
(19) United States
US 2009021.3856A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0213856A1
Paatela et al. (43) Pub. Date: Aug. 27, 2009

(54) SYSTEMAND METHOD FOR PROVIDING
TRANSFORMATION OF MULT-PROTOCOL
PACKETS IN ADATA STREAM

Jeremy B. Paatela, Rockford, MN
(US); Scott A. Sarkinen, Mounds
View, MN (US); Hemant Vrajlal
Trivedi, Cupertino, CA (US)

(75) Inventors:

Correspondence Address:
PATTERSON, THUENTE, SKAAR & CHRIS
TENSEN, PA.
4800 IDS CENTER, 80 SOUTH 8TH STREET
MINNEAPOLIS, MN 55402-2100 (US)

(73) Assignee: SLT Logic LLC, Boston, MA (US)

(21) Appl. No.: 12/437,573

(22) Filed: May 8, 2009

Related U.S. Application Data

(60) Division of application No. 1 1/224,692, filed on Sep.
12, 2005, now Pat. No. 7,539,195, which is a continu

ation of application No. 09/849,804, filed on May 4,
2001, now Pat. No. 6,944,168.

Publication Classification

(51) Int. Cl.
H04L 2/56 (2006.01)
H04L 2/28 (2006.01)

(52) U.S. Cl. 370/392; 370/395.7; 370/401

(57) ABSTRACT

A system and method for facilitating packet transformation of
multi-protocol, multi-flow, streaming data. Packet portions
Subject to change are temporarily stored, and acted upon
through processing of protocol-dependent instructions,
resulting in a protocol-dependent modification of the tempo
rarily stored packet information. Validity tags are associated
with different segments of the temporarily-stored packet,
where the state of each tag determines whether its corre
sponding packet segment will form part of the resulting modi
fied packet. Only those packet segments identified as being
part of the resulting modified packet are reassembled prior to
dispatch of the packet.

sissies:

Patent Application Publication Aug. 27, 2009 Sheet 1 of 16 US 2009/021.3856 A1

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 2 of 16 Patent Application Publication

50NISSE,}0&d SSB893

OZZ

ZEZ

ZOZ

1-0 HWO HNIT

Patent Application Publication Aug. 27, 2009 Sheet 3 of 16 US 2009/021385.6 A1

3OO

N 302
OC 192 Framer

OIF R. Data (64) 20OMhz
304

330

72). OOM

315 Instructions Programmable - (20) Addr
Data Parsing Engine O 125Mhz

Address CTD TLB
(19)25Mhz (36) Data SRAM

Psy ... sham Policing Engine <-->
AM 72125Mhg IF 332
<--> 2012.5M.

SRAMr. Edit 340 High Speed Editor K. (72) 125R, 5AM
(20)125Mhz. OABLE TRAFFIC --

st" re"k".
32 U

Traffic Director

l
TX

Buffer
344 OIF Core

OF Output Data (64) 200Mhz. 316
Switch Fabric Interface

JTAG KX

.9Fig. 3

Patent Application Publication Aug. 27, 2009 Sheet 4 of 16 US 2009/021.3856 A1

S.

a CD

: s
s

i

S.

S
s

5.
H D

O D

s 3.

Patent Application Publication Aug. 27, 2009 Sheet 5 of 16 US 2009/021.3856 A1

CLASSIFIER POLICER EDTOR

502 504 506
COPROCESSOR/CPUINTERFACE 508

514 516

CLASSIFIER SRAM SRAM
5O2 POLICER 54 EDITOR 50s
COPROCESSOR CPU INTERFACE

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 6 of 16 Patent Application Publication

Z!!

8B000NE AllH0lHd

HETTO HIN00

801

SITTISE!!! H0HWES

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 7 of 16 Patent Application Publication

Patent Application Publication Aug. 27, 2009 Sheet 8 of 16 US 2009/021.3856 A1

S.
y

ve

yo

y

vs

y

S.
se ve

S. -

were

Co S

US 2009/021.3856 A1

01019001

co
n
C
ve

Aug. 27, 2009 Sheet 9 of 16 Patent Application Publication

Patent Application Publication Aug. 27, 2009 Sheet 10 of 16 US 2009/021.3856 A1

122

1100

Y

Search Results

Editor instructions/
Data Color Mapping

Macro
Sequencer

Policing Pre-Info/
Results

proc Snoop

1106 snoop 1104
1110

input
Processor write0/1 Cmd/DataO/

Write0/1 1102 1130

input
Headers

Vba-Out

1150 18O
Output

Processor Output
Headers Modified

Packet Input
Packet
a--

input Non-Headers Non-Headers Output

Patent Application Publication Aug. 27, 2009 Sheet 11 of 16 US 2009/021.3856A1

220

1200

sram read data(71:0)
1214 start

stack 1210

Ch0 macro edits = Ch1 macro edits =
Local Header-length FAST (color)
Top MPLS EXP/TTL P TTL

PDiffServ P Checksum

1212

1238

Cho Cmds = Ch1 Cmds -
set Set
CI Cr

pop all --W

1240
Cmd/data 0

1242
Cmd/data/mask 1

Write/data 0 write/data 1

packet

1204 12O6

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 12 of 16 Patent Application Publication

— \ t)

8-HEWIS |-, El

Patent Application Publication Aug. 27, 2009 Sheet 13 of 16 US 2009/021.3856 A1

s

s
s s

f/ ALA 1

Eas s

2

S

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 14 of 16 Patent Application Publication

US 2009/021.3856 A1 Aug. 27, 2009 Sheet 15 of 16 Patent Application Publication

8-BIWIS

Patent Application Publication Aug. 27, 2009 Sheet 16 of 16 US 2009/0213856A1

1700

RECEIVE PACKETSTREAM AT NETWORKNODE

1702
STORE PACKETSEGMENTS IN MODIFICATION

MEMORY

1704
INDEX APPROPRIATEEDITING INSTRUCTIONS
FROMNSTRUCTION MEMORY BASED ON

PACKETCHARACTERISTICS

17O6
EFFECT MODIFICATIONS ASDICATED BY ENDEXED

EDTENG INSTRUCTIONS

ASSOCIATE VALIDITY TAGS WITH THE MEMORY SEGMENTS
OF THE MODIFICATION MEMORY TO DENTIFY PACKET
SEGMENTS TO BE INCLUDED IN OUTPUT PACKET

1710

CONSIDER PACKETSEGMENT

1708

1716 1712
DISREGARD
MEMORY VALIDITY TAG
SEGMENT NO SET

YES

1714. INCLUDE PACKET
SEESS" SEGMENT IN RESULTING

MODIFIED PACKET

Jig. 17

US 2009/021.3856 A1

SYSTEMAND METHOD FOR PROVIDING
TRANSFORMATION OF MIUILT-PROTOCOL

PACKETS IN ADATA STREAM

CROSS-REFERENCE TO OTHER PATENT
APPLICATIONS

0001. This application is a divisional of U.S. patent appli
cation Ser. No. 1 1/224,692, filed Sep. 12, 2005, which is a
continuation of U.S. patent application Ser. No. 09/849,804,
filed on May 4, 2001, now U.S. Pat. No. 6,944,168.
0002 The following co-pending patent applications of
common assignee contains some common disclosure: “A
Method And Apparatus For Providing Multi-Protocol, Multi
Stage, Real-Time Frame Classification, U.S. patent applica
tion Ser. No. 09/849,913, filed concurrently herewith, which
is incorporated herein by reference in its entirety:
0003 “System And Method For Policing Multiple Data
Flows And Multi-Protocol Data Flows’. U.S. patent applica
tion Ser. No. 09/849,914, filed concurrently herewith, which
is incorporated herein by reference in its entirety:
0004 “System And Method For Hierarchical Policing Of
Flows And Subflows Of A Data Stream, U.S. patent appli
cation Ser. No. 09/849,810, filed concurrently herewith,
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

0005. This invention relates in general to communication
networks, and more particularly to a method and apparatus
for transforming packets in a multi-protocol, multi-flow data
Stream.

BACKGROUND OF THE INVENTION

0006 Enhancing today's networking technology is a per
petual goal in the communications industry. As the raw
speeds of large-scale and personal computing devices Soar,
the tremendous increase in data transmission demands con
tinue to push the networking bandwidth envelope to capacity.
AS bandwidth-intensive multimedia content continues to gain
popularity and course the veins of the Internet, the unrelent
ing bandwidth dilemma is no less urgent today than yester
day. This demand has fueled the need for high-bandwidth
broadband systems.
0007. The term “broadband' has often been used to
describe high-bandwidth transmission of data signals, such as
data, Video, Voice, video conferencing, etc. Broadband phi
losophies often address networking principles applicable to
the backbone of the networking system, since the networking
backbone generally faces the highest bandwidth demands.
There are many competing technologies for delivering broad
band access. For example, there are a number of standards
used in digital telecommunications, including TCP/IP, Ether
net, HDLC, ISDN, ATM, X.25, Frame Relay, Digital Data
Service, FDDI (Fiber Distributed Data Interface), Ti, xDSL,
Wireless, Cable Modems, and Satellite among others. Many
of these standards employ different packet and/or frame for
mats. The term “frame' is often used in reference to encap
Sulated data at OSI layer 2, including a destination address,
control bits for flow control, the data or payload, and CRC
(cyclic redundancy check) data for error checking. The term
“packet' is often used in reference to encapsulated data at OSI
layer 3. Further, the term “cell is often used in reference to a
group of bytes/octets conditioned for transmission across a
network. However, it should be understood that for purposes

Aug. 27, 2009

of the present application, the terms packet, frame, and cell
may be used interchangeably to refer to groups or collections
of data. Further, a packet format or frame format generally
refers to how data is encapsulated with various fields and
headers for transmission across the network. For example, a
data packet typically includes a destination address field, a
length field, an error correcting code (ECC) field or cyclic
redundancy check (CRC) field, as well as headers and trailers
to identify the beginning and end of the packet. The terms
“packet format' and “frame format”, also referred to as “cell
format, are generally synonymous for purposes of this appli
cation.

0008 Packets transmitted across a network are associated
with a transmission protocol. A protocol is a set of rules that
governs how devices on a network exchange information.
Packets traversing the network may be of differing formats or
“protocols.” This is often due to the development of incom
patible proprietary protocols by computer manufacturers.
While protocol compatibility and standardization are becom
ing increasingly important, even standard protocols provide
multiple options and are not always interchangeable between
applications. Further, new protocols will continue to be devel
oped to address certain network limitations, or to otherwise
improve network data transmission. All of these factors con
tribute to the reality that multiple transmission protocols
exist, and will likely continue to exist.
0009 Examples of typical protocols used to communicate
information include the Internet Protocol (IP), which is a
“best-effort connectionless protocol responsible for deliv
ering data from host to host across a network Such as the
Internet. IP is a predominant protocol used to transmit data
across the Internet. Other protocols are used to transmit pack
ets across the Internet as well, such as Framed ATM over
SONET/SDH Transport (FAST) and IP on multiprotocol
label switching (MPLS). FAST is a new protocol intended to
improve the performance of asynchronous transfer mode
(ATM). FAST introduces a variable length user data field,
while preserving the proven advantages of ATM, Such as real
quality of service guarantees, the security and traffic isolation
provided by virtual connections, network management, traf
fic management, control mechanisms for bandwidth on
demand, etc. MPLS integrates layer-2 information about net
work links into layer-3 (IP) within a particular autonomous
system in order to simplify and improve IP-packet exchange.
MPLS essentially provides connection-oriented labeling in
an otherwise connectionless environment, which has resulted
in MPLS being considered associated with layer-2.5. With
MPLS, different flows can be classified, and different service
levels can be associated with the different flow classifications.

