PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 3/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/49613

5 November 1998 (05.11.98)

(21) International Application Number: PCT/US98/08643

(22) International Filing Date: 29 April 1998 (29.04.98)

(30) Priority Data:

60/045,118 30 April 1997 (30.04.97) us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
Us
Filed on

60/045,118 (CON)
30 April 1997 (30.04.97)

(71) Applicant (for all designated States except US): GEODESIC
SYSTEMS L.L.C. {US/US]; 414 N. Orleans, Suite 410,
Chicago, IL 60610 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SPERTUS, Michael, P.
[US/US]; Geodesic Systems L.L.C., Suite 410, 414 N.
Orleans, Chicago, IL 60610 (US). FITERMAN, Charles
[US/US); Geodesic Systems L.L.C., Suite 410, 414 N.
Orleans, Chicago, IL 60610 (US).

(74) Agent: NELSON, Gordon, E.; 57 Central St., P.O. Box 782,
Rowley, MA 01969 (US).

(81) Designated States: CA, JP, US, European patent (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: AUTOMATICALLY-MAINTAINED CUSTOMIZABLE USER INTERFACES

(57) Abstract

Techniques for providing interactive user interfaces for programming constructs. A programming construct is associated with one or
more metaphors that specify interactive user interfaces for the programming construct. Thus, a programming construct may have a metaphor
for a text-based user interface or for one or more different graphical user interfaces. The metaphor may be associated with a description of
the construct such as that found in an abstract syntax tree, and the metaphor may obtain the information it needs to construct the interface
from the description, so that the user interfaces automatically track changes in the programming construct. Also included is apparatus for
modifying the metaphor. In one implementation, a build form function is used to read the information needed to construct the construct’s
user interface from the construct’s description and the metaphor is modified by modifying the build form function. In the implementation,
parameter values received via the user interface are incorporated into an abstract syntax tree that represents the construct.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco ™D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar Ty Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway W Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea ~PT Portugal

Cuba KZ Kazakstan " RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

30

WO 98/49613 PCT/US98/08643

Automatically-maintained Customizable

User Interfaces

Cross-Reference to Related Applications

The present patent application claims priority from provisional application

U.S.S.N. 60/045,118, Michael P. Spertus, Programming System, filed 4/30/97.

Background of the Invention

1. Field of the Invention

The invention concerns systems for specifying computer-executable programs
generally and more specifically concerns techniques for specifying user interfaces in such

programs.

2, Description of Related Art

The user interface for a computer program defines the manner in which a user of
a program interacts with the program. Most generally, the program causes the computer
system to output information to an output device such as a display or a loudspeaker and
then wait for input from the user. The user provides the input via an input device such as
a keyboard, pointing device, or microphone, and when the program receives the input, it
may respond by causing the computer system to again output information and wait for
input.

Historically, there have been two main classes of user interfaces: fext-based user
interfaces and graphical user interfaces. In text-base user interfaces, the program outputs
text to a display device and the user responds to the text output by the program by
inputting text from a keyboard. In graphical user interfaces, the program outputs a
graphical display that includes elements such as icons, menus, and scroll bars as well as
text and the user provides input to the program by using a pointing device to manipulate
the elements of the graphical user interface, as well as by inputting text from the keyboard.
There are many different kinds of graphical user interfaces. Graphical user interfaces have

been developed for different kinds of operating systems; in addition, there are operating

10

15

20

25

30

WO 98/49613 PCT/US98/08643

system-independent graphical user interfaces and lately, new kinds of graphical user
interfaces have been developed for the World Wide Web and have then been used as
general-purpose graphical user interfaces.

With highly interactive programs such as word processors or spread sheets, a
major part of the programming effort is dedicated to programming the user interface.
That is particularly the case when the user interface is a complex graphical user interface.
Various techniques' have been developed over the years to reduce the amount of effort
required to program a user interface. One technique is to provide the programmer with
a toolkit for programming the user interface. For example, the toolkit will include
functions which provide a high-level interface for an entity in the user interface such as a
scroll bar, and the programmer can use the high-level functions to define and manipulate
the scroll bar instead of programming the scroll bar himself from the primitive of the
graphical user interface. Another technique is to provide the programmer with an
application generator for the user interface. The application generator is a program which
generates skeleton code for the user interface. The programmer can then modify the
skeleton as needed for his or her particular interface.

While tool kits and application generators can reduce the labor involved in
programming a user interface, they cannot solve a basic problem: the user interface is
simply part of the program, and any time a programmer makes a change in a program, the
programmer must also be sure that he or she has made all of the changes in the user
interface that are required by the change in the underlying program. For instance, if a
function receives the values of its parameters from the user via an interactive user
interface and the programmer adds a parameter to the function or deletes a parameter
from it, the programmer must change the user interface code that provides the user
interface for the function to take the change in the number of parameter values into
account.

The need to make sure that changes in the user interface tracks changes in the
program is lessened if the user interface is the starting point for the programming. This
is the case when forms-based programming environments such as that provided by
Microsoft Visual Basic are used. In such environments, the programmer designs a form

and then writes code which is executed when an event occurs in the form. Even with such

10

15

20

25

30

WO 98/49613 PCT/US98/08643

systems, however, it is still necessary to make sure that the code for the form is reworked
when the form is redesigned and that a change in the code does not require a reworking
of the form itself.

The user interface for the program automatically tracks changes in the program
in programming environments where the interface used to write the program is the same
as the interface the user employs to interact with the program. One example of this is
that provided by interpreted languages such as LISP. In LISP, the syntax for interactively
invoking a function from a terminal is exactly the same as the syntax for invoking the
function within another LISP function, and as the function’s interface changes, so does
the syntax for invoking it from the terminal. Unfortunately, the only user interface
available to the programmer is that defined by the LISP language, and LISP code is
notoriously hard to read. Other examples are provided by visual programming languages
such as Prograph. It is common practice in programming environments to represent a
program internally in the programming environment by means of an abstract syntax tree.
With programs written in textual languages, the programming environment produces the
abstract syntax tree from the text of the program; in the visual programming languages,
the programmer works with a visual representation of the abstract syntax tree and
modifies the program by modifying the visual representation of the abstract syntax tree.
Any modification of the program thus cannot help but be reflected in the user interface.
Again, the only user interface available to the programmer is the visual representation of
the syntax tree. Of course, for the non-programmer user, this syntax tree interface is
almost as intimidating as LISP code.

