AGGLOMERATE, CONTAINING TITANIUM OXIDE, FOR MANUFACTURING GRANULAR METALLIC IRON

Title:

AGGLOMERATE, CONTAINING TITANIUM OXIDE, FOR MANUFACTURING GRANULAR METALLIC IRON

発明の名称：粒状金属鉄製造用酸化チタン含有塊成物

Abstract:

Provided is an agglomerate for manufacturing granular metallic iron, said agglomerate containing titanium oxide and being useful in obtaining a high yield of high-grade granular metallic iron in a size that is suitable for handling, by heating at a comparatively low-temperature and using a ferrous material containing titanium oxide and other gangue components. The agglomerate comprises: a ferrous material including titanium oxide in an amount equivalent to at least 5 mass% and less than 10 mass% of TiO₂ and a carbonaceous reducing agent. The chemical composition of the agglomerate fulfills the conditions given in formulas (1) through (3) below. [CaO]/[SiO₂] = 0.6 to 1.2 (1) [Al₂O₃]/([CaO]+[SiO₂]+[MgO]+[TiO₂]) = 0.3 to 1.0 (2) [TiO₂]/([CaO]+[SiO₂]+[MgO]+[Al₂O₃]) < 0.45 (3) Here, the symbols [CaO], [SiO₂], [Al₂O₃], [TiO₂], and [MgO] represent the amounts (mass% on dry basis) of each respective component included in the agglomerate.

Published Patent:

WO 2009/125814 A1

Publication Date: 2009-10-15

Inventors:

SUGIYAMA, Takeshi

 Kobayashi, Isao

Applicant:

KABUSHIKI KAISHA KOBE SEIKO SHO

Country:

JP

Classification:

C22B 1/16 (2006.01)
C22B 5/10 (2006.01)
C22B 2/24 (2006.01)

Priority Date:

2008-102620

Publication Date:

2009-10-15

International Classification:

C22B 1/16 (2006.01)
C22B 5/10 (2006.01)
C22B 2/24 (2006.01)

Inventors:

SUGIYAMA, Takeshi

 Kobayashi, Isao

Applicant:

KABUSHIKI KAISHA KOBE SEIKO SHO

Country:

JP

Classification:

C22B 1/16 (2006.01)
C22B 5/10 (2006.01)
C22B 2/24 (2006.01)

Priority Date:

2008-102620

Publication Date:

2009-10-15

International Classification:

C22B 1/16 (2006.01)
C22B 5/10 (2006.01)
C22B 2/24 (2006.01)
月に換算 LT 5 質量%以上 10 質量%未満含有する鉄源と、炭素質還元剤を含み、その化学成分組成が、下記式 (1) ~ (3) に示される条件を満たす。

\[
\frac{[CaO]}{[SiO_2]} = 0.6 \sim 1.2 \\
\frac{[Al_2O_3]}{[SiO_2]} = 0.3 \sim 1.0 \\
\frac{[TiO_2]}{([CaO] + [SiO_2] + [MgO] + [Al_2O_3])} < 0.45
\]

ここで、[CaO]、[SiO_2]、[Al_2O_3]、[TiO_2]、[MgO] は、それぞれ塊成物中の各成分の含有量（乾ベースで%) を示す。
明細書
発明の名称：粒状金属鉄製造用酸化チタン含有塊成物
技術分野
000 本発明は、粒状金属鉄製造用酸化チタン含有塊成物に関するものであり、特に、酸化チタンを所定の割合で含む鉄源を原料に含むものであって、加熱による酸化鉄の還元・溶融により粒状金属鉄を得るのに有用な塊成物に関するものである。
背景技術
0001 製鉄法として、鉱鉱石等の酸化鉄含有物質（鉄源）と石炭などの炭素質還元剤を含む混合物を原料として、該混合物を押し固めた成形体、またはベレットやブリケット等に成形した炭材内装成形体を製造する工程と、その成型体を加熱炉で加熱することによって固体還元し、これにより生成する金属鉄を副生するスラグと分離しつつ凝集させる工程と、その凝集した金属鉄を冷却凝固させて粒状金属鉄を製造する工程を含む方法がある。
0002 ところで、上記鉄源として、酸化チタン（以下、代表的にTiOと称することができる）の濃度が比較的高くかつTiO₂以外の脈石成分（Al₂O₃、MgO等）を含むもの（以下、酸化チタン含有鉄源ということがある）が存在する。
0003 このような酸化チタン含有鉄源を、上記粒状金属鉄の製造プロセスに使用する場合、酸化チタンをはじめとする脈石成分の溶融が必要となる。しかし、上記脈石成分であるTiOやAl₂O₃、MgOは溶融温度を高める成分であるため、溶融には1550℃以上もの高温加熱が必要となる。しかし、この様な高温での加熱は、エネルギー消費量の増大や溶解炉建設費の高騰を招くため、鉄の製造プロセスとしては経済的に成立しない。
0005 TiO濃度の比較的高い酸化鉄鉱物を用いた例として、例えば特許文献には、酸化チタンと酸化鉄を含有する物質から、酸化チタン含有スラグを効率的に製造する方法が示されている。具体的には、酸化チタンと酸化鉄を含
有する物質と炭素含有物質（炭素質還元剤）とが混合され成型された塊成物を1200〜1500℃で加熱することと、その加熱により上記酸化鉄が還元された状態の上記塊成物を電気炉へ挿入して更に加熱することにより上記還元鉄を溶融させ、これにより当該塊成物をチタン含有スラグと溶鉄に分離することを含む方法が示されている。そして、上記の溶融分離にはCaOの添加が有効であること、及び、実施例として塩基度（CaO/SiO₂）を「」とすることが示されている。さらに、上記特許文献1の段落[0020]には、「天然のイリ משרד以外の脈石成分（Fe以外の酸化物）はチタンスラグに混入してチタン純度を低減させる要因となるため、原料混合物中の含有物は少ない方が望ましい」と旨の記載がされている。

[0006]この特許文献1に記載される方法では、チタン含有スラグ中のTiO₂濃度の低下を避けるために、添加物としてCaOのみ添加されるが、CaOのみの添加では、炉床上でスラグと金属鉄を十分に分離できないと推定される。また、特許文献1には塊成物の成分組成までは明示されておらず、経済的な収率で金属鉄を得る方法が具現化されていない。