0010. As described above, packets transmitted on a net
work Such as the Internet may be associated with one of a
number of different protocols, and thus packets associated
with different protocols may be received at a given node,
switch, router, etc. As described more fully below, the intro
duction of multiple packet protocols at a node requires special
consideration when the entire data flow is subject to editing as
the packets traverse the network.
0011 Packets, frames, cells, and/or other data units tra
versing a network Such as the Internet often face the possibil
ity of being modified at a given network node. A variety of
situations may result in a need to modify or “transform” the
packet. For example, a packet reaching a node may need to be
redirected from its original course to an alternate course. This
can occur where an originally-intended node along the path

US 2009/021.3856 A1

becomes unavailable due to server problems, transmission
cables being cut or otherwise damaged, and the like. In Such
a case, a “destination address' identified in a packet may
require modification to alter the path of the packet in its quest
to reach the ultimate destination. Another example of packet
editing include the potential need to change header fields of
the packet, such as packet length and checksum fields. If, for
example, a packet is modified for any reason, the checksum
and/or packet length fields are very likely to change, resulting
in the need to further modify the packet to update such fields.
Other fields include the time-to-live (TTL), packet conform
ance indicators such as colorations and drop priorities, etc. As
can be seen, packets may require editing as they navigate the
network towards their respective destination nodes.
0012. At a particular network node or other ingress point,
individual packets that make up a communications traffic
stream can be classified into several flows or connections.
Further, the traffic stream flows may include packets being
transmitted in connection with different protocols. This can
pose a challenge to editing systems, and typically requires
that each of the flows be discretely handled. Due to very high
data transmission speeds in today's networks, editing meth
ods have conventionally required custom solutions, generally
in the form of specialized, proprietary hardware engines in
application-specific integrated circuits (ASICs). Because
information may be transmitted across networks (e.g., the
Internet) using a variety of different networking protocols,
multiple specialized circuits are generally required to accom
modate packets of each packet protocol that might traverse
the network Switch, router, bridge, or other intermediate sys
tem between the source and destination. For example, a sepa
rate packet transformation methodology, and therefore sepa
rate ASIC, may be required for each packet protocol used in
the network. This results in higher costs, part counts, and
general complexities, while adversely impacting system effi
ciencies.
0013. Accordingly, there is a need in the communications
industry for a method and apparatus for commonly trans
forming one or more packet flows of multiple transmission
protocols. The present invention fulfills these and other
needs, and offers other advantages over the prior art policing
approaches.

SUMMARY OF THE INVENTION

0014) To overcome limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present speci
fication, the present invention discloses a system, apparatus
and method for facilitating packet transformation of multi
protocol, multi-flow, streaming data.
0.015. In accordance with one embodiment of the inven
tion, a packet transformation module is provided for editing
multi-protocol streaming data packets. An instruction
memory receives search words identifying a packet type for
the packet, and outputs appropriate instructions based on the
packet type as indexed by the search words. A packet memory
is coupled to receive one or more portions of the packet
Subject to editing, where each of the packet portions is stored
in a respective memory segment of the packet memory. The
packet transformation module further includes a valid bit
array that has memory validity fields associated with respec
tive memory segments. The state of each of the memory
validity fields establishes whether the packet portion in the
respective memory segment is to be incorporated into the

Aug. 27, 2009

resulting packet portion. A processing module receives the
instructions from the instruction memory, and carries out the
packet transformations on the packet portions in accordance
with the instructions.
0016. An ingress processing module is also provided. The
ingress processing module includes such a packet transfor
mation module, as well as a packet parser to parse each
packet, and generate resulting search words based on the
packet protocol. A network system is also provided which
includes such an ingress processing module at an intermedi
ary network node between the source and destination nodes,
where the source node dispatches the information onto the
network, and the destination node is the node to which the
information is targeted.
0017. In accordance with another embodiment of the
invention, a method is provided for editing packets of a packet
stream received at a network node. The method includes
storing packet segments in partitionable memory segments of
a modification memory. One or more editing instructions are
elicited from an instruction memory, where the particular
editing instructions elicited is based on characteristics of the
packet. At least one packet segment stored in the modification
memory is modified as directed by the editing instructions.
Validity tags are associated with each of the memory seg
ments to indicate whether or not their corresponding packet
segments will be incorporated into a resulting modified
packet. The resulting modified packet is created by assem
bling the packet segments associated with those validity tags
that indicate incorporation into the resulting modified packet.
0018. These and various other advantages and features of
novelty which characterize the invention are pointed out with
particularity in the claims annexed hereto and form a part
hereof. However, for a better understanding of the invention,
its advantages, and the objects obtained by its use, reference
should be made to the drawings which form a further part
hereof, and to accompanying descriptive matter, in which
there are illustrated and described specific examples of an
apparatus in accordance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. The invention is described in connection with the
embodiments illustrated in the following diagrams.
0020 FIG. 1 is a block diagram illustrating a networking
environment in which the principles of the present invention
may be applied;
0021 FIG. 2 is a block diagram of an embodiment of a
router system in which the present invention may be applied;
0022 FIG. 3 is a block diagram of an exemplary embodi
ment of an ingress processing system in accordance with the
present invention;
0023 FIG. 4 is a block diagram of an embodiment of the
interaction between the parsing engine, its corresponding
memory, and the editor.
0024 FIG. 5 is a block diagram illustrating selected func
tional blocks of an ingress processing system in accordance
with the invention;
0025 FIG. 6 is a block diagram illustrating selected func
tional blocks of an ingress processing system utilizing
embedded memory in accordance with the invention;
0026 FIG. 7 is a block diagram of an editing apparatus in
accordance with one embodiment of the invention;
(0027 FIG. 8 illustrates a representative list of editor
instructions in accordance with one embodiment of the inven
tion;

US 2009/021.3856 A1

0028 FIG. 9 is an exemplary editor instruction format
which may be used in connection with the present invention;
0029 FIG. 10 provides an exemplary illustration of
receipt of a packet, partitioning the header information with
interleaved memory space, editing of the information, and
reassembly of a resulting packet;
0030 FIG. 11 illustrates an embodiment of an editing
module whereby a primary processor controls various pro
cessing modules. Such as the editor module, input processor,
output processor, and macro sequencer,
0031 FIG. 12 illustrates another exemplary embodiment
of an editor module wherein a primary editor processor is
used in connection with other editing components;
0032 FIG. 13 illustrates an example of a packet transfor
mation at a router handling an IP/Ethernet source route in
accordance with the principles of the present invention;
0033 FIG. 14 illustrates another example in accordance
with the invention of a packet transformation at a router
handling an IP/Ethernet source route, where IP tunneling
modifications are also desired;
0034 FIG. 15 illustrates another example in accordance
with the invention of a packet transformation at a router
within a multiprotocol label switching (MPLS) domain;
0035 FIG. 16 illustrates yet another example in accor
dance with the invention of a packet transformationata router
at the egress edge of an MPLS domain; and
0036 FIG. 17 is a flow diagram illustrating an embodi
ment of a method for modifying a packet stream in accor
dance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0037. In the following description of the exemplary
embodiment, reference is made to the accompanying draw
ings which form a part hereof, and in which is shown by way
of illustration the specific embodiment in which the invention
may be practiced. It is to be understood that other embodi
ments may be utilized, as structural and operational changes
may be made without departing from the scope of the present
invention.
0038 Generally, the present invention provides a system
and method for facilitating packet transformation of multi
protocol, multi-flow, streaming data. Packets of the data
stream being communicated across the network using differ
ent transmission protocols can be appropriately edited
regardless of the transmission protocol associated with the
packets. Portions of each packet that are subject to change
(but may not necessarily be changed) are temporarily stored.
Certain instructions for effecting appropriate modifications to
the particular packet are processed, with due consideration to
the packet's protocol, which results in a protocol-dependent
modification of the temporarily stored packet information.
Validity tags are associated with different segments of the
temporarily-stored packet, where the State of each tag deter
mines whether its corresponding packet segment will form
part of the resulting modified packet. Those packet segments
identified as being part of the resulting modified packet are
reassembled prior to dispatch of the packet.
0.039 Data transmitted over networks such as the Internet
10 may be in the form of e-mail messages, file transfers and
downloads, web page loading, and the like. The data is gen
erally broken up into a number of data packets, each of which
is assigned a hierarchy of headers to direct the data packet to
the desired destination, among other things. Each packet is

Aug. 27, 2009

separately dispatched to the destination, although more than
one different route may be taken by the different packets
associated with the data.
0040. For example, the source computer 100 of FIG. 1
may be configured in a local area network (LAN) and coupled
to other computers 102 via a hub 104. A first one or more data
packets may reach the hub 110 of the destination LAN via a
first path, through routers 112,114, 116,118, 120, and 122. A
second one or more data packets may reach the hub 110 via a
second path, such as through routers 112, 124, 126, 116, 128,
and 122. These different packets may take alternative routes
due to equipment congestion or failure of a node, or to load
share where possible. The routers associated with the core of
the Internet can reconfigure the paths that these packets fol
low. This is due to the router's ability to analyze the header
information corresponding to the data packet and to commu
nicate line condition and other information between routers.
The routers handling data at the major traffic points on large
networks, such as the Internet, are generally large stand-alone
systems. After transmitting the data from node to node
through the network, the packets are reassembled at the
receiving end and availed to the desired destination system
140.

0041. Because of the colossal bandwidth demands
required of routers, a continual emphasis is placed on allevi
ating data throughput bottlenecks at routers, gateways,
bridges, and other intermediate nodes along the network.
Because routers take on the task of intercepting, analyzing,
and moving on millions of packets per second along the best
possible route, the processing occurring at these routers must
be extremely efficient to avoid bogging down the system. The
present invention may be used in connection with Such rout
ing systems, increasing speed and efficiencies of network
data throughput.
0042. As will be described more fully below, the present
invention may be used in connection with multiprotocol
route/flow classifying and policing engines. In one embodi
ment of the invention, the packet transformation in accor
dance with the present invention is housed in a package or
chip common to the classifier and policing functionalities.
The device enables advanced services to be applied at speeds
of 10Gbps or more. Tightly coupled parsing, policing, and
packet transformation allows the collective device to perform
dynamic packet transformation for quality of service (QoS)
based on the current flow state and also effectively handles
dynamic header processing Such as required by multiprotocol
label switching (MPLS) routers.
0043 Referring now to FIG. 2, one embodiment of a
router system 200 is illustrated in which the present invention
may be applied. One or more line cards are provided, each of
which are coupled to a switch fabric 202. In the present
example, a plurality of line cards are provided, including line
card-0 204, line card-1 206 through a finite number of line
cards represented by line card-n 208. In one embodiment of
the invention, each of the line cards utilize analogous cir
cuitry. Line card-0 204 will therefore be described, with the
understanding that one or more of the remaining line cards in
the router system may implement analogous circuitry.
0044. The line card-0 204 of the illustrated embodiment
receives as inputpacket-over-SONET/SDH (POS) frames via
the network. As is known in the art, SONET/SDH is a high
speed time division multiplexing (TDM) physical-layer
transport technology. POS provides a means for using the
speed and management capabilities of SONET/SDH to opti

US 2009/021.3856 A1

mize data transport, although originally optimized for Voice.
A SONET/SDH frame is 810 bytes and is normally repre
sented as a two-dimensional byte-per-cell grid of 9 rows and
90 columns. The SONET/SDH frame is divided into transport
overhead and payload bytes. The transport overhead bytes
include section and line overhead bytes, while the payload
bytes are made up of the payload capacity and some more
overhead bytes referred to as path overhead. The overhead
bytes are responsible for the management capabilities of
SONET/SDH. The basic transmission rate of SONET (51.
840Mbps), referred to as Synchronous Transport Signal level
1 (STS-1), is achieved by sampling the 810-byte frames at
8000 frames per second. SONET features an octet-synchro
nous multiplexing scheme with transmission rates in mul
tiples of 51.840 Mbps, whereby STS-192 thereby provides
transmission at approximately 10 Gbps. Packet Over
SONET/SDH (POS) allows core routers to send native IP
packets directly over SONET/SDH frames. POS provides a
relatively low packet overhead and cost per Mbit than other
data transport methods, which allows POS to efficiently sup
port increases in IP traffic over existing and new fiber net
works.

