nor are separate or alternative
embodiments mutually exclusive of other embodiments.
Moreover, various features are described which may be
exhibited by some embodiments and not by others. Similarly,
various requirements are described which may be require
ments for some embodiments but not for other embodiments.
0203 The terms used in this specification generally have
their ordinary meanings in the art, within the context of the
disclosure, and in the specific context where each term is
used. Some terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip
tion of the disclosure. For convenience, some terms may be
highlighted, for example usingitalics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that the same thing can be said in more
than one way. One will recognize that “memory” is one form
of a “storage” and that the terms may on occasion be used
interchangeably.
0204 Consequently, alternative language and synonyms
may be used for any one or more of the terms discussed
herein, nor is any special significance to be placed upon
whether or not a term is elaborated or discussed herein. Syn
onyms for some terms are provided. A recital of one or more
synonyms does not exclude the use of other synonyms. The
use of examples anywhere in this specification including
examples of any term discussed herein is illustrative only, and
is not intended to further limit the scope and meaning of the
disclosure or of any exemplified term. Likewise, the disclo
Sure is not limited to various embodiments given in this speci
fication.
0205 Those skilled in the art will appreciate that the logic
illustrated in each of the flow diagrams discussed above, may
be altered in various ways. For example, the order of the logic
may be rearranged, Substeps may be performed in parallel,
illustrated logic may be omitted; other logic may be included,
etc.

0206 Without intent to further limit the scope of the dis
closure, examples of instruments, apparatus, methods and
their related results according to the embodiments of the
present disclosure are given below. Note that titles or subtitles
may be used in the examples for convenience of a reader,
which in no way should limit the scope of the disclosure.
Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document, includ
ing definitions will control.

I/we claim:
1. A computer-implemented method comprising:
identifying, at a storage management computer node of a

storage management system, a specified storage device,
the specified storage device being one of multiple stor

Mar. 3, 2016

age devices associated with the storage management
system, the storage management system storing a data
object of multiple data objects as a first set of encoded
data fragments, the first set of encoded data fragments
stored across the storage devices;

identifying, by the storage management computer node,
one or more of the data objects to which multiple
encoded data fragments stored at the specified storage
device correspond, the identifying including identifying
that a group of the encoded data fragments correspond to
the data object, the group of the encoded data fragments
being part of the first set of encoded data fragments; and

regenerating, by the storage management computer node, a
Subset of the encoded data fragments as a function of a
second set of encoded fragments representing the data
object, the second set of encoded fragments being a
difference between the first set of encoded data frag
ments and the group of the encoded data fragments, the
second set of encoded data fragments stored at a first set
of the storage devices, the first set of the storage devices
excluding the specified storage device.

2. The computer-implemented method of claim 1 further
comprising:

storing, by the storage management computer node, the
regenerated Subset of the encoded data fragments at a
second set of the storage devices, the second set of the
storage devices excluding the specified storage device.

3. The computer-implemented method of claim 2, wherein
the first set of the storage devices from which the storage
management computer node obtains the Subset of the
encoded data fragments is same as the second set of the
storage devices.

4. The computer-implemented method of claim 2, wherein
the first set of the storage devices from which the storage
management computer node obtains the Subset of the
encoded data fragments is different from the second set of the
storage devices.

5. The computer-implemented method of claim 1, wherein
the first set of encoded fragments is generated by encoding the
data object, the first set of encoded fragments including a first
specified number of encoded data fragments out of which a
second specified number of encoded data fragments is
required for regenerating the data object.

6. The computer-implemented method of claim 5, wherein
regenerating the Subset of the encoded data fragments
includes:

obtaining, from the first set of the storage devices, at least
the second specified number of encoded fragments from
the second set of encoded data fragments,

decoding, by the storage management computer node, the
at least the second specified number of encoded data
fragments to regenerate the Subset of the encoded data
fragments, and

storing, by the storage management computer node, the
Subset of the encoded data fragments at a second set of
the storage devices, the second set of the storage devices
excluding the specified storage device.

7. The computer-implemented method of claim 6, wherein
the decoding is executed as a function of an erasure coding
technique.

8. The computer-implemented method of claim 5, wherein
the regenerating includes:

determining a specified storage resiliency of the data
object,

US 2016/0062833 A1

determining a current storage resiliency of the data object,
and

generating the Subset of the encoded data fragments corre
sponding to the data object if the current storage resil
iency is below the specified storage resiliency by a speci
fied value.

