(54) 发明名称
基于三维地理信息的动态视频时空虚拟合成方法及其系统

(57) 摘要
本发明实施例公开了基于三维地理信息的动态视频时空虚拟合成方法及其系统，所述方法包括：构建三维地理信息场景，所述三维地理信息场景加载了遥感影像、数字高程、矢量地图和三维模型；获取信息并更新所述信息数据，并将所述信息数据统一汇聚至所述三维地理信息场景中，并对所述信息数据进行处理得到处理后的信息数据；所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景；将所述融合场景实现二维和三维融合场景同时布局显示。
1. 基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述方法包括：
 构建三维地理信息场景，所述三维地理信息场景加载了遥感影像、数字高程、矢量地图和三维模型；
 获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中；
 对所述信息数据进行处理得到处理后的信息数据；
 将所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景；
 将所述融合场景实现二维和三维融合场景同时布局显示。

2. 如权利要求1所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述信息数据包括：通过若干视频监控摄像机获取的第一视频数据和/或通过若干视频分析摄像机获取的智能分析数据和/或通过若干物联网传感器获取的多源传感数据和/或通过定点摄像机和动点摄像机获取的第二视频数据。

3. 如权利要求2所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中，包括：
 通过视频应用网关，获取所述第一视频数据并统一汇聚至接入的所述三维地理信息场景中；和/或
 通过智能分析网关，获取智能分析数据并挖掘分析所述智能分析数据，将所述智能分析数据统一汇聚至接入的所述三维地理信息场景中；和/或
 通过物联感知网关，获取各类传感器感知的多源感知数据，将所述多源感知数据统一汇聚至接入的所述三维地理信息场景中；和/或
 通过视频应用网关，获取所述第二视频数据并统一汇聚至接入的所述三维地理信息场景中。

4. 如权利要求2所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述处理所述信息数据进行处理得到处理后的信息数据，包括：
 通过视频桥转正方式，对第一视频数据进行裁剪、拉伸、变形处理，使多个所述第一视频数据之间实现画面内容的全景图像拼接；和/或
 通过所述智能分析数据的应用类型和分类获得第一数据展示牌；和/或
 通过对源传感数据的应用类型和分类获得第二数据展示牌；和/或
 通过定点枪机和动点球机把多个固定摄像机和多个球型摄像机进行位置标定匹配，得到多个所述固定摄像机和多个所述球型摄像机全景拼接后的拼接画面，所述拼接画面与多个所述动点球机的视角做画面内容匹配得到所述第二视频数据。

5. 如权利要求2所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景，包括：
 将所述第一视频数据与所述三维地理信息场景匹配，实现动态视频与虚拟场景的融合；和/或
 将第一数据展示牌与所述三维地理信息匹配，实现所述智能分析数据按场景浏览和查看；和/或
 将第二数据展示牌与所述三维地理信息匹配，实现所述多源传感数据按场景浏览和查看。
所述第二视频数据与所述三维地理信息匹配，实现通过鼠标控制多个动点球机画面自动对多个固定摄像机和多个球型摄像机画面内容或目标对象的捕捉、同步细节放大和目标跟踪。

6. 如权利要求3所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，所述视频应用网关，通过28281协议或SDK方式，实现所述若干视频监控摄像机的接入和流媒体转发；
所述智能分析数据网关，通过28281协议或SDK方式，实现多种若干视频分析摄像机或第三方平台的智能分析应用的接入和分析数据转发；
所述物联感知数据网关，通过SDK方式，实现多种传感器的感知的所述多源传感数据的接入和动态数据转发。

7. 如权利要求1所述的基于三维地理信息的动态视频时空虚实融合方法，其特征在于，将所述融合场景实现二维和三维融合场景同时布局显示，包括；
锁定二维画面，使二维场景作为整体观察画面，三维场景用于特写画面，用于具体区域的视角跟随浏览，实现整体宏观和细节场景的协调统一趋势感知。

8. 基于三维地理信息的动态视频时空虚实融合系统，其特征在于，所述系统包括；
三维地理信息场景生成模块，用于生成三维地理信息场景；
视频拼接和融合模块，用于在三维地理信息场景中对第一视频数据拼接和融合；和/或
智能分析数据融合模块，用于在三维地理信息场景中，对智能分析数据进行三维空间位置匹配和融合；和/或
多源传感数据融合模块，用于在三维地理信息场景中，对传感数据感知的多源感知数据进行三维空间位置匹配和融合；和/或
多源多球联动模块，用于获取第二视频数据；和
二三维一体化调度模块，用于对三维地理信息场景实现二维、三维场景调度。