What is needed is a way of making user interfaces for programs that provides easy-
to-use user interfaces that track changes in the program in the same fashion as the user
interfaces for LISP or Prograph. It would be further advantageous if such user interfaces
were customizable, if a given program could be easily given different kinds of user
interfaces, and if a new user interface could be retrofitted to a preexisting program
without changing the code of the preexisting program. It is an object of the techniques
disclosed herein to provide ways of making user interfaces that have some or all of the

foregoing advantages.

10

15

20

25

30

WO 98/49613 PCT/US98/08643

Summary of the Invention

The techniques for making user interfaces that have these advantages include
associating a plurality of interactive user interface metaphors with a description of a
programming construct such as an abstract syntax tree for the programming construct and
generating a specified one of the interactive user interfaces from the interactive user
interface metaphor corresponding to the specified interactive user interface. A metaphor
may specify a textual interactive user interface or a graphical user interface, and different
metaphors may correspond to different systems for providing interactive user interfaces.
The user interface may be generated when the programming construct is activated or code
for the user interface may be generated when the programming construct is compiled.

In other aspects, the techniques may include modifying the interactive user
interface by editing the metaphor used to generate it and using the metaphor to generate
the graphical user interface from information in the description, thereby assuring that any
change in the programming construct that affects the interactive graphical user interface
automatically results in a corresponding change in the associated interactive user
interfaces. Where the programming construct is a class, metaphors associated with the
class are inherited. The interactive user interface may be used to obtain parameter values
for the programming construct, and when the description of the construct is an abstract
syntax tree, the parameter values are incorporated into the abstract syntax tree.

The foregoing and other objects and advantages of the invention will be apparent
to those skilled in the arts to which the invention pertains upon perusal of the following

Detailed Description and drawing, wherein:

Brief Description of the Drawings

FIG. 1 shows how an abstract syntax tree represents a programming construct,
FIG. 2 shows output of a text metaphor and of a form metaphor;

FIG. 3 shows a first customized form;

FIG. 4 shows a second customized form;

FIG. 5 shows a third customized form;

FIG. 6 shows how forms are used to show parameter values used in other forms;

FIG. 7 shows the forms that are displayed when the program construct of FIG. 6 is

10

15

20

25

- 30

WO 98/49613 PCT/US98/08643

executed;
FIG. 8 is an overview of the Braid programming environment;
FIG. 9 is a diagram of a forms metaphor;
FIG. 10 is a diagram of control information;
FIG. 11 is a diagram of standard control and glue;
FIG. 12 is a diagram of a group box;
FIG. 13 is a flow chart of how a forms metaphor is used;
FIG. 14 is a diagram of a system for customizing a forms metaphor; and
FIG. 15 is source code for a C++ program that employs a forms metaphor.
The reference numbers in the drawings have at least three digits. The two
rightmost digits are reference numbers within a figure; the digits to the left of those digits
are the number of the figure in which the item identified by the reference number first

appears. For example, an item with reference number 203 first appears in FIG. 2.

Detailed Description

The following Detailed Description begins with an overview of how metaphors
can be used with programs to provide user interfaces for programs that are easy to make
and that automatically adjust to changes in the program. It then describes an
implementation of metaphors in the Braid programming language.

Programming constructs and abstract syntax trees

Programs written in high-level languages are made up of programming
constructs. A programming construct is a portion of a program that defines an entity in
the program. FIG 1 shows a typical programming construct 101. Programming construct
101, written in the Braid language, defines the interface for a CreateEmployee
function 103 which creates and returns an employee record of type Employee 105. The
function takes three parameters: the employee’s name name in line 105, the employee’s
salary salary in line 106, and the employee’s job description jobDescription in
line 108. As shown in line 104, each parameter has a name and a definition consisting of
an indication 111 of whether the parameter is an input or output parameter (in 111 of
course indicating an input parameter) and the parameter’s type 113 (here, a string type,

as indicated by str.

10

15

20

25

30

WO 98/49613 PCT/US98/08643

There are two ways in which a program written in a high-level language may be
executed: by using a program called an inferpreter to interpret the program’s text to
produce a stream of instructions for a computer which the computer executes as they are
produced or by using a program called a compiler to compile the program’s text to
produce object code, that is, a program of instructions for the computer which causes the
computer to perform the actions specified in the high-level language program’s text. To
“execute” the high-level language program, one executes the object code made by the
compiler. In some cases, parts of the high-level language program may be compiled and
other parts may be interpreted.

Most compilers and interpreters produce an abstract syntax tree that represents
the high-level language program and then use the abstract symbol tree to produce the
stream of instructions or the object code. Each programming construct in the program
appears as one or more nodes in the abstract syntax tree. The abstract syntax tree nodes
119 for programming construct 101 is shown at 115 in FIG. 1. There are three nodes 119,
one representing the entire programming construct 101 and one representing each of the
parameters. The part of the programming construct represented by the node is indicated
by the number in parentheses in the node. The node representing construct 101 is the
parent of the nodes representing the parameters, those nodes being children of the node
representing construct 101. As indicated by link 117(a), the node representing construct
101 is itself a component of another construct, and consequently a child of the node
representing that construct. For a discussion of abstract syntax trees and how they are
used to represent programming constructs, see Aho, et al., Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1985, p. 49.

Using abstract syntax trees and metaphors to produce user interfaces: FIG. 2

When a program written in a high-level language uses metaphors to construct its
user interface, the representation of the programming construct in the abstract syntax tree
is used not only to produce code for execution, but also to produce the user interface for
the construct. FIG. 2 provides an example of this for CreateEmployee programming
construct 101. FIG. 2 shows two different user interfaces for CreateEmployee: one
at 201 that is output by text metaphor and one at 211 that is output by a forms metaphor.

10

15

20

25

30

WO 98/49613 PCT/US98/08643

The text metaphor is used when the interactive user interface for the program is
an interface that accepts and produces only lines of text. In such an interface, the
CreateEmployee function is called by typing CreateEmployee followed by values
required for the parameters. The values must be in the order in which the parameters
appear in construct 101, that is, the value for name, the value for salary, and the value
for jobDescription must appear in that order. Inthe text interface used in Braid,
character strings are indicated by brackets and number data is unbracketed. The text
metaphor reads nodes 115 for CreateEmployee and determines from the information
contained in them that a valid invocation must have the form shown at 201. If the user
does not get the syntax of the invocation right, the text metaphor can read nodes 115 and
use the information in them to produce useful error messages. In some embodiments, the
text metaphor can read the nodes and use them to produce an invocation for the function
with blanks for the information to be filled in by the user, thus reducing syntax errors.

