P/00/008

Section 29(1)
Regulation 3.1(2)

Patents Act 1990

NOTICE OF ENTITLEMENT

|/We DIGITAL EQUIPMENT CORPORATION
of 111 POWDERMILL ROAD

MAYNARD, MA 01754-1418

U.S.A.

being the applicant(s) in respect of an application for a patent for an invention entitled
Methods and Apparatus for Implementing Data Bases to Provide Object-Oriented
Invocation of Applications (Application No. 79309/91), state the following:

1. The nominated person(s) hcs/have, for the following reasons, gained entitiement
from the actual inventor(s):

The nominated person is the assignee c. the actual inventors.
2. The inventors in respect of the application are as follows:

Robert L. TRAVIS, Jr.

Andrew P. WILSON

Nea! F. JACOBSON

Michael J. RENZULLO
Alan N. EWALD

3. The nominated person(s) is/are the applicant(s) of the basic application(s) listed
on the patent request form.

4, The basic application(s) listed on the request form is/aie the first application(s)
made in a Convention country in respect of the inver.ion.
DATED this 29th day of June 1992

DIGITAL EQUIPMENT CORPORATION
GRIFFITHHACK & CO.

at'gt/wt Attorney for and
on behalf of the applicant(s)

€
FORM 1
COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT
I\We,
DIGITAL EQUIPMENT CORPORATION
of 111 POWDERMILL ROAD

MAYNARD, MA 01754-1418
U.S.A.

hereby apply for the grant of a standard patent for an
invention entitled:

METHODS AND APPARATUS FOR IMPLEMENTING
DATA BASES TO PROVIDE OBJECT-~-ORIENTED

INVOCATION OF APPLICATIONS.

which is described in the accompanying complete specification

Details of basic application(s):

Number of basic

application which basic application was
filed
567298 us

My/our address for service is care of GRIFFITH HACK & CO.,
601 St. Kilda Road, Melbourne

Patent Attorneys,
Victoria, Australia.

DATED this 26th day of June 1991

DIGITAY, EQUIPMENT CORPORATION

GRIFFITH HACK & CO.

TO: The Commissioner of Patents.

Name of Convention country in Date of basic
application

14 AUG 90

3004,

AT A

AU9179309

(12) PATENT ABRIDGMENT (11) pocument No. AU-B-79309/91
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 638138

(54)

(51)°
(21)
(30)
(31

(43)
(44)
(T

(72)

(74)

(57)

Title

METHODS AND APPARATUS FOR IMPLEMENTING DATA BASES TO PROVIDE OBJECT-ORIENTED
INVOCATION OF APPLICATIONS

International Patent Classification(s)

GO6F 015740

Application No. : 79309/91 (22) Application Date : 26.06.91
Priority Data

Number (32) Date (33) Country

567298 14.08.90 US UNITED STATES OF AMERICA

Publication Date : 14.05.92

Publication Date of Accepted Application : 17.06.93

Applicant(s)
DIGITAL EQUIPMENT CORPORATION

inventor(s)

ROBERT L. TRAVIS JR.; ANDREW P. WILSON; NEAL F. JACOBSON; MICHAEL J. RENZULLO;
ALAN N, EWALD

Attorney or Agent
GRIFFITH HACK & CO , GPO Box 1285K, MELBOURNE VIC 3001

Claim
1. A system for organising communication among applications

in a data processing network which includes
a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,
a plurality of instances corresponding to each of said
applications, and
a plurality of platforms operating under the control of
operating systems for executing said applications,
said system comprising
memory in the network containing a data base, said data
base including
a plurality of method entries, each of said
method entries corresponding to one of said
applications and containing a raference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,
a plurality of non-redundant class entries, each

of said class entries containing information about a
/2

(11) AU-B-79309/91 2
(10) 638138

class consisting of one or more instances which share
common characteristics and further containing ai.

identification of one or more message entries,
and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
and
data base control means coupled to the memory in the

network including

means, respensive to a message from a client
application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,

means for selecting a platform capable of
executing the requested application, and

means for transmitting the identifier for the
instance and the reference to a procedure contained in

the selected method entry to the selected platform.

(i1) AU-B-79309/91 3
(10) 638138

8. A system for organising communication among
applications in an object oriented manner in a data
processing network which includes
a plurality of applications capable of performing
operations on instances and capable of sendir: and
receiving messages including indentifiers for instance and
types of operations,
a plurality of instances corresponding to each of said
applications, and
a plurality of platforms operating under the control of
operating systems for executing said applications,
said system comprising
memory in the network containing a data base, said data
base including
a plurality of method entries, 2ach of said
method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a gpecified operation
on a specified instance,
a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and
a plurality of message entries, each of said
messcge entries specifying information about the types
of op=2rations which may be performed on selected
instances and further containing a reference to one or
morze method entries,
the message entries identified in each class
entry containing information about the types of

operations which can be performed on instances

(11) AU-B-79309/91 A
(10) 638138

associated with said class entry,
and
the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
data base control means coupled to the memory in the
“etwork including
means, responsive to a message from a client
application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,
means for selecting a method entry referenced in
the selected message entry and corresponding to the
requested application, means for selecting a platform
capable of executing the requested application, and
means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform; and
an object definition facility coupled to the
memory in the network,
wherein the data base includes a global class portion
which is accessible throughout the network and local
portions which are each accessible to only a portion of the
network,
wherein the data base control means includes
wherein the data base control means includes
means for searching the local data bases in a
predetermined order before searching the global class
data base, and
wherein the object definition facility includes
means for generating globally unique identifiers for

types of operations and instances.

o T T
4 » “-’-— -~ " ; A 7
AUSTRALIA ;M,;’ J & l 3 8

PATENTS ACT 1952

Form 10
COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE

Short Title:
Int. Cl:

Application Number:
Lodged:

Complete Specification-Lodged:
Accepted:
Lapsed:
Published:
Priority:

Related Art:

TO BE COMPLETED BY APPLICANT

Name of Applicant:
DIGITAL EQUIPMENT CORPORATION

Address of Applicant: 111 POWDERMILL ROAD
MAYNARD, MA 01754-1418
U.S.A.

Actual Inventor:

‘Address for Service: GRIFFITH HACK & CO.,
601 St. Kilda Road,
. Melbourne, Victoria 3004,

ivee Australia.