0045. As shown in the exemplary embodiment of FIG. 2,
incoming POS OC-192 frames 210 originate from another
OC-192 device (not shown) and arrive at the line card-0 204
at the ingress framer 212. The frames are transferred to the
ingress processing circuit 214 via an interface 216. Such as the
Optical Internetworking Forum (OIF) System Packet Inter
face-4 (SPI-4). OIF SPI-4 describes a data path interface
between the physical and link layers to Support physical line
data rates up to 10 Gb/s, and may be used in connection with
the present invention, as may other interfaces of appropriate
speed.
0046 Ingress processing circuit 214, which in one
embodiment of the invention is housed in a single chip, per
forms the necessary lookups, policing, and editing of the
packet. If necessary, the frame can be redirected to the host
processor. The frames are fed out of the ingress processing
circuit 214 via an OIF SPI-4 interface 218 to a Fabric Inter
face Chip (FIC) circuit 220. The FIC 220 converts the stream
from one format to another, such as from POS frames to
Common Switch Interface (CSIX) cells, and distributes the
cells over the Switch fabric 202.

0047. Similarly, cells switched at the switch fabric 202
may be received at the FIC 222 and provided to the egress
processing circuit 224. Frames are transferred to the egress
framer 226, and output as POS OC-192 frames 228. A pro
cessor 230 may be coupled to the ingress processing circuit
214 and the egress processing circuit 224 to perform a variety
of functions, including providing coprocessor Support.
Memories 232, 234 represent one or more memories associ
ated with the ingress processing module 214 and the egress
processing module 224 respectively.
0048 Referring now to FIG.3, an exemplary embodiment
of an ingress processing system 300 in accordance with the
present invention is provided. The system 300 is described as
an example of a system in which the principles of the present
invention may be applied. The ingress processing system 300
interfaces to industry standard physical layer devices such as
an OC-192 framer 302. In one embodiment of the invention,
a portion of the ingress processing system 300 is housed on a
single chip, illustrated in FIG.3 as chip 304. While the inven
tion is equally applicable where the physical chip boundaries

Aug. 27, 2009

differ from that illustrated in FIG. 3, the present invention is
particularly efficient and useful in Such a tightly coupled
arrangement.
0049. The interface 306, such as an OIF interface, pro
vides the interface between the ingress processing circuit 304
and the framer 302. In one embodiment, the interface 306 is a
200 MHz OIF SPI-4 interface including a 64-bit data input.
An elasticity buffer 308, which in one embodiment is a first
in-first-out (FIFO), provides temporary packet storage which
allows table maintenance updates to be performed without
dropping frames.
0050. The pre-processor 310 performs a variety of func
tions, including packet verification and discarding, packet
protocol identification, statistics compilation, and others. The
packet protocol identification includes classifying the type of
frame that has been received. The pre-processor identifies
each layer protocol using a multistage algorithm coupled with
a content-addressable memory (CAM) and memory (such as
an SRAM) for resolving protocols. The frame is then stored in
a memory along with the result of the preprocessor, i.e., the
protocol layer code.
0051. The parsing engine 312 performs layer classifica
tion and tagging via a search engine. One of the various
functions of the parsing engine 312 is to parse the frames
processed by the pre-processor, and generate search keys
from data anywhere within the frame. The protocol layer code
is used as a start vector into an instruction memory, which
contains instructions for the parsing engine 312 and pointers
to access selected words in a frame buffer. The parsing engine
312 receives the instruction and performs the functions
selected by the corresponding instruction operational code.
The results are used with an extractor that builds search keys
which can be applied against a CAM (or indexed directly to a
memory) to generate 'search results' that contain the frame
classification. Such parsing/classifying may be performed in
a manner described herein and in copending U.S. patent
application Ser. No. 09/849,913, entitled “A Method And
Apparatus For Providing Multi-Protocol, Multi-Stage, Real
Time Frame Classification.” filed concurrently herewith and
assigned to the assignee of the instant application, the con
tents of which are incorporated herein by reference in its
entirety.
0.052 The policing engine 313 performs a variety of func
tions, including ensuring flow conformance to a maximum
allowed peak rate and a contractually obliged committed rate
flow, utilizing, for example, DiffServ IP and MPLS. The
policing engine 313 works with memory, Such as policing
RAM 315 which stores a drop policy for each connection.
0053. The editor 314, also referred to as a packet transfor
mation engine, utilizes the search results to index the appro
priate editing instructions to be executed by an editing mod
ule. The editor 314 facilitates execution of multiple edits or
“transformations' per packet as streaming data of various
networking protocols associated with different networking
layers is input into the editing module. The editor 314 Sup
ports comprehensive packet manipulation capability, includ
ing full MPLS labels, DAC operations such as multiple push
and pop operations, as well as traditional routing operations
Such as TTL edits, checksum edits, policing edits, and other
routing operations. The editor 314 therefore performs
required frame/packet transformations to Support routing of
multi-protocol packets, such as IP, FAST, VPN, MPLS, etc.
The editor is described more fully below.

US 2009/021.3856 A1

0054) The labeled traffic is ultimately directed to the
switch fabric interface 316 through one or more traffic direc
tors 318,320 and output buffer 322. The traffic director 318
accepts frames from the editor 314, which are then passed to
an output buffer 322 and/or the processor buffer 340 via the
interface 341. Traffic director 320 accepts frames from the
output buffer 322 and the processor transmit buffer 342, and
passes the frames to the OIF interface 344 to the switch fabric
interface 316.

0055 Referring briefly to the block diagram of FIG.4, one
embodiment of the interaction of the parsing engine 312, its
corresponding memory 330,332, and the editor 314 is shown.
This diagram illustrates the generation of the search keys,
which ultimately identify the appropriate search results to be
accessed from the memory. The parser 400 (corresponding to
parsing engine 312 of FIG. 3) outputs up to four “keys'.
labeled key-0 402, key-1 404, key-2 406, and key-3 408.
These keys are sent to the content-addressable memory
(CAM) and associated memory (collectively SRAM/CAM
409) via signal paths 410. An example of such a CAM is
shown as CAM 330 in FIG. 3. In response, the CAM outputs
an address to the associated SRAM, such as SRAM 332 in
FIG. 3. The "keys” therefore identify the appropriate address
information stored in the CAM, in order to address the desired
search result information stored in the SRAM. The SRAM, or
other memory, outputs the search results, shown in FIG. 4 as
output on signal paths 412. Up to four search results can be
addressed by a corresponding number of keys, and these four
search results are illustrated as result-0 414, result-1 416,
result-2 418, result-3 420. The search results are provided to
the editor module as shown on signal paths 422.
0056 FIG. 5 is a block diagram illustrating selected func
tional blocks of an ingress processing system such as that
described in connection with FIG. 3. The ingress processing
system 500 of FIG. 5 illustrates the classifier functional block
502, the policer functional block 504, and the editor func
tional block 506. As described above, the classifier 502 builds
queries (search words) to directly index a memory Such as
SRAM 510, or alternatively may search against a CAM 512
which in turn provides addresses to the SRAM 510. The
policer 504 performs a variety of functions, including ensur
ing flow conformance to a maximum allowed peak rate and a
contractually obliged committed rate flow, utilizing, for
example, DiffServ IP and MPLS. The policer 504 works with
memory, such as SRAM 514 which stores a drop policy for
each connection. The editor 506 supports policing results and
makes other appropriate modifications to the packet before
being output from the ingress processing system 500. An
external memory, such as SRAM 516, may be used to store
the editor instructions. The coprocessor/CPU interface 508
provides for coprocessor/CPU support via interface 508,
thereby allowing processor control, configuration, etc. of the
classifier 502, policer 504 and editor 506. The interface 508
allows the system 500 to be coupled to a coprocessor and/or
other CPU such as CPU 520, and to memory such as SRAM
522. In this manner, the ingress processing system 500
receives incoming packets, classifies and parses the packets
according to predetermined criteria Such as protocol,
enforces policing functions on the packets, and modifies the
packets accordingly before outputting the packets to the
switch fabric.

0057. In one embodiment of FIG. 5, the classifier 502,
policer 504, editor 506 and coprocessor/CPU interface 508
are all provided on a single chip. The unique architecture

Aug. 27, 2009

combines the three key functions of classifying, policing and
editing the data all through the tightly coupled arrangement
facilitated by the integration into a common chip.
0058. It should be recognized that the buffers and memory
identified in FIG. 5 may also be incorporated into the com
mon chip, as shown in the embodiment of FIG. 6. In FIG. 6,
the SRAM 514 is integrated with the policer 504, the SRAM
516 is integrated with the editor 506, and so on. Embedding
these memories on the chip provides a lower chip count
solution and increased “per flow” statistics.
0059 FIG. 7 is a block diagram of an editing system 700 in
accordance with one embodiment of the invention. The edit
ing system 700, also referred to as a packet transformation
system, includes an editing module 702 and an instruction
memory 704. The editing system 700 provides an elastic
queue to the downstream traffic director, and as described
more fully below, allows for packet modification, and packet
transformation such as from SONET packets to Ethernet
packets, etc.
0060 Inputs to the editing system 700 include packet/
frame input ultimately originating from the pre-processor or
the classifier and labeled as the “packet input 706. Also input
to the editing system 700 are the search results 708. These
search results provide indices into the editor's 702 instruction
memory 704, which is part of a memory 703 such as an
SRAM. Policing results 710 from the policer 711 are also
input to the editing module 702 to provide, for example,
packet color modifications. The editing system 700 outputs
modified packets 712, and in one embodiment, outputs the
modified (and unmodified) packets to an elastic queue that is
accessible by the traffic director.
0061 Based on the search results 708, the editing system
700 retrieves instructions and data from memory 703 to per
form corresponding actions. In one embodiment of the inven
tion, the memory 703 and the instruction memory 704 are
comprised of SRAM, and together comprise an external,
non-embedded circuit to the editing module 702. The
memory 703 is accessed independent of the editor itself, and
configuration is performed with a register access interface
(not shown).
0062. During normal operation, the instruction memory
704 is read via an index provided in the search result 708. The
search result 708 includes a “valid flag indicating the search
result is usable, and an "editor use” identifier within the
search result 708 data indicating that the editing system 700 is
to use the corresponding search result. As editor instructions
and associated editor data are read from the external memory
703, they are provided to the editing processor 714. In one
embodiment of the invention, the editing processor 714
includes a processing module Such as a microprocessor, RISC
processor, central processing unit, arithmetic processing unit
(ALU), or other processor known in the art.
0063. The editing processor 714 is provided with editor
instructions from the instruction memory 704 and associated
editor data from the memory 703. The editor instructions are
executed to perform packet modifications and provide packet
steering information. These instructions include general pur
pose data manipulation instructions such as write instruc
tions, register Swap instructions, etc., and also may include
special purpose instructions specifically crafted to perform
one or more predetermined operations. Such special purpose
instructions may be particularly useful to perform certain
networking-specific tasks that depend on the particular net
working protocol. For example, specific instructions can be

US 2009/021.3856 A1

created to “pop” the top label in an MPLS label stack and
swap the next MPLS label with a new label. This can be
performed through a specifically-created instruction, or alter
natively may be performed through a series of more generic
instructions. For purposes of example, and not of limitations,
example operations corresponding to editor instructions in
accordance with one embodiment of the invention are pro
vided in FIG. 8.