The forms metaphor also uses syntax tree nodes 115 for CreateEmployee to
generate an interactive user interface for the function, but this time, the user interface is
not a text interface, but a graphical user interface. The forms metaphor uses the
information in syntax tree nodes 115 to produce the form shown at 211, The name of the
function appears at 212 as the title of the form and there is a box 215 in which the user
can input a value for each parameter. Each box 215 has a label 213 which is taken from
the name and type information for the parameter in the parameter’s node of the syntax
tree. At the bottom of the form are standard graphical user interface (GUI)buttons 217.
OK causes CreateEmployee to be called using the information specified in the boxes
215, thereby causing an , Cancel cancels the operation, and Help provides the user with
help. Because form 211 is produced from the information in abstract syntax tree nodes
115, Help can use the information in nodes 115 in providing help.

FIG. 2 thus shows how metaphors can be employed to produce both a text user
interface and a forms user interface for the CreateEmployee programming construct.
Metaphors can also be used to deal with the fact that there are many different systems for
producing GUIs. Form 211 is for a GUI of the type provided by the Windows®
operating system, but different forms metaphors can be built for different GUIs, so that

a given programming construct can easily be given user interfaces for different GUIs. An

10

15

20

25

30

WO 98/49613 PCT/US98/08643

important characteristic of any user interface, text or GUI, made using metaphors is that
the user interface automatically changes as the program changes. The reason for this is
that the information that the metaphor uses to produce the user interface comes from the
abstract syntax tree and the abstract syntax tree changes every time the program does.
A user interface for a programming construct that is made using a metaphor can further
be interpreted or compiled. When it is interpreted, the program uses the abstract syntax
tree and the metaphor to produce the user interface whenever it is needed; when it is
compiled, the compiler for the program uses the abstract syntax tree and the metaphor
to produce object code for the user interface. It should be noted here that the metaphor
for a programming construct can be associated with any entity that represents the
programming construct, that has the information necessary to produce the user interface
made by the metaphor, and that changes whenever the program changes.
Advantages of associating metaphors with programming constructs: FIGs. 3-5

As mentioned in the Description of Related Art above, programming systems exist
in which the programming system prescribes user interfaces for programming constructs
in the language used in the programming system. A problem with such systems is that the
user interface is defined for all programming constructs and therefore cannot be modified
for particular programming constructs. Each metaphor, by contrast, is associated with
a particular programming construct, for instance the CreateEmployee function of
our example. Because that is the case, the metaphor can be edited to produce a user
interface that is particular to the programming construct. In a preferred embodiment, the
user can place the metaphor in an edit mode, and when the metaphor is in edit mode, the
user can edit the interface presently being produced by the metaphor and the metaphor
will from that point on produce the interface as edited.

FIGs. 3-6 show examples of forms produced by edited metaphors. Form 301 of
FIG. 3 has prompts 303; form 403 of FIG. 4 has buttons 407, resized fill-in boxes, and
a default value 405 in addition to the prompts. The default automatically appears in the
box, but the user may alter it. Form 501 of FIG. 5 has a default value for the salary at
502. The form further has buttons 505 through 509, which function as described above,
and radio buttons 503 for indicating whether the employee is paid on an hourly or salary

basis.

10

15

20

25

30

WO 98/49613 PCT/US98/08643

Metaphors and inheritance: FIG. §

A feature of modern high-level programming languages such as Braid, C++, and
Java™ is inheritance. A programming construct may be defined using other previously-
defined programming constructs, and the characteristics of the previously-defined
programming construct are inherited by the new programming construct and can be
modified and/or extended in the new construct. In a preferred embodiment, a metaphor
defined for a first programming construct may be inherited by a second programming
construct that is defined using the first programming construct. For example, the radio
buttons 503 of FIG. 5 are used to set a new parameter of CreateEmployee, one
which has an enumerated class, that is, the class of the parameter defines it as being able
to have one of two values, “Salaried” or “Hourly”. A metaphor which produces the radio
buttons produced at 503 may be defined for the programming construct which defines the
enumerated class, and when the parameter is given the enumerated class, it inherits the
metaphor that produces radio buttons 503. That metaphor can of course be modified for
the particular parameter represented by radio buttons 503. A metaphor can thus be
defined once and inherited everywhere the construct the metaphor is defined for is used.
Using values input using one metaphor in another metaphor: FIGs. 6 and 7

It often happens in programs that values represented by one programming
construct are used in another programming construct. FIG. 6 shows a
raiseEmployeeSalary procedure 613 which takes two parameters 601, a value
603 of type employee and a value raise oftype percentage. percentage
has an optional default value of 15%, as shown at 605, 607, and 609. The computation
is done at line 611: the value Salary in the record represented by the employee
parameter is multiplied by 1 + the value of raise.

FIG. 7 shows how the forms metaphors for CreateEmployee and
RaiseEmployeeSalary cooperate when RaiseEmployeeSalary is invoked.
Form 701 for the employee specified in employee parameter 603 appears as does form
703 for this invocation of RaiseEmployeeSalary, and an arrow 705 points from
form 701 to box 707 of form 703. Box 707 of course receives the employee record for
the employee whose pay is going to be increased, and arrow 705 indicates that the

employee record used to create form 701 is the value being input as a parameter at box

10

15

20

25

30

WO 98/49613 PCT/US98/08643

707.
An implementation of metaphors

Metaphors have been implemented as part of the Braid programming system. For
purposes of the present discussion, all that need be known about Braid is that it
permanently maintains copies of abstract syntax trees for Braid programming constructs
in a Braid data base, that it associates many different kinds of information, including
metaphors, with the abstract syntax trees, and that how the information is used depends
on which of a number of execution environments the Braid programming system is
operating in. Among the environments are run time, compile time, test time, document
time, parse time, and others created by users. For example, if the programming system is
being used to compile a programming construct represented in the abstract syntax tree,
it is in the compile time environment. If the programming system is being used to prepare
documentation for such a programming construct, it is in the documentation time
environment.