9. 如权利要求8所述的基于三维地理信息的动态视频时空虚实融合系统，其特征在于，所述二三维一体化调度模块，用于调度所述视频拼接和融合模块控制若干视频监控摄像机进行拍摄；和/或用于调度所述智能分析数据融合模块控制若干视频分析摄像机进行数据挖掘和分析；和/或用于调度所述多源传感数据融合模块控制若干物联网传感器进行数据采集；和/或用于调度所述多源多球联动模块控制若干定点和动点摄像机进行拍摄。

10. 如权利要求9所述的基于三维地理信息的动态视频时空虚实融合系统，其特征在于，所述系统还包括；
若干视频监控摄像机，用于获取第一视频数据，并通过视频拼接和融合模块对所述第一视频数据拼接和融合；和/或
若干视频分析摄像机，用于对视频数据进行智能分析，得到智能分析数据，并通过智能分析数据融合模块对所述智能分析数据进行三维空间位置匹配和融合；和/或
若干物联网传感器，用于获取各类传感器感知的多源感知数据，并通过多源传感数据融合模块对所述传感器感知的多源感知数据进行三维空间位置匹配和融合；和/或
若干定点和动点摄像机，用于获取第二视频数据，并通过多枪多球联动模块实现对所述第二视频数据统一调度；和
若干显示输出设备，用于将所述第一视频数据和/或所述智能分析数据和/或所述多源感知数据和/或所述第二视频数据与三维地理信息场景进行匹配和融合并显示。
基于三维地理信息的动态视频时空虚实融合方法及系统

技术领域
[0001] 本发明涉及虚拟现实领域，特别涉及基于三维地理信息的动态视频时空虚实融合方法及系统。

背景技术
[0002] 随着虚拟现实技术的不断发展，多种虚拟现实技术产品已经改变了人们的体验和使用方式。人类历史已经从机器轰鸣的工业流水线上，全面迈入了虚拟与现实融合的信息时代。

【0003】针对城市化快速发展的各类社会治安突出问题，视频监控起到了关键的作用。截止2017年，我国摄像机覆盖密度相对美国和英国等发达国家仍然较低。美国平均每千人配备约96台监控摄像机，英国平均每千人配备约75台监控摄像机，我国摄像头密度均低于前者的北京每千人约配备59台监控设备，而紧随其后的杭州、上海等地每千人配备的摄像头数目约40左右。随着我国雪亮工程、新型平安城市建设的发展和推进，视频监控在未来在我国会有更快速的建设过程，摄像机市场呈现出巨大的增长空间。

【0004】在监控摄像机数量的不断庞大的同时，在监控系统中面临着手上的严峻的现状问题：海量视频分散、孤立、视角不完整的、位置不明确等问题，始终围绕着使用者。因此，如何更直观、更准确的管理摄像机掌控视频时空动态，已成为提高视频应用价值的重要话题。

【0005】三维地理信息视频融合技术，面向安防视频监控领域，正是从解决此现状问题的角度应运而生。围绕如何提高、管理和有效利用前端设备采集的海量信息为公共安全服务，特别是在技术融合大趋势下，如何结合当前先进的视频融合、虚实融合、三维动态等技术，实现三维地理信息场景实时动态可视化监控，更有效的识别、分析、挖掘海量数据的有效信息服务公共应用，已成为视频监控平台可视化发展的趋势和方向。

