This invention relates to an ironing board cover, whether embodying a single sheet or multiple sheets, and whether there is included an element or part thereof which is or acts as an ironing board pad.

The invention comprises in general an outer sheet having a polymeric resinous nature including silicone resins. There is dispersed in the resinous material finely divided metal, such as powdered aluminum, whereby one surface of the ironing board cover comprises the polymeric resinous material impregnated with the dispersed powdered aluminum to produce a highly reflective and radiant heat reflective surface. The ironing board cover of the invention is preferably reversible, there being the aforesaid polymeric resinous substance having the finely dispersed metal powder on one side or surface, and an opposite side or surface of a plain cotton fabric. The polymeric-coated side of the cover is particularly adapted for ironing articles such as sheets, pillow cases, and the like, while the plain cotton side of the cover is used for ironing lingerie and other finer and thinner articles. It has been found that the reflective and deflecting surface ordinarily provides an ironing temperature from two to three hundred degrees greater than the plain cotton side, and, therefore, inasmuch as the two sides are reversible, the cover is adaptable for use with various types of materials as described above.

The cover of the invention also includes an intermediate or inner layer of material which has heat insulation qualities, and this inner sheet or layer preferably comprises a heat-resistant foam polymer, such as foam polyester. The foam polymer may be either natural or synthetic, and includes natural as well as synthetic rubber. The foam polymer, regardless of the type used, has a certain predetermined amount of resistance to heat transfer, particularly by reason of lessening conductive heat.

The three layers comprising the ironing board cover of the invention are secured together along the outer peripheral edge by stitching, binding, or otherwise, and comprise built-in pockets which are complete in themselves, being bound on all sides except at their inner ends to receive the ironing board. Therefore, when the outer, shiny, resinous polymer side is used, the pockets will be arranged on the lower side of the ironing board and extend inwardly a predetermined distance. When the cotton fabric side is employed, the pockets are turned inside out, whereby the same pockets are used to receive the same ends of the ironing board with the cotton cloth surface being the ironing surface.

The primary object of the present invention resides in the provision of a reversible ironing board cover having opposed outer sheets of material, each sheet having a separate ironing surface, one sheet having a metallic ironing surface formed by applying thereto a polymeric material in which there is dispersed a fine metal powder, such as powdered aluminum, the other outer sheet having a woven cotton fabric ironing surface, thereby providing separate reversible ironing surfaces, said sheets having an insulating foam polymer arranged therebetween.

Another object of the invention resides in the provision of a reversible ironing board cover formed of separate sheets of material, one sheet having its outer surface treated with a highly reflective material formed by applying thereto a resinous material containing finely dispersed powdered aluminum, the other sheet having an ironing surface of a woven cloth cotton material, whereby two separate reversible ironing surfaces are provided, there being reversible pockets at each end of the cover which may be turned inside out for securing the cover to an ironing board.

A further object of the invention resides in the provision of an ironing board cover having opposed sheets, one sheet having a metallic ironing surface on one side and the other sheet having a cloth ironing surface on the other side, there being a pocket arranged on each end of the cover, each pocket being capable of being turned inside out to hold the cover to the ironing board, regardless of which side is used for ironing purposes.

Still another object of the invention resides in the provision of an ironing board cover having a one-piece pocket arranged on each end thereof and capable of being turned inside out so that separate ironing surfaces may be attached to the ironing board by slipping the board into the pockets beneath the board regardless of which side is presented for ironing purposes.

Numerous other objects and advantages of the invention will be apparent throughout the progress of the specification which is to follow.

The accompanying drawings illustrate a certain selected embodiment of the invention, and the views therein are as follows:

FIG. 1 is a detail perspective view of an ironing board and its supporting frame, the cover of the invention being applied to the board;

FIG. 2 is a top plan view of the ironing board cover on an enlarged scale and showing the metallic ironing surface also shown in FIG. 1;

FIG. 3 is a plan view of the ironing board cover showing the reverse side, or side opposite to FIGS. 1 and 2.