Complete Specification for the invention entitled:
METHODS AND APPARATUS FOR IMPLEMENTING
e DATA BASES TO PROVIDE OBJECT-ORIENTED
T, INVOCATION OF APPLICATIONS.,
"The following statement is a full description of this invention
including the best method of performing it known to me:-

15

20

25

1A

I. RELATED APPLICATIONS

This application is related to Australian patent
application serial no. 79454/91 entitled "Methods and
Apparatus for Providing Dynamic Invocation of Applications
In A Distributed Heterogeneous Environment," Australian
patent application serizl no. 79455/91 entitled "Methods
and Apparatus for Implementing Server Functions In A
Distributed Heterogeneous Environment," and Australian
patent application serial no. 79310/91 entitled "Methods
and Apparatus for Providing a Client Interface To An
Object-Oriented Invocation Of An Application.®
II. BACKGROUND OF THE INVENTION

This invention relates to a system for organising
communication among applications in a data processing
network.

Computers communicate with each other over data
processing networks. The computers themgelves are referred
to generaliy as "nodes," and a specific type of computer,
that is a specific type of hardware using a specific type
of operating system, is referred to as a "platform".
Networks containing different types of platforms are called
"heterogeneous networks". One purpose for connecting
platforms in & network is to provide different environments
in which to execute application programs (referred to as

"applications" for brevity) on shared data.

10

28, .°
T aw ot rices
. .
JNECAN, HENDERSON
SARABOW, CARREYT
& DUNNER
1300 | STRELT. N W
ASKINGTON, DC 20008

202-408:4000

30

In the typical data processing network, different platforms
and applications running on different platforms store information
in their own specific manner. For example, in a VAX.VMS
platform, text editing taske may be accomplished using a TPU text
editor, while in a MIPS.ULTRIX platform, text aditing tasks may
be accomplished using an EMACS text editor. Users of a network
having both platforms may wish to use operations from the
different text editors on the different platforms without having
to know the details of those platforms and text editors.

This compatibility has not previously been possible.
Instead, conventional networks require users of a he‘erogeneous
network to employ the specific interface each application
requires for operations on specific platforms. Conventional
networks fail to provide users with a capability to communicate
between applications using a standard interface.

As an example of the difficulties of interapplication
communication on a conventional heterogeneous network, suppose
that the user of a text editor application on one platform
desired to access a multi-user data base retrieval service, such
as DIALOG for scientific articles or LEXIS for court opinions, on
another platform. To do so on a conventional network, the text
editor application'’s operation would have to be suspended, and
the data base retrieval service would have to be invoked using
commands and messages specific to the data base retrieval
service. The user would not only need to know the specific names

of each service desired, but would also have to know the location

of the service in the network and would have to be familiar with

1

.o
J v
L
% hw or:ncu
.BCANS MENDERSON
RABOW, CARRETT
8 DUNNER
Q0 | STREET. N W
HINGTON, DC 20008
202+408:4000

)

the different commands and command formats employed by each
service.

As yet no standard interface has been developed to allow an
application in one platform to invoke an application on a
different platform in a heterogeneous network in an efficient and
uncomplicated manner. Instead, conventional interapplication
communication merely provides mechanisms for physically
transporting messages and data between applications.

One example of a mechanism which is presently used to allow
an application on one platform to communicate with an application
on a different platform is a Remote Procedure Call (RPC) system.
An RPC system on one platform responds to queries from an
"invoking" application by first translating that application’s
messages into a neéwork data format, and then transmitting the
translated queries over the network to a receiving platform. At
the receiving platform, another component of the RPC system
decodes translated messages into queries in a data format
acceptable to the application invoxed. The original messages
from the invoking platform, however, need to be consistent with a
syntax dictated by the invoked application.

Another difficulty with conventional networks occurs when
the application onn a remote node is not currently loaded and
running. Many RPC systems only allow remote invocation of
applications that are already loaded and running. If this is not
the case, the user of the client applications must find some way
to load the server application on the reinote platform before

invoking it. This can be severely limiting.

10

[
[8y]

20

25

30

4

One obstacle to implementing a network-wide system to
facilitate interapplication communication has been the
large amount of system resources which had been thought to
be required of a system in order to handle all the
different types of data, operations and applications in a
network. As a network expands, the systems, resources, and
requirements would increase as well, making many proposed
implementations completely unwieldy.

There is, therefore, a need for an efficient and simple
manner for applications on different platforms to
communicats with each other, such as through uniform and
consistent interface for applications. There is also a
need for a dymnamic invocation environment for applications
in a distributed heterogeneous environment.

IIT. SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention
there is provided a system for organising communication
among applications in a data prccessing network which
includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising

memory in the network containing a data base, said data
base including

a plurality of method entries, each of said
method entries corresponding to one of said
applications and containing a reference to a means

external to the data base for invoking a procedure to

e -o0ece ocoe
e . o
. o -

10

15

20

25

30

5

allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;

and

data base control means coupled to the memory in the

network including

means, responsive to a message from a client
application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,

means for selecting a platform capable of
executing the requested application, and

oo

10

15

20

25

30

6

means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform.

In accordance with a second aspect of the invention
there is provided a system for organising communication
among applications in an object oriented manner in a data
processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems fcr executing said applications,

said system comprising

memory in the network containing a data base, said data
base including

a plurality of method entries, each of said
method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each

of said class euntries containing information about a

class consisting of one or more instances which share

common characteristics and further containing an
identification of one or more message entries,

and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected

instancer and further containing a reference to one or

10

15

20

25

30

the

6A

more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entry containing information relating %o applications
capable of performing the types of operations specified
in said message entry:

data base control means coupled to the memory in
network including

means, responsive to a message from a client
application, for selecting the class erntries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry referenced in
the selected message entry and corresponding to the
requested application, means for selecting a platform
capable of executing the requested application, and

means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform; and

an object definition facility coupled to the
memory in the network,

wherein the data base includes a global class pcrtion

which is accessible throughout the network and local

portions which are each accessible to only a portion of the
network,

wherein the data base control means includes
means for searching the local data bases in a
predetermined order before searching the global class

data base, and

wherein the object definition facility includes

6B

means for generating globally unique identifiers for

types of operations and instances.

The accompanying drawings which are incorporated in and
which constitute part of this specification, illustrate an
example of an embodiment of the invention and, together

with the description, explain the principles of the

invention.

10

15

20

25

30

2

IV. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a ¢liagram of a network which can be used in
a preferred example of the present invention.

Figure 2 is an illustration of the major components of
an example of an object-oriented model of this invention in
relationship to an application.

Figure 3 is an illustration of the relationships
between the components of the object-oriented model of this
example.

Figure 4 is an illustration of the relationships
between examples of the components of the object-oriented
model.

Figure 5 is an illustration of a structure for a class
data base according to the preferred example ard consistent
with the relationships illustrated in Figure 4.

Figure 6 is a diagram of the different components of
the preferred example. and of the preferred flow of
information between these compcnents.

Figure 7 is a diagram showing the relationships of the
different memory systems in the preferred example.

Figure 8 is a diagram of a preferred structure of a
local class data base.