【0006】需要解决的监控信息化问题如下：

【0007】(1) 传统视频监控画面相互割裂，不能形成宏观整体观察。浏览的视频，只是基于单个摄像机的独立视频画面，无法反应和还原真实场景信息。

【0008】(2) 监控视频资源较多，无法按需迅速调阅目标浏览。

【0009】(3) 监控画面无法与城市场景融合，位置信息辨认困难，根据视频状态，无法确认场景的准确空间位置信息，不能实现场景可视化，无法进行快速定位和决策指挥。

【0010】(4) 监控视频管理，仅具备日常简单的视频实时查询、视频录像回放等功能，不能成为一个空间连贯的整体进行回放，无法实现视频自动巡控和有效回溯研判分析。

【0011】(5) 监控画面全景和细节难以同时兼顾。即看见全貌时不能看清细节，看清细节时不能看见全貌。

【0012】(6) 智能分析数据分散、孤立，不能形成整体时间事件脉络，只能一个一个画面分析，花费大量的时间和人力去研判，效率低、工作量大。

【0013】(7) 多种物联网感知数据分散、孤立，不能形成时间和空间业务上的统一，利用价值低。
发明内容
[0014] 本发明的目的在于提供基于三维地理信息的动态视频时空虚实融合方法及系统，用以解决现有技术问题各种采集的信息数据分散和孤立，不能形成整体的融合场景供使用者浏览的技术问题。
[0015] 为实现上述目的，本发明实施例的技术方案为：
[0016] 本发明实施例提供了基于三维地理信息的动态视频时空虚实融合方法，所述方法包括：
[0017] 构建三维地理信息场景，所述三维地理信息场景加载了遥感影像、数字高程、矢量地图和三维模型；
[0018] 获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中；
[0019] 对所述信息数据进行处理得到处理后的信息数据；
[0020] 将所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景；
[0021] 将所述融合场景实现二维和三维融合场景同时布局显示。
[0022] 优选地，所述信息数据包括：通过若干视频监控摄像机获取的第一视频数据和/或通过若干视频分析摄像机获取的智能分析数据和/或通过若干物联网传感器获取的多源传感数据和/或通过定点摄像机和动点摄像机获取的第二视频数据。
[0023] 优选地，所述获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中，包括：通过视频应用网关，获取所述第一视频数据并统一汇聚至接入的所述三维地理信息场景中；和/或通过智能分析数据网关，获取智能分析数据并汇聚分析所述智能分析数据，将所述智能分析数据统一汇聚至接入的所述三维地理信息场景中；和/或通过物联感知数据网关，获取各类传感器感知的多源感知数据，将所述多源感知数据统一汇聚至接入的所述三维地理信息场景中；和/或通过视频应用网关，获取所述第二视频数据并统一汇聚至接入的所述三维地理信息场景中。
[0024] 优选地，所述对所述信息数据进行处理得到处理后的信息数据，包括：通过视频校正方式，对第一视频数据进行裁剪、拉伸、变形处理，使多个所述第一视频数据之间实现画面内容的全景图像拼接；和/或通过所述智能分析数据的应用类型和分类获得第一数据展示牌；和/或通过所述多源传感数据的应用类型和分类获得第二数据展示牌；和/或通过定点枪机和动点球机把多个固定摄像机和多个球型摄像机进行位置标定匹配，得到多个所述固定摄像机和多个所述球型摄像机全景拼接后的拼接画面，所述拼接画面与多个所述动点球机的视角做画面内容匹配得到所述第二视频数据。
[0025] 优选地，将所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景，包括：
[0026] 将所述第一视频数据与所述三维地理信息场景匹配，实现动态视频与虚拟场景的融合；和/或将所述第一数据展示牌与所述三维地理信息匹配，实现所述智能分析数据按场景浏览和查看；和/或将所述第二数据展示牌与所述三维地理信息匹配，实现所述多源传感数据按场景浏览和查看；和/或所述第二视频数据与所述三维地理信息匹配，实现通过鼠标控制多个所述动点球机画面自动对多个所述固定摄像机和多个所述球型摄像机画面内容
或目标对象的捕捉、同步细节放大和目标跟踪。

[0027] 优选地，所述视频应用网关，通过28281协议或SDK方式，实现所述若干视频监控摄像机的接入和流媒体转发；所述智能分析数据网关，通过28281协议或SDK方式，实现多种若干视频分析摄像机或第三方平台的智能分析应用的接入和分析数据转发；所述物联网感知数据网关，通过SDK方式，实现多种传感器的感知的所述多源传感数据的接入和动态数据转发。

[0028] 优选地，所述将所述融合场景实现二维和三维融合场景同域布局显示，包括：锁定二维画面，使二维场景作为整体观察画面，三维场景用于特写画面，用于具体区域的视角跟随浏览，实现整体宏观和细节场景的协调统一态势感知。

