Inventors/Applicants: VIDHYASANKAR, K. [IN/IN]; NH-8 Manesar (Gurgaon), Haryana 122 050 (IN).

Applicants (for all designated States except US): DEPARTMENT OF BIOTECHNOLOGY [IN/IN]; Block 2, 7th Floor, CGO Complex, Lodi Road, New Delhi 110 003 (IN). NATIONAL BRAIN RESEARCH CENTRE [IN/IN]: NH-8, Manesar (Gurgaon), Haryana 122 050 (IN).

Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Abstract: A method for specifically labeling outer and inner segments and pedicles of mammalian cone photoreceptors in vivo comprising Intravitreal injection of 2 µl for adult anesthetized mouse (C57BL/6 J), 10 µl for guinea pig (Duncan Hartley) of 20 µl for monkey (Macaca mulatta) of PNA conjugated with a fluorescent probe (Rhodamine or Fluorescein) at a concentration of 0.005%, 0.01%, 0.02%, 0.05% or 0.5% (only 0.5% for guinea pig and monkey) with a glass electrode with tip diameter of ~ 1 µm or an insulin syringe posterior to the limbus into the vitreous of the eye. Removing the eye under anesthesia at various time points (mouse: 0.5, 1, 2, 4 and 8 hours; 1, 2, 4, 7 and 10 days; 1 and 3 months; guinea pig and monkey: 30 minutes) after the PNA injection, Hemisectioning and fixing the posterior eye-cup in 4% paraformaldehyde for 1 hour at 4°C, Flat mounting the retina on a glass slide or cryosectioning, and observing PNA labeling with a fluorescence microscope.
In vivo labeling of mammalian cone photoreceptors by intravitreal injection of fluorescently tagged peanut agglutinin.

Field of Invention

This invention relates to a novel, method of in vivo labeling of outer and inner segments, and pedicles of mammalian cone photoreceptors by intravitreal injection of fluorescently tagged peanut agglutinin. This has clinical implications for early and confirmed diagnosis, and status assessment of retinal degenerative diseases involving photoreceptors in humans.

Background of the invention

Retinal degenerative disease such as Retinitis Pigmentosa (RP) and Age-Related Macular Degeneration (AMD) are characterized by progressive degeneration and loss of photoreceptors. These diseases affect a large proportion of population (RP incidence: 1 in 4000; AMD incidence: 4% at 43-54 years of age, ~46% above 75 years), and are among the leading
causes of blindness. Recent data on Indian population suggest that the prevalence of retinal degenerative diseases in India is similar to that in Western countries. Since these diseases initially cause only partial loss of vision, mostly in dim light, they may not be diagnosed early on. This problem is further confounded by the fact that there is no technique currently available that would allow a direct and confirmed diagnosis of the photoreceptor degeneration. As a result, these diseases are typically diagnosed based on personal and family medical history, and a group of non-specific signs and symptoms, such as night blindness, visual field defects, bone-spicule pigmentation, drusen, arteriolar attenuation, macular hemorrhage and abnormal electroretinogram etc. If the disease is diagnosed early, some of the newer treatment strategies may prove to be effective. This is particularly important because loss of photoreceptors in these diseases initiates a series of other potentially irreversible changes, including remodeling of the retinal circuitry.

It is possible to view larger retinal neurons, e.g., ganglion cells (10-30 μm) that are fluorescently labeled in a living animal. However, most retinal degenerative diseases primarily affect photoreceptors which are much smaller (2-10 μm in diameter) and cannot be directly viewed with any routine clinical method partly because they have not been shown to take any
non-toxic fluorescent marker in vivo. Even advanced ophthalmic techniques, such as Optical Coherence Tomography (OCT) and scanning Laser Ophthalmoscopy (SLO) cannot resolve retina at the level of photoreceptors. Adaptive Optics, which employs a series of mathematical calculations to compensate for the optic blur in the eye, does allow detection of photoreceptors in living human retina\(^9\), but has limitations in terms of axial and transverse resolution, and can not differentiate between specific parts of a cone.

It has been known for may years that several plant lectins bind to interphotoreceptor matrix around specific regions of photoreceptors in vitro. Peanut Agglutinin (PNA) is known to bind to cone interphotoreceptor matrix to label selectively cone outer and inner segments, and cone pedicles. When conjugated with horseradish peroxides (HRP), and injected subretinally into rats in vivo, PNA has been shown to selectively bind to cone photoreceptors.\(^{10}\) However, HRP cannot be excited to emit any light and thus may not be detected better than unstained photoreceptors. More importantly, to render HRP visible involves steps that cannot be carried out in vivo, e.g., use of toxic compounds diaminobenzidine. Furthermore, subretinal injection can cause complications, including retinal detachment and damage, and therefore cannot be done routinely in humans. Together,
these reasons probably explain why subretinal injection of PNA has not been attempted in animals or humans for any clinical use.

