发明名称

船舶水下空化清洗装置

摘要

本发明公开了船舶水下空化清洗装置，它是由推手架、盘状壳体、空心转轴、清洗用喷管、高压液输入管和推进用喷管构成，所述盘状壳体的顶部设有多个进水口，推手架设在盘状壳体的上方且与盘状壳体连接，空心转轴设在盘状壳体上，清洗用喷管设在盘状壳体内且与空心转轴相连通，清洗用喷管的端部设有涡轮喷嘴；所述高压液输入管和推进用喷管分别与空心转轴相连通且位于盘状壳体的上方，高压液输入管和推进用喷管上分别设有控制阀。本发明具有清洗效率高和安全可靠的特点；适合使用在不规则且难以接近的表面上；对清洗硬体污染物尤其比其他几种方法更为快速有效；清洗时不会伤及油漆；不会对环境产生二次污染。
1. 一种船舶水下空化清洗装置，其特征在于：它是由推手架（1）、盘状壳体（2）、空心转轴（3）、清洗用喷管（4）、高压液输入管（5）和推进用喷管（6）构成，所述盘状壳体（2）的顶部设有多个进水口，推手架（1）设在盘状壳体（2）的上方且与盘状壳体（2）连接，空心转轴（3）设在盘状壳体（2）上，清洗用喷管（4）设在盘状壳体（2）内且与空心转轴（3）相连通，清洗用喷管（4）的端部设有涡轮喷嘴（13）；高压液输入管（5）和推进用喷管（6）分别与空心转轴（3）相连通且位于盘状壳体（2）的上方，高压液输入管（5）和推进用喷管（6）上分别设有控制阀（8）。

2. 根据权利要求1所述的船舶水下空化清洗装置，其特征在于：所述盘状壳体（2）的顶部设有进水调节板（9），所述进水调节板（9）设有与盘状壳体（2）上的进水口相对应的通孔，进水调节板（9）紧贴在盘状壳体（2）的上表面。

3. 根据权利要求1所述的船舶水下空化清洗装置，其特征在于：所述推进用喷管（6）的一端部设有喷嘴（11）。

4. 根据权利要求1所述的船舶水下空化清洗装置，其特征在于：所述盘状壳体（2）的底部设有滑轮（12）。

5. 根据权利要求1所述的船舶水下空化清洗装置，其特征在于：所述清洗用喷管（4）有2-3个。
船舶水下空化清洗装置

技术领域
[0001] 本发明涉及一种船舶清洗装置，具体是船舶水下空化清洗装置。

背景技术
[0002] 当船入水一与海水接触，细小菌枝上附着于船上。这个过程只需几分钟而却是不可逆的，这些附着的细菌是不会被海潮流冲掉的。在接下的几个小时细菌的数量开始以几何级数增长。几天后在您的船上就会形成一层象绿色斑点的生物膜，这时船体的污染便真正地开始了，这层生物膜犹如一把钥匙为其他海洋生物的附着打开了方便之门，例如藤壶类。一旦船身受污，船的效能就减少，燃料消耗由于水的阻力上升而显著增加。美国海军使用他们的 USSWhippleshift 做了多项试验，并且发现推进受污的船以同一速度航行需要两倍的轴马力。一般说来，生物膜会增加燃料消耗 8-12%；钙质海生物的繁殖，藤壶或者任何留下酸性骨格的生物，会额外导致 24% 或更多的燃料消耗；并且受污的推进器装置也会增加 6-14% 的燃料消耗。因此，一只受污的船身和推进器装置，船只的燃料效应就会减少近 40%。保持船身和推进器处在最佳清洁状态可以节省大量的燃料，增加续航能力，降低的引擎磨损，增加转向器和推进器的寿命，保护防腐防污涂层，并且减少钙化痕迹。尤其是对于特别大的船，对其操作和效的监督与监测就非常严密，并对其壳体外侧的脏物进行适时清洗，因为脏物对大船所造成的损失或节省不仅更大，而且对许多因素也更为敏感。因此美国海军将船体水下清洗作为节省燃油和维护舰船的一项重要措施。
[0003] 水下清洗是一项技术难度较大而又极具市场潜力的行业。我国在这一行业的技术研发还处于较为落后的状态。现阶段所使用的液压清洗刷使用不方便，效率低，对被清洁物表面有一定损伤并对环境产生污染。
[0004] 目前在中国和世界范围内水下清洗主要采取如下几种方法：人力刮铲、机械清洗刷、超高压射流、水下喷砂等。这些方法在不同程度上都有许多缺陷。如人力刮铲效率低清洗效果差；清洗刷只能用在大面积平整的表面上对不规则的表面却无能为力，而却在清洗过程中高压油有可能泄漏造成对潜水员和环境的危害。清洗刷还可能伤害被清洗物表面的油漆，尤其是对船体表面清洗时清洗刷会磨下大量的防污油漆其中的重金属离子有害物质对水环境造成危害。机械清洗刷虽然比人力刮铲快了许多，但是在清洗过程中需要不断地停下来清理和更换刷子；超高压射则有很大的危险性，效率低，只可用在小面积无油漆的表面上；水下喷砂也不可用在油漆表面上同时还会产生二次污染。

发明内容
[0005] 为了克服上述之不足，本发明目的在于提供一种清洗效率高、安全可靠和使用范围广的船舶水下空化清洗装置。
[0006] 为了实现上述目的，本发明采用的技术方案是：船舶水下空化清洗装置，是由推手架、盘状壳体、空心转轴、清洗用喷管、高压液输入管和推进用喷管构成，所述盘状壳体的顶部设有多个进水口，推手架设在盘状壳体的上方且与盘状壳体连接，空心转轴设在盘状壳
体上，清洗用喷管设在盘状壳体内且与空心转轴相连通，清洗用喷管的端部设有涡轮喷嘴。所述高压液输入管和推进用喷管分别与空心转轴相连且位于盘状壳体的上方，高压液输入管和推进用喷管上分别设有控制阀。