[0029] 本发明实施例另外一方面，提供了基于三维地理信息动态视频时空虚实融合系统，包括：三维地理信息场景生成模块，用于生成三维地理信息场景；视频拼接和融合模块，用于在三维地理信息场景中，对第一视频数据拼接和融合；和/或智能分析数据融合模块，用于在三维地理信息场景中，对所述智能分析数据进行三维空间位置匹配和融合；和/或多媒体数据融合模块，用于在三维地理信息场景中，对所述传感器感知的多源感知数据进行三维空间位置匹配和融合；和/或多种多球联动模块，用于获取第二视频数据；和三维一体化调度模块，用于对三维地理信息场景实现二维、三维场景调度。

[0030] 优选地，所述二三维一体化调度模块，用于调度所述视频拼接和融合模块控制若干视频监控摄像机进行拍摄；和/或用于调度所述智能分析数据融合模块控制若干视频分析摄像机进行数据挖掘和分析；和/或用于调度所述感知数据融合模块控制所述物联网传感器进行采集多源感知数据；和/或用于调度所述多球多联动模块控制若干定点和动点摄像机进行拍摄。

[0031] 本发明实施例另外一方面，提供了基于三维地理信息的动态视频时空虚实融合系统，包括：

[0032] 若干视频监控摄像机，用于获取第一视频数据，并通过视频拼接和融合模块对所述第一视频数据拼接和融合；和/或若干视频分析摄像机，用于对所述第一视频数据进行智能分析，得到智能分析数据，并通过智能分析数据融合模块对所述智能分析数据进行三维空间位置匹配和融合；和/或若干物联网传感器，用于获取各类传感器感知的多源感知数据，并通过多源传感数据融合模块对所述传感器感知的多源感知数据进行三维空间位置匹配和融合；和/或若干定点和动点摄像机，用于获取第二视频数据，并通过多球多联动模块实现对所述视频数据数据统一调度；和若干显示输出设备，用于将所述第一视频数据和第二视频数据与三维地理信息场景进行匹配和融合并显示。

[0033] 本发明实施例具有如下优点：

[0034] 本发明实施例公开基于三维地理信息的动态视频时空虚实融合方法及系统，实现获取的各信息数据与三维地理信息场景统一融合关联，整体、直观、有序的感知和应用数据，从而形成基于三维地理信息场景的大规模动态视频、大规模智能分析数据和大规模感知数据的时间与空间统一的混合现实融合。