FIG. 4 is a view similar to FIG. 2 but showing the opposite side comprising the woven cotton surface;

FIG. 5 is a view similar to FIG. 3 but showing the opposite side thereof which comprises the metal impregnated surface which would lie beneath the ironing board;

FIG. 6 is a detail longitudinal section on a greatly enlarged scale, the view being taken along the line 6--6 of FIG. 1;

FIG. 7 is a detail transverse sectional view on the line 7--7 of FIG. 1;

FIG. 8 is a transverse sectional view on the line 8--8 of FIG. 1;

FIG. 9 is a detail fragmentary section showing a single ironing board cover having a metal impregnated surface on one side of a sheet and a cotton surface on the opposite side of the sheet; and

FIG. 10 is a detail fragmentary section showing an ironing board cover having a metal impregnated surface on one side of the cover and a foam polymer surface on the other side thereof.

The particular ironing board cover embodying the invention disclosed in FIGS. 1 to 8, inclusive, comprises an outer sheet 2 having a metal impregnated ironing surface 3, FIGS. 1, 2, and 4. The sheet 2 is made of cloth material, such as a woven cotton fabric, to which there is applied a silicone plastic, or other resinous material, containing a metal powder, such as powdered aluminum, to form the ironing surface 3. The plastic or resinous material is applied to the cotton fabric by means of a knife edge to impregnate thoroughly the plastic material and to fill all the interstices in the fabric. The resinous or plastic material is of such a kind and nature as to have heat deflecting and reflecting characteristics as well as perhaps having heat dissipating and resisting qualities to resist or retard radiant heat. Also, the powdered aluminum dispersed in the thermosetting plastic material provides for high heat reflection, therefore.
preventing a great deal of heat to be dissipated and not transmitted interiorly. The ironing surface 3 of the sheet 2 is used primarily for ironing more of the heavier types of linen and cotton material such as bed sheets, pillow cases, and the like, FIGS. 1, 2 and 5 to 8.

The opposite or reverse side of the ironing board cover includes an outer sheet 4, FIGS. 3 and 4. The sheet 4 is made from a cloth material, such as woven cotton fabric 5, which is left untreated without the use of any polystyrene impregnated surfaces 3 and 5, respectively. The ironing surface 5 is for ironing lighter and finer materials and garments, such as lingerie, fine, thin handkerchiefs, and the like, FIGS. 3, 4 and 6 to 8.

It has been found that the use of the metal impregnated ironing surface 3 provides for an ironing temperature of from two hundred to three hundred degrees greater than the plain woven cotton fabric surface 5 of the cotton layer or sheet 4.

The ironing board cover of the invention also includes an intermediate or inner layer of material 6, such as heat resistant foam polymer which has certain heat resisting qualities, FIGS. 6 to 8. The foam polymer may be either natural or synthetic and includes natural as well as synthetic rubber. The foam polymer, regardless of the type used, has a certain predetermined amount of resistance to heat, particularly by reason of lessening conductive heat.

The ironing board cover 1 of the invention, therefore, preferably comprises three plies, an outer sheet 2 having an ironing surface 3, resinous material applied to the surface 3, the resinous material containing a metallic substance such as powdered aluminum; a second sheet 4 having an ironing surface 5 which is a woven cotton fabric; and the intermediate or interlayer of foam polymer sheet 6 arranged between the aforesaid two sheets 2 and 4, FIGS. 6 to 8 showing the cover applied to an ironing board 7.

The invention also includes end pockets 8 and 9, the pocket 8 being relatively narrow and adapted to receive the hand or narrower end of the ironing board 7, while the pocket 9 is relatively wide and adapted to receive the wider or foot end of the ironing board. The narrower pocket receives the narrower end of the ironing board, and the larger pocket receives the opposite end, but inasmuch as the opposite or wider end of the ironing board 7 may vary considerably in width, the pocket 9 is bound along its outer edge by means of an elastic material 10, FIGS. 1 to 6 and 8, therefore, assuring that the cover be maintained fast. Inasmuch as the cover 1 is adapted to be reversible, having two separate and distinct ironing surfaces 3 and 5, the pockets 8 and 9 are made reversible, that is, capable of being turned inside out so that the metal surface 3 shown in FIG. 2 will be at the upper side of the ironing board 7, while the cotton fabric surface 5, FIG. 3, will lie on the underside of the board, FIG. 3. Also, when the pockets 8 and 9 are turned inside out, the cotton fabric side will be the ironing surface and the metal impregnated side, as shown in FIG. 5, will lie beneath the ironing board.