FIG. 8 shows a Braid programming environment 801. Programming environment
801 is implemented on a computer system with input/output devices including a pointing
device 802, for example, a mouse, a keyboard 803, and a display 805. When braid
programming environment is operating, a braid interpreter 813 is executing on the
computer system. Routines in an interactive user interface 807 operate to receive input
from keyboard 803 and mouse 802 and provide it to Braid interpreter 813 and to receive
output from braid interpreter 813 and provide it to display 805. Interactive user interface
807 is typically a component of the computer system that the Braid programming
environment is operating on, and depending on the computer system, the interactive user
interface it creates may be a text interface or one of a number of graphical user interfaces.
IUI 807 also includes an IUI editor 808, which permits programmers to edit the user
interface by editing the data used to generate the user interface. An example of an TUI
editor 808 is the Microsoft Developer Studio Resource Editor, which permits a
programmer to edit the data from which the Microsoft Windows® operating system
constructs the windows used in its GUL

Braid interpreter 813 operates on Braid data base 821, which contains abstract

syntax trees for Braid programming constructs, information associated with the abstract

10

10

15

20

25

30

WO 98/49613 PCT/US98/08643

syntax trees that is used in the various execution environments, and metaphors that define
the user interfaces produced by IUI 807 for programming constructs. Arrows in data
base 821 indicate associations among information. Continuing in more detail with Braid
data base 821, shown in the data base is an abstract syntax tree 823 consisting of block
825, its parent block 827, and a number of child blocks 829. Each block of course
corresponds to a Braid programming construct. Many different kinds of information may
be associated with a block. Shown associated with block 825 are tests 849 for the
programming construct represented by the block, documentation 831 for the construct,
source code 841 for the construct, executable code 845 for it, optimized executable code
847, environment handler 839, and user interface metaphors 833. Environment handler
839 determines how the various kinds of information associated with block 825 are used
in the different execution environments. For example, at run time, environment handler
825 will respond to an invocation of the construct represented by block 825 by executing
executable code 845. In operation, braid interpreter 813 receives a description 809 of a
Braid block and a description 811 of an execution environment and operates on the
abstract syntax tree for the Braid block as required for the execution environment.

Continuing in more detail with metaphors in system 801, associated with each
Braid block is a set 833 of one or more user interface metaphors, including at least a text
metaphor 835 and optionally including a set of one or more form metaphors 837(a..n).
There may be a form metaphor for each of the GUI systems that may be used to provide
an interactive user interface to the programming construct represented by block 825.
Braid interpreter 813 contains a metaphor interpreter 815 for each of the user interfaces
for which braid interpreter handles I/0.
Details of a form metaphor: FIGs. 9-12

Fig. 9 shows the details of a preferred embodiment of a form metaphor. A block
825(j) that represents a programming construct in abstract syntax tree 823 has associated
with it information that is termed herein controls and glue that define a form metaphor
that is associated with the programming construct represented by block 825(j). The basic
component of controls and glue 903 is control information 905, which is a data structure
whose fields contain the information used to control the form associated with block

825(). A line of controls 907 is made up of one or more of the control information data

11

10

15

20

25

30

WO 98/49613 PCT/US98/08643

structures, and controls and glue 903 is in turn made up of some number of lines of
controls 907. Among the information that may be contained in a given item of control
information 905(i) are a pointer to block 825(j) for which the control information contains
information, pointers to GUI-specific information 911 that contains information specific
to the GUI in which the interface corresponding to the form metaphor is being generated,
and pointers to more detailed lines of controls 913 for form metaphors for particular kinds
of parameters.

In a preferred embodiment, the association between block 825(j) and its controls
and glue 903 is established by means of a form builder function 902. The information in
block 825(j) includes a pointer 901 to form builder function 902. When form builder
function 902 is executed, it creates controls and glue 903 for block 825(j), and as
previously discussed, as part of creating controls and glue, it includes a pointer 1029 to
block 825(j) in controls and glue. When a bock 825 is first created in the abstract syntax
tree, it is given a default form builder function which generates default controls and glue
903. As will be explained in more detail in the following, metaphor 837(i) for block 825(j)
is customized in a preferred environment by replacing the default form builder with a form
builder that builds a version of controls and glue 903 that contains the information
required for the customized form. For example, the default form builder function simply
uses the name of the program construct that block 825(j) represents as the title of the
form; a customized form builder may provide a more informative title.

FIG. 10 is a detail of control information 905. The contents of specific fields
depend on where control information 905 is used in form metaphor 837().

. Control type 1001 indicates the type of control information 1001 contained in
control info 905. Types in a preferred embodiment include BUTTON,
RADIOBUTTON, CHECKBOX, COMBOBOX, GROUPBOX, LISTBOX,
SCROLLBAR, EDIT, STATIC, USER.

. Windows parent pointer 1003 points to the parent of the Windows window that

will contain the form produced from the form metaphor;

. ID 1005 is an identifier for the form;
. Atext 1007 holds lines of text, for example, prompts;
. cursor x 1009 and cursor y 1011 give the current position of the cursor in the

12

10

15

20

25

30

WO 98/49613 PCT/US98/08643

window;
. window width 1013 and window height 1015 are the current height and width of
the window containing the form;

. AWORD 1019 generally indicates the length of an item of controls and glue

information;

. Boolean value 1021 is used as a flag to indicate the beginning and end of groups
of control info;

. group box pointer 1023 is a pointer to data structures in form details 913, when

the form requires such data structures; and
. block pointer 1029 is a pointer to the block 825 to which the metaphor belongs.

FIG. 11 shows the default controls and glue data structure 1101 that all blocks use
before the metaphor is customized. Structure 1101 has three main divisions: static control
information 1103, edit control information 1105, and controls and glue for parameters
1109. Static control information 1103 is for “read only” information that appears in the
form, for example prompt texts. Edit control information 1105 is for information that
may be edited, for example fields into which the user of the form inputs values for the
parameters. If the block has parameters, CAG for parameters 1109 contains control and
glue information for those parameters. Static control information 1103 and edit control
information 1105 together make up block control and glue information 1107. Only those
fields and their values are shown which are set when block control and glue 1107 is
created. Thus, in static control information 1103, the type of the control information is
specified, Atext is set to the default prompt, which is the name of the construct
represented by the block (obtained from information in the block itself), and AWORD is
set to the length of the default prompt. Similarly, in edit control information 1105,
blockptr 1029 is set to point to block 825. The remainder of the values are set as the
block’s parameters are processed and when the window associated with the form is set
up. In control and glue information 1109, each block that represents a parameter has a
block CAG 1107,; if the block CAG 1107 requires additional information, for example, for
radio switches for an enumerated type, it will include a pointer to control and glue for the
additional information in form details 913.