附图说明
具体实施方式

以下实施例用于说明本发明，但不用于限制本发明的范围。
[0038] 需要说明的是，本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象，而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换，以使这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外，术语“包括”和“具有”以及他们的任何变形，意图在于覆盖不排他的包含，例如，包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元，而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0039] 实施例1
[0040] 以下具体实施例详细说明本发明的技术方案，如图1，图1为本发明实施例公开的基于三维地理信息的动态视频时空虚实融合方法的流程图：本发明实施例公开了基于三维地理信息的动态视频时空虚实融合方法包括：
[0041] 步骤S01，构建三维地理信息场景，所述三维地理信息场景加载了遥感影像、数字高程、矢量地图和三维模型。
[0042] 在步骤S01中，在三维地理信息场景中，加载了遥感影像、数字高程、矢量地图和三维模型；可以实现视频监控平台可视化。
[0043] 步骤S02，获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中。
[0044] 步骤S02中，所述信息数据包括：通过若干视频监控摄像机获取的第一视频数据和/或通过若干视频分析摄像机获取的智能分析数据和/或通过若干物联网传感器获取的多源传感数据和/或通过定点摄像机和动点摄像机获取的第二视频数据。
[0045] 通过视频应用网关，获取海量分析的监控视频画面，主要对定点若干视频监控摄像机进行处理，统一汇聚接入的三维地理信息场景中。
[0046] 通过智能分析数据网关，获取大数挖掘和分析数据，主要包括对智能分析类产品进行处理，包括：人脸识别、车辆识别、特征分析、越界分析、物品丢失遗留分析等，将智能分析数据统一汇聚接入的三维地理信息场景中。
[0047] 通过物联网感知数据网关，获取点源、线源、面源传感器感知是各类数据，主要包括：温度传感器、质量传感器、烟雾报警传感器、激光雷达传感器等，将海量感知数据统汇接入的三维地理信息场景中。
[0048] 通过视频应用网关，获取所述第二视频数据并统一汇聚至接入的所述三维地理信息场景中。
[0049] 视频应用网关，通过28281协议或SDK方式，实现若干视频监控摄像机的接入和流媒体转发。
[0050] 智能分析数据网关，通过28281协议或SDK方式，实现多种若干视频分析摄像机或
第三方平台的智能分析应用的接入和分析数据转发；
[0051] 物联感知数据网关，通过SDK方式，实现多种传感器的感知的多源传感数据的接入和动态数据转发。
[0052] 步骤S03，对所述信息数据进行处理得到处理后的信息数据。
[0053] 通过视频校正方式，实现对视频画面的裁剪、拉伸、变形等处理，使多个视频画面之间实现画面内容的全景图像拼接，同时画面内容与三维地理信息场景匹配，实现动态视频与虚拟场景的融合。
[0054] 通过智能分析数据的应用类型和分类，并把第一数据展示牌与空间地理位置匹配，实现智能数据按场景浏览和查看。
[0055] 通过物联感知数据的应用类型和分类，并把第二数据展示牌与空间地理位置匹配，实现物联感知数据按场景浏览和查看。
[0056] 主要针对定点枪机和动点球机，把多个固定摄像机和多个球型摄像机进行位置标定匹配，多个摄像机全景拼接后的画面，与多个球机的视角，做画面内容匹配得到第二视频数据。
[0057] 步骤S04，将所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景。第一视频数据与三维地理信息场景匹配，实现动态视频与虚拟场景的融合；和/或
[0058] 将第一数据展示牌与所述三维地理信息信息匹配，实现智能分析数据按场景浏览和查看；和/或
[0059] 将第二数据展示牌与三维地理信息信息匹配，实现多源传感数据按场景浏览和查看；和/或
[0060] 第二视频数据与三维地理信息信息匹配，实现通过鼠标控制多个所述动点球机画面自动对多个固定摄像机和多个球型摄像机画面内容或目标对象的捕捉，同步细节放大和目标跟踪。
[0061] 步骤S05，将所述融合场景实现二维和三维融合场景同时布局显示。
[0062] 步骤S05中，具体包括，通过三维地理信息场景，进行显示控制操作，实现二维、三维场景布局同时显示。在二三维场景中，实现任意在二维或三维场景中操作，三维或二维场景视角同步浏览，锁定三维画面，使二维场景作为整体观测画面，三维场景用于特写画面，用于具体区域的视角跟随浏览。做到整体宏观和细节场景的协调统一态势感知。
[0063] 本发明实施例公开的技术方案使用三维地理信息视频融合技术，提取、管理和有效利用前端设备采集的海量信息为公共安全服务，结合当视频融合，虚实融合、三维动态等技术，实现三维地理信息场景实时动态可视化监控，更有效的识别、分析、挖掘海量数据的有效信息服务公共应用，实现视频监控平台可视化。
[0064] 实施例2
[0065] 本发明实施例公开了基于三维地理信息的动态视频时空虚实融合系统，如图2所示，基于三维地理信息的动态视频时空虚实融合系统，包括：