Figure 9 is a diagram of a preferred example of a block
in the local class data base shown in Figure 8.

Figure 10 is an illustration of the function of a
loader/unloader for a global data base, a local data base,
and a node cache.

Figure 11A is a diagram illustrating a preferred
example of a context object data base.

Figure 11B is a diagram illustrating a preferred
example of a method override table in thu context object
data base shown in Figure 11A.

Figure 11C is a diagram illustvating a preferred

storage structure for a server node table in the context

10

15

20

25

30

8

object data base shown in Figure 11A.

Figure 11D is a diagram illustrating a preferred
example of a class data base override table in the context
object data base shown in Figure 11A.

Figure 12 is a diagram of individual software
components in the platforms of the network.

Figure 13 is a flow diagram of the general operation
performed by the preferred example of this invention for
remote invocation of applications.

Figure 14 is a more detailed diagram of components of
the network and the flow of information.

Figures 15A through 15D are a flow diagram of the
procedure performed by the invoker software component in
Figure 14.

Figure 16 is an illustration of the steps performed by
the invnker software component in Figure 14 to resolve a
method.

Figures 17A and .7B are a flow diagram of the steps
performed by the control server software component in
Figure 14.

Figures 18aA - 18B are a flow diagram of the steps
performed by the dispatcher software component in Figure
14.

V. DETAILED DESCRIPTION OF THE PREFERRED IMPLEMENTATION

Reference will now be made in detail to preferred
examples of embodiments of the invention as illustrated in
the nccompanying drawings.

These examples are preferably implemented by data
processors organised in a conventional network

architecture. The

10

20

25 ..

: lAw:ovncgg
SNECAY, HENDERSON
FARABOW, CARRETT

& DUNNER
1300 | STREET. N W
INGTON, DC 20008
3%2‘02-403-4000

!

architecture for and procedures to implement application
interoperability, however, are not conventional, as they provide
for an object-oriented approach to the interactions between
applications in the network.

A. The Major Components of the Network

Figure 1 illustrates a network 50 which can be used to
implement the present invention. 1In Figure 1, network 50
contains three indePendent platforms 100, 206, and 300 which are
connected by a network bus 55. Although platforms 100, 200, and
300 are shown as completely heterogeneous (i.e., platform 100 is
shown as a VAX processor using a VMS operating system, platfurm

200 is shown as a MIPS processor using an ULTRIX operating

.system, and platform 300 s shown as an 80286 processor using a

MS-DOS operating system), this invention will operate in a
homogeneous network as well. Also, the number of platforms is
not important.

The composition and protocol of the network bus 55 is not
important as long as it allows for communication of the
information batween platforms 100, 200, and 300. 1In addition,
the specific network architecture is not crucial to this
inventionﬂ For example, another network architecture that could
be used in accordance with this invention would employ one
platform as a network controller to which all the other platforms
would be connected. It is believed, however, that the network 50
shown in Figure 1 enhances the advantages of the present

invention.

/0

1 In the preferred implementation of net' irk 50, platforms
100, 200, and 300 each include a central processing unit ("CPU")
110, 210, and 310 respectively, and a memory, 150, 250, 350,
respectively.

5 Included within each central processing unit 110, 210, and
31., are applications 120, 220, and 320, respectively, operating
systems ("OP SYS") 140, 240, and 340, respectively, and the
Application Control Architecture Services ("ACAS") software
components 130, 230; and 330, respectively.

10 Applications 120, 220, and 320 can be programs that are
either previously written and modified to work with the present
invention, or that are specially written to take advantage of the |
services offered by the present invention. For purposes of this
description, applications either invoke nperations to be

15 performed in accordance with this invention, or respond to the
invocation by other applications.

ACAS software components, 130, 230, and 330 implement the
object-oriented approach of this invention. Preferably, ACAS
scftware components 130, 230, and 330 consist of a number of
20 software modulee as described in grecter detail below.

Operating systems 140, 240, and 340 are the standard
operating systems which are tied to the corresponding CPUs 110,

: 210, and 310, respectively, of the platform 100, 200, and 300,

respectively.
25, Memories 150, 250, and 350 serve several functions. One of
. Lew orriges || the functions is, of course, to provide general storage for the
-INNECAN, HENDERSON
““g%ﬁﬁg?“* associated platform. Another function is to store applications

1300 | STRCET. N W
WAS “INGTON, DC 20005
202+408'4000C

30 i - 10 -

10

15

20

25.,...

. rmﬂ:on-:u
NECNX, HENDERSON
SARANOW, CARRETT

& OUNNER
1300 ! STRELT, N W
3€ Notow, oc 20008

202+409°4000

//

120, 220, and 320, ACAS software corponents 130, 230, and 330,
and operating systems 140, 240, and 340 prior to their execution
by the respective CPU 110, 310, and 310.

In addition, portions of memories 150, 250, and 350 contain
information for a network wide, or "global," data base which is
shared and available directly or indirectly by all of the
platforms 100,

200, and 300 in network 50. The global data base

is described in greater detail below.
B. Elements of the Object-Oriented Architecture
(1)

Object-oriented methods have been used in programming :to

Definitions of the Elements

separate the interface of data from actual implementation, but
such methods have not been applied to heterogeneous networks. 1In
the present invention, object-oriented techniques are used to
separate the actual applications and their data from the
implementation of operations on that data by other applications.
The object-oriented architecture of this invention
preferably includes certain key elements. Figure 2 explains the
relationship between certain of those elements and certain
conventional features of applications. As shown in Figure 2, an
application 260 can be described in two ways. First, that
application has certain application definitions 265. For
example, if the application 260 is a word processing program,
then the application definitions could inciude definitions of
what operations that word processing program can perform and what

kind of data that word processing system can operate upon.

- 11 -

10

%5

20

,\.A: orrices
JNEG/R, HENDERSON
FARABOW, GARRETT

8 DUNNER
1300 I STRECT. N W
+ASMINGTON, DC 20008
202+408°4000

30

/R

In addition, application 260 includes application data 268.

Application data 268 is the specific data upon which application

260 operates.

In accordance with the present invention, the application

data is not "handled" by the object-oriented architecture.

Instead, the present invention is organized around characterizing

the application definitions and the application data in terms of

object types, as referred to in the remainder of this description

as objects.

Objects are not shown in Figure 2, but they pervade

the elements that are shown.

In the discussion which follows, the term "object" will

refer generally to seseral different kinds of elements, all of

which have two chardacteristics in common.

First, they refer to

external capabilities, meaning that objects refer to or describe

those portions of application definitions or application data

which need to be communicated with other applications.

Second,

they are generic meaning that objects are intended to be

available to all applications, and as such have a universally

recognized and unique name fcr all applications that have

interfaces to the objects.