We asked if PNA conjugated with a fluorescent probe when administered intravitreally in vivo could penetrate through inner limiting membrane and several layers of retinal cells to selectively label mammalian cones. Fluorescent probes such as Fluorescein are routinely applied locally in the eye or injected systemically into the blood stream in a variety of ophthalmic conditions in humans, and are thus considered safe. Here inventors report a relatively simple and safe method of selectively labeling specific parts of a cone in a living animal, which may not only augment the recent advances in optical techniques in detecting single photoreceptors in vivo, but can also be potentially employed in routine ophthalmic practice to diagnose and assess the progression of some of the retinal degenerative diseases. To our knowledge there is no report that PNA or any other plant lectin conjugated with a fluorescent probe can be injected intravitreally for visualization of retinal cells in vivo.

One previous invention (Patent No. Wo 2005054447) describes a method for producing retinal cells in culture that can potentially be used for cell transplantation therapies. Some of these retinal cells are claimed to bind to
peanut agglutinin. This invention is an in vitro method of producing specialized retinal cells, whereas the present invention is an in vivo method of injecting peanut agglutinin into the eye which may be used for diagnosing retinal degenerative diseases.

Another invention (Patent No. Wo 2005103232) describes a method for isolating and purifying cone photoreceptors using agglutinin in vitro, but the present invention is an in vivo method of injecting peanut agglutinin into the eye, which may be used for diagnosing retinal degenerative diseases.

Another invention (Patent No. Wo 2003039346) describes a new interphotoreceptor compound that may be used to prevent or treat photoreceptor death by gene therapy, whereas this invention is an in vivo method of injecting peanut agglutinin into the eye where it binds specifically to the interphotoreceptor matrix around cone photoreceptors, which may be used for diagnosing retinal degenerative diseases.

Object of the Invention

The object of this invention is to develop a method for selectively labeling specific parts cone photoreceptors in vivo, which would allow their direct
visualization and assessment of their degeneration across entire retina in a living animal or human.

Other object is to develop a method which could enable clinicians to make an early and confirmed diagnosis of retinal degenerative diseases involving photoreceptors.

Another object is to develop a method of in vivo labeling of specific photoreceptors by intravitreal injection of Peanut Agglutinin.

Yet another object is to develop a method of in vivo labeling of specific parts of cone photoreceptors by intravitreal injection.

Other object is to develop a method using Peanut Agglutinin wherein the fluorescent probe conjugated to Peanut Agglutinin could be used to visualize the presence or absence of cones in vivo.

Another object is to develop a method to assess the location and extent of cone degeneration in vivo.

Yet another object is to develop a method that has potential to make early
and confirmed diagnosis of retinal degenerative diseases involving photoreceptors and also can provide an assessment of the disease progression.

Statement of Invention

According to this invention there is provided a method for specifically labeling outer and inner segments and pedicles of mammalian cone photoreceptors in vivo comprising intravitreal injection of 2 µl for adult anesthetized mouse (C57BL/6 J), 10 µl for guinea pig (Ducan Hartley) of 20 µl for monkey (Macaca mulatta) of PNA conjugated with a fluorescent probe (Rhodamine or Fluorescein) at a concentration of 0.005%, 0.01%, 0.02%, 0.05% or 0.5% (only 0.5% for guinea pig and monkey) with a glass electrode having a tip diameter of ~ 1 μm or an insulin syringe posterior to the limbus into the vitreous of the eye. Removing the eye under anesthesia at various time points (mouse: 0.5, 1, 2, 4, and 8 hours; 1, 2, 4, 7 and 10 days; 1 and 3 months guinea pig and monkey: 30 minutes) after the PNA injection. Hemisecting and fixing the posterior eye-cup in 4% paragormaldehyde for 1 hour at 4°C flat mounting the retina on a glass slide or cryosectioning and observing PNA labeling with a fluorescence microscope.

Brief description of the accompanying drawings
Figure 1: Intravitreally injected, fluorescently tagged Peanut Agglutinin results in selective labeling of cone photoreceptors in live mouse, guinea pig and monkey. Peanut Agglutinin (PNA, 0.5%) conjugated with Rhodamine was injected intravitreally into anesthetized mouse (A, B), guinea pig (C, D) or monkey (E, F). Retinas removed after 30 minutes show specific labeling of cone photoreceptors across entire retina in a flatmount preparation. A, C E: central retina; B, D, F: peripheral retina. Scale bar = 10 µm.