[0066] 三维地理信息场景生成模块01，用于生成三维地理信息场景；
[0067] 视频拼接和融合模块02，用于在三维地理信息场景中，对第一视频数据拼接和融合；和/或
[0068] 智能分析数据融合模块03，用于在三维地理信息场景中，对所述智能分析数据进行三维空间位置匹配和融合；和/or
[0069] 多源传感数据融合模块04，用于在三维地理信息场景中，对所述传感器感知的多源感知数据进行三维空间位置匹配和融合；和/or
[0070] 多光多球联动模块05，用于获取第二视频数据；
[0071] 二三维一体化调度模块06，用于对三维地理信息场景中，实现二维、三维场景调度；用于调度所述视频拼接和融合模块控制若干视频监控摄像机进行拍摄；用于调度所述智能分析数据融合模块控制若干视频分析摄像机进行数据挖掘和分析；用于调度所述源传感数据融合模块控制若干物联网传感器进行采集多源感知数据；用于调度所述多光多球联动模块控制若干定点和动点摄像机进行拍摄。
[0072] 视频拼接和融合模块02，通过视频应用网关，获取海量分析的监控视频画面，主要对点数若干视频监控摄像机进行处理，统一汇聚接入的三维地理信息场景，通过视频校正方式，实现对视频画面的裁剪、拉伸、变形等处理，使多个视频画面之间实现画面内容的全景图像拼接，同时画面内容与三维地理信息模型场景匹配，实现动态视频与虚拟场景的融合。
[0073] 智能分析数据融合模块03，通过智能分析数据网关，获取大数据挖掘和分析数据，主要包括对智能分析类产品进行处理，包括：人脸识别、车辆识别、线线分析、越界分析、物品丢失跟踪分析等，统一汇聚接入的三维地理信息场景中，通过智能数据的应用类型和分类，并把第一数据展示牌与空间地理位置匹配，实现智能数据按场景浏览和查看。
[0074] 多源传感数据融合模块04，通过物联感知数据网关，获取点源、线源、面源传感器感知的各类数据，主要包括：温湿度传感器、空气质量传感器、烟雾报警传感器、激光雷达传感器等，统一汇聚接入的三维地理信息场景中，通过物联感知数据的应用类型和分类，并把第二数据展示牌与空间地理位置匹配，实现物联感知数据按场景浏览和查看。
[0075] 多光多球联动模块05，通过视频应用网关，主要针对定点枪机和动点球机，把多个固定摄像机和多个变焦摄像机进行位置标定匹配，多个摄像机全景拼接后的画面，与多个球机的视角，做画面内容匹配，并与空间地理坐标对应，实现通过鼠标动作，对摄像机全景画面内容点击或框选，多个球机画面自动对全景摄像机画面内容或目标快速、精准、连续、流畅的捕捉，同步细节放大和目标跟踪。
[0076] 二三维一体化调度模块06，通过三维地理信息视频融合场景，进行显示控制操作，实现二维、三维场景布局同时显示。在二三维场景中，实现任意在二维或三维场景中操作，三维或三维场景视角同步浏览。可选，锁定三维画面，使三维场景作为整体观测画面，三维场景用于特写画面，用于具体区域的视角跟随浏览。做到整体宏观和细节场景的协调统一态势感知。
[0077] 本发明实施例公开的技术方案使用三维地理信息视频融合技术，提高、管理和有效利用前端设备采集的海量信息为公共安全服务，结合当视频融合，实现虚拟、三维动态等技术，实现三维地理信息场景实时动态可视化监控，更有效的识别、分析、挖掘海量数据的有效信息服务公共应用，实现视频监控平台可视化。
[0078] 实施例3
[0079] 本发明实施例公开了基于三维地理信息的动态视频时空虚拟融合系统，如图2所
示，基于三维地理信息的动态视频时空虚拟融合系统，包括：
[0080] 若干视频监控摄像机07，用于获取第一视频数据，并通过视频拼接和融合模块02
对所述第一视频数据拼接和融合；
[0081] 若干视频分析摄像机08，用于对所述视频数据进行智能分析，得到智能分析数据，
并通过智能分析数据融合模块03对所述智能分析数据进行三维空间位置匹配和融合；
[0082] 若干物联网传感器09，用于获取各类传感器感知的多源感知数据，并通过多源传感
数据融合模块04对所述传感器感知的多源感知数据进行三维空间位置匹配和融合，物联
网传感器09包括烟感传感器、温湿度传感器、PM2.5传感器等等；
[0083] 若干定点和动点摄像机10，用于获取第二视频数据，并通过多枪多球联动模块05
实现对将多个固定视频与多个非固定视频的统一调度；
[0084] 若干显示输出设备11，用于将所述第一视频数据、所述智能分析数据、所述多源感
知数据和所述第二视频数据与三维地理信息场景进行匹配和融合并显示。
[0085] 本发明实施例公开的技术方案使用三维地理信息视频融合技术，提高、管理有效利
用前端设备采集的海量信息为公共服务，结合当视频融合，虚实融合、三维动态等
技术，实现三维地理信息场景实时动态可视化监控，更有效的识别、分析、挖掘海量数据的
有效信息服务公共应用，实现视频监控平台可视化。
[0086] 虽然，上文中已经用一般性说明及具体实施例对本发明作了详尽的描述，但在本发
明基础上，可以对之作一些修改或改进，这对本领域技术人员而言是显而易见的。因此，
在不偏离本发明精神的基础上所做的这些修改或改进，均属于本发明要求保护的范围。
构建三维地理信息场景，所述三维地理信息场景加载了遥感影像、数字高程、矢量地图和三维模型

获取信息数据并将所述信息数据统一汇聚至所述三维地理信息场景中

对所述信息数据进行处理得到处理后的信息数据

将所述处理后的信息数据与所述三维地理信息场景中进行匹配，得到所述处理后的信息数据与所述三维地理信息场景的融合场景

将所述融合场景实现二维和三维融合场景同时布局显示

图1

图2

三维地理信息场景生成模块01