9. The computer-implemented method of claim 8, wherein
the specified storage resiliency is a function of the first speci
fied number of encoded data fragments and the second speci
fied number of encoded data fragments.

10. The computer-implemented method of claim 8,
wherein the current storage resiliency is a function of a num
ber of encoded fragments in the second set of encoded data
fragments and the second specified number of encoded data
fragments.

11. The computer-implemented method of claim 1,
wherein regenerating the group of the encoded data frag
ments includes regenerating the Subset of the encoded frag
ments as a background process in the storage management
computer node.

12. The computer-implemented method of claim 1,
wherein regenerating the group of the encoded data frag
ments includes regenerating the Subset of the encoded frag
ments before the specified storage device is replaced with a
replacement storage device.

13. The computer-implemented method of claim 12,
wherein the replacement storage device is used for storing a
collection of encoded data fragments other than the subset of
the encoded data fragments.

14. The computer-implemented method of claim 1 further
comprising:

detecting, by the storage management computer node, an
addition of a replacement storage device, the replace
ment storage device replacing the specified storage
device; and

using, by the storage management computer node, the first
storage device to store a collection of encoded data
fragments other than the subset of the encoded data
fragments.

15. The computer-implemented method of claim 14,
wherein the replacement storage device has a different Stor
age capacity from that of the specified storage device.

16. The computer-implemented method of claim 1,
wherein identifying the one or more of the data objects to
which the encoded data fragments stored at the specified
storage device correspond includes:

determining, by the storage management computer node, a
storage layout of the encoded data fragments, the storage
layout including an identification information of the
storage devices at which each of the encoded data frag
ments is stored.

17. The computer-implemented method of claim 16,
wherein identifying that the group of the encoded data frag
ments correspond to the data object includes:

determining, by the storage management computer node,
the data object based on a mapping in the storage layout,
the mapping including a mapping of the data object to
the subset of the encoded data fragments of the data
object.

18. The computer-implemented method of claim 16 further
comprising:

updating, by the storage management computer node, the
storage layout to indicate that the Subset of the encoded
data fragments is stored at a second set of the storage

Mar. 3, 2016

devices, the second set of the storage devices excluding
the specified storage device.

19. The computer-implemented method of claim 1,
wherein the data object is encoded to the first set of encoded
data fragments as a function of an erasure coding technique.

20. The computer-implemented method of claim 1,
wherein identifying the specified storage device includes
identifying at least one of the storage devices that has failed,
inaccessible or determined to fail.

21. A computer-implemented method comprising:
identifying, at a storage management computer node of a

storage management system, a specified storage device
of a set of storage devices associated with a storage
computer node, the storage management computer node
encoding a data object of multiple data objects to gen
erate multiple encoded data segments, the storage com
puter node storing an encoded data segment of the
encoded data segments as a set of encoded data frag
ments in the set of storage devices, the set of encoded
data fragments including a first specified number of
encoded data fragments out of which a second specified
number of encoded data fragments is required for regen
erating the encoded data segment,

wherein the storage computer node is one of multiple stor
age computer nodes, each of the storage computer nodes
encoding at least one of the encoded data segments to
generate a corresponding set of encoded data fragments
and storing the corresponding set of encoded data frag
ments in a corresponding set of Storage devices:

determining, using the storage computer node, an encoded
data fragment of a group of encoded data fragments
stored at the specified storage device, the group of
encoded data fragments corresponding to one or more
encoded data segments of one or more of the data
objects;

identifying, by the storage computer node, the encoded
data segment to which the encoded data fragment cor
responds; and

generating, by the storage computer node, a replacement
encoded data fragment as a function of at least the Sec
ond specified number of encoded data fragments stored
at one or more of a remaining set of the set of storage
devices.

22. The computer-implemented method of claim 21 further
comprising:

storing, by the storage management computer node, the
replacement encoded data fragment at one of the one or
more of the remaining set of the set of storage devices.

23. The computer-implemented method of claim 21,
wherein generating the replacement encoded data fragment
includes:

obtaining, the at least the second specified number of
encoded data fragments from the one or more of the
remaining set of the set of storage devices,

encoding, by the storage computer node, the at least the
second specified number of the encoded data fragments
to generate the replacement encoded data fragment, and

storing, by the storage computer node, the replacement
encoded data fragment at one of the one or more of the
remaining set of the set of storage devices.