FIG. 12 shows a group box 1201, one of the data structures which may be found

13

10

15

20

25

30

WO 98/49613 PCT/US98/08643

in form details 913. Group box 1201 is used when a parameter has an enumeration type.
Group box 1201 is of course made up of control info data structures 905 and line of
controls data structures 907 made of the control info data structures. Here, there are two
lines of control data structures: group box control 1203, which contains control
information for the group box as a whole, and radio control 1207, which contains radio
control information 1205 for each of the possible values of the enumeration type.

Continuing in more detail, the values in the single control info structure making
up group box control 1203 that are set when group box 1201 is created are the control
type, the default prompt for the set of possible values, and the number of possible values
in the set. There is radio control info1205 for each of the possible values. Each item
1205 contains the control type, in this case RADIO BUTTONS and the default prompt,
which is the name of the value. The first and last items of radio control info 1205 have
ABOOL set to TRUE to mark the start and end of the list.
Operation of a form metaphor: FIG. 13

FIG. 13 is a flow chart 1301 of the operation of a form metaphor. Operation
begins when a block 825(i) is selected, either interactively by a user who selects the
programming construct corresponding to the block for execution or because the block
belongs to another syntax tree and has been reached in the course of the execution of that
syntax tree. In Braid, “execution” may mean execution of the syntax tree in any of the
various execution environments. Metaphor interpreter 815 corresponding to the kind of
form and the kind of GUI executes a loop 1305. In each iteration of the loop, interpreter
815 receives a message from IUI 807 indicating selection of block 825(i) at 1307. At
1309, the interpreter examines block 825(i) to determine whether it has parameters. If it
has none, branch 1311 is taken and the abstract syntax tree for block 825(i) is executed.
Otherwise, the next step is 1313, in which the interpreter uses form builder function 902
to make the controls and glue 903 associated with the block and with all of the block’s
parameters. Controls and glue 903 are used to make a controls and glue dialog at step
1315, that is, the interpreter adds information needed to make a window in the given GUI,
then the interpreter makes a window in IUI 807 with the dialog. The user inputs
parameter values via the window, as shown at 1309, and interpreter 815 adds the

parameter values to the abstract syntax tree for the block at 1321. The abstract syntax

14

10

15

20

25

30

WO 98/49613 PCT/US98/08643

tree is then executed with the parameter values at 1323, while interpreter 815 waits for
the next message. Of course,
Construction of a CAG for the block.

In a preferred embodiment, controls and glue for the block are constructed
dynamically after receipt of the message selecting the block. Construction is done by
means of construction functions for the different kinds of parameters represented by the
blocks which are children of the selected block. If the metaphor is a default metaphor, i.e.
has not been modified, construction begins with the execution of a stdBuildForm
function that takes a pointer to the block as its parameter. The function makes a new
controls and glue data structure 903 for the block. If the block has no parameters, the
function does nothing; if it has parameters, it constructs a standard CAG 1101, first
making block CAG 1107 and then making a CAG for each of the parameters and adding
it to CAG for parameters 1109. The function used for each of the parameters varies
according to the type of the parameter. For example, if the parameter has an enumeration
type, the function for the parameter builds a group box 1201. In a preferred embodiment,
a form for a construct is customized by making a new build form function for the
construct. For example, stdBuildForm simply uses the block name as the default
parameter; if a prompt that is better suited to the desired interaction between the user and
the form is needed, a new build form function can be made that uses a pre-defined string
for the prompt.

Constructing a dialog for the block

The term dialog refers to the fact that the dialog adds the information which is
required in addition to the controls and glue to make an interactive window. In a
preferred embodiment, the dialog is made by a C++ constructor which takes as parameters
a pointer to a windows object which will be the parent window for the form for the block,
an identifier for the window to be made, a pointer to the block, the controls and glue for
the block, and a module. The constructor adds variables for window features such as the
cursor, the thumb, and the scrolling range. An initialization function then initializes the
fields in control and glue 1101 that relate the controls and glue to the window for the
form. What is done in each case is determined by the type of the control information.

For example, the initialization function for static control info 1103 function sets

15

10

15

20

25

30

WO 98/49613 PCT/US98/08643

ID field 1005 to a control ID, sets cursor x 1009 and cursor y 1011 to initial values, sets
width 1013 so that the form will take the longest text line and height to a default value of
18, sets windows parent pointer 1003 to the window from which the block was selected,
and sets a windows control data structure in GUI-specific info 922 from the values in ID
field 1005, Atext field 1007, cursor position fields 1009 and 1011, width and height fields
1013 and 1015, and AWord field 1019. The windows control data structure is then used
to create a window in the Microsoft Windows GUI. Information from controls and glue
for each of the control and glue data structures for the parameters for the block to which
the STATIC control information belongs is similarly used to produce child windows for
the parameters in the window for the block to which the STATIC control information
belongs. How a dialog is constructed will of course also vary for the GUI that the dialog
is intended for.

Adding parameter values to the parse tree

Once the window for the form has been constructed, IUI 807 displays it in the
usual fashion for the GUI in which the window is implemented. The user inputs parameter
values for the programming construct by either selecting a value or writing a value to a
field. When the user is done, the user so indicates in the style required by the GUI (for
example by clicking on an OK or ENTER button) and IUI 807 returns the selected and
inputted parameter values to metaphor interpreter 815 as part of the windows control
information associated with the controls and glue for the window. Metaphor interpreter
815 takes the parameter values and writes them into the abstract syntax tree for the
programming construct.

As described about with regard to FIG. 7, the value of one programming
construct may be a parameter value for another programming construct. In that case, the
forms metaphor displays the form for the programming construct which is the value with
an arrow from that form to the field of the form for the programming construct which is
to receive the value. In a preferred embodiment, when there is this kind of relationship
between forms, the windows control information includes a pointer to the dialog for the
programming construct which is the source of the value and this pointer is used to obtain
the value of the programming construct which is the parameter and install it in the parse

tree for the programming construct that is receiving the parameter value. Once the

16

10

15

20

25

30

WO 98/49613 PCT/US98/08643

parameter values have been installed in the parse tree, the parse tree can be executed in
the manner that is appropriate for the execution environment specified by the user.
Customizing forms: FIG. 14

FIG. 14 shows a system 1401 for customizing a form. System 1409 makes a
customized form builder function 1409 and replaces the default form builder function for
the programming construct with customized form builder function 1409. Customized
form builder function 1409 could of course be build by hand, but system 1401 permits the
programmer to interactively edit the current form and then uses information from the
edited form to automatically generate form builder function 14009.