0064 FIG. 8 illustrates a representative list of editor
instructions in accordance with one embodiment of the inven
tion. The representative editor instructions are listed in col
umn 800, along with its corresponding description in column
802. Certain instructions may be general purpose to perform
basic transformations and other instructions may be provided
to handle specific packet protocols. The general purpose
instructions will typically be available while the specific
instructions per protocol may be optional. For example, one
instruction may apply to multiprotocol label Switching
(MPLS) methodologies, where label switching is employed.
Label switching refers to the approaches of forwarding IP (or
other network layer) packets using label Swapping forward
ing algorithms under the control of network layer routing
algorithms. A label-switched router is a device that imple
ments such label switching. The classifier can identify which
packets have been adapted for transmission in the MPLS
domain, and the search results generated by the classifier can
then be used to index the appropriate instruction(s) to operate
on those MPLS packets.
0065. The editing instructions illustrated in FIG. 8 are for
purposes of illustration and not of limitation. These exem
plary editing instructions allow the packets to be edited in
various beneficial manners. The No-Op instruction performs
no operation. A variety of general purpose instructions are
provided, including the Write1, Write 2, Deletel, Delete2.
Read-Modify-Write with Mask, and Read-Modify-Write
with Default Mask. The Swap instruction causes a swap of the
top memory element, such as the top MPLS label on an MPLS
label stack. A Swap/Push1 instruction swaps the top memory
element (e.g., MPLS label) and pushes one other data element
(e.g., MPLS label) to the top position. The Swap/Push2
instructions operates analogously, but pushes two other data
elements to the top of the memory space. The Push1 and
Push2 instructions operate analogously, and push one or two
data elements, respectively, to the top of the memory space.
For example, a Push 1 instruction may be used to push one
MPLS label to the top of the MPLS stack. Pop1, Pop2, and
Pop All instructions respectively pop the top one, two, or all
data elements from the memory space. For example, the Pop2
instruction may be used to pop the two current top MPLS
labels from the MPLS stack. A Pop/Swap instruction pops the
top data element and Swaps the next data element. For
example, a Pop1/Swap instruction may be used to pop the
current top MPLS label and swap the next.
0066. As can be seen in the example of FIG.8, many of the
instructions may be crafted for execution with a particular
type of packet protocol. The classification and parsing asso
ciated with the present invention ultimately presents search
results that are used to locate the appropriate instruction to be
processed by the editor. Therefore, the classifier/parser can
determine, for example, the particular protocol of the incom
ing packet, thereby sending the appropriate search results to
the editor to perform the correspondingly appropriate action
on that packet based on the packet protocol. For example, a
Push1 instruction may, in one embodiment of the invention,

Aug. 27, 2009

be dedicated to packets implementing the MPLS protocol
such that execution of a Push1 instruction is only executed
when a packet is an MPLS packet. This allows the multi
protocol ingress processing system to have generic, more
specific, or very specific instructions addressable by search
results that are based on parameters derived from the packet to
be modified.
0067. With certain editor instructions, associated editor
data is provided. This editor data is, in one embodiment,
stored with the instruction in the external memory 703.
Depending on the editor instruction executed, the width of the
editor data may vary. For example, in one embodiment, a
32-bit data segment is used in connection with the Swap,
Push, Pop1/Swap, Write 1, and Read-Modify-Write with
Default Mask editor instructions. Further, a 64-bit data seg
ment is used in connection with the Swap/Push1, Push2,
Read-Modify-Write with Mask, and Write2 editor instruc
tions. Finally, in accordance with this particular embodiment,
a 96-bit data segment is used in connection with the Swap/
Push2 editor instruction, as three data words are used for the
Swap and either Push operations.
0068 Editor instructions, such as those set forth in FIG. 8,
represent those instructions used to modify packets/frames.
The editor instructions also contain information used to drop
the packet or steer the packet to its downstream destination(s).
0069 FIG.9 is an exemplary editor instruction 900 format
which may be used in connection with the present invention.
The entry length field 902 identifies the total length of this
editor entry, in pairs of 64-bit words. The number of addresses
read is determined by adding one to the value in this field and
multiplying by two. This provides a minimum of two and a
maximum of sixteen addresses read per entry, for this par
ticular example. The next instruction offset field 904 indicates
a relative offset of another editor instruction following the
present instruction.
(0070. The index field 906 indicates various header type
encodings. For example, a 0.times. 18 may indicate a FAST
Modify, a 0.times. 1C may indicate an LLC/SNAP push, a
0.times.24 may indicate an MPLS swap, etc. In one embodi
ment, this field is seven bits to allow for a sufficient number of
different currently-known or future types. In another embodi
ment, the seven bits provide an index into a 128-location
memory, such as that shown in FIG. 7.
(0071 Field 908 is the decrement time-to-live (TTL) field,
which identifies whether to decrement an incoming TTL/Hop
count. Update (U) field 910 identifies an update of IP Diff
Serv (Differentiated Service) DSCP field to match informa
tion carried in the top MPLS label. Analogously, the update
(U) field 912 identifies an update of IP TTL to match TTL
carried in the top MPLS label.
(0072 Field 914 is the opcode field in which the instruction
operational code is presented. An opcode for each different
instruction operation is used, to identify the particular func
tion (such as shown in FIG. 8) to be performed. Edits may be
handled differently, depending on the particular type of
packet protocol, and therefore a particular opcode may cause
different functions to be performed for different types in type
field 906.
(0073 Packet direction field 916 provides an indication of
the downstream packet direction, such as to drop the packet,
direct the packet to the control plane, direct the packet to the
data plane, or direct the packet to the control plane and the
data plane. The packet direction is applied from multiple
search results according to the direction function presented in

US 2009/021.3856 A1

the direction function field 918. Various direction functions
may be applicable, such as an OR function where the packet
direction bits in the current instruction are logically “OR'ed'
with the other search results, and such as an AND function
where the packet direction bits in the current instruction are
logically “AND'ed with the other search results. Another bit
code available in the direction function field 918 can cause the
packet direction in the current instruction to override the
previous search results.
0074 Fields 920 and 922 correspond to per-hop-behavior
(PHB) groups. PHB refers to the forwarding treatment given
to a specific class of traffic, based on DiffServ criteria. Rout
ers and switches use PHBs to determine priorities for servic
ing various traffic flows. A PHB group is a set of one or more
PHBs that can only be meaningfully specified and imple
mented simultaneously. This often occurs where a constraint
commonly applies to all PHBS in the set, such as a queue
servicing or queue management policy. A PHB group pro
vides a service building block that allows a set of related
forwarding behaviors to be specified together (e.g., four drop
ping priorities). Field 920 is the “apply PHB group” which
indicates whether to apply a PHB group identified in field 922
to the packet. This forces a new (or initial) DiffServ PHB
group onto the packet, and overrides any previous PHB group
assignments from preceding search results. The DiffServ
PHB group field 922 identifies the PHB group to be applied to
the packet. The multi-bit field 922 allows multiple PHB
groups to be defined, such as various Assured Forwarding
(AF) classes, expedited forwarding (EF), etc.
0075. It should be recognized that the instruction format
provided in FIG. 9 is for illustrative purposes only, as varia
tions of the instruction format are well within the scope of the
invention as will be readily apparent to those of skill in the art
from an analysis of the description provided herein.
0076 Returning to FIG. 7, the instructions/data from the
memory 703 are processed by the editing processor 714, and
operate on data stored in the memory 716. The memory 716
includes a plurality of memory locations, illustrated in FIG. 7
as memory locations 718, 720, 722,724, 726,728, 730, and
732 through some finite number of memory locations up to
the end memory location 734. The memory 716 stores por
tions of the packet input 706, and stores these packet portions
in memory locations 718-734 as dictated by the input con
troller 740. In one embodiment of the invention, the packet
706 is stored in the memory 716 in time for the editing
instructions from the instruction memory 704 to be processed
by the editing processor 714, and for the packet data in the
memory 716 to be operated on by the editing processor 714.
0077. The memory 716 is organized into a finite number of
segments that may include one or more of the memory loca
tions 718–734. The memory 716 is partitioned such that at
least Some of these segments are allocated to store data cor
responding to certain portions of the packet(s) 706. In one
embodiment of the invention, these packet portions corre
spond to headers of the various protocol layers associated
with the incoming packet. For example, header information
corresponding to OSI networking layers two through four
may each correspond to a segment of the memory 716. Such
that a segment of memory 716 is allocated to store a layer-2
header (e.g., a PPP header), a segment corresponding to a
layer-2.5 header (e.g., an MPLS label stack), a segment cor
responding to a layer-3 header (e.g., an IP header), and a
segment corresponding to a layer-4 header (e.g., a TCP
header). The input controller properly directs this information