[0007]一方、特許文献2には、溶融の可能な回転炉床炉内に予備還元された鉄含
有低チタン物質およびその塊成物を挿入することにより酸化チタン濃縮溶融スラグと溶鉄を製造するための装置および方法が開示されている。

[0008]上記特許文献2には、予備還元前の塊成物には造寒剤としてCaOを添加
しても良いが、スラグ中のチタン濃度を低下させるため好ましくないことが
記載されている。また特許文献2には、原料の成分として、チタン酸化物が
70%以下であること、および硫黄吸収のためにCaOを添加することは示
されているが、塊成物の詳細な化学組成についてまで記載されていない。つ
まり、この特許文献2にも経済的な収率で金属鉄を得るための具体的方法は
示されていない。

[0009]更に特許文献2の方法では、回転炉床溶融炉の操作温度が1300〜1800℃と非常に広い。加熱温度を高くして溶融する方法は経済的に好ましく
ないため、可能な限り低い温度でスラグと金属鉄を高収率で分離することが
望まれるが、特許文献2記載の方法ではこの点まで考慮されていない。

つまり、上記の従来技術は、いずれも、T i O に加えてA l O , M g O といった溶融温度を高める脈石成分を含む酸化チタン含有鉄源を用いながら、比較的低温の加熱で、好適な粒状金属鉄（例えば3.5 mm以上の粒径を有する粒状金属鉄、すなわち目開き3.5 mmのふるいを通過しない粒状金属鉄）を高い収率（例えば80%以上）で得る方法を確立していない。

先行技術文献

特許文献

特許文献1：特開2004-753号公報
特許文献2：米国特許第645766「(B)」号公報

発明の概要

本発明の目的は、T i O をはじめとする酸化チタンに加えてA l O およびM g O といった溶融温度を高める脈石成分を含む酸化チタン含有鉄源を粒状金属鉄の製造に用いた場合に、従来法よりも比較的低温の加熱で酸化鉄を還元・溶融して上記サイズの高品位な粒状金属鉄を収率よく得るのに有用な、粒状金属鉄製造用酸化チタン含有塊成物を提供することにある。

この粒状金属鉄製造用酸化チタン含有塊成物は、酸化チタンをT i O 換算量にして5重量％以上、0重量％未満含む鉄源、および炭素質還元剤を含み、かつ、その化学成分組成が下記式（r）～（3）により与えられる条件を満たす。

\[
[CaO] / [SiO_2] = 0.6 \sim 1.2 \quad \ldots (1)
\]

\[
[Al_2O_3] / [SiO_2] = 0.3 \sim 1.0 \quad \ldots (2)
\]

\[
[TiO_2] / ([CaO] + [SiO_2] + [MgO] + [Al_2O_3]) < 0.45 \quad \ldots (3)
\]

なお、上記式（r）～（3）における[C a O]、[S i O_2]、[A l_2 O_3]、[T i O_2]、[M g O] は、それぞれ塊成物中の各成分の含有量（乾ベースでの質量％）を示す。
このうち [TiO] は、上記の「TiO換算量」に相当するものであり、上記塊成物にTiOのみならずそれ以外の酸化チタンとしてTiOやTiが含まれる場合にこれらをTiOとして換算した量も加えたものを意味する。具体的に、この[TiO₂]（TiO換算量）は、金属チタンが共存していないと仮定すると、次式（4）により算定することが可能である。

[TiO₂] (wt %) = 全Ti(チタン)量 (wt %) / (Ti原子量)
× [(Ti原子量) + 2 × (O (酸素) 原子量)] …(4)

また、[CaO] は、酸化チタン含有鉄源や炭素還元剤に含まれるCa、フッ素含有物質として添加しうる塩水中のCa、および成分調整剤として添加しうる生石灰や石灰石 (CaCO₃) 中のCaをCaOに換算して合計した量を示す。具体的に、この[CaO]は、金属カルシウムが共存していないと仮定すると、次式（5）に基づいて算定される。

[CaO] (wt %) = 全Ca(カルシウム)量 (wt %) / (Ca原子量)
× [(Ca原子量) + (O (酸素) 原子量)] …(5)

この塊成物は、TiOをはじめとする脈石成分を含む鉄源が粒状金属鉄の製造に用いられる場合にも、比較的低い加熱温度で、取り扱いに適したサイズの高品位な粒状金属鉄を収率よく製造することを可能にする。その結果、加熱のための燃料費を低減するだけでなく、加熱炉を構成する耐火物の費用低減や加熱炉の耐久性向上を期待することが可能になる。

図面の簡単な説明

[0017] [図1]移動炉床式加熱還元炉を例示する概略工程説明図である。

[図2] A I O : S i O : C a O および TiO からなる複合酸化物の、AI
O 煉が 20 質量%である場合の SiO₂−CaO−TiO 三元状態図であ
る。

[図3]「500℃で加熱後の試料B−2の溶融状態を示す写真である。

[図4]「500℃で加熱後の試料B−1の溶融状態を示す写真である。

発明を実施するための形態

[0018] 本発明者らは、TiOをはじめとする脈石成分を含む酸化チタン含有鉄源
を用いて、従来法より比較的低温の加熱で、取り扱いに適したサイズの高品位な粒状金属鉄を高い収率で得るのに有用な、粒状金属鉄製造用酸化チタン含有塊成物を実現すべく、鋭意研究を行った。その結果、塊成物において、脈石成分のスラグ化促進のために従来より用いられてきたCaOと共にSiOの含有量を増加させ、かつ、塊成物に含まれるCaO、AI2O3、MgO、SiO2およびTiOの含有量の比を適正化すればよいことを見出した。

[0019] 従来、塊成物に含まれるSiO量の増加は、スラグ成分の増加を伴うためにこれまで一般的に避けられていたが、本発明では、塊成物に含まれるCaOとSiOの含有量を高め、かつ、上述の通り塊成物に含まれるCaO、AI2O3、MgO、SiO2およびTiOの量比の適正化によりCaO含有量のみを増加させた場合を凌駕する塊成物の低融点化を実現する点に特異性を有する。