To edit the current form, the programmer uses interactive interface editor 808,
which may be a standard interface editor provided by the GUI, as described above. As
far as editor 808 is concerned, the form for block 825(j) is a window like any other, and
can be edited by editing the window’s resources, that is, data values which determine the
appearance of the window. In the case of the form for block 825(j), these resources are
contained in current controls and glue 1411, which of course was built by the current form
builder function, and in abstract syntax tree 823. Thus, TUI editor 808 causes IUI 807 to
display the current form on display 805 and the programmer can edit the form interactively
using inputs from pointing device 802 and keyboard 803. The editing is of course limited
to those attributes of the form which are defined in controls and glue 903.

After the programmer has edited the current form, TUI editor 808 outputs the new
values for the controls and glue to customization data structure 1403. The new values
make up customization data 1405 in the data structure. Data structure 1403 serves as
input to a form builder function generator 1407 which generates customized form builder
function 1409 in metaphor 837 for block 825(j) and returns a pointer to form builder
function 1408 to IUI editor 808, which replaces pointer 901 in block 825(j) which pointed
to the old form builder function with the pointer to form builder function 1408. The next
time block 825(j) is selected, customized form builder 1409 will be used to make controls
and glue 1411 and the forms made using the information in controls and glue 1411 will
of course reflect the changes made by the programmer. If further customization is needed,

system 1401 can be again used as just described.

17

10

15

20

25

30

WO 98/49613 PCT/US98/08643

Using metaphors in other programming environments: FIG, 15

The techniques described above for making and using metaphors may be adapted
for use in programming environments other than Braid. The basic requirement is that the
programming environment provides information about a programming construct that
permits generation of a user interface for the programming construct. The kinds of
information that can be used include the abstract syntax tree, as with Braid, the source
code, a user-provided list of function interfaces, and information gathered by a debugging
system. When such information is available, a form construction function can be
associated with the programming construct and can be used as described above to read
the information and generate information that is equivalent to the controls and glue
information, and that information can be used in turn to generate the form for the
programming construct. The form can further be customized in the manner just described,
using whatever tools are provided by the programming environment and making any
changes required by the environment. Programming environments in which metaphors are
particularly useful include those for the C language, the C++ language, and Java. As with
Braid, the form for a programming construct may be used to obtain values for the
construct’s parameters when a user selects the construct for execution or when the
construct is selected by being involved in the execution of another program.

FIG. 15 shows how metaphors can be used in a C++ programming environment
to greatly simplify the generation of user interfaces. In the C++ environment, the forms
metaphor would be implemented as a C++ library. FIG. 15 shows a C++ main function
1501 which involves two objects: an object ¢ 1505 of class C 1503 and an object wIn
of class Winstream 1507. Class Winstream 1507 is a class that represents a
graphical display capable of displaying forms such as those produced by form metaphors.
Among the things that class C defines for objects having its class are modifiable
metaphors. As with Braid, the class provides default metaphors, and the programming
environment provides tools for modifying metaphors. Class C also defines two operators
involving metaphors: >> 1511 and << 1515. The syntax for the >> operator is the

following:
<Winstream object> >> <class C object>

18

10

15

20

25

30

WO 98/49613 PCT/US98/08643

This operator causes a form to be generated using the class C object’s forms metaphor in
the Winstream object from which the class C object can receive parameter values. The
<< operator outputs the result of processing of the class C object in the Winstream object
using the class C object’s forms metaphor.

Thus, at 1513, the C++ code causes the display object specified by wIN to display
an input form specified for ¢ (the form may be either the one defined for the C class or
one that has been customized for the c object), and at 1515, the C++ code causes the
wIn display object to display an output form specified for c. As the code demonstrates,
metaphors are able to completely hide the complexities of graphical user interfaces from
the C++ programmer. Additionally, as described above, the graphical user interface can
be customized for any programming construct, be it class or object, and the graphical user
interface for the programming construct automatically tracks changes in the programming
construct.

Conclusion

The foregoing Detailed Description has disclosed to those skilled in the
programming arts how to make metaphors and how to use them to simplify the work of
providing and modifying a user interface for a program, to ensure that the user interface
tracks changes in the program that affect the user interface, and to simplify the work of
providing user interfaces for the program that will work not only with different kinds of
user interface systems. The techniques disclosed in the Detailed Description are the best
presently-known to the inventors for implementing metaphors.

As will be immediately apparent to those skilled in the computer arts, there are
many other ways of implementing and using metaphors. What gives a metaphor its
advantages over prior techniques for making user interfaces for programs are the fact that
the metaphor is associated with a programming construct, the fact that many different
metaphors may be associated with a programing construct, the fact that the metaphor uses
information from a description of the programming construct to make the interface, and
the fact that individual metaphor may be modified. Some implementations of metaphors
will have all of these characteristics; others will not. For example, some implementations

may have metaphors for only a single user interface.

19

10

15

WO 98/49613 PCT/US98/08643

There are further many ways other than the ones disclosed herein of implementing
systems of making user interfaces that have some or all of the above characteristics. For
example, in the preferred embodiment, the metaphor is implemented by means of a build
function that reads the information from the programming construct that is needed to
make the interface, and the metaphor is modified by replacing the build function with a
different build function. In other embodiments, the programming tool that makes the
description of the programming construct may also generate a data structure that contains
the information used to make the interface and the interface may be edited by editing the
data structure. Similarly, in programming environments in which the abstract syntax tree
is not involved in the execution of a program, parameter values may be provided directly
to an execution of the construct, rather than being incorporated into the abstract syntax
tree.

For all of the foregoing reasons, the Detailed Description is to be regarded as
being in all respects exemplary and not restrictive, and the breadth of the invention
disclosed herein is to be determined not from the Detailed Description, but rather from

the claims as interpreted with the full breadth permitted by the patent laws.

20

10

15

20

25

30

WO 98/49613 PCT/US98/08643

What is claimed is:

1. A programming construct user interface generator which generates a plurality of
interactive user interfaces for a programming construct,
the generator comprising:

a description of the construct;

a plurality of interactive user interface metaphors that correspond to the plurality
of interactive user interfaces and are associated with the description; and

a generating routine that generates a specified one of the interactive user interfaces
for the construct using the metaphor corresponding to the specified interactive user

interface.