The present invention involves the

handling of objects rather than tle hundling of specific data or

applications.

As shown in Figure 2, two elements of the object-oriented

architecture of this invention are developed from the application

definitions 265.

280,

One is classes 270 and the other is methods

Classes are objects in the sense that the names of the

classes and the features of the classes are both external and

- 12 -

|
!

5 .

«aw Qrriccs '
ECANY HENDERSON |
RABOW, CARRETT

& DUNNER
20 | STRCLT. N w
inGTON, DC 20008
202:408:4000

1
{
i
1

/3

generic. Furthermore, classes can be used as means for
describing not only applications, but also the data used by the
applications.

In addition, one can derive certain types of operations from
the application definitions 265 that are performed by that
application, and these are specific examples of methods 280.
Again, however, the specific methods 280 are not managed by the
system, but rather can be organized into classes. The classes
for those methods (éalled method objects) are generic and
external, even through the specific commands or operations
executed by the applications are not.

Instances 290, which are derived from the application data
268, are items that may be manipulated or accessed by an
application. Again, the instances are not objects managed by
this architecture. 1Instead, instances are organized into classes
such that instances in the same classes share common
characterietics. For example, a specific DECwrite application,
which is a compound document editor, may be operating on a
specific file called MYFILE. This is a specific file, and it is
not handled by the ACAS system. Instead, MYFILE way belong to a
class of compatible files, such as ASCII_FILE, which is generic
and therefore a class object.

By the same token, a specific DECwrite application is not

managed by the entire system. Instead, however, the specific

iy DECwrite application may belong to a class called DECwrite which

is gene-ic and a class object.

- 13 -

10

20

1~
.o

LAW OFricCS
NECAN, HENDERSON
ARABOW, GARRETT
8 DUNNER
300 | STREET. N W
SHINGTON, DC 20008
202:408+4000

10

%4

As can be seen from Figure 2, applications can then be
characterized by the classes to which the applications belong, by
the classes (method objects) which support the specific methods
in that application, and by the class objects upon which the
method objects can operate.

One of the features of classes ig that they may be
hierarchically organized. This is explained in greater detail
below, but may be understood preliminarily by considering the
concept of superclaéses and subclasses. A superclass is a parent
of its subclasses, and each subclas3 is a child of at least one
superclass. The superclass/subclass relationship means that the

attributes or shared characteristics of the superclass are

inherited by the subclass. For example, a class of DATA_FILES

may have as attributes the capability of being opened, read, and
written. Two subclasses of the class DATA_PILES could be of
SEQUENTIAL_FILES and RANDOM_ACIESS_FILES. In addition to the
attributes of being able to be opened, read, and written, the
subclass SEQUENTIAL_FILES could also have the attribute of being
accessible sequentially, and the subclass RANDOM_ACCESS_FILES
could have the attribute of being accessible directly by an
address.

Another element of ths object-orientwud architecture of this
invention not reflected in Figure 2 is messages. Messagss are
the interfaces between an application program and the methods,
and are used in the application program to specify types of
operations which can be performed on the instances identified in
the client application. The messages are generally in the form

- 14 -

RANDOM_ACCBSS_FII.ES

1 of a selector of an operation, such as PRINT, and several
parars ars, which can be instarnces, strings, numbers, etc. The
relationship between these elements is described in the next
sect.lion.
5 (2) Relationship of Elements

Figure 3 is a diagram showing the relationship of the
different elements previously described. As Figure 3
demonstrates, each instance 370 is associated with a clase 380,
Another way of undeistanding this is to consider class 360 as a
10 “template" for the creation of objects in that class, which can
be instances, as well as for the manipulation of such objects.
The term "template" denotes the fact that the objects (be they
data items, methods, or applications) in each class, share
certain characteristics or attributes determined by that class.
15 An instance 370 is manipulated by sending a message 360,
The message 360 might be an action, such as EDIT, READ or PRINT,
Messages are said to be "supported" by the class, which means
that the interpretation of the message depends upon the classes
to which the instances in that message belong. For example, a
20 PRINT message may be interpreted differently if the instance is a
teit file in the class TEXT_FILE, as opposed to a color graphics
file in a nlass COLOR_GRAPHICS.

A mesesage 360 does not describe the implementation of a
particular operation; it only represents the interface to the

25 i| implementation of a particzular operation. Thus, to find the

vaw orrices particular operation that is called for by a particular message
SNECAN, HENDERSON
ARATCARMTT 4| 360 (i.e., the method), one must not only examine the message,
1300 | STREET. N w
ASKINGTON, OC 20008

202:°408°4000

30 ! - 15 =~

10

15

20

LAaw Orriees
NYNECAN, HENDERSON
FARABOW, CARRETT

8 DUNNER

1300 1 STREET, N W

ASHINGTION, OC 20008 .

202:408:4000

0

/4

but also the class of the instance. To cause a specific action

to occur, the message 360 must be mapped to actual erxecutable
program code. This mapping occurs by finding the particular
message 360 which corresponds to the particular class 380 of the
particular instance 370 and then finding the particular method
390 which corresponds to the message 360 supported by the class
380. The method 390 represents the actual executable program
code to imp_ement tpe desired operation of the message 360 on the
instance 370.

(3)

Figure 4 shows a representation of how the different object-

Organization

oriented architecture elements can be organized preparatory to

their specific representation in memory. As is apparent from

Figure 4, there is a complex relationship involved between the

classes and the methods. A hierarchy is used for both methods

and classes in the preferred implementation to effect the object-
oriented approach necessaxy to refllect the behavioral
relationships which must exist amony the applications. The

specific examples given, however, are merely illustrative, and

other types of representations for these classes and methods may

be apparent to those skilled in the art.

In the diagrammatic representation shown in Figure 4, there

are essentially two branches of the hierarchy. One is headed by

method object 400 and the other by class 450. The branches,

hierarchies differ by what is inherited. 1In the class hierarchy,
the inheritance is of behavior because such inheritance includes

messages. In the method hierarchy the inheritance is only of

- 16 =

10 '

o~
[STR

.
. L]
L)
VAW OFPICCS |
NECAN, HENDERSON !
ARABOW, GARRETT
8 DUNNER .
300 { STRECY. N W
SHINGTON, OC 20008
202:400°4000

]

I
|
'
1
'.
|

|
|
{

77

attributes. The bridge between the class hierarchy and the
method hierarchy is by way of the messages, such as messages 490
and 495, and the method maps, such as maps 493 and 498. 1In the
method hierarchy shown in Figure 4, method objects, 410, 415, and
420, which are represented as WORD_C_CUT_MS-DOS, WORD_C_READ_VMS,
and WORD_C_READ_ULTRIX, respectively, inherit from method object
400. For example, in Figure 4, method object 400 may have
attributes (not shown) that indicate that the methods, use a
certain interaction‘type, and have a certain server start-up
type.