Figure 2: Intravitreally injected, fluorescently tagged Peanut Agglutinin results in selective labeling of cone outer and inner segments and cone pedicles in vivo. Peanut Agglutinin (PNA, 0.05%) conjugated with Fluorescein was injected intravitreally into anesthetized mouse. Sections of retina removed after 30 minutes show specific labeling of cone outer (arrow) and inner (black arrowhead) segment and cone pedicles (white arrowhead), as has been reported for in vitro staining. Scale bar = 10 µm.

Detailed description of the invention

Present invention where inventors are able to specifically label cones with intravitreal injection of PNA-Fluorescein or PNA-Rhodamine in a live animal could enable direct viewing of these photoreceptors, and thus allow...
not only confirmed diagnosis of retinal degenerative diseases involving photoreceptors, but also an assessment of the disease progression in humans. Since intravitreal PNA injection resulted in labeling of live cones in several mammalian species, including a non-human primates and that PNA is known to stain cones in postmortem human retina\(^7\), it is highly likely that it will work similarly in living humans. The probe Fluorescein, for example, can be excited at a wavelength of -495 nm and the emitted light of -520 nm can be detected with a variety of optical devices. The invention of this relatively simple and safe technique should enable clinicians to make early and confirmed diagnosis of some of the retinal degenerative diseases, which in turn would allow introducing suitable therapeutic measures at more appropriate stage of disease progression.

Methods: All experiments were approved by Institutional Animal Ethics Committee of National Brain Research Centre, and Committee for the Purpose of Control and Supervision of Experiments on Animals. Adult mouse (C57BL/6J), guinea pig (Duncan Harley) and monkey (Macaca mulatta) were used in the present study. The animals were anesthetized with ketamine and xylazine. A 2 µl (mouse), 10 µl (guinea pig) or 20 µl (monkey) of PNA conjugated with a fluorescent probe (Rhodamine or Fluorescein) at a concentration of 0.005%, 0.01%, 0.02%, 0.05% , or 0.5%
for mouse; 0.5% for guinea pig and monkey was injected with a glass electrode having a tip diameter of ~ 1 µm or a standard insulin syringe posterior to the limbus into the vitreous of the eye. The eye was removed under anesthesia at various time-points after the PNA injection (Mouse: 0.5, 1, 2, 4, and 8 hours: 30 minutes), hemisected, and the posterior eye-cup fixed in 4% paraformaldehyde for 1 hour at 4°C. Retina was flat-mounted cryosectioned, and PNA labeling was observed with a fluorescence microscope. TUNEL assay was carried out to see if PNA caused any apoptosis of retinal cells. Standard immunofluorescence experiments were carried out for some of the cell-specific proteins (PSD-95, PKC, syntaxin-1, SMI-32) to look for any qualitative changes in retinal neurons. Gross visual function of the PNA-injected animal was tested under photopic and scotopic light conditions in a Visual Cliff Test after 8 hours of PNA injection.

Results: PNA conjugated with either Rhodamine or Fluorescein, when injected intravitreally in vivo was found to selectively label cone photoreceptors across entire retina. All mammalian species tested here showed the specific labeling (Fig. 1). Like the in vivo binding, PNA specifically labeled cone outer and inner segments, and cone pedicles (Fig. 2). The lowest concentration of PNA that showed complete and consistent labeling of mouse cones was 0.05%; lower concentrations also labeled
cones but focally and inconsistently. At this concentration the mouse retina showed cone labeling for at least 10 days after the intravitreal injection. However, retina removed 30 days after the injection did not show any labeling, implying that PNA completely washed out at some point between 10 and 30 days. When retinal sections after complete washout were re-stained with PNA, they again showed specific labeling of cone outer and inner segment and cone pedicles, implying that intravitreally injected PNA did not alter the binding capacity of cone interphotoreceptor matrix for PNA. TUNEL staining of the retina removed either 30 minutes or 3 months after PNA injection was negative, implying that PNA or the fluorescent probe did not have any apoptotic effect on retinal cells for up to 3 months. Retinal neurons immunostained for PSD-95, PKC, syntaxin-1 and SMI-32 in the PNA-injected retina were indistinguishable from the normal retina, suggesting that photoreceptors, rod bipolar cells, amacrine cells and ganglion cells were normal. Visual Cliff test performed 8 hours after the PNA injection showed normal visual behavior.
Reference List