Aug. 27, 2009

to the memory 716 based on upstream information developed
by a packet classification engine that determines where one
networking layer header ends and the next networking layer
header begins.
(0078. The memory 716 in one embodiment of the inven
tion is a dual-port memory. A dual-port memory can be simul
taneously read and/or written by two different data sources, or
more generally, a shared memory accessible by two pro
cesses. In one embodiment, the data stream is a 64-bit data
stream, and the memory 716 is a 32-bit wide, 128-word deep,
dual-port memory. In this manner, two 32-bit words may be
simultaneously written to the memory 716 to write the 64-bit
data. Alternatively, data can be concurrently written to and
read from the memory 716. A dual-port memory could also be
utilized to streamline the data flow through the editor, for
instance, by "overlapping the input write stage of the pro
cessing with the output read stage of the processing. In other
embodiments of the invention, a single-port memory may be
used, or two physically distinct yet logically coupled memo
ries may also be used. Using a quad-port memory or other
multi-port memory will produce analogous results and pro
vide similar advantages.
0079. In accordance with the invention, the allocated seg
ments of memory are interleaved with segments of the
memory 716 that are unused during the input stage, each
unused segment including one or more of the memory loca
tions 718–734. This allows selected ones of the allocated
memory segments to be edited for Subsequent serial output.
For example, if memory location 718 stores an Ethernet
header and memory location 722 stores an IPv4 header, the
Ethernet header can be modified by writing a new Ethernet
header into an otherwise unused, interleaved memory loca
tion 720, and disregarding the original Ethernet header in
memory location 718. When the memory locations are read
out in the proper order, the new Ethernet header in memory
location 720 effectively replaces the original (now-disre
garded) Ethernet header at memory location 718. In this man
ner, editing of packet layer headers can be effectively and
efficiently performed.
0080. The present invention also facilitates editing
through the use of a valid bit array 750, which includes a field
for each of the various memory segments, or memory loca
tions, of the memory 716. Information in each field of the
valid bit array 750 identifies whether or not its corresponding
memory segment/location is currently housing valid data—
that is, whether its corresponding memory segment/location
will ultimately be part of the resulting output packet. For
example, if the indicators in fields 752,756 and 758 are set to
signify valid data in corresponding memory locations 718,
722 and 724, then the resulting output packet will include the
data in memory locations 718, 722 and 724. If the indicator in
field 754 is not set, it signifies that the data in corresponding
memory location 720 is not to be included with the resulting
output packet. Each of the fields in the valid bit array 750 is
therefore associated with a portion of the memory 716, in
order to indicate whether or not the corresponding memory
portion is storing valid data.
I0081. Using the valid bit array 750 and due to the inter
leaving of available memory space with the designated data
storage areas, data in the memory 716 may be overwritten,
deleted, or added. For example, the data in a memory segment
may be overwritten by actually overwriting the data at that
memory segment, and keeping the associated indicator in the
valid bit array 750 in a state indicating the corresponding data

US 2009/021.3856 A1

is valid. Alternatively, the data in the memory segment may be
effectively overwritten by inserting replacement data in the
available memory space proximate the original data, and
manipulating the bits in the corresponding fields of the valid
bit array 750 such that the original data is no longer “valid
and the newly inserted data is now deemed valid. This is
accomplished by setting the indicator in the field of the valid
bit array 750 corresponding to the newly inserted data to an
asserted state, and setting the indicator in the field of the valid
bit array 750 corresponding to the original data to an unas
serted State. Further, the data in the memory segment may
effectively be “deleted from consideration in the resulting
output packet by setting the indicator in the field of the valid
bit array 750 corresponding to the data to be deleted to an
unasserted State. As a further example of a modification to
data in the memory 716, a new data segment (e.g., a new
header corresponding to a new network layer) may be
inserted into the reserved, available memory space that was
interleaved with the designated data storage areas. For
example, assume that memory location 718 stores a PPP
header and memory location 722 stores an IPv6 header, an
MPLS header can be injected between the PPP header and the
IPv6 header by writing the MPLS header into otherwise
unused memory location 720.
0082 In one embodiment of the invention, the valid bit
array is implemented in one or more registers, where each bit
of the register provides the field in which an indicator or flag
relating to the validity of the corresponding data may be set or
cleared. As will be readily apparent to those skilled in the art
from the description provided herein, the number of bits used
in each field may be one or more bits, as long as it adequately
identifies the status of the data in its corresponding field in the
memory 716.
0083. Further, from the description provided herein, it will
be readily appreciated by those skilled in the art that data in
the memory 716 may be added, deleted, amended, moved,
expanded in size, reduced in size, or otherwise manipulated
within the memory 716, as long as the appropriate indicators
in the valid bit array 750 are appropriately manipulated. For
example, the interleaving of unused memory space with the
various designated data storage areas (e.g., partitioned to
store header data) allows the data in memory location 726 to
be expanded to memory locations 726 and 728. This might be
the case where a header needs to be modified such that it
increases in length. While headers generally have a fixed
length, it is conceivable that network layer headers are of
variable length, requiring header length expansion, or reduc
tion. The present invention allows for such modifications.
0084 As another example, it may be desirable in some
instances to move the data in the memory 716 to a different
location, and the interleaved unused memory space facilitates
Such movement. In some instances, it is conceivable that
multiple new headers will need to be inserted between two
existing headers, and the existing headers stored in the
memory 716 may be moved farther apart to make room for the
new headers. As can be seen, a wide range of flexibility and
efficiency is provided by the editing configuration of the
present invention.
0085. The memory 716 may, in one embodiment, be con
figured and partitioned Such that all header information and
data is stored within the memory 716. However, the “data'
that is being transmitted generally should not be modified
along the way between the source and the destination. This
would in effect be corrupting the data, and it is thus generally

Aug. 27, 2009

the case that the data being transmitted will remain
unchanged from source to destination. Therefore, a preferred
embodiment of the invention includes an additional memory
module, illustrated in FIG. 7 as the overflow buffer 770. The
data associated with the packet is stored in the overflow buffer
770 until the header information is released, whether modi
fied or not, from the memory 716. The data in the overflow
buffer 770 is appended to the resulting header information
from the memory 716 such that the packet is essentially
recreated upon its output from the editor module 702, albeit
the header information may have been modified.
I0086. Other packet information other than the associated
data may also be stored in the overflow memory module 770.
For example, the memory 716 may be configured to allow
editing of certain, predetermined network layer headers. Such
as the headers including and between network layer-2 and
network layer-4. In this example, headers corresponding to
higher network layers (e.g., network layer-5) may remain
embedded with the data portion of the packet, thereby being
sent to the overflow buffer 770. In this particular example, this
also means that headers outside of the layer-2 through layer-4
range are not available for modification at the editor module
702. The particular information allowed to be edited may
therefore be configured into the system, Such that as much or
as little of the packet as desired may be configured or parti
tioned into the editing memory 716 as dictated by the particu
lar implementation.
I0087. After the packet information in memory 716 has
been edited, the editor module will reassemble and output the
packet. This is accomplished by outputting the information in
the memory 716 in the proper order, followed by the data
Stored in the overflow buffer 770. In one embodiment of the
invention, the information in the memory 716 (e.g., network
layer header information) is output in an order from lower
memory addresses to high memory addresses (or alterna
tively from high to low memory addresses). The header infor
mation in these memory locations 718-734 will therefore be
output in the order that it is stored, and only if its correspond
ing indicator in the valid bit array 750 is asserted. In an
alternative embodiment of the invention, additional indicator
bits, either associated with the valid bit array 750 or in an
independent memory, identify the order in which the memory
locations 718-734 will be read out.

I0088. In a preferred embodiment, the information stored
in memory locations 718–734 will be output in a predeter
mined order, such as from the lowest memory 716 address to
the highest memory 716 address. This corresponds to first
outputting the information in memory location 718, then in
memory location 720, and so forth, as dictated by the state of
the corresponding bits in the valid bit array 750. The valid bit
array 750 is read by a priority encoder 772. A priority encoder
assigns a code representation to the outputs, represented by
line 774 to the output controller 776. Therefore, depending on
which of the fields of the valid bit array 750 are set, the
priority encoder 772 instructs the output controller 776 to
pass information in corresponding memory locations 718
734 to the multiplexer 778. In one embodiment of the inven
tion, the priority encoder 772 is configured as part of the
output controller 776.
I0089. The output controller outputs the header informa
tion stored in the memory 716 in the order dictated by the
valid bit array 750 and designated in response thereto by the
priority encoder 772. The priority encoder 772 takes a snap
shot of the valid bit array 750 when editing is complete to

US 2009/021.3856 A1

identify the populated memory locations that will form the
resulting packet header. The multiplexer 778 passes this
resulting header information, and upon reaching the end of
the header information, the multiplexercontrollably switches
to pass the information at its other input, which is fed from the
overflow buffer 770. Therefore, the multiplexer 778 first
passes the edited header information from the populated,
valid memory locations in memory 716. The multiplexerthen
appends the associated data stored in the overflow buffer 770
to reassemble the packet as a modified packet 712.
0090 FIG. 10 provides an illustration of receipt of a
packet, partitioning the header information with interleaved
memory space, editing of the information, and reassembly of
a resulting packet. A packet 1000 includes a header 1002,
which still further includes at least five header segments, H5
1004, H4 1006, H3 1008, H2 1010 and H1 1012. The header
fields 1002 are stored in the memory 1020A. After editing, the
memory 1020B includes the modified headers, and more
particularly includes modified header H2. Sub.M and H3.sub.
M. The valid bit array 1022 includes four indicators of valid
memory locations. These valid bit array indicators are shown
invalid bit array fields 1024, 1026, 1028 and 1030. Therefore,
the header information corresponding to these valid bit array
fields are directed to the multiplexer 1032 via path 1034.
These newly edited header segments are shown as header
segments H5 1004, H3. Sub.M 1042, H2. Sub.M 1044 and H1
1012 which are output by the multiplexer 1032 as header
1050. A control input (not shown) on multiplexer 1032 then
switches the output of the multiplexer 1032 from the input
from path 1034 to the input from path 1052. This input
includes the data 1054 previously stored in overflow buffer
1056. The multiplexer 1032 outputs the data 1054 to be
appended to the outgoing packet 1060.
0091 Returning again to FIG. 7, one embodiment of the
editor module 702 further includes a module for performing
additional manipulations on the data stored in the memory
716. This module is illustrated as the macro sequencer 780,
which performs macro editing. In one embodiment, this
macro editing is performed after the editor 714 has completed
processing of its instructions from the instruction memory
704. The macro sequencer 780 operates on the data in
memory 716 just as the editor 714 does, however the macro
sequencer performs more specific data modifications, and
does so based on different criteria than the editor 714. For
example, in one embodiment, the editor 714 is a micropro
cessor or arithmetic logic unit that operates on the data in the
memory 716 on a 32-bit boundary. These operations are gen
erally those provided in connection with the particular editor
processor 714 being implemented. However, the macro
sequencer operates on the possibly edited data in the memory
716, and performs more specific modifications to the result
ing packet, such as network-specific data adjustments when
used in a networking environment. Thus, in one embodiment,
both the editor 714 and the macro sequencer 780 operate on
the data in memory 716, but the editor is first in time with
respect to performing operations on the data in memory 716.
0092. One task of the macro sequencer is to perform func
tions on the data in the memory 716 that it is inefficient or
otherwise undesirable to dedicate editor instructions to. The
macro sequencer 780 also gathers certain information to
make its final adjustments to the data. For example, a particu
lar header, such as an IP header, may include a field for a
checksum value. If one or more of the headers in the memory
716 are edited, the checksum value must be updated. Because

Aug. 27, 2009

the editing module 702 operates on Streaming data, the macro
sequencer operates as a state machine and monitors the activ
ity occurring on the data in the memory 716. When the editor
714 has completed its modifications to the data in the memory
716, the macro sequencer 780 will have monitored the activ
ity, ascertained the new checksum value, and input it into the
precise location within the appropriate memory location.
Thus, the macro sequencer 780 monitors activity as the edit
ing process continues, and when the editing process is com
plete, then the macro sequencer performs some “after-the
fact” modifications that it learned throughout the editing
process.