所述盘状壳体的顶部设有进水调节板，所述进水调节板上设有与盘状壳体上的进水口相对应的通孔，进水调节板紧贴在盘状壳体的上面。进水调节板的作用是根据污物附着性强，难以在正常速度下消除时，对进水调节板进行调节，将进水口调小，这样可使盘状壳体的吸附力更大，使清洗装置移动速度更慢，从而实现对污物彻底清除的目的。

所述推进用喷管的一端部设有喷嘴。

所述盘状壳体的底部设有滑轮。

所述清洗用喷管有 2-3 个。

本发明的有益效果：清洗效率高（在清洗船体时最高可达到每小时 1000 平方米），适合使用在不规则和难以接近的表面上（如螺旋桨、舵、海底门、海上平台、支架和水下管道等）；对清洗硬体污物（超过 33mm）尤其比其它几种方法更为快速有效；由于使用较低的压力对潜水员更安全，操作简便无需特殊的训练；可清洗多种材质的表面，如钢铁、铝、塑料、混凝土和木头；清洗时不会伤及油漆；清洗过程中除水以外不再使用任何介质，所以不会对环境产生二次污染。

附图说明

图 1 为本发明的结构示意图。


具体实施方式

图 1 所示，船舶水下空化清洗装置，是由推手架 1、盘状壳体 2、空心转轴 3、清洗用喷管 4、高压液输入管 5 和推进用喷管 6 构成，所述盘状壳体 2 的顶部设有多个进水口，推手架 1 设在盘状壳体 2 的上方且与盘状壳体 2 连接，空心转轴 3 的一端部从盘状壳体 2 的中心孔穿过，所述清洗用喷管 4 有 3 个，每个清洗用喷管 4 设在盘状壳体 2 内且与空心转轴 3 相连通，清洗用喷管 4 上设有涡轮喷嘴 13；高压液输入管 5 和推进用喷管 6 通过连接件 14 分别与空心转轴 3 相连通且位于盘状壳体 2 的上方，连接件 14 是通过轴承安装在空心转轴 3 上的，当空心转轴 3 转动时，连接件 14 是固定不动的，高压液输入管 5 和推进用喷管 6 分别设有控制阀 8。所述推进用喷管 6 的一端部设有喷嘴 11。

所述盘状壳体 2 的顶部设有进水调节板 9，所述进水调节板 9 上设有与盘状壳体上的进水口相对应的通孔，进水调节板 9 紧贴在盘状壳体 2 的上面。当进水调节板 9 上的通孔与盘状壳体上的进水口完全相对应时，水流最大，当进水调节板 9 上的通孔与盘状壳体上的进水口完全错开，没有上下对应时，盘状壳体上的进水口被封闭。

所述盘状壳体 2 的底部设有滑轮 12。

利用空化射流对位于水下的船舶表面进行清洗的方法；

首先把具有一定压力的水压送到清洗装置，在通过清洗装置的涡轮喷嘴时形成了
带有充满水蒸气的空化泡的空化射流；

【0020】然后将空化射流释放到被清洁物体如船舶的表面，在不破坏表面油漆的条件下以达到清洗表面污损生物的目的。

【0021】工作原理：在常温常压下，液体分子逸出液体表面而成为气体分子的过程，称为“气化”。如果维持水温不变，使水面的压强降低到某一临界压力时，水体内部原来含有的很小的气泡将迅速膨胀，在水中形成含有水蒸气或其他气体的明显的气泡，这种现象称为“空化”。空化在水中形成空穴、空泡或空腔。液流流经的局部区域，压强若低于某临界压力时，液体也会发生空化。在低压区空化的液体携带着大量的空泡形成了“两相流”运动，因而破坏了液体宏观上的连续性，水流挟带着的空泡在流经下游压强较高的区域时，空泡将发生溃灭，因此，空化现象包括空泡的发生、发育和溃灭，它是一个非恒定过程。所谓空化射流就是采用空化装置在射流束内产生大量的空泡，空泡在破裂时产生强大的压力波动因而增强了射流的清洗能力。其基本原理是射流在通过喷嘴时内部产生充满水蒸气的空化泡，当这股射流冲击物体表面时空化泡破裂，产生微射流和微波冲击，在物体表面产生极强的压波。由于空化泡破裂时产生的巨大能量集中作用在许多很小的范围内，其效果在同样压力下优于非空化射流，因而能在有效清除表面污物的同时而不伤害船舶的油漆层。

【0022】工作时，增压动力装置与高压液输入管 5 连接。水下清洗工作人员将水下清洗装置投入水中，起动动力装置，将水下清洗装置贴在船舶处于水中的部位或水中要清洗的其他物体表面。打开高压液输入管 5 上的高压控制阀开关，动力装置产生的高压液体经空心转轴 3、清洗用喷嘴后，从涡轮喷嘴 13 喷射而出，在反喷射力的作用下，涡轮喷嘴 13 带动空心转轴 3 旋转，使盘状壳体 2 顶部的进水口形成吸流，从而使盘状壳体 2 吸附在清洗物表面，同时旋转产生空化对物体表面进行清洁除垢，打开推进用喷嘴 6 上的控制阀，高压液体从喷嘴 11 喷射出，在水中形成推动力，使吸附在清洗物表面上的清洗装置滑轮缓慢移动，水下清洗操作人员双手握住两侧推手架 1，通过显示器对表面污物进行不同方向的清洗操作。