24. The computer-implemented method of claim 23,
wherein the encoding is executed as a function of an erasure
coding technique.

US 2016/0062833 A1

25. The computer-implemented method of claim 21,
wherein the generating includes:

determining a specified storage resiliency of the encoded
data segment,

determining a current storage resiliency of the encoded
data segment, and

generating the replacement encoded data fragment if the
current storage resiliency is below the specified storage
resiliency by a specified value.

26. The computer-implemented method of claim 21 further
comprising:

detecting, by the storage management computer node, a
failure of the storage computer node:

identifying, by the storage management computer node,
the data object to which the encoded data segment stored
by the storage computer node corresponds; and

generating, by the storage management computer node, a
replacement encoded data segment for the data object as
a function of at least a third specified number of encoded
data segments of the data object stored at a remaining set
of the storage computer nodes.

27. The computer-implemented method of claim 26,
wherein generating the replacement encoded data segment
includes:

obtaining, from the remaining set of the storage computer
nodes, at least the third specified number of encoded
data segments, wherein the data object is encoded to
generate a fourth specified number of encoded data seg
ments, which includes the third specified number of
encoded data segments required for generating the
encoded data segment,

encoding, by the storage management computer node, the
at least the third specified number of encoded data seg
ments to generate the replacement encoded data seg
ment, and

sending, by the storage management computer node, the
replacement encoded data segment to one of the remain
ing set of the storage computer nodes for further storage
at a first set of storage devices associated with the one of
the remaining set of the storage computer nodes.

28. The computer-implemented method of claim 27,
wherein obtaining a first encoded data segment of the at least
the third specified number of encoded data segments
includes:

obtaining, from a first storage computer node of the
remaining set of the storage computer nodes that stores
the first encoded data segment, a first set of encoded data
fragments corresponding to the first encoded data seg
ment, and

decoding the first set of encoded data fragments to generate
the first encoded data segment.

29. The computer-implemented method of claim 26 further
comprising:

storing, by one of the remaining set of the storage computer
nodes, the replacement encoded data segment as a first
set of encoded data fragments.

20
Mar. 3, 2016

30. A system comprising:
a processor;
a first module configured to identify a specified storage

device, the specified storage device being one of mul
tiple storage devices associated with the system, the
System storing a data object of multiple data objects as a
first set of encoded data fragments, the set of encoded
data fragments stored across the storage devices;

a second module configured to identify one or more of the
data objects to which multiple encoded data fragments
stored at the specified storage device correspond, the
identifying including identifying that a subset of the
encoded data fragments correspond to the data object,
the subset of the encoded data fragments being part of
the first set of encoded data fragments; and

a third module configured to regenerate the subset of the
encoded data fragments as a function of a second set of
encoded fragments representing the data object, the sec
ond set of encoded fragments being a difference between
the first set of encoded data fragments and the subset of
the encoded data fragments, the second set of encoded
data fragments stored at a first set of the storage devices,
the first set of the storage devices excluding the specified
storage device.

31. A system comprising:
a processor;
a first module configured to identify a specified storage

device of a set of storage devices associated with a
storage computer node, the system encoding a data
object to generate multiple encoded data segments, the
storage computer node storing an encoded data segment
of the encoded data segments as a set of encoded data
fragments in the set of storage devices, the set of
encoded data fragments including a first specified num
ber of encoded data fragments out of which a second
specified number of encoded data fragments is required
for regenerating the encoded data segment,
wherein the storage computer node is one of multiple

storage computer nodes, each of the storage computer
nodes encoding at least one of the encoded data seg
ments to generate a corresponding set of encoded data
fragments and storing the corresponding set of
encoded data fragments in a corresponding set of
storage devices:

a second module configured to cause the storage computer
node to determine an encoded data fragment of a group
of encoded data fragments stored at the specified storage
device;

a third module configured to cause the storage computer
node to identify the encoded data segment to which the
encoded data fragment corresponds; and

a fourth module configured to cause the storage computer
node to generate a replacement encoded data fragment
as a function of at least the second specified number of
encoded data fragments stored at one or more of a
remaining set of the set of storage devices.

ck ck ck *k ck