0093. There are numerous examples in which the macro
sequencer will perform these post-editing-processor modifi
cations. The checksum described above is one example.
Another example is the update of the time-to-live (TTL) field
of an IP packet header. The TTL field represents an amount of
time that the packet has been in the network, and Suggests,
upon expiration or reaching a predetermined value, that the
packet has been in the network too long and should be dis
carded. The TTL is therefore decremented at each router,
thereby requiring special modification of the TTL field in the
IP header of the memory 716 after editor 714 manipulation of
the data. The TTL generally corresponds to the number of
hops that have been encountered by a packet, but can also
reflect a particular passing of time. Still other examples in
which post-editing-processor modifications will be per
formed include policing colorations, and packet length. For
example, a proprietary packet length may result from the
addition of a local header as the packet travels through the
router. The addition of a local header changes any packet
length fields stored in the header information of the memory
716.

0094. The macro sequencer 780 also works in connection
with the policer 711. Generally, network policing allows sub
scriber bandwidth to be controlled in terms of the contracted
service levels that were provisioned and is typically used at
the ingress of the network. One manner for policing, for
example in an MPLS network, is Single Rate Tri-Color
Marker (srTCM) or (trTCM) Two Rate Tri-Color Marker.
Tri-Color marking provides a mechanism for marking pack
ets when they exceed the contracted bandwidth.
0095. The SrTCM meters a traffic stream and marks its
packets according to three traffic parameters, Committed
Information Rate (CIR), Committed Burst Size (CBS), and
Excess Burst Size (EBS), to be either green, yellow, or red. A
packet is marked green if it doesn't exceed the CBS, yellow if
it does exceed the CBS, but not the EBS, and red otherwise.
The trTCM meters an IP packet stream and marks its packets
based on two rates, Peak Information Rate (PIR) and Com
mitted Information Rate (CIR), and their associated burst
sizes to be either green, yellow, or red. A packet is marked red
if it exceeds the PIR. Otherwise it is marked either yellow or
green depending on whether it exceeds or doesn't exceed the
CIR. These techniques help manage network congestion at
the output link, allowing the right packets to be discarded
while facilitating fairness of resource usage.
0096. The policer 711 performs packet conformance func
tions, and deals with Such coloration issues. The macro
sequencer 780 is coupled to receive information such as the
coloration, and an indication of whether or not to drop the
packet, from the policer 711. The macro sequencer can
manipulate the appropriate bits in the appropriate header field
in the memory 716 in response to coloration issues. For

US 2009/021.3856 A1

example, if the policer 711 determines that the current packet
has exceeded its bandwidth, the policer 711 will provide a
particular color to the macro sequencer 780. In response, the
macro sequencer 780 modifies the bits in the appropriate
network layer header to reflect the particular color, such as by
modifying the type of service (TOS) field in an IPv4 header.
0097 Policing may be determined in a manner described
herein and in copending U.S. patent application Ser. No.
09/849,914, entitled “System and method For Policing Mul
tiple Data Flows And Multi-Protocol Data Flows.” and
copending U.S. patent application Ser. No. 09/849,810,
entitled “System And Method For Hierarchical Policing Of
Flows And Subflows Of A Data Stream, both filed concur
rently herewith and assigned to the assignee of the instant
application, the contents of both being incorporated herein by
reference in their respective entireties.
0098. The macro sequencer 780 may therefore be repre
sented by a state machine that is Snooping what stage of the
editing process is occurring, Snooping the incoming data,
Snooping the actual editing process, collecting input from the
policer, and performing final modifications to the stored
packet header information before it is output. The macro
sequencer 780 allows various specific modifications on the
data in the memory 716.
0099. The editor module 702, using at least the policer 711
and the macro sequencer 780, therefore also handles packet
dropping for nonconforming packets. The policer 711
informs the macro sequencer 780 when a packet is to be
dropped and the macro sequencer 780 in turn directs the
editor module 702 to deny passage of the header information
in the memory 716 and the data in the overflow buffer 770 to
the output stage. Therefore, to drop a packet currently in the
memories 716, 770, the corresponding information is not
allowed to be output and attention simply turns back to the
input stage to receive the next packet and store the packet in
the memories 716, 770.
0100. The editor module 702 of FIG.7 may be controlled
by configuration options, programmable via a register inter
face (not shown). These configuration options may include
the manner in which packet handling is to be provided,
including packet dropping and the downstream packet direc
tion discussed above. The packet direction may be influenced
by the editor instructions, or may be a programmed response
to packet error conditions and policing. The direction even
tually applied to the packet follows a hierarchical structure in
one embodiment of the invention. For example, in one
embodiment, a hierarchical structure for determining the ulti
mate direction includes, from highest priority to lowest pri
ority, a master override action, error conditions, policing con
ditions, and editor instruction. The master override action is
an override of all other packet direction decisions, and is
particularly useful for diagnostic purposes. Error conditions
receive the next highest priority, and priority among the error
conditions may also be applied (e.g., Such as an error condi
tion encountered with a “drop' directive having the highest
priority). Policing conditions on a policed connection is the
next highest priority to guide the direction of the packet.
Finally, the direction that is identified within the editor
instruction itself is used as the direction for the packet, and
where no editor search results are returned for a packet, a
programmable default action then determines the packet
direction.

0101 The processing functions described herein in con
nection with the packet transformation function of the editor

Aug. 27, 2009

module may be performed by one or more different proces
sors. For example, one or more physical chips may corre
spond to various processing modules of the invention, Such as
the editing module, input processor, output processor, etc.
Alternatively, these functions may be carried out by a single
processor configured to perform each of the various func
tions. In accordance with a preferred embodiment of the
invention, these functional elements are embodied on a single
physical chip, however various processing modules are
embedded therein to perform the described functions.
0102. In accordance with embodiments where various
processing modules are employed, whether embedded within
a chip or not, a primary control processor may be imple
mented to help manage and control each of the implemented
processing modules. Referring to FIG. 11, an embodiment of
an editing module 1100 is illustrated whereby a primary
processor 1102 controls various processing modules, such as
the editor module 1104, input processor 1106, output proces
sor 1108 and macro sequencer 1110.
(0103. The embodiment of FIG.11 shows the search results
on path 1120. These search results serve as indices to the
editor SRAM 1122 to provide the editor instructions and data
shown on signal path 1124 to the editor 1104. The indices,
labeled index-0 126, index-1 128, index-2 130, and index-3
132, are received by the search results control module 1134
which generates the appropriate addresses into the SRAM
1122 from the search result indices 1126, 1128, 1130, 1132.
0104. The editor 1104 and primary processor 1102 may be
part of a common processing module, or alternatively may be
distinct processing modules. For example, in the example of
FIG. 7, the editor 714 represents the processing element to
perform the requisite processing to carry out the desired edit
ing functions. In the embodiment illustrated in FIG. 11, the
editor 1104 and primary processor 1102 collectively perform
editing functions.
0105 More particularly, the editor 1104, macro sequencer
1110, input processor 1106, output processor 1108, and the
memory 1130 are all coupled to the primary processor 1102.
The memory 1130 is analogous to the memory 716 that stores
the information that is to be edited, and in the embodiment of
FIG. 11 is a dual-port memory having port-01132 and port-1
1134 coupled between the memory 1130 and the primary
processor 1102. In this embodiment, the editor 1104 provides
command and data on path 1140 to the primary processor
1102 to cause the processor 1102 to carry out modification
instructions on the data in the memory 11130. The macro
sequencer 1110 provides write commands via path 1142 to
the primary processor 1102 to allow the primary processor
1102 to initiate the designated modifications to the data stored
in the memory 1130. The macro sequencer 1110 may receive
Snoop input from the editor 1104, input processor 1106, and/
or policing module (not shown) to obtain coloration, which
may require further interpretation via the color mapping 1144
information, or other information to initiate the appropriate
modifications to the memory 1130.
0106. A demultiplexer 1150 receives packet input, and in
the present example, separates the header information from
the non-header information. The separation need not be
between the header and non-header information, but in the
present example, all editing is to be performed on header
information. Therefore, the header information is recognized
by the input processor 1106, which marks the appropriate
fields in the valid bit array 1160, and provides write instruc
tions to indicate where in the memory 1130 the primary

US 2009/021.3856 A1

processor should store the header information. The non
header information (or alternatively, the information that is
not to be available for editing) is sent to the buffer 1170.
0107 Upon completion of editing of the header informa
tion in the memory 1130, due at least to the editing instruc
tions identified by the editor 1104 and the macro sequencer
1110, the header and non-header information is reassembled
into a resulting modified packet. This is accomplished using
the output processor 1108 which reads the valid bit array
1160, and initiates forwarding of information in the memory
1130 to the multiplexer 1180 if the state of the valid bit array
1160 dictates the forwarding of that information. The header
information, shown in FIG. 11 as the output headers on signal
path 1182 are output from the multiplexer 1180, followed by
the information stored in the buffer 1170, shown as the output
non-headers on signal path 1184. The resulting modified
packet shown on signal path 1186 from the multiplexer 1180
includes the edited headers followed by the non-edited infor
mation.

0108. As described above, the embodiment of FIG. 11
represents another embodiment of an editor module in accor
dance with the present invention. Other variations of these
embodiments in accordance with the description provided
herein are within the scope of the invention.
0109 FIG. 12 illustrates another embodiment of an editor
module 1200 wherein a primary editor processor is used in
connection with other editing components. The primary edi
tor processor 1202 performs a process to receive packets at
the packet input 1204 and output a modified packet at the
packet out 1206. In order to perform these processes, the
primary processor 1202 receives information from at least the
macro sequencer 1210 and the editor 1212. The editor 1212
receives editor instructions via instruction path 1214, which
in one embodiment includes a 72-bit bus. The instruction path
1214 is coupled to the search result module 1220 which uses
the search results to address the appropriate editor instruc
tions in memory. These instructions may be queued in a queue
1230 having a plurality of queue locations 1232. The instruc
tions are fetched and stored in upper and lower registers 1234,
1236, and decoded by the decoder 1238. The appropriate
commands as determined by the decoder 1238 are sent to the
primary processor 1202 via command/data paths 1240, 1242.
0110. Also supplying information to the primary proces
sor 1202 is the macro sequencer 1210. As earlier described,
the macro sequencer 1210 may operate on the data being
edited to perform certain predefined specific modifications
thereto. Such modifications include updating a checksum
value, or a time-to-live (TTL) parameter. Policing colorations
and changes to packet length due to the addition of local
headers are still other examples in which post-editing-proces
sor modifications will be performed. These, or other, com
mands 1244, 1246 are written from the macro sequencer 1210
to the primary processor 1202. So that the primary processor
can carry out the operations to actually modify the packet,
particularly the information stored in the editor memory (not
shown).
0111. The primary processor 1202 operates as a state
machine, as represented in FIG. 12. The packet is input 1250.
and the packet is processed 1252 in accordance with the
instructions 1240, 1242 supplied by the editor 1212. Header
fields in the memory are edited, deleted, Supplanted, etc. in
order to arrive at modified header fields that ultimately define
the direction 1254 of the modified packet. The macro
sequencer commands 1244, 1246 are then processed as