[0020] 以下、本発明について詳述する。本発明者らは、酸化チタンをTiO換算量にして5質量％以上（0質量％未満含む鉄源（以下酸化チタン含有鉄源）ということがある）と、炭素質還元剤を含む塊成物を対象として、まず、低融点（300～1520℃）を確保できると推定される塩基度（[CaO]/[SiO2]）の範囲を状態図から求めめた。その結果、次の式（1）に示す通り、塩基度（[CaO]/[SiO2]）を0.6～1.2の範囲内とすれば低融点（300～1520℃）を確保できることを確認した。

\[\frac{CaO}{SiO_2} = 0.6 \sim 1.2 \quad \cdots (1) \]

[0021] この式（1）中、[CaO]、[SiO2]は、それぞれ、塊成物中の各成分の含有量（乾ベースでの質量％）を示す。[CaO]は、上述のように、酸化チタン含有鉄源や炭素質還元剤に含まれるCa、フッ素含有物質として添加する石灰中のCa、および成分調整剤として添加する生石灰や石灰石（CaCO3）中のCaをCaOに換算して合計した量を示す。

[0022] [CaO]/[SiO2]の上限が1.2である理由は、（1）後述する実施例に示す試料B-3と試料B-4とを比較すると、[CaO]/[SiO2]を増加させても所望の粒状金属鉄の収率は低下傾向にあること、および（
I 1) 後述する図2に示すSiO2–CaO–TiO 三元状態図に示されるように、CaO量が増加すると高融点域に近づくことにある。

023] 次に、本発明者らは、上記塩基度の範囲を前提として、更に他の成分についても考慮する実験を行った。融点に影響を及ぼす脈石成分として、TiO2、CaO、SiO2、Al2O3 およびMgOを考慮する必要がある。これらを同時に考慮する必要のある多元系酸化物の場合、その融点を、既知の状態図や計算機シミュレーションによって正確に知ることができない。そこで、本発明者らは、実験を行って、TiO2、CaO、SiO2、Al2O3 およびMgOの組成と融点との関係を確認した。

024] 7 記実験の結果、上記多元系酸化物の融点を 300～520℃の範囲内とするには、塊成物に含まれるAl2O3量（質量％）とSiO2量（質量％）の比：（[Al2O3] / [SiO2]）を、下記式（2）に示す通り0.3～1.0の範囲内とすると共に、塊成物における各成分の含有量（乾ベースでの質量％）について、[CaO]、[SiO2]、[MgO] および[Al2O3]の総量に対する[TiO2]の割合：[TiO2] / ([CaO] + [SiO2] + [MgO] + [Al2O3]) を、下記式（3）に示す通り0.45未満とすればよいことがわかった。

\[
\frac{[Al_2O_3]}{[SiO_2]} = 0.3\sim1.0 \quad \cdots (2)
\]

\[
[TiO_2] / ([CaO] + [SiO_2] + [MgO] + [Al_2O_3]) < 0.45 \quad \cdots (3)
\]

[Al2O3] / [SiO2] の下限が0.3である理由は、SiO2-CaO-Al2O3三元状態図において、Al2O3量が少なすぎると高融点域に近づくことによる。

025] この様に、塊成物に含まれるTiO2、CaO、SiO2、MgOおよびAl2O3の組成を制御することにより、低融点組成を実現できる。その結果、「300～520℃の温度域で8～15分間加熱することで、脈石成分が十分に溶融されて金属鉄の凝集が促進され、取り扱いに適した粒径（3.35mm
以上の粒径）をもつ粒状金属鉄（目開き3・35mmのふるいを通過しない粒状金属鉄）を収率よく得ることができる。上記加熱温度は、酸化チタンの融点（825℃）であることに比べて著しく低い。また、上記サイズの粒状金属鉄の生成は、加熱炉からの排出時の飛散ロスの抑制を可能にする。更に、酸化性の雰囲気に曝された場合の再酸化を抑えることができ、特に、運搬、貯蔵時の発火の防止に有効である。

【0026】本発明の塊成物としては、TiO₂、CaO、SiO₂、MgOおよびAl₂O₃を含むものの他、TiO₂、CaO、SiO₂およびMgOを含むがMgOを含まないものもありうる。

【0027】記塊成物は、（i）酸化チタン含有鉄源（鉄鉱石等）および炭素質還元剤の成分範囲内で上記式（′）～（3）に示される化学組成の条件を満たすものでもよいし、（i i）記酸化チタン含有鉄源（鉄鉱石等）および炭素質還元剤に適当な酸化剤（例えばSiO₂含有物質や、生石灰および/または石灰石）が添加された結果として上記式（′）～（3）に示される化学組成の条件を満たすものでもよい。（ii）の場合、酸化チタン含有鉄源（鉄鉱石等）中の炭素製造剤（炭素やコークス等）中の炭素の組成及び含有量を考慮した上で、上記成分調整剤の配合が適当であればよい。上記成分調整剤の具体的種類は特に制限されず、例えばSiO₂含有物質としては、珪砂等の高シリカ濃度の材料だけでなく、低品位の石灰石やシリカ成分の多い石炭を用いることも可能である。

【0028】本発明は、酸化チタン濃度の比較的高い黒鉱石等の酸化鉄含有物質を粒状金属鉄の製造に用いる場合の問題を解決することが課題であるから、用いられる酸化チタン含有鉄源がTiO₂換算量にして酸化チタンを5質量%以上「0質量%未満にすることを前提とする。

【0029】尚、本発明でいう「鉄源」とは、黒鉱石、鉄精錬原料（例えば砂鉱）を通過したときに生じるスラグ、またはこれらの混合物であって、酸化チタンをTiO₂換算量にして5質量%以上「10質量%未満をいう。
本発明に係る塊成物が更に適量のフッ素含有物質を含有することにより、副生される slag の流動性が向上する。具体的に、slag と金属鉄の分離性を向上させてより高い収率（98% 以上）を達成するには、塊成物中のフッ素含有量が 0.6 質量% 以上であるのが好ましく、より好ましくは 0.9 質量% 以上である。その一方、環境上フッ素の使用が制限される場合があり、また、過剰なフッ素の存在は生成スラグの流動性を過度に高めて炉床耐火物の損壊を促進するおそれがあるから、塊成物中のフッ素含有量は 3.5 質量% 以下（より好ましくは「質量% 以下の」）であることが好ましい。フッ素含有物質の例としては、C a F 含有物質（例えば蛻石）が挙げられる。