Method object 410 is representative of the CUT function in
EMACS applications. Associated with method 410 is a set of
attributes 430 which includes those inherited from method object
400. Briefly, the PlatformType attribute indicates the platform
on which the method object can bm executed. The InteractionType
attribute describes the actual type of method which will be
executed within a particular method server. Examples of values
for this attribute which are explained below, are: BUILT_IN,
SCRIPT_SERVER and DYNAMIC_LOAD. The ServerStartupType attribute
indicates an appropriate invocation mechanism to be used for the
method server. Examples of values for this attribute, which are
also explained below, are: SHELL, DYNAMIC LOAD and
NAMED_APPLICATION,

The set of attributes 430 specify that the associated
methods operate on platforms which have an 80286 processor with
the MS-DOS operating system, and have a BUILT_IN, interaction

type, and a NAMED APPLICATION server start-up type.

- 17 -

/8

1 : Similarly, method object 415, which is representative of the
'/ READ function in EMACS applications. Associated with method 415

is a set of attributes 435 which include those inherited from

method object 400, but which also specify that the associated
5 't methods operate on VAX platforms running the VMS operating
system, and have an interaction type of BUILT_IN, and a
NAMED_APPLICATION server start-up type.

Method object 420 is a subclass of method obiject 400

, representative of the READ function in EMACS applications. The
10 '\ attributes 440 for method class 420 have a platform type with a
MIPS processor running the ULTRIX operating system with a

: BUILT_IN interaction type, and a NAMED_APPLICATION server start-
E up type.

l Class 450, on.the other hand, is a superclass of class 460
15 || called FILES, and a class 465 called APPLICATIONS. Class 460

.| refers to data objects. As shown in Figure 4, class 460, which
would have attributes (not shown), is a superclass of class 470.
Class 470 is called ASCII_FILE. For example, class 470 could

represent all the files within network 50 (see Figure 1) having

i
!
i
20 'l the common characteristics of ASCII files. The common
! characteristics can be described in the attributes for class 470,
! which are not shown in Figure 4.
i The class 470 would then be the class for several instances,
. i but the instances are not shown in Figure 4 because they are not
z?’: E managed by the object-oriented architecture. What is shown in
lhknwu | Figure 4 are the messages which the class 470 will support, and

INECAN, HENDERSON
‘ARABOW, CARRETT
8 DUNNER .
300 ! STACL*. N W
INGTON, DC D008 ')
02-408:4000 "

- 18 -

10

20

)54.

VAW Qrriges .
iNECAN, HENDERSON |!
‘ARABOW, CARRETT

8 DUNNER
JOO | STRERY, N W '
ASHINOGTON, OC 20008

202-408-4000

30

/9

the only one shown for purposes of simplicity is the EDIT message
490.

A class supporting a message means that when the message is
used as an interface into this object-oriented architecture, it
can be used with the class that suppcrts it, and therefore
instances within that class. Thus, in the example shown in
Figure 4, an EDIT message, can be sent to all instances in the
ASCII_FILE class.

APPLICATIONS ciass 465 is also a superclass, and one of its
subclasses, EDITOR class 475, is shown. EDITOR class 475 is a
superclass to specific applications classes 480, 483 and 485,
corresponding to WORD_A, WORD_B, or WORD_C. Each of the classes,
such as WORD_C 485, represents a specific application, such as
EMACS or TPU. Thus, each application is defined by one class.

An application class may, however, refer to the implementation
behavior of more than one application.

The application classes also support messages, which is
shown by the message CUT 495 being supported by the application
class 485. This reflects the fact that at the time of class
definition, it was determined that any application represented by.
the class 485 would have to support a message CUT.

As mentioned briefly above, in the preferred implementation,

applications are organized into a hierarchy of classes with a

' parent class, referred to as a superclass, and child classes

referred to as subclasses. In Figure 4, class 465 is a
superclass called EDITOR. All subclasses of this superclass

would have at least the same set of particular unique

- 19 -

10

20

?5 o

L]

“n
T N-144034) i
NECAN, HENDERSON !
‘ARABOW, CARRETT !

8 DUNNER

JOO I STRELT. N w

ﬁzmorow. 0C 20008
02:408°4000

" superclass.

|

\

R0

characteristics or attributes of the superclass. In Figure 4,

the subclasses of super class 475 EDITOR are WORD_A 480, WORD_B

483, and WORD_C 485. WORD_A might represent TPU applications,

't WORD_B 483 might represent all LSE applications, and WORD_C 485

might represent all EMACS applications. Each of these subclasses
would have, in addition to the characteristics and attributes
inherited from superclass 475, their own set of unique
characteristics and attributes which differ in such a manner as
to enable their sepération as subclasses within the superclass
475 EDITOR.

In the preferred jimplementaticn of this invention, specific
rules of inheritance allow for multiple inheritance among
classes. This means that any subclass may have more than one
Because this type of inheritance may create
ambiguities at definition time, the superclasses are considered
to be "ordered" at definition time to resolve potential
inheritance conflicts. For instance, at the time of the
definiticvn of a subclass described below, if any conflicts arise
due to the duplicate definition of a message or attribute in more
than one of the listed superclasses, the message or attribute
defined in the highest ordered class is considered to be the one
inherited by the subclass.

As mentioned above, the relationship between the method
objects and the class is by way of method maps. Figure 4 shows
two method maps 493 and 498. Each of the classes has messages

each of which refers to a specific method map. Thus, method map

- 20 =

1 493 is associated with EDIT message 490, and method map 498 is

associated with the CUT message 495.

: Preferably, the method maps include the name of a method

object associated with the messages. Method maps could also

5 | contain the name of another class and message. Thus, method map
i 493 includes the name of two method objects. Method map 493

r includes the name of a method object WORD_C_READ MIPS.ULTRIX 494,
i which is a name for method object 420, and the name of a method
object WORD_C_READ QMS 496, which is a name of method object 415.
10 In a similar manner, the method map 498 for the message CUT

495 contains the name WORD_C_CUT 80286 .MS-DOS 499, which is the
name of the method object 410.

| In this way, the method maps 493 and 498 can be used to
|
4 locate the attribute sets 430, 435, and 440 corresponding to the

15 method objects 410, 415, and 420, respectively. The specific

|
E manner in which this type of order is used to locate methods is
! described in greater detail below.

n C. Class Data Base Structure

i The classes and method objects of the network architecture
20 are stored in a class data base 500 depicted in Figure 5. The
class data base 500 represents a nonredundant collection ..

interrelated data items that can be shared and used by the

natwork 50.