2, The generator set forth in claim 1 further comprising;
a metaphor modification interface that permits modification of one of the

metaphors and thereby modifies the corresponding interactive user interface.
3. The generator set forth in claim 1 wherein:

the generating routine further uses the description of the construct to generate the

specified user interface.

4. The generator set forth in claim 3 further comprising:
a metaphor modification interface that permits modification of one of the

metaphors and thereby modifies the corresponding interactive user interface.

S. The generator set forth in claim 1 wherein:

the plurality of user interfaces includes one or more textual user interfaces.

6. The generator set forth in claim 1 wherein:

the plurality of user interfaces includes one or more graphical user interfaces.

7. The generator set forth in claim 1 wherein:

21

10

15

20

25

30

WO 98/49613 PCT/US98/08643

the plurality of interactive user interfaces includes a plurality of graphical user
interfaces, the graphical user interfaces including ones thereof that correspond to different

graphical user interface systems.

8. A programming construct user interface generator which generates an interactive
user interface for a programming construct,
the generator comprising;
a description of the construct;
an interactive user interface metaphor associated with the description;
a metaphor modification interface that permits modification of the metaphor; and
a generating routine that uses the metaphor and the description to generate the

interactive user interface for the program construct from the description and the metaphor.

9. The programming construct user interface generator set forth in any one of claims

1 through 8 wherein:

the interactive user interface receives parameter values from the user, the

parameter values being used in executing the programming construct.

10. The programming construct user interface generator set forth in any one of claims

1 through 8 wherein:

the metaphor includes a function that the generating routine uses to obtain

information from the description.

11. The programming construct user interface generator set forth in any one of claims
1 through 8 wherein:

the generating routine generates the specified interactive user interface upon

activation of the programming construct.
12. The programming construct user interface generator set forth in any one of claims
1 through 8 wherein:

the generating routine is a compiler which generates object code for the specified

22

10

15

20

25

30

WO 98/49613 PCT/US98/08643

interactive user interface upon compilation of the construct.

13. The programming construct user interface generator set forth in any one of claims
1 through 8 wherein:

the programming construct is a class definition; and

an interactive user interface metaphor associated with the description is inherited

by program constructs that are defined using the class definition.

14. The programming construct user interface generator set forth in any one of claims

1 through 8 wherein:

the description of the construct is an abstract syntax tree.

15. The programming construct user interface generator set forth in claim 14 wherein:
the interactive user interface receives parameter values from the user; and

the generating routine adds the parameter values to the abstract syntax tree.

16. The programming construct user interface generator set forth in claim 15 wherein:
the programming construct is executed by interpreting the abstract syntax tree

after the parameter values have been added.

17. A data storage device that is usable in a computer system, the data storage device
being characterized in that:
the data storage device contains a program which, when executed in the computer

system, implements the apparatus set forth in any one of claims 1 through 8.

18. The programming construct user interface generator set forth in any one of claims
4 and 8 wherein:

the metaphor includes a function that the generating routine uses to obtain
information from the description; and

the metaphor modification interface modifies the metaphor by modifying the

function.

23

10

15

20

WO 98/49613 PCT/US98/08643

19. A method of generating a plurality of interactive user interfaces for a programming
construct,
the method being implemented in a computer system and comprising the steps of:
associating a plurality of interactive user interface metaphors that correspond to
the plurality of interactive user interfaces with a description of the programming construct;
and
generating a specified one of the interactive user interfaces for the construct using

the metaphor corresponding to the specified interactive user interface.

20. A method of generating an interactive user interface for a programming construct,
the method being implemented in a computer system and comprising the steps of:

associating an interactive user interface metaphor with a description of the
programming construct;

modifying the interactive user interface metaphor; and

generating the interactive user interface using the metaphor as modified and the
description associated therewith,

whereby the modified metaphor automatically tracks changes in the description.

21. A data storage device that is usable in a computer system, the data storage device

being characterized in that:

the data storage device contains a program which, when executed in the computer

system, performs the method set forth in any one of claims 20 through 21.

24

(92 37NY) 133IHS 3LNLILSEANS

FIG. 1~

103~ 111 113 105

CREATEEMPLO\{EE: GEMPLOYEE H02
100—NAME: IN STR }104

PROGRAMMING

- CONSTRUCT

SALARY: IN INTEGERH06 H07["
JOBDESCRIPTION: IN STR }108
| l\/LINK117(a)
WPLOYEE | NODE IS
(101)
117(b) 117(c) 117(d)
Y
JOB
NAME SALARY
(104) (106) DEs%Fgg)TION
L119 L119 L119

ABSTRACT SYNTAX TREE NODES 115

bi/1

€196¥/86 OM

£9980/86S(1/1.0d

(92 371NY) 133HS 31NLILSENS

FIG. 2

203 (205 207 200
CREATEEMPLOVYEE [PHIL] $20,000 [GRANDMASTER] —JEAT METAPHOR
’ i OUTPUT 201
= CREATEEMPLOYEE
213~_NAME: STR 215
214 SALARY: INTEGER
JOBDESCRIPTION: STR
2 FORMS
\/ OK X Cancel 4 Hselp ___METAPHOR
OUTPUT 211

K217

bi/¢

€196¥/86 OM

£5980/86S()/LId

WO 98/49613 PCT/US98/08643

3714

FIG. 3

= CREATEEMPLOYEE

303—1TO CREATE A NEW EMPLOYEE, COMPLETE THE
FOLLOWING STEPS.

1. ENTER THE EMPLOYEE'S NAME
2. ENTER THE EMPLOYEE'S SALARY
3. ENTER THE EMPLOYEE'S JOB DESCRIPTION

01

FIG. 4
= CREATEEMPLOYEE
TO CREATE A NEW EMPLOYEE, COMPLETE THE
FOLLOWING STEPS.
1—403

1. ENTER THE EMPLOYEE'S NAME 105
2. ENTER THE EMPLOYEE'S SALARY 18,000 J
3. ENTER THE EMPLOYEE'S JOB DESCRIPTION

OK Cancel 401

[

\ 407

SUBSTITUTE SHEET (RULE 26)

{92 37NY) 133HS 3LNLILSENS

FIG. 5

CREATEEMPLOYEE

TO CREATE A NEW EMPLOYEE, COMPLETE THE

FOLLOWING STEPS.