塊成物に含まれる炭素質還元剤は、酸化チタン含有鉄源中の酸化鉄の還元のために必要であり、その量が少ないと酸化鉄の還元が不足する。この酸化鉄の還元不足は、多量の F c O の溶融を生じさせて、炉を構成する耐火物の損傷を招くおそれがある。よって、炭素質還元剤は、塊成物を構成する全原料の固定炭素と、前記鉄源中の鉄原子と結合している酸素との原子モル比（O／C）を‘5 以下（より好ましくは「0 以下」とするように、添加されることが望ましい。

一方、炭素質還元剤が塊成物中に過剰に存在すると、加熱前の塊成物の強度が低下してハンドリングが困難になる。また、炭素質還元剤として例えば石炭を多量に用いると、脈石成分量も増加するため好ましくない。これらの観点から、前記炭素質還元剤は、上記の原子モル比（O／C）を 0.8 以上（より好ましくは「0 以上」とするように添加されることが望ましい。

炭素質還元剤は、石炭、黒鉛、廃プラスチック等の固定炭素を含有するものであればよく、その具体的な形態は限定されない。

本発明では、塊成物における酸化チタン含有鉄源の 90 質量% 以上が「m m 以下の粒径を有するもの（目開き「mm のふるいを通過したもの）であることが好ましい。上記サイズの鉄源の使用は、伝熱の観点から有利であり、また塊成物に内在する上記炭素質還元剤による還元性を高めることもできる。更には塊成物の成型も容易にする。より好ましくは、酸化チタン含有鉄源
の90質量％以上が「mm以下の粒径を有するもの（目開き「mmのふるい
を通過したもの）であるのに加え、その70質量％以上が200μm以下の
粒径を有するもの（目開きが200μmのふるいを通過したもの）であるこ
とが好ましい。

[0035] 7記粒度分布を有する鉄源は、その粒度がふるい分け分級により調整され
たものでもよいし、当該分級をしなくても既に上記条件を満たしていたもの
でもよい。

[0036] 本発明の塊成物は、上記のように酸化チタンをTiO換算量にして5質量
％以上「0質量％未満含む鉄源、炭素質還元剤（粉状であることが望ましい
）、上記式（1）～（3）を満たすよう塊成物の化学組成を調整するために
必要に応じて添加される物質（成分調整剤）の他、塊成物製造のためのパイ
ンダー（結合剤）を含みうる。

[0037] 本発明でいう「塊成物」は、上記原料が混合されて塊成化されたもので
ある。その塊成化には、ブリケット化用プレス機（シリンダープレス、ロー
ルプレス、リングローラープレスなど）をはじめとするプレス機、押出成形機
、転動型造粒機（パンペレタイザー、ドラムペレタイザーなど）といった公
知の種々の機器が使用される。

[0038] 塊成物の形状は、特に限定されず、塊状、粒状、ブリケット状、ペレット
状、粒状などの種々の形状が採用できる。

[0039] 上記塊成物の還元溶融により粒状金属鉄が製造されるが、その還元溶融の
具体的な方法は限定されない。当該還元溶融には公知の還元溶融炉を用いれ
ばよい。以下、移動炉床式加熱還元炉を用いて粒状金属鉄を製造する方法が
例として説明されるが、本発明がこれに限定される意図ではない。

[0040] 図「は、上記粒状金属鉄の製造方法の工程の概略を説明するための図であ
る。この図「では、上記の移動炉床式加熱還元炉として、回転炉床4を有す
る回転炉床式加熱還元炉「0が例示される。

[0041] 7記回転炉床式加熱還元炉「0には、上記塊成物「と、好ましくは床敷材
として供給される粉粒状の炭素質物質2とが投入され、これらは原料投人ホ
ッパ3を通じて上記回転炉床4に連続的に装入される。より詳細には、塊成物「の装人に先立って、原料投入ホッパ3から回転炉床4に粉粒状の炭素質物質2が装入されて敷き詰められ、その上に塊成物「が装入される。図「は、「の原料投入ホッパ3が塊成物「と炭素質物質2の装人に共用される例を示しているが、塊成物「及び炭素質物質2は2以上のホッパを通じて個別に装入されてもよい。床敷材として装入される炭素質物質2は、還元効率を高めると共に得られる粒状金属鉄の低硫化を増進する上でも極めて有効であるが、場合によっては省略することも可能である。

[0042] 記回転炉床4は、図「では反時計方向に回転する。その速度は、操業条件によって異なるが、通常は8分から「6分程度で回転炉床4が一周し、その間に塊成物「中に含まれる酸化鉄は固体還元され、浸炭により融点低下して粒状に凝集すると共に、副生されるスラグと分離されることによって粒状金属鉄となる。

[0043] 具体的に、該還元炉「0において記回転炉床4の上方に位置する側壁及び／又は天井壁に複数の燃焼バーナー5が設けられており、該バーナー5の燃焼あるいはその輻射による熱が炉床部に供給される。一方、耐火材で構成された回転炉床4に装入された塊成物「は、該炉床4とともに還元炉「0内を周方向へ移動するうちに記バーナー5からの燃焼熱や輻射熱によって加熱される。この塊成物「が当該還元炉「0内の加熱带を通過する間に、当該塊成物「内の酸化鉄は固体還元され、副生される溶融スラグと分離しながら、且つ残余の炭素質還元剤による浸炭を受けて軟化しながら、粒状に凝集して粒状金属鉄9となる。そして、回転炉床床4の下流側ゾーンで冷却固化された後、スクリューなどの排出装置6によって炉床上からホッパ8を通じて排出される。また、炉内で発生したガスは排ガスダクト7から排出される。