In Figure 4, the class data base 500 consists of two types

of objects, similar to what is shown in Figure 4. The objects

LA:V‘O'VICES
NNECAN, HENDERSON
FARABOW, CARRETT

8 DUNNER

1300 | STRCLT. N W
vASHINGTON, DC 20008
202+:400:4000 '

30

are either classes 505 or methods 549. Each of the classes 505

corresponds to a generic external representation for the

- 21 -

10

15

e .
25 |
« e]
LAw OFricES ¢
NNECAN, HENDERSON h
SARABOW, CARRETT
8 DUNNER |
1300 1 STACET. N w i
ASHINGTON, OC 20008
202:408:4000 !

30 '

A

instances of the corresponding class. For example, in Figure 5,
the class object ASCII_FILE 506 corresponds to a generic external
representation for all members of the set of instances that have
the characteristics of the class ASCII_FILE 506. The
characteristics are represented by the corresponding set of
attributes 510.

In the preferred implementation, the attributes 510 which
correspond to the classes 505 may be used in whatever manner the
system developer or.user wishes. For example, the attributes 511
for the class ASCII_FILE 506 may include the name of an icon to
represent class 506 on display.

Each of the classes 505 also supports a set of messages 520.
A message consists of a "verb" or message name, such as CUT, READ
or EDIT, called a selector, and parameters. Each of the
parameters consists of a name and a type and a direction. The
name is "typed" which means that the name is of a particular
type, e.g., integer, character or string. The possible
directions for each parameter may be "in," "out," and "in/out."
When a parameter in a message has an "in" direction, this means
that the parameter is an input to a method to be invoked
(discussed below). When a parameter in a message has an "out"
direction, this means that the parameter is an output from a
method. When a parameter in a message has an "in/out" direction,
it means that the parameter is both an input to and output from a
method.

The messages 520 are representations for the valid

operations that each of the instances represented by the

- 22 =

10

15 i

20

LAw Orrices

NNEGAN, HENDERSON !

SARABOW, CARRETT
& DUNNER
1300 ! STRCLT. N W
.A$™INQTION, DC 20008
202:408:4000

30

23

corresponding class 500 can support. For example, in Figure 5,
class object ASCII_FTLE 506 supports the set of messages 520
which includes messages 521 and 525. The specific messages in
message set 520 are OPEN (PARA_l, PARA_2...) 521 and EDIT
(PARA_1, PARA_2...) 525. For example, in the message EDIT
(PARA_1l), PARA_1l might represent "FileName: string, in/out,"
where FileName is the name of the parameter, string is the
parameter type, and in/out is the direction of the parameter.

Mecsages 521 and 525 each refers to respective method map
530 and 540. Each of the method maps 530 and 540 contains a set
of references to corresponding method objects 549 in the class
data base 500 or to the names of other classes and messages. For
example, method map 530 contains references 531 and 533 each of
which corresponds to a different method object (not shown).
Method map 540 also contains references 541 and 543, each of
which corresponds to a different one of the method objects 549 in
the class data base 500. The correwvponding method object for the
reference 541 is not shown in Figure 5. For purposes of this
example, Figure 5 does show that the reference 543 on method map
540 refers to the method object 550 which is ED_3_READ.

As explained above, the method objects 549 in the class data
base 500 are also stored hierarchically. Each of the method
objects 549 is representative of a reference to executable code
capable of performing a method.

In a network data processing system like the preferred
implementation, there may be many instances of the executable

code associated with each of the method objects 549 and capable

- 23 -

10

15

-QI.‘ .l
25+

) La:v.o'n:t!
\UNECGAN, HENDERSON . |
FARABOW, CARRETT

® DUNNER |

3OO [STRCET. N W '

ASHINQGTON, OC 20008
202:408:4000 l

30

R4

of performing the functions identified by each method cbject. By
way of example, in each the memories 150, 250 and 350 (Figure 1)
there may be an installation of the executab.» code arsociated

with the method object ED_3_READ 550, with each of the executable

. codes being capable of performing the functions of the method

object ED_3_READ 550 on a respective one of the platforms 100,
200, and 300. The system according'to the preferred
implementation inclgdes a process which selects between the three
executable codes.

Unlike the attributes 510 associated with the classes, the
method attriiuates 5690 of the class data base 500 associated with
method objects 549 are used to locate and to execute an instance
associated with a particular method object, such as method object
550, in the network. For purposes of simplicity, Figure 5 shows
only one set of method attributes 561 in the class data base 500.
The set 561 is associated with the method object 550 of the
method objects 549 in the class data base 500. Although some of
the method attributes in sets 560, can be arbitrarily specified
by the users of the system and used by the system during
execution, certain attributes are critical to the operation.

As shown in Figure 5, the r«thod attributes in set 561
includes PlatformType = 80286 .MS-DOS, InteractionType = BUILT_IN,
and ServerStartupType = SHELL.

In the preferred implementation, two other method attributes

., are included in the method attribute set 561. One is an

InvocationString attribute which defines an invocation string to

be used in order to start the specified method server if it needs

- 24 -

10

15 |

20

LWAW OFrICCE I
NNECAN, HENDERSON ,
FARABOW, CARRETT

& DUNNER

1300 | STREET. N W

SASMINGTON, OC 20008
202-408-4000

30

RS

to be started. The value of this attribute must be a value

appropriate for the particular platform specified in the first
attribute. For example, if the value of the PlatformType
attribute is MIPS.ULTRIX and the value of the ServerStartupType
attribute is SHELL, then the value of this attribute should be an
appropriate ULTRIX shell command.

D. Information Flow

Before discussing the details of the preferred
implementation of tﬁis invention, the flow of information
throughout the entire system will be explained with reference to
Figure 6.

Figure 6 includes a diagram 600 showing different components
of the network 50 shown in Figure 1 and the information flowing
between those components. Applications 610 and 670 in Figure 6
each correspond to any one of the applications 120, 220, or 320,
respectively, and the ACAS software components 6§20 and 660 each
correspond to anyone of the ACAS software components 130, 230, or
330. The class data bases 640 and the context object data bases
630 are stored in one or more of the memories 150, 250, and 350.

As explained in greater detail below, an application 610,
which will be referred to as a "client application," sends
messages. The messages may include instance handles which are
the mechanisms used to identify the client (or any other)
application’s instances The messages are received by the ACAS
software component 620 in the client platform.