1. ENTER THE EMPLOYEE'S NAME

2. ENTER THE EMPLOYEE'S SALARY

3. ENTER THE EMPLOYEE'S JOB DESCRIPTION

Y oK

|

XCanceI

|

18,000

©SALARIED OHOURLY
~—]

? Help

)

502

503

(@)
—

k 505

507

(509

bi/b

€196¥/86 OM

£1980/86S11/LOd

(92 3TNY) 133HS 3LNLILSENS

FIG. 6

raiseEmployeeSalary:
:in employee—603

raise: in opt percentage <-15%

605

employee's Salary *<-1 + raise }611

607 609

613

-601

p1/6

€196¥/86 OM

£1980/86S1)/.L.Dd

PCT/US98/08643

WO 98/49613

6/14

diegH ¢, dlle) ¢ MO M

_— Gl ;3SIvY 39 11 TINOHS IHVINIOHId LYHM Ad

L0L4—T~ £3SIVH OL LNYM NOA OQ AHYTYS SFFA0TdNT LYHM
A

AHYTVSSIFA0TdINTISIVY
G0/ ——
digH ¢ lz0) ¢ Mo M
10
1SILHY NOILdIH0S3Aa g0r SAIA0TdNI FHL HIAINT €

ATHNOHO d3lvIvS®

0008}

NVAI

JHL 3131dNOD FIA0TAINT MIN ¥V 3L¥3HO Ol

AHVTVS SFIAOTdNT FHL HAINT ¢
JNVYN SAIAOTANT FHL HILINT '}
'Sd41S ONIMOTIOA

Z "9l4

43A0TdNIT1VIHO =

SUBSTITUTE SHEET (RULE 26)

WO 98/49613

/14

PCT/US98/08643

FIG. 8 KB (803 805
O000O0O0 DISP.
O 00 O0O0
U i1 s (808
pul Ul
oD 802 K— EDITOR
BLOCK ENV. DESC 811
809~ pEscC. 815(a)
815 s
BRAID : META.'E .. | META
INTERPRETER | INT. | INT.
813 H
BRAID DATABASE 821
T mooc T~ [PaRenT |82 &)
849~ TESTS | 825~ pRENTRY BLOCK gLPgLC%
<
\ 823
CHILD
BLOCK
835~ TEXT J
METAPHOR SOURCE 829(n)
_______________ CODE
DOCU- C
VENTA. FORM 841 EXEgg[T)/eBLE
TION METAPHOR ENV
831’ 837(a)/] HANDtER 845
FORM 839 0P
837(n)~|METAPHOR vl
Ul METAPHORS CODE
833 -
847

(@ 0]
—

SUBSTITUTE SHEET (RULE 26)

WO 98/49613 PCT/US98/08643

8/14
FIG. 9
BLOCK
825()
902
FORM W 9
BUILDER 901 10
FUNGTION)
CONTROL INFO 905(a)
LINE OF |
CONTROLS-
907(a
@ 905(n)
\ .
0070 1023, 1025
CONTROLS
AND GLUE
903
1027,
1003
GUI-
SPECIFIC DFE?QI'\{‘_S
INFO o
911
837()

SUBSTITUTE SHEET (RULE 26)

WO 98/49613

9/14

FIG. 10
CONTROL TYPE 1001
WINDOWS PARENT PTR 1003
ID 1005
ATEXT 1007
CURSOR X 1009
CURSORY 1011
WINDOW WIDTH 1013
WINDOW HEIGHT 1015
AWORD 1019
ABOOL 1021
GROUP BOX PTR. 1023
WINDOWS CTL. PTR. 1027
BLOCK PTR. 1029

CONTROL INFO 905

SUBSTITUTE SHEET (RULE 26)

PCT/US98/08643

WO 98/49613

STATIC
CONTROLS
INFO 1103

EDIT
CONTROL

~INFO 1105

10/14

FIG. 11

PCT/US98/08643

CONTROL TYPE = STATIC

ATEXT = DEFAULT PROMPT

AWORD = PROMPT LEN

CONTROL TYPE = EDIT

BLOCK PTR. = BLOCK

, BLOCK
CAG 1107

AN

CAG FOR
rPARAMETERS
1109

STD. CAG 11

(-]

1

|

SUBSTITUTE SHEET (RULE 26)

WO 98/49613

GROUP
BOX

CONTROL

1203

N

RADIO
CONTROL
1207

11/14

FIG. 12

CONTROL TYPE = GROUPBOX

ATEXT = DEFAULT PROMPT

AWORD = NO. OF VALS.

CONTROL TYPE = RADIO BUTTON

ATEXT = DEFAULT PROMPT

ABOOL = TRUE

1205(n

GROUP BOX 1201

SUBSTITUTE SHEET (RULE 26)

PCT/US98/08643

RADIO
}'CONTROL
INFO 1205(a)

WO 98/49613 PCT/US98/08643

12/14

FIG. 13

(" sTART)JBOB

Y

1393 RECEIVE
EXECUTE VY BLOCK
ABST. SYNTAX SELECTION

TREE FOR BLOCK
]

j1 307

1305L

MAKE CAG
FOR BLOCK

Y
MAKE

DIALOG
WITH CAG

Y
MAKE

WINDOW
WITH DIALOG

Y

RECEIVE
INPUTS FROM
WINDOW

j1319

Y
ADD PARAM.
VALUES TO
ABST. SYNTAX
TREE

f1 321

SUBSTITUTE SHEET (RULE 26)

WO 98/49613 PCT/US98/08643
13/14
FIG. 14 808
TO. FROM Ul
Uer —— EDToR
A
1408
|/
I T ! (1405
; ABSTRACT CUSTOMIZATION
. SYNTAX TREE 823 CUSTOMIZATION | paTA STRUCTURE
! DATA
| 1403
g 825(j) y,
| BLOCK
{ (407
FORM BUILDER
....................................... FUNCTION
GENERATOR
(901
| J (1409}
_| cusTOMIZED |
FORM BUILDER ;
11
| CURRENT ;
. ICONTROLS ;
| AND GLUE ;
1401 METAPHOR 837

...

SUBSTITUTE SHEET (RULE 26)

PCT/US98/08643

WO 98/49613

14/14

N

LOG 1
G151 {
17INS3H IHL AV1dSIA // 9> > um
0 40 HNISSIO0Hd @3HISIA ANY Od // () SSTD0Hd™

‘NI LITT14 §3SN JHL !

JAVH ANV 9 ONIZITVILINI HO4 WHO4 ¥ AV1dSId // o< <um
1081 \pig)

UM NYIHLSNIM

) 9
605} G0g~=2 O
€051}

() NIV
Sl ‘Ol

~

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