[0044] 回転炉床上での加熱還元が進み、塊成物中の酸化鉄の還元がほぼ完了すると、純鉄に相当する高品質の鋼粉末をもつ還元鉄粒子が生成され、この還元鉄粒子は、塊成物内に含まれる残余の炭素質還元剤によって急速に浸炭される
そして、還元鉄中の炭素量の増加に伴って当該還元鉄の融点が大幅に低下し、所定の雰囲気温度（例えば1350〜1500℃）で当該還元鉄が溶融を開始し、微細粒状の還元鉄同士が相互に凝集することによって最終的には大粒の粒状金属鉄となる。この溶融—凝集過程で、塊成物内に含まれるスラグ形成成分も溶融し、相互に凝集しながら粒状金属鉄と分離する。

実施例

[0045] 以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。

[0046] [実施例 1]

本実施例で使用した酸化チタン含有鉄錠石の化学組成を表1に示す。冶金の分野では、酸化物の溶融温度を推測するために、平衡状態図を利用することが一般的である。本実施例では、表1に示す酸化チタン含有鉄錠石の脈石成分組成に最も近い状態図（図2）がまず選定され、この図2を用いて、溶融温度が1450℃以下になると推定されるCaO/SiO2の適正値が0.52〜0.82（図2に示す線のゾーン）に決定された。そして、この適正値に基づき、表2に示すような各原料の配合率が決定された。表2で使用した石炭の化学組成は表3に示す通りである。

[0047] [表1]

<table>
<thead>
<tr>
<th>鉄錠石の化学組成 (mass%)</th>
<th>T.Fe</th>
<th>FeO</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>MgO</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.38</td>
<td>29.95</td>
<td>2.00</td>
<td>3.79</td>
<td>2.81</td>
<td></td>
<td>7.69</td>
</tr>
</tbody>
</table>

[0048] [表2]

<table>
<thead>
<tr>
<th>試料記号</th>
<th>鉄錠石</th>
<th>石炭</th>
<th>石灰石</th>
<th>硅石</th>
<th>シリカ</th>
<th>結合剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>78.153</td>
<td>18.252</td>
<td>2.095</td>
<td>0.000</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>B-2</td>
<td>77.421</td>
<td>18.081</td>
<td>2.098</td>
<td>0.900</td>
<td>0.000</td>
<td>1.500</td>
</tr>
<tr>
<td>B-3</td>
<td>72.458</td>
<td>16.922</td>
<td>5.426</td>
<td>0.902</td>
<td>2.792</td>
<td>1.500</td>
</tr>
</tbody>
</table>
一方、状態図ではより多くの脈石成分を同時に考慮して溶融温度を推定することができないことから、その推定が計算機を用いて行われた。具体的には、脈石成分の種類および含有量と溶融温度との関係についての蓄積データおよび熱力学的な推定を踏まえて作成された「融点推定ソフト」が用いられることにより、表2の試料B－「～B－3」のおよその溶融点が予測された。その結果を表4に示す。この表4に示される試料A－「についてのスラグの液相温度の値は、試料B－「の融点を推定した結果である。同様に試料A－2は試料B－2に、試料A－3は試料B－3に、それぞれ対応している。また、試料A－「の塩基度と試料A－2の塩基度とが異なっているのは、計算機にインプットされる成分値が鉄鉱石のCaの考慮により変更されたからである。

この表4は、塩基度（[CaO]/[SiO₂]）の高い試料A－2の溶融温度（スラグの液相温度）が500°Cを超えることを示している。試料A－3は、試料A－2と同じ塩基度を有するがそのSiO₂量が増加されたものであり、この試料A－3について推定される溶融温度が450°C以下となる可能性が確認された。

前記表2に示す鉄鉱石、石炭、成分調整剤（具体的には、石灰石、必要に応じて蛍石やシリカ等）、およびバインダー（結合剤）が相互に混合され、その粉末混合原料がパネプロセッサーザーで直径9mmの球状ペレット（塊成
物）に造粒された。その一方で、上記粉体混合原料と水を混合したものをシリンダーに挿入してその上部より0.3ton/cm²の圧力で加圧することによって、円柱状タブレット（高さ5mm、直径20mm）が成型された。上記鉱石、石灰、成分調整剤、およびバインダーには、それぞれの全ての質量分について、「mm以下の粒径をもつもの（目開き「mmのふるいを通過したものです）が用いられた。

[0054] この様にして試料B－１、B－２、B－３から造粒されたペレットと、成型されたタブレットa、bおよびcの化学分析結果（化学組成）を表5に示す。試料a、bおよびcの化学組成は、混合前の各原料分析値とそれらの配合率から算出されたものである。

[0055]
表5

<table>
<thead>
<tr>
<th>試料</th>
<th>塊成物の化学組成（mass％）</th>
<th>成分比（-）</th>
<th>塊成物の形態</th>
<th>(\text{CaO} / \text{SiO}_2)</th>
<th>(\text{SiO}_2 / \text{MgO})</th>
<th>(\text{MgO} / \text{TiO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>46.90 26.76 2.60 3.62 1.59 2.21 2.30 2.67 5.67 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td>ベレット</td>
<td>46.49 23.19 2.62 3.52 2.19 2.21 2.21 5.68 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>46.90 26.76 2.60 3.62 1.59 2.21 2.30 2.67 5.67 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td>ベレット</td>
<td>46.49 23.19 2.62 3.52 2.19 2.21 2.21 5.68 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>46.90 26.76 2.60 3.62 1.59 2.21 2.30 2.67 5.67 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td>ベレット</td>
<td>46.49 23.19 2.62 3.52 2.19 2.21 2.21 5.68 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>46.90 26.76 2.60 3.62 1.59 2.21 2.30 2.67 5.67 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td>ベレット</td>
<td>46.49 23.19 2.62 3.52 2.19 2.21 2.21 5.68 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>46.90 26.76 2.60 3.62 1.59 2.21 2.30 2.67 5.67 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td>ベレット</td>
<td>46.49 23.19 2.62 3.52 2.19 2.21 2.21 5.68 0.43 0.39 1.19 0.906</td>
<td>0.561 0.338 0.533 0.483 0.606 0.568 0.598 0.650</td>
<td></td>
</tr>
</tbody>
</table>

※ \(\text{CaO} 、 \text{SiO}_2 、 \text{MgO} 、 \text{Al}_2\text{O}_3 \) 内の値は、塩基物の溶融温度を求めるために原料の配合率から推定した値であるため、実際にペレットまたはタブレットを作製して該ペレットまたはタ
ブレットの分析を行うことにより得られた表5の値とは異なる。