ACAS software component 620 then uses the names of the

massages and the classes of the instances referred to by the

- 25 -

10

5i..°

' °
fLaw LOricCy

JECAN, HENDERSON i
RABOW, GARRETT
& DUNNER

Q0 | STRACLT. N W
HINGTON, OC 20008
202+°408+4000

0

|
|
|

R6

instance handles to find the method mars in class data bases 640.
ACAS scftware component 620 may also use context information from
context object data bases 630 to select a method identifier from
the method map which identifier represents the method to be
executed. The context information is alsc used to select a
platform, called the "server platform," on which to execute the
selected method. The context information will be described in
detail below.

ACAS software éomponent 620 sends the mechod identifier
retrieved from the class data base 640 and the instance handles
to an ACAS software component 660 in the server platform.
Thereafter, the ACAS software component 660 takes the appropriate
steps to execute the identified method using a "server
application" 670 or informs the ACAS software component 620 that
the server platform containing ACAS software component 660 cannot
respond to the request. In this latter casa, the ACAS software
component 620 then reviews the context information to select
another platform in the network as a server platform or else
informs the client that the request has failed.

If the execution of the method identified in Figure 6 by the
server application 670 generates a message to be returned t- the
client application 610, then that message along with additional
information is passed from server application 670 to ACAS
software component 660 in the server platiorm. ACAS software
component 660 in the server platform then sends responses to ACAS
sof tware component 620 in the client platform, which relays those

responses to the client application 610 in the client platform.

- 26 -

LAwW OFricCS

NECAN, HENDERSON :

ARABOW, GARRETT
8 DUNNER
300 I STRLET. N W
SHINOTON, DC 20008
302:-408°'4000

30

27

All these transactions will be described in greater detail

below.

E. Memory Systems

(1) Global Class Data Base

A diagram of the entire memory system 700 is shown in
Figure 7. Memory system 700 includes a global class data base
705 and local class data bases 710, 730 and 750. A network-wide
memory 705 is also ?rgvided to make certain other information,
described pelow, available to users of the network.

Global class data base 705 contains information accessible
by all of the platforms. Preferably, global class data base 705
is distributed throughout the memories of the platforms. For
example, in Figure 7, global class data base 705 is shown as
being partially resident in each of memories 150, 250, and 350.
The remainder of the global class data base 705 would be resident
in other memorizs which are not shown in Figure 7. The contents
of the global class data base 705 have already been described
with rmgard to Figures 4 and 5.

Persons of ordinary skill in the art will recognize that the
distributed memoxy arrangement shown in Figure 7 is not required

to practice the present invention. For example, the entire

|| global claés data base 705 could be stored in the memory of a

single node or in a dedicated memory, without affecting the
principles of this invention.

In addition, each of the memories 150, 250, and 350, is
shown as heving a local class data base 710, 730, and 750 as well

as a node cache 720, 740, and 760, respectively. The information

- 27 =

10

15

1
25' ‘e
e . |
(] L]
‘.0 '
LAwW Qrriccs N
.NECAN, HENDERSON i
ARABOW, CARRETT !
& DUNNER
300 t STRELT. N W
a8 MINGTON, OC 20008
202-408°4000C

30

K3

in the local class data bases is accessible only by users on the
corresponding platform. Node caches 720, 740, and 760 are used
to hold a copy of portions of global class data base 705 which
are accessed frequently by the corregponding platferm.

The data base system used to implement the global class data
base structure should support global uniqueness of names within a
single data base, uniqueness of identifiers across data bases,
access control mechanisms, and proper storage and retrieval
mechanisms. Global.name uniqueness is important for objects
because they are generic. Icantifier unigqueness allows data
bases to be combined, as explained below.

Access control mechanisms of the data base system must allow
an authorized user on any platform in the network to store and
retrieve objects and attributes, and must provide security
control and syntax checking to avoid compromising the integrity
of global class data base 705. Scme of the details of this
control are discussed below. The remainder involve well-known
data base management techniques.

The preferred implementation requires that each object in
global class data base 705 can be assigned an object identifier
which, like an object name, can be used to refer to an object.
Object identifiers are also preferably language neutral because
they are binary codes.

Object identifiers are assigned based upon a "globally"
agreed-upon scheme, and are unique throughout any number of class

data bases. Object names, on the other hand, need be unigue only

‘within a single class data base. The differences between the

- 28 =

10

15 !

35ﬂ:'

. e
) Lawesrrices

NECAN, HENDERSON
ARABOW, CARRETT
8 DUNNER
Joo I sTACET. N W |
3XINGTON, DC 20008

202°408:4000Q

30

&9

class names and identifiers can be better appreciated by an

example. Assuming two companies each have their own class data

base and wish to merge those data bases. Those data bases may

have classes with the same names which should be different in the

" merged data base, and that difference can be maintained through

the globally-unique identifiers. The data bases may also have
two classes with different names which should be the same in the
merged data base. Those classes can be set to have the same
class identifier. fhus, the object identifiers also permit the
same class in the global class data base to be identified by more
than one class name. For example, the class name EDITORS in the
global class data base in the network may also be identified by
the class name WPROCESSORS.

Another software component which is also included in each of
the ACAS software components 130, 230, and 330, provides the
mechanism to create a unique object identifier for use and

storage in the class data bases. Preferably, any storage scheme

employed by an application which requires the persistent storage
of object names should store the object identifiers rather than
the object names to avoid naming conflicts between multiple
global class data bases.

The global class data base 705 is not meant to store
application instance data because preferably applicatiecns
completely manage their own sets of application instance data.
This allows existing applications to continue their current

storage strategies, and does not restrict the storage options

| available for new applicatiuas.

- 29 -

10

15

20

(] [
‘25
e ®

] [J
wah Orriccs
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 I STRCEL, N W

WASHMINOTON, OC 20008

202+400-4000

30

30

The preferred implementation provides two mechanisms,
however, storage classes and instance naming, which enable
applications to link their privately managed instances'with the
global class data base 705 maintained by the preferred
implementation.

Storage classes are a: abstraction that allow an application
to specify how privately managed instances are to be interpreted.
The storage classes give an alternative to identifying the class
of each instance when the instance is used in a message. In the
preferred implementation, storage classes identify storage
systems, such as repositories or files, which contain names of
instances. For example, a storage class can describe a known
storage mechanism guch as "RMS_FILE" or "UNIX_FILE."

In the object-oriented architecture of this invention,
storage classes are also considered to be classes. Similar to
other classes stored in the class data base, the storage class
can be viewed as an actual object-oriented class definition that
consists of attributes, messages, and methods. The methods
associated with each storage class are used to retrieve the class
name for an instance associated with the particular storage
system identified by the instance’s storage class.

The other mechanism, instance naming, employs a standard for
the naming of instances in the preferred implementation. The
standard instance handle is a string represented by the following
logical structure:

<class><storage_class><location><instance_reference_data>

The term "class" is the name of the associated ACAS class. The

- 30 -

v
[
)

[]
[3
.o
AW O/ PICKS
VNECAN, HENDERSON
‘ARABOW, CARRETT
8 DUNNER
1300 t BYRZET. N. W
ABMINOTON. OC 20008
1:202-408- 4000

.

term "storage_class" is an alternative to the class name and is

the name of the storage class.