Aug. 27, 2009

shown at the macro state 1256. When modifications directed
at the macro state are complete, the modified packet is output
1258 as shown on packet output 1206, and the process con
tinues with new input 1250.
0112 FIGS. 13-16 illustrate representative examples of
modifications (i.e., packet transformations) that may be per
formed in accordance with the principles of the present inven
tion. It should be recognized that the examples of FIGS. 13-16
are provided for purposes of understanding, and provide only
a representation of the multitude of different types of modi
fications that may be performed on packets, frames, cells, etc.
Therefore, the examples provided in FIGS. 13-16 are illus
trative only, and clearly the invention is not limited thereto.
Those skilled in the art will readily appreciate that a variety of
additional modifications other than those shown for illustra
tive purposes in FIGS. 13-16 Canbe performed in accordance
with the teachings of the present invention.
0113 Referring first to FIG. 13, an example is provided of
a packet transformation at a router handling an IP/Ethernet
source route. In this example, the incoming packet 1300
includes various embedded headers including a layer-4 user
datagram protocol (UDP) header 1302, a layer-3 Internet
Protocol version-4 user header 1304A, and a layer-2 Ethernet
protocol header 1306A. A packet classifier module (not
shown) determines where in the packet these different head
ers start and stop, and the input controller receives this infor
mation and writes the packet layers into the editor memory
1310 (also shown, for example, as memory 716 in FIG. 7).
The packet layers are written to the editor memory 1310 in a
predetermined order, such as from the lowest layer level to the
highest. This is illustrated in FIG. 13 on the editor memory
1310, where the Ethernet header is stored at one or more
memory locations 1312, the IPv4 header is stored at one or
more memory locations 1314, and the UDP header is stored at
one or more memory locations 1316. In accordance with the
present invention, available memory locations 1318 may be
interleaved with the stored header information.
0114 AS previously discussed, the parsing engine associ
ated with the classifier module (not shown) acts on the incom
ing packet to produce search results that index editor instruc
tions. For purposes of example, the resulting editor
instructions to the editor module in the present example
instruct the editor to replace the Ethernet source address field.
The Ethernet source address field may need to be modified or
replaced since a routerata node declares itself the new Source
address as the packet is transmitted through the network to the
destination.

0115 Since Ethernet addresses are generally forty-eight
bits in length, the forty-eight bit Ethernet address is modified
to change the Ethernet source address. For purposes of the
present example, the editor memory in the present example is
a 32-bit wide memory. Therefore, to modify the 48-bit Eth
ernet source address, one 32-bit operation is performed on the
lower thirty-two bits of the address, and a read-modify-write
operation is performed on the upper sixteen bits of the
address. This is depicted by the memory state block 1320,
showing state-A and the modified state-B of the memory
1310. The original state, state-A, has a lower 32-bit field of
the Ethernet source address, labeled Ethernet Address-B1,
stored at memory location 1322. The modified state, state-B.
occurs due to a write command on the lower32-bit field of the
Ethernet source address, resulting in the modified address
portion Ethernet Address-B2 stored at memory location
1322. For the upper sixteen bits, the original state-A has an

US 2009/021.3856 A1

upper 16-bit field of the Ethernet source address labeled Eth
ernetAddress-A1 stored at memory location 1324. To modify
only the desired sixteen bits of the thirty-two bit address field,
a read-write-modify (RWM) instruction is executed by the
editing processor. This results in the modified state-B, shown
as the EthernetAddress-A2 stored at memory location 1324.
0116. In this example, the IPv4 header stored at memory
location 1314 may also be operated on by the macro
sequencer to perform specific modifications after the editor
instructions have been executed. For example, a TTL value
may be decremented in the TTL field (not shown) of the IPv4
header at location 1314. The checksum value in the IPv4
header may also be updated to reflect the change to the TTL
field.
0117. Following macro sequencer modifications, the
header information has been fully modified, and is ready to be
output from the editor memory 1310. The fields to be output
from the memory 1310 are identified by a corresponding
indicator in the valid bit array 1330. For example, the valid bit
array 1330 of FIG. 13 depicts asserted fields 1332, 1334 and
1336 corresponding to memory locations 1312, 1314 and
1316 respectively. Thus, the Ethernet header at memory loca
tion 1312, the IPv4 header at memory location 1314, and the
UDP header at location 1316 are tagged for inclusion in the
modified output packet. The outgoing packet 1340 therefore
includes various embedded headers including the layer-4 user
datagram protocol (UDP) header 1302, the modified layer-3
internet protocol version-4 (IPv4) header 1304B, and the
modified layer-2 Ethernet protocol header 1306B. As previ
ously described, any associated data for the output packet is
appended to the modified headers output from the editor
memory 1310.
0118 FIG. 14 represents another example of a packet
transformation at a router handling an IP/Ethernet source
route, but in this example, IP tunneling modifications are
desired. “Tunneling refers to using the Internet as part of a
private secure network, where the tunnel is the particular path
that a given message or file might travel through the Internet.
Tunneling protocols make it possible to create a virtual pri
vate network through such tunnels over the Internet. This
would remove the need for entities to lease private lines for
wide-area communication, and securely use the public net
works using tunneling methodologies. Such tunneling meth
odologies are known in the art.
0119 According to tunneling methodologies, an addi
tional layer will be required in the outgoing packet than that
which was present in the incoming packet. Therefore, the
instant example is one which the state of the valid bit array
changes to identify another one or more memory locations
that must be considered in the outgoing modified information.
More particularly, the tunneling header is wedged in between
two existing header information blocks, using the unused
memory space interleaved throughout the editor memory.
These changes are more clearly described in connection with
the example of FIG. 14.
0120 Referring to FIG. 14, the incoming packet 1400
includes various embedded headers including a layer-4 user
datagram protocol (UDP) header 1402, a layer-3 internet
protocol version-4 (IPv4) header 1404A, and a layer-2 Eth
ernet protocol header 1406. A packet classifier module (not
shown) determines where in the packet these different head
ers start and stop, and the input controller receives this infor
mation and writes the packet layers into the editor memory
1410. The packet layers are written to the editor memory

Aug. 27, 2009

1410, where the Ethernet header is stored at one or more
memory locations 1412, the original IPv4 header is stored at
one or more memory locations 1414, and the UDP header is
stored at one or more memory locations 1416. In accordance
with the present invention, available memory locations 1418
may be interleaved with the stored header information. The
memory location 1419 is illustrated with the new tunneling
IPv4 header, however the pre-modified state of this editor
memory location was unused and available. However, in
accordance with the editing methodology described, the
available memory location 1419 is used for the newly added
tunneling IPv4 header, as described more fully below.
I0121 The modifications to the editor memory are illus
trated by the memory state block 1420, showing state-A and
the modified state-B of the memory 1410. The original state
of the particular memory locations, shown as state-A, has no
valid information associated therewith. The editing processor
executes instructions from the instruction memory, which in
the present example includes a series of write instructions.
More particularly, the tunneling IPv4 header is written to the
editor memory 1410, as depicted by the new state-B in
memory state block 1420. As can be seen, memory locations
1422, 1424 and 1426 change from being unused at state-A to
storing tunneling IPv4 header information at state-B. More
particularly, a write command to write the first two words
(IPv4-T-A) of the tunneling IPv4 header is first written to
memory location 1422, then another write command writes
the next two words (IPv4-T-b) of the tunneling IPv4 header to
memory location 1424, and a final write command writes a
final word (IPv4-T-c) of the tunneling IPv4 header to memory
location 1426. These stored words collectively comprise the
tunneling IPv4 header, which resides at memory location
1419. Adding the new tunneling IPv4 header causes an indi
cator in field 1433 of the valid bit array to be set, thereby
confirming its ultimate inclusion in the modified output
packet.
I0122. In this example, the original IPv4 header stored at
memory location 1414 may also be operated on by the macro
sequencer to perform specific modifications after the editor
instructions have been executed. For example, a TTL value
may be decremented in the TTL field (not shown) of the
original IPv4 header at location 1414. The checksum value in
the original IPv4 header may also be updated.
I0123. Following macro sequencer modifications, the
header information has been fully modified, and is ready to be
output from the editor memory 1410. The fields to be output
from the memory 1410 are identified by a corresponding
indicator in the valid bit array 1430. For example, the valid bit
array 1430 of FIG. 14 depicts asserted fields 1432,1433, 1434
and 1436 corresponding to memory locations 1412, 1419.
1414 and 1416 respectively. Thus, the Ethernet header at
memory location 1412, the tunneling IPv4 header at memory
location 1419, the IPv4 header at memory location 1414, and
the UDP header at location 1416 are tagged for inclusion in
the modified output packet. The outgoing packet 1440 there
fore includes various embedded headers including the origi
nal layer-4 user datagram protocol (UDP) header 1402, the
modified internet protocol version-4 (IPv4) header 1404B as
well as the new tunneling IPv4 header 1442, and the layer-2
Ethernet protocol header 1406. As previously described, any
associated data for the output packet is appended to the modi
fied headers output from the editor memory 1410.
0.124 Referring now to FIG. 15, an example is provided of
a packet transformation at a router within a multiprotocol

US 2009/021.3856 A1

label switching (MPLS) domain, as carried out in accordance
with the invention. MPLS integrates layer-2 information
about network links into layer-3 (IP) within a particular
autonomous system in order to simplify and improve IP
packet exchange. MPLS essentially provides connection-ori
ented labeling in an otherwise connectionless environment,
which has resulted in MPLS being considered associated with
layer-2.5. With MPLS, different flows can be classified, and
different service levels can be associated with the different
flow classifications. MPLS uses a stack of 32-bit labels, and a
router will view the top label in the stack to determine what
the next hop should be. Each router in the MPLS domain can
modify the label stack, such as by adding more labels based
on the router's knowledge of the packet forwarding condi
tions. For example, such a modification may require replacing
the existing top label on the label stack with a new label so that
a particular router can change one or more of the next hops. A
variety of different modifications may be made to the MPLS
stack, and the present invention is particularly beneficial in
routers in which Such modifications are to be made.
0.125. The incoming packet 1500 includes various embed
ded headers including a layer-4 transmission control protocol
(TCP) header 1502, a layer-3 internet protocol version-4
(IPv4) header 1504A, a layer-2.5 MPLS header 1506A, and a
layer-2 point-to-point protocol (PPP) header 1508. A packet
classifier module (not shown) determines where in the packet
these different headers start and stop, and the input controller
receives this information and writes the packet layers into the
editor memory 1510. The packet layers are written to the
editor memory 1510, where the PPP header is stored at one or
more memory locations 1512, the MPLS header is stored at
one or more memory locations 1514, the IPv4 header is stored
at one or more memory locations 1516, and the TCP header is
stored at one or more memory locations 1518. In accordance
with the present invention, available memory locations 1519
may be interleaved with the stored header information.
0126 The modifications to the editor memory are illus
trated by the memory state block 1520, showing state-A and
the modified state-B of the memory 1510. The original state
of the particular memory locations, shown as state-A,
includes an MPLS label stack including label MPLS-A at
location 1522, label MPLS-B1 at location 1524, label
MPLS-C at location 1526, through a finite number of labels
represented by MPLS-nat location 1528. The editing proces
Sor executes instructions from the instruction memory, which
in the present example includes instructions to pop the top
MPLS label and swap the next MPLS label with a new MPLS
label. This is depicted in the memory state block, where label
MPLS-A at memory location 1522 is “popped' off the top of
the state-A stack through editor processing of a pop instruc
tion, resulting in no label stored at location 1522 as shown at
state-B. A second editor instruction, a 'swap” instruction,
causes the MPLS-B1 label at location 1524 to be swapped
with a new label, shown in modified state-Bas label MPLS
B2 at location 1524.