[0057] 各ブレットまたは上記対ブレットが500℃または450℃に
加熱された窒素雰囲気の電気炉へ挿入されて加熱された。そして、炉内での
COガスの発生がなくなって金属鉄の分離の目視による確認ができた時点で
上記各試料が冷却ゾーンに取り出され、これにより試験が終了した。その後
、金属鉄とスラグとが手作業で分離された。

[0058] 図3は、後述する、本発明の実施例に係る試料B−5を500℃で加熱
した後の溶融状態を撮影した写真を示す。この写真における白灰色の球状粒
子はスラグ、黒灰色の球状粒子は金属鉄である。この写真は、試料B−5を
500℃で加熱することによりスラグと金属鉄が十分に分離することを示
している。因みに、上記式（1）〜（3）により示される条件を全てを満たす
その他の試料においても、上記試料B−5と同様にスラグと金属鉄が十分
に分離することが確認された。

[0059] 図4は、上記試料B−7を500℃で加熱した後の溶融状態を撮影した
写真を示す。この写真における白灰色（カラー写真で青色を示す部分を含む）
の球状粒子はスラグ、黒灰色はスラグ含有金属鉄である。この写真から、
試料B−7を500℃で加熱した場合には、図3に示される上記試料B−5に比べて、スラグと金属鉄は溶融しているが互いの分離は不十分であるこ
とがわかる。因みに、上記式（1）〜（3）に示される条件のいずれかを満
たさないその他の試料においても、上記試料B−7と同様にスラグと金属鉄
の相互分離が不十分であることが確認された。

[0060] 次に、上記ブレット中または上記タブレット中の、鉄含有量に対する、3
.35mm以上の粒径をもつ粒状金属鉄（目開き3.35mmのふるいを通
過せずに当該ふるいの上に残った粒状金属鉄）の量の比が収率として求めら
れた。その結果を表6に示す。
表6に示されるように、成分調整剤として石灰石のみを添加した試料Bー「は、粒径が3.35mm以上の粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率が約4%と非常に低いため、実用的でない。また、試料Bー「と略同等の配合でさらにスラグの流動性を良くするフ

<table>
<thead>
<tr>
<th>加熱温度 (℃)</th>
<th>試料</th>
<th>金属鉄の分配率</th>
<th>金属鉄の分配率 (mass%)</th>
<th>鋳長3.35mm以下の金属鉄含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>1500</td>
<td>46.80</td>
<td>40.97</td>
<td>58.01</td>
</tr>
<tr>
<td>B-2</td>
<td>1500</td>
<td>237.36</td>
<td>107.82</td>
<td>64.03</td>
</tr>
<tr>
<td>B-3</td>
<td>1500</td>
<td>230.07</td>
<td>100.59</td>
<td>80.31</td>
</tr>
<tr>
<td>a</td>
<td>1450</td>
<td>49.05</td>
<td>46.49</td>
<td>46.06</td>
</tr>
<tr>
<td>b</td>
<td>1450</td>
<td>49.17</td>
<td>43.73</td>
<td>21.16</td>
</tr>
<tr>
<td>c</td>
<td>1450</td>
<td>48.38</td>
<td>43.73</td>
<td>5.56</td>
</tr>
</tbody>
</table>
素を添加した試料B-2においても、その収率は約8%にとどまり改善効果は小さい。

また、上記式（7）～（3）に示される条件を全て満たさない試料aや試料bも、収率はそれぞれ約29%、約40%にとどまった。

さらに、試料cの結果は、塊成物中の SiO 濃度が高められても上記式（7）～（3）に示される全ての条件を満たすなければ上記粒状金属鉄を高い収率で得られないことを示している。

これに対し、試料B-3、すなわち、上記試料B-2の組成におけるSiO濃度を高めて[A1O]／[SiO]比を0.6へ低下させることにより上記式（7）～（3）に示される全ての条件を満たすように化学組成が調整されたものでは、3.5mm以上の粒径をもつ粒状金属鉄（目開き3.5mmのふるいを通過しない粒状金属鉄）の収率が約80%と飛躍的に向上した。

[実施例2]

酸化チタン含有鉱鉄鉱石を用いた場合に粒状金属鉄の高収率を達成するには、塊成物中のSiO濃度を高めて、本発明で規定する式（7）～（3）の全ての条件を満たすように化学組成を調整することが有効である」という考え方をさらに確証するための試験が行われた。

前記表7に示す組成の鉱鉄鉱石、前記表3に示す組成の石炭、成分調整剤（具体的には石灰石、塩石およびシリカ）が前記実施例7と同様にバイナーと共に互いに混合され、ベレット（塊成物）に造粒された。このベレット（乾燥ベレット）の化学組成を表7に示す。表7において、試料B-4は、試料B-3よりもさらにSiO量が増加されたものであり、試料B-5は、炭素量の増加以外は試料B-4とほぼ同組成のものである。試料B-6は、試料B-4よりもSiO量がさらに増加されたこと及びCaO量がやや高めであること以外は、試料B-4とほぼ同組成である。
試料の乾燥ベレットの化学組成（mass%）と成分比（一）

<table>
<thead>
<tr>
<th>記号</th>
<th>TFe</th>
<th>FeO</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>CaO</th>
<th>MgO</th>
<th>TiO2</th>
<th>F</th>
<th>T.C</th>
<th>CaO/SiO2</th>
<th>Al2O3/SiO2</th>
<th>TiO2/(C+S+M+A)※</th>
<th>O/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4</td>
<td>44.110</td>
<td>23.660</td>
<td>5.200</td>
<td>3.300</td>
<td>4.600</td>
<td>2.120</td>
<td>5.620</td>
<td>0.670</td>
<td>12.070</td>
<td>0.885</td>
<td>0.618</td>
<td>0.369</td>
<td>1.234</td>
</tr>
<tr>
<td>B-5</td>
<td>43.490</td>
<td>22.140</td>
<td>5.160</td>
<td>3.310</td>
<td>4.470</td>
<td>2.100</td>
<td>5.570</td>
<td>0.670</td>
<td>14.030</td>
<td>0.866</td>
<td>0.620</td>
<td>0.370</td>
<td>1.105</td>
</tr>
<tr>
<td>B-6</td>
<td>41.960</td>
<td>20.580</td>
<td>7.080</td>
<td>3.160</td>
<td>5.680</td>
<td>2.040</td>
<td>5.410</td>
<td>0.660</td>
<td>11.450</td>
<td>0.828</td>
<td>0.454</td>
<td>0.298</td>
<td>1.222</td>
</tr>
</tbody>
</table>