It is to be noted that the formulation of the present invention is susceptible to modifications, adaptations and changes by those skilled in the art. Such variant formulations are intended to be within the scope of the present invention which is further set forth under the following claims:-
We Claim:

1. A method for specifically labeling outer and inner segments and pedicles of mammalian cone photoreceptors in vivo comprising:
 i) Intravitreal injection of 2 µl for adult anesthetized mouse (C57BL/6 J), 10 µl for guinea pig (Duncan Hartley) of 20 µl for monkey (Macaca mulatta) of PNA conjugated with a fluorescent probe (Rhodamine or Fluorescein) at a concentration of 0.005%, 0.01%, 0.02%, 0.05% or 0.5% (only 0.5% for guinea pig and monkey) with a glass electrode with tip diameter of ~ 1 µm or an insulin syringe posterior to the limbus into the vitreous of the eye,
 ii) Removing the eye under anesthesia at various time points (mouse: 0.5, 1, 2, 4 and 8 hours; 1, 2, 4, 7 and 10 days; 1 and 3 months; guinea pig and monkey: 30 minutes) after the PNA injection,
 iii) Heimisecting and fixing the posterior eye-cup in 4% paraformaldehyde for 1 hour at 4°C,
 iv) Flat mounting the retina on a glass slide or cryosectioning, and observing PNA labeling with a fluorescence microscope.

2. A method for specifically labeling outer and inner segments and pedicles of mammalian cone photoreceptors in vivo substantially as herein described.
AMENDED CLAIMS
received by the International Bureau on 10 January 2009 (10.01.2009)

We Claim:

1. A method for specific, reversible and fluorescent labeling of outer segment, inner segment and pedicle of mammalian cone photoreceptors across the entire retina of an adult live animal to facilitate diagnosis and/or prognosis of retinal degenerative diseases, comprising:
 i. injecting peanut agglutinin (PNA) conjugated with a fluorescent probe (Fluorescein or Rhodamine) into anesthetized mouse (C57BL/6J; 2 µl of 0.05% PNA), guinea pig (Duncan Hartley; 10 µl of 0.5 PNA) or monkey (Macaca mulatta; 20 µl of 0.5% PNA) with an insulin syringe or a glass electrode with a tip of diameter 20-30 µm;
 ii. removing the eye under anesthesia at various time points (mouse: 0.5, 1, 2, 4 or 8 hours; 1, 2, 4, 7 or 10 days; 1 or 3 months; ginea pig or monkey: 0.5 hours) after the PNA injection, fixing the posterior eyecup in 4% paraformaldehyde for 1 hour at 4°C, and observing the retinal flatmounts or 10 µm thick cryosections with a fluorescence microscope;
 iii. labeling the cone photoreceptors in vivo.

2. A method of in vivo labeling of cone photoreceptors as claimed in claim 1, wherein such a method does not cause adverse morphological, biochemical or behavioral effects in mouse for up to 3 months.
INTERNATIONAL SEARCH REPORT

A CLASSIFICATION OF SUBJECT MATTER

IPC®: **G01N 33/58** (2006.01); **G01N 33/68** (2006 01)

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC®: G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, Epodoc, TXT, Pubmed, Medline, Embase, Internet, NPL, Xprd

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

See patent family annex

Date of the actual completion of the international search

3 October 2008 (03.10.2008)

Date of mailing of the international search report

15 October 2008 (15.10.2008)

Authorized officer

GORNER W.

Name and mailing address of the ISA/AT

Austrian Patent Office

Dresdner Straße 87, A-1200 Vienna

Facsimile No +43 / 1 / 534 24 / 535

Telephone No +43 / 1 / 534 24 / 558
Continuation of first sheet

Continuation No. II:

Observations where certain claims were found unsearchable

(Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

Claims Nos.: 1 because they relate to subject matter not required to be searched by this Authority, namely:

Claim 1 is directed to a method performed on a living animal body under PCT rule 39 iv). The applicant is informed that patentability of subject matters under PCT rule 39 iv) depends on national intellectual property laws. Nevertheless, the search as well as the establishment for novelty, inventive step was performed on the basis of the alleged effects of the respective method.

Claims Nos.: 2 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

Claim 2 is unclear since it does not contain any technical features referring to a method for specifically labelling outer and inner segments and pedicles of mammalian cone photoreceptors in vivo, only the unclear formulation "substantially as here described" and was therefore excluded from the search as well as the establishment for novelty, inventive step and industrial applicability.
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Szel A, von Schantz M, Röhlich P, Farber DB, van Veen T. "Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina." Section Material and Methods, Results</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>A</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

FoπnPCr/ISA/210 (patent family annex) Qaly 1998; reprint January 2004