0127. In this example, the IPv4 header stored at memory
location 1516 may also be operated on by the macro
sequencer to perform specific modifications after the editor
instructions have been executed. For example, a TTL value
may be decremented in the TTL field (not shown) of the IPv4
header at location 1516.
0128. Following macro sequencer modifications, the
header information has been fully modified, and is ready to be
output from the editor memory 1510. The fields to be output

Aug. 27, 2009

from the memory 1510 are identified by a corresponding
indicator in the valid bit array 1530. For example, the valid bit
array 1530 of FIG. 15 depicts asserted fields 1532, 1534, 1536
and 1538 corresponding to memory locations 1512, 1514,
1516 and 1518 respectively. Thus, the PPP header at memory
location 1512, the modified MPLS header at memory location
1514, the IPv4 header at memory location 1516, and the TCP
header at location 1518 are tagged for inclusion in the modi
fied output packet. The outgoing packet 1540 therefore
includes various embedded headers including the original
layer-4 transmission control protocol (TCP) header 1502, the
modified internet protocol version-4 (IPv4) header 1504B as
modified by the macro sequencer, the modified layer-2.5
MPLS header 1506B as modified by the editor instructions,
and the layer-2 PPP header 1508. As previously described,
any associated data for the output packet is appended to the
modified headers output from the editor memory 1510.
I0129. A final example is provided in FIG. 16. FIG. 16
provides an example of a packet transformation at a router at
the egress edge of an MPLS domain, in accordance with the
present invention. This example also contemplates the imple
mentation of a local header applied by the router to direct the
packet through the Switch fabric to a specific output port at the
rOuter.

0.130. In this embodiment, the incoming packet 1600
includes various embedded headers including a layer-4 trans
mission control protocol (TCP) header 1602, a layer-3 inter
net protocol version-6 (IPv6) header 1604A, a layer-2.5
MPLS header 1606A, and a layer-2 point-to-point protocol
(PPP) header 1608. A packet classifier module (not shown)
determines where in the packet these different headers start
and stop, and the input controller receives this information
and writes the packet layers into the editor memory 1610. The
packet layers are written to the editor memory 1610, where
the PPP header is stored at one or more memory locations
1612, the MPLS header is stored at one or more memory
locations 1614, the IPv6 header is stored at one or more
memory locations 1616, and the TCP header is stored at one
or more memory locations 1618. In accordance with the
present invention, available memory locations 1619 may be
interleaved with the stored header information.

I0131 Some modifications to the editor memory are illus
trated by the memory state block 1620, showing state-A and
the modified state-B of the memory 1610. The original state
of the particular memory locations, shown as state-A,
includes an MPLS label stack including label MPLS-A at
location 1625, MPLS-B at location 1626, MPLS-C at loca
tion 1627, through MPLS-n at location 1628. The editing
processor executes a “Pop All instruction to remove all
MPLS labels. This is depicted in the memory state block,
where all labels MPLS-A, MPLS-B, MPLS-C, MPLS-D at
memory locations 1625, 1626, 1627, 1628 respectively are
“popped from the state-A Stack through editor processing of
a Pop All instruction, resulting in no label stored at locations
1625, 1626, 1627, 1628 as shown at state-B. At this point, the
resulting packet would be PPP/IPv6/TCP. However, the
present example also contemplates another editor instruction,
which is a write instruction to write one or more words of a
local header which is inserted on the editor memory 1610 at
location 1624 preceding the layer-2 PPP header. This local
header will allow the router to direct the packet through the
Switch fabric to a specific output port.
0.132. In this example, the IPv6 header stored at memory
location 1616 may also be operated on by the macro

US 2009/021.3856 A1

sequencer to perform specific modifications after the editor
instructions have been executed. For example, a TTL value
may be decremented in the TTL field (not shown) of the IPv6
header at location 1616. Further, the local header of the
present example includes a packet length field which can be
updated by the macro sequencer after all editor instructions
have been executed. A new coloration to the packet based on
input from the policer may also be included by the macro
Sequencer.

0133) Following macro sequencer modifications, the
header information has been fully modified, and is ready to be
output from the editor memory 1610. The fields to be output
from the memory 1610 are identified by a corresponding
indicator in the valid bit array 1630. For example, the valid bit
array 1630 of FIG. 16 depicts asserted fields 1632, 1634, and
1636 corresponding to memory locations 1612, 1616 and
1618 respectively. However, field 1638 of the valid bit array
1630 may be cleared, as all MPLS header information was
removed during the editing process. Further, field 1639 of the
valid bit array is now asserted, due to the inclusion of the local
header into the memory at location 1624. Thus, the local
header at memory location 1624, the PPP header at memory
location 1612, the modified IPv6 header at memory location
1616, and the TCP header at location 1618 are tagged for
inclusion in the modified output packet. The modified outgo
ing packet 1640 therefore includes various embedded headers
including the original layer-4 transmission control protocol
(TCP) header 1602, the modified internet protocol version-6
(IPv6) header 1604B as modified by the macro sequencer, the
layer-2 PPP header 1608, and the newly added local header
1642. As previously described, any associated data for the
output packet is appended to the modified headers output
from the editor memory 1610.
0134 Referring now to FIG. 17, a flow diagram is pro
vided to illustrate an embodiment of a method for modifying
a packet stream in accordance with the present invention. A
packet stream including one or more packets, frames, cells, or
other data units is received at a network node as shown at
block 1700. For a given packet, particular segments of the
packet are stored 1702 in a modification memory designated
to temporarily store these packet segments during the modi
fication process. For example, one such memory was depicted
as memory 716 in FIG. 7. The modification memory includes
a plurality of memory locations that are logically partitioned
into different memory segments, such that the different
packet segments of the packet can be stored in these different
memory segments. In one embodiment, this partitioning
can be accomplished by tracking at least the starting
addresses of each of the packet segments stored in the modi
fication memory.
0135) In addition to storing the various packet segments in
the modification memory, an instruction memory (which may
include a data storage portion) may be called upon to output
instructions for modifying the data temporarily stored in the
modification memory. Thus, the appropriate editing instruc
tions are indexed or otherwise elicited from the instruction
memory, where the particular editing instructions being elic
ited depends on the characteristics of the packet, as shown at
block 1704. For example, if the packet includes an embedded
MPLS header, this MPLS header information is a “character
istic' of the packet that may be used to designate the appro
priate one or more instructions from the instruction memory.
In one embodiment, these characteristics are determined via
the classification/parsing engine (e.g., classifier 502 shown in

Aug. 27, 2009

FIGS. 5 and 6) and are presented to the instruction memory in
the form of the search results (e.g., search results 708 of FIG.
7).
0.136 The indexed editing instructions are processed to
execute modification operations on the packet segments in the
modification memory. Thus, modifications are effected 1706
as dictated by the indexed editing instructions. A “modifica
tion may include altering existing packet segment data,
inserting new packet segment data, deleting or otherwise
canceling existing packet segment data, or any other manner
of changing the packet data.
0.137 In order to identify packet segments to be included
in the resulting output packet (whether altered, added, can
celed, etc.), validity tags are associated with each of the
memory segments of the modification memory, as shown at
block 1708. A “validity tag represents any stored indicator,
Such as one or more bits in a memory or register field. As
previously described, one such embodiment is a valid bit
array which includes a plurality of fields, each of which stores
a validity tag. In a more particular embodiment provided for
purposes of example, each of the individual bits of a register
can represent the fields of a valid bit array, such that each bit
in the register therefore represents a validity tag.
0.138. Upon consideration of a first packet segment as
illustrated at block 1710, it is determined 1712 whether or not
that packet segment's associated validity tag is set. It should
be noted that the particular logical state of a “set' validity tag
is not of particular relevance to the invention, and a “set'
validity tag may therefore be represented by a high logic state,
a low logic State, a bit pattern, or any other such determinable
electronic representation. If the validity tag associated with a
particular packet segment is set, then that packet segment is
included 1714 in the resulting modified packet. If the validity
bit is not set, that memory segment is disregarded 1716, i.e.,
the data at that memory segment is not included in the result
ing modified packet. Where more packet segments are stored
as determined at decision block 1718, these additional packet
segments are considered 1710 to determine whether they too
will, or will not, be included in the resulting modified packet.
As can be seen, a modified packet is thus created by assem
bling the packet segments associated with asserted or “set'
validity tags.
0.139. The foregoing description of the exemplary
embodiment of the invention has been presented for the pur
poses of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form dis
closed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of the
invention be limited not with this detailed description, but
rather by the claims appended hereto.
What is claimed is:
1. A system comprising:
a programmable lookup word generator to receive a set of

information and to produce a lookup word, the program
mable lookup word generator including:

a profile memory configured to store a set of instructions
for generating the lookup word; and

a selection mechanism for selecting portions of the set of
information in response to the set of instructions
retrieved from the profile memory, the selection mecha
nism including a matrix of storage elements and shift
logic for use in generating the lookup word; and

a content-addressable memory, coupled to the program
mable lookup word generator, configured to receive said

US 2009/021.3856 A1

generated lookup word and to perform a lookup opera
tion based on said generated lookup word in order to
generate one or more lookup result indications.

2. The system of claim 1, further comprising a queue
coupled to the matrix of storage elements and the content
addressable memory.

3. The system of claim 1, wherein the profile memory is
responsive to a profile selection in retrieving the set of instruc
tions used by the selection mechanism; and wherein the
received set of information includes the profile selection.

4. The system of claim 3, wherein the programmable
lookup word generator includes a shift logic control unit
responsive to the set of instruction for controlling said shift
logic.

5. A method for generating a lookup word, the method
comprising:

receiving a set of information including a profile identifi
cation;

retrieving a set of instructions from a profile memory based
on the profile identification;

manipulating the set of information in response to the set of
instructions to generate the lookup word, said manipu
lation including controlling a selection mechanism, the
Selection mechanism including a matrix of storage ele
ments and shift logic for use in generating the lookup
word; and

exporting the lookup word to a content-addressable
memory for use by said content-addressable memory in
performing a lookup operation to identify one or more
content-addressable memory lookup results.

6. The method of claim 5, further comprising programming
the profile memory with the set of instructions.

7. The method of claim 5, wherein the set of information
includes information related to a packet, and said one or more
content-addressable memory results include a packet classi
fication.

Aug. 27, 2009

8. A system for generating a lookup word, the system
comprising:
means for receiving a set of information including a profile

identification;
means for retrieving a set of instructions from a profile
memory based on the profile identification;

means for manipulating the set of information in response
to the set of instructions to generate the lookup word,
said means for manipulating the set of information
includes a matrix of storage elements and shift logic for
use in generating the lookup word; and

means for exporting the generated lookup word to a con
tent-addressable memory for use by said content-ad
dressable memory in performing a lookup operation to
identify one or more content-addressable memory
lookup results.

9. A packet editor module comprising:
an input memory configured to store incoming packet

header information of a packet;
a packet processing unit configured to generate packet

header information for the packet by operating on the
packet header information stored in the input memory,
the packet processing unit including a first processing
component configured to generate layer 2 (L2) packet
header information for the packet and a second process
ing component implemented in parallel with the first
processing component and configured to generate layer
3 (L3) packet header information for the packet; and

a build component configured to receive the generated
packet header information while the input memory
stores incoming packet header information for a next
packet.