※ O2:O2S:SiO2, M:MgO A:Al2O3
取り出され、これにより試験が終了した。その後、金属鉄とスラグが手作業で分離された。そして、上記ペレット中の、鉄含有量に対する、3・35m m以上の粒径をもつ粒状金属鉄（目開き3・35mmのふるいを通過しない粒状金属鉄）の量の比が収率として求められた。その結果を表8に示す。

<table>
<thead>
<tr>
<th>試料記号</th>
<th>加熱温度 (℃)</th>
<th>金属鉄量 (mass%)</th>
<th>金属鉄量3.35mm以上の粒状鉄</th>
<th>スラグ量 (mass%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4</td>
<td>1500</td>
<td>243.29</td>
<td>109.68</td>
<td>55.17</td>
</tr>
<tr>
<td>B-5</td>
<td>1500</td>
<td>255.68</td>
<td>105.03</td>
<td>52.66</td>
</tr>
<tr>
<td>B-6</td>
<td>1500</td>
<td>255.14</td>
<td>97.04</td>
<td>51.76</td>
</tr>
<tr>
<td>B-4'</td>
<td>1450</td>
<td>268.97</td>
<td>104.53</td>
<td>55.83</td>
</tr>
</tbody>
</table>

[0070] [表8]
表8に示されるように、試料B-3よりもSi量が多い試料B-4において、3.35mm以上の粒径をもつ粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率が「02.5%と飛躍的に向上した。当該収率が「00%を超える理由は、表9に示されるように金属鉄中に炭素および各種微量成分が含まれているためである。この表9は、金属鉄中のC、Si、SおよびTiを化学分析した結果を示したものである。

更に、試料を用いて、加熱温度を「100℃から「150℃に低下すると試料B-4よりよりもSiO量が飛躍的に向上し、Sを過剰に増加させても上記収率の向上はみられないことがわかる。

表9

<table>
<thead>
<tr>
<th>試料記号</th>
<th>加熱温度 (℃)</th>
<th>金属鉄中の溶液成分 (mass%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4</td>
<td>1500</td>
<td>C 3.28 Si 0.07 S 0.103 Ti 0.02</td>
</tr>
<tr>
<td>B-5</td>
<td>1500</td>
<td>C 3.48 Si 0.1 S 0.092 Ti 0.04</td>
</tr>
<tr>
<td>B-6</td>
<td>1500</td>
<td>C 3.44 Si 0.05 S 0.123 Ti 0.01</td>
</tr>
<tr>
<td>B-4'</td>
<td>1450</td>
<td>C 3.32 Si 0.07 S 0.095 Ti 0.03</td>
</tr>
</tbody>
</table>

この表9によれば、試料B-4では、炭素の含有率が3.28%であるため、これを除くと、3.35mm以上の粒径をもつ粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率は99.2%となる。

一方、炭素量を増加させた試料B-5では、排ガス分析より計算した還元率の変化から、酸化鉄の還元が良好に進むことが確認されているが、当該試料B-5における、3.35mm以上の粒径をもつ粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率は「02.5%であり、試料B-4とほぼ変わりない。このことから、炭素配合量の増加は粒径が3.35mm以上の粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率に影響しないことがわかる。

また、試料B-6は、試料B-4よりもSiO量が更に増加されたものであるが、この試料B-6における、3.35mm以上の粒径をもつ粒状金属鉄（目開き3.35mmのふるいを通過しない粒状金属鉄）の収率も試料B-4とほぼ変わりない。このことからSiOを過剰に増加させても上記収率の向上はみられないことがわかる。

更に、試料B-4を用いて、加熱温度を「500℃から「450℃に低下
させた場合についても試験が行われた。その結果を試料記号B-4」として
表8に併記する。表8から分かる通り、加熱温度を「500℃から「450
℃に低下させると、粒径が3.35mm以上の粒状金属鉄（目開き3.35
mmのふるいを通じない粒状金属鉄）の収率は加熱温度を「500℃とし
た場合（B-4）と比較して4%程度の低下が認められた。尚、試料B-4
'については加熱温度を低下させたことにより加熱時間がやや長くなり、試
料B-4の加熱時間を「とすると、試料B-4'の加熱時間が「19であっ
た。

[0077] 以上のように、本発明は、TiO_2に加えてAl_2O_3およびMgOといった
溶融温度を高める脈石成分を含む酸化チタン含有鉄源を粒状金属鉄の製造に
用いた場合に、従来法よりも比較的低温の加熱（被加熱物が存在しないとき
の被加熱物上面位置の温度が「520℃以下の加熱）で酸化鉄を還元・溶融
して上記サイズの高品位な粒状金属鉄を収率よく得るのに有用な、粒状金属
鉄製造用酸化チタン含有塊成物を提供する。この粒状金属鉄製造用酸化チタ
ン含有塊成物は、酸化チタンをTiO換算量にして5質量％以上「0質量％
未満含む鉄源、および炭素等還元剤を含み、かつ、その化学成分組成が下記
式（'）〜（3）により与えられる条件を満たす。

$$[CaO] / [SiO_2] = 0.6 \sim 1.2 \quad \ldots (1)$$
$$[Al_2O_3] / [SiO_2] = 0.3 \sim 1.0 \quad \ldots (2)$$
$$[TiO_2] / ([CaO] + [SiO_2] + [MgO] + [Al_2O_3]) < 0.45 \quad \ldots (3)$$

ここで、上記式（'）〜（3）における$[CaO]$、$[SiO_2]$、$[Al_2O_3]$、
$[TiO_2]$、$[MgO]$は、それぞれ塊成物中の各成分の含有量（乾ベース
での質量％）を示す。