The term "location" is the

logical location, such as the node, of the instance. The
"location" is optional and will be used if a client desires a
method to run at the same location as tha instance is located.
The term "instance_reference_data" is the application private
portion of the instance handle.

Instance handles allow implementations to refer to instances:
abstractly, thereby'avoiding the need to manage the instances
themselves.

|
|
I
|
The instance handle preferably includes thea class or storage!

class (if necessary), location of the instance, and the
identifier for the instance. For example, in the message: !

EDIT (INSTANCE_HANDLE)
EDIT represents the desired operation. The INSTANCE_HANDLE
string could be ASCII_FILE/NODE_1/MYFILE.TXT. In this instance
handle, ASCII_FILE represents the class, NODE_l is the location
of the instance, and MYFILE.TXT is the identifier of the
instance. This message provides sufficient class and message
information to find the proper method map. Xt will be apparent
to those of ordinary skill in the art that other formats may be
employed for the INSTANCE_HANDLE string to accomplish the same
obijectives as the preferred implementation does.

As explained above, all classes in a global class data base
of the preferred implementation have unigque names with the
particular global class data base. The class name is generally

assigned by the user who first defines the class.

- 31 -

20

] []
* (9]

LAW OPPFICES
NECAN, HENDIERSON
\RABOW. CARRETT

5 DUNNER
300 L 8YALLT. N W.
IHINOTON. OC 20008
1:202:408:4000

30

3R

(2) Local Class Data Bases
In addition to a global class data base, the preferred

implementation also supports local class data bases for class and

method definitions. The local class data bases function similar |

to the global class data base, except the contents of the local
class data bases are not globally available. They rieed only be
available for their local node. Thus, the local class data bases

need not be distributed or replicated in other nodes.

Figure 7 shows a preferred implementation of the local class .

data bases 710, 730, and 750 in memories 150, 250 and 350, !

respectively. The local class data bases 710, 730 and 750 hold

|
the class and method information created by the corresponding E
nodes which has not yet been added to the global class data base. '
In the preferred embodiment, memories 150, 250 and 350 also
contain node caches 720, 740 and 760, respectively, which hold !
method and class information loaded from global class data base |
705. Caches are an optimization and are not strictly required.
The data base system used to implement the local class data
base must provide name unigneness within a single data base.
Access control for the local class data base is only required at
the data base level. The preferred implementation of a local
class data base relies upon the underlying security mechanisms
within the data base system to control access to the contents of
the local class data base.
Use of the local class data base provides several advantages .
over use of the global cluss data base, For example, the local |

class data base provides the ability for applications on each

- 32 -

10

15

<0

25!

L]
-

1

La'w.orncn
NECAN, HENDERSON
‘ARABOW, GARRETT

& DUNNER
1300 | STREET. N. W
ASHINOTON, DC 20003

1:202:408:4000

30

33

node to continue to communicate with each other in an object-
orierted manner even when the network is unavailable. In such a
|| situation, applications on the node can continue to invoke other
applications that are local to that node.

| In addition, using a local class data base provides better
performance for applications that reside in the same node as the
loczl class data base because many invocations can be handled
completely within the confines of a single platform. On
platforms in which most applications will most likely use
invocuations that can be handled locally, use of the local class
data base may eliminate or greatly reduce the need for network
activity, such as accessing the global class data base, to
~accomplish an invocation.

The class data bases are preferably searched for class and
methed information by searching the local data bases before
searching the global data base. The local data bases of each
node are preferably searched in a predetermined order as
explained below. As soon as the desired information is located,
the search stops. Only if the desired information cannot be
located in a local data bace is the global data base searched.
Thus the search order defines the "priority" of the class data
bases. |

Figure 8 shows one design of a portion of a local class data
base 800. This design, however, is not critical to the
invention. Preferably local class data base 800 contains a data
base header 810 which is used to locate other organizational

information in the local class data base 800 such as indices and

-~ 33 -

34

1 allocation maps. Local class data base 800 also includes a block
storage space 815 containing a number of blocks 820, 822, and §24
which hold the information about the classes and methods.

Figure 9 shows a preferred arrangement of block 900 which
5 could be block 820, 822, or 824. Block 900 includes a directory
910, located at the beginning of block 900, to identify the
location of the objects within the blocks, and an object storage
portion 920.

Entries 955 and 965 in directory 910 each correspond to a
10 different object 950 and 960 located in object storage porticn
920 of block 900. Each directory entry includes a value for an
ID field 912, which identifies the corresponding object, a value
for an OFFSET field 915, which represents the relative location
of the corxresponding object in the block 900, and a value for a
15 SIZE field 917 which indicates the amount of block 900 allocated
to the corresponding object.

Objects 950 and 960 are preferably formatted as character
string, although other techniques can be used.

Referring again to Figure 8, local class data base 800
20 preferably contains a NAME-TO-ID-INDEX 830 which allows objects
' to be retrieved by correlating their name to object identifiers.

The object identifiers are included in the ID-TO-BLOCK NO.
MAP 840. The map 840 provides block numbers for each unique
e object identified in the local class data base 800.

25 . The remalning field in the local class data base 800 is

Law orvices BLOCK TABLE 850. BLOCK TABLE 850 preferably includes the
NECAN, Hé;JDER.&ON

f T
\N?%%mﬁ?u' locations of the blocks 820, 822, and 824 and the locations of
SmoTON, B¢ 20005
1:202: 40" 4000

30

- 34 -

o

LAW OFFr.CCe
+ECAN, HENDERSON
RABOW, CARRETT

8 DUNNER
300 | STREET, N. W.
\HINOTON, DC 20003
1+202:408:4000

0

35

the available space 829 within the local class data base 800.
Available space 829 is the unused space of the block storage
space 815 allocated by the local class data base 800.

To retrieve an object from local class data base 800, the
nar.e for that object is mapped to the NAME-TO-ID-INDEX 830. The
identifier information from the NAME-TO-INDEX 830 is then mapped
to the appropriate block number using the ID-TO-BLOCK NO. MAP
840.

The mapping yields £he block number where the desired object
currently resides. Once the block with the desired object is
located, the object is found using the object directory 910
(Figure 9).

(3) The Loader/Unloader

As shown in Figure 10, preferably a LOADER/UNLOADER software
component 1010 is coupled between a local class data base 1000, a
global class data base 1020, and a node cache 1030. The LOADER/
UNLOADER software component 1010, which is part of the ACAS
software components 