The invention, therefore, comprises a three-ply ironing board cover which is relatively universal in application, permitting heavier garments and material to be ironed on the metal side, and then when the pockets are turned inside out, permitting the fabric surface 5 to assume the position in FIG. 4, while the pockets 8 and 9, FIG. 5, will be arranged beneath the ironing board, FIG. 5.

There is, therefore, provided a reversible ironing board cover having separate ironing surfaces with heat resisting foam polymer arranged therebetween. The three layers, that is, the metal impregnated sheet 2, the other exterior cotton fabric sheet 4, and the interior foam polymer layer 6 between the two aforesaid sheets are adapted to be secured together along the periphery of the cover as shown at 11 in FIGS. 6 to 8 by means of stitching, binding, or otherwise.

The pockets 8 and 9 are also adapted for universal application with respect to both ironing surfaces 3 and 5 because they may be turned inside out to lie on the bottom of the ironing board, and, therefore, a smooth ironing surface is provided, one surface 3 being metallic, as shown in FIGS. 1 and 2, while the smooth unimpregnated cotton surface 5 is presented in the manner shown in FIG. 4.

The use of the pocket construction of the invention may be used also in connection with a single ply ironing board cover 12, FIG. 9, which is reversible, one surface comprising a metallic surface 13 and the other or reverse surface comprising a plain cotton surface 14, the pockets not being shown in FIGS. 9 and 10.

FIG. 10 discloses a fragmentary view of a different type of ironing board cover 15 which is of two plies, the upper ply 16 thereof being the metallic surface 17, with an underlying layer of foam polymer 18 secured directly to the sheet 17, as in some instances the ironing operation can be done on the foam polymer surface 18. In any event, the pockets, not shown in FIG. 10, comprise a single piece of material which is secured along the outer peripheral edges, as at 11, by stitching the same thereto, or fastening the same thereto in any conventional manner. The pockets are open on one side only, like in FIGS. 1 to 6, the open side being at the inner side of the cover. Therefore, there is no reason for slitting the pockets, securing the same with snap fasteners, buttons, or other devices, as all that is necessary is that the one or more pockets be turned inside out to receive the ends of the ironing board, and, therefore, have an unimpregnated ironing surface, whether the surface be metallic or non-metallic.

The use of the intermediate layer of foam polymer 6 or 18 is to prevent heat penetration and to provide a relatively soft ironing surface, and, therefore, the cover 1 of the invention not only acts as a reversible cover, but also acts as a reversible cover plus an integral ironing board pad, FIGS. 6 to 10.

The ironing board cover 1 of the invention permits an ironing surface having a higher ironing temperature on one side, the metallic side, than on the other, and a lower ironing temperature on the woven cotton side.

Changes may be made in the form, construction and arrangement of the parts without departing from the spirit of the invention or sacrificing any of its advantages, and the right is hereby reserved to make all such changes as fall fairly within the scope of the following claims.

The invention is hereby claimed as follows:

1. A reversible ironing board cover comprising, a first outer sheet of heat reflecting material having an impregnated surface including a resinous material containing a powdered metal defining a first ironing surface, a second outer sheet of heat absorbing woven cloth material spaced from said first outer sheet and defining a second ironing surface, and an intermediate sheet of cushioning material arranged between said outer sheets, all of said sheets being secured together to form a unitary cover, and a reversible contourd pocket secured to each end of said cover for detachably securing the cover to an ironing board.

2. A reversible ironing board cover as defined by claim 1, wherein said cushioning material is a foam polymer with heat insulating characteristics.

References Cited in the file of this patent

UNITED STATES PATENTS

457,033 Sanders Aug. 4, 1891
1,895,731 Premzel Jan. 31, 1933
2,012,056 Ruttenberg Aug. 20, 1935
2,269,804 Allaback Jan. 13, 1942
2,298,927 Callan et al. Oct. 1, 1942
2,464,570 Galbraith Mar. 15, 1949
2,570,119 Glatt Oct. 2, 1951
2,814,155 Freeman Nov. 26, 1957