[0078] このうち$[TiO]$は上記の「TiO換算量」に相当するものであり、
この換算量は、上記塊成物にTiO_2のみならずそれ以外の酸化チタンとして
TiOやTiOが含まれる場合にこれらをTiOとして換算した量も加え
たものを意味する。具体的に、この \([TiO_2] \) （TiO 换算量は、金属チタンが共存していないと仮定すると、次式（4）により算定することが可能である。

\[
[TiO_2] (w \%) = \text{全 Ti (チタン)量 (w \%)} / (Ti \text{原子量}) \times [(Ti \text{原子量}) + 2 \times (O \text{ (酸素) 原子量})] \quad \cdots (4)
\]

[0079] また、\([CaO]\) は、酸化チタン含有鉄源や炭素質還元剤に含まれる Ca、フッ素含有物質として添加しうる蛻石中の Ca、および成分調整剤として添加しうる生石灰や石灰石（\(CaCO_3\)）中の Ca を \(CaO\) に換算して合計した量を示す。具体的に、この \([CaO]\) は、金属カルシウムが共存していないと仮定すると、次式（5）に基づいて算定される。

\[
[CaO] (w \%) = \text{全 Ca (カルシウム)量 (w \%)} / (Ca \text{原子量}) \times [(Ca \text{原子量}) + (O \text{ (酸素) 原子量})] \quad \cdots (5)
\]

[0080] この塊成物は、TiO をはじめとする脈石成分を含む鉄源が粒状金属鉄の製造に用いられる場合にも、比較的低い加熱温度で、取り扱いに適したサイズの高品位な粒状金属鉄を収率よく製造することを可能にする。その結果、加熱のための燃料費を低減するだけでなく、加熱炉を構成する耐火物の費用低減や加熱炉の耐久性向上を期待することが可能になる。

[0081] 3 記載成物は、さらにフッ素含有物質を含み、かつ、フッ素含有量が 0.5から 3.5 質量%であるものが望ましい。

[0082] また、上記塊成物では、上記炭素質還元剤が、塊成物を構成する全原料の固定炭素と、前記鉄源中の鉄原子と結合している酸素との原子モル比（O／C）を 0.8 から 0.5 にするように、添加されていることが望ましい。

[0083] また、上記塊成物の鉄源の 90 質量％以上が、mm以下の粒径を有するもの、すなわち、目開き mmのふるいを通過したもの、であることが好ましい。
請求の範囲

[請求項1] 酸化チタンをTiO換算量にして5質量％以上「0質量％未満を含む鉄源、および炭素質還元剤を含む粒状金属鉄製造用酸化チタン含有塊成物であって、
その化学成分組成が、下記式（1）～（3）に示される条件を満たすものである、粒状金属鉄製造用酸化チタン含有塊成物。

\[
\begin{align*}
[CaO] &/ [SiO_2] = 0.6 \sim 1.2 \quad \cdots (1) \\
[Al_2O_3] &/ [SiO_2] = 0.3 \sim 1.0 \quad \cdots (2) \\
[TiO_2] &/ ([CaO] + [SiO_2] + [MgO] + [Al_2O_3]) < 0.45 \\
\end{align*}
\]

ここで、式（1）～（3）中、[CaO]、[SiO_2]、[Al_2O_3]、[TiO_2]、[MgO]は、それぞれ、塊成物中の各成分の含有量（乾ベースでの質量％）を示し、そのうち[TiO]は塊成物中の酸化チタンをすべてTiO換算したTiO換算量を示し、[CaO]は塊成物中のCaを全てCaOに換算した量を示す。

[請求項2] 更にフッ素含有物質を含み、かつ、フッ素含有量が0.6～3.5質量％である、請求項1に記載の粒状金属鉄製造用酸化チタン含有塊成物。

[請求項3] 前記炭素質還元剤は、塊成物を構成する全原料の固定炭素と、前記鉄源中の鉄原子と結合している酸素との原子モル比（O/C）を0.8～1.5にするように添加されたものである、請求項1または2に記載の粒状金属鉄製造用酸化チタン含有塊成物。

[請求項4] 前記鉄源の90質量％以上が1mm以下の粒径を有するものである、請求項1～3のいずれかに記載の粒状金属鉄製造用酸化チタン含有塊成物。
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2009/057254

A. CLASSIFICATION OF SUBJECT MATTER
C22B1/16 (2006.01) i, C22B1/24 (2006.01) i, C22B5/10 (2006.01) i, C21B13/10 (2006.01) n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C22B1/00-61/00, C21B3/00-5/06, C22B11/00-15/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 50-062116 A (Kobe Steel, Ltd.), 28 May, 1975 (28.05.75), Claims (Family: none)</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>JP 61-159536 A (Kobe Steel, Ltd.), 19 July, 1986 (19.07.86), Claims (Family: none)</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>JP 03-177520 A (Nippon Steel Corp.), 01 August, 1991 (01.08.91), Claims (Family: none)</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search 03 July, 2009 (03.07.09)
Date of mailing of the international search report 14 July, 2009 (14.07.09)

Name and mailing address of the ISA/ Authorized officer
Japanese Patent Office

Facsimile No. Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPC））

IntCl C22B1/16(2006. 01)i, C22B1/24(2006. 01)i, C22B5/10 (2006. 01)i, C21B13/10 (2006. 01)n

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

IntCl C22B1/00-61/00, C21B3/00-5/06, C22B11/00-15/04

C. 関連と認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 50-062116 A(株式会社神戸製鋼所)1975. 05. 28、特許請求の範囲(ファミリーなし)</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>JP 61-159536 A(株式会社神戸製鋼所)1986. 07. 19、特許請求の範囲(ファミリーなし)</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>JP 03-177520 A(新日本製鉄株式会社)1991. 08. 01、特許請求の範囲(ファミリーなし)</td>
<td>1-4</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

IA」 特に関連のある文献ではなく、一般的技術水準を示すもの
IE」 国際出願日前の出願または特許であるか、国際出願日以前に公表されたもの
IL」 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
IQ」 口頭による開示、使用、展示等に言及する文献
rp」 国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 03. 07. 2009
国際調査報告の発送日 14. 07. 2009
特許庁審査官（権限のある職員） 4K 3770
何 口 昭明
電話番号 03-3581-1101 内線 3435

形式 PCT/ISA/210（第2ページ）（2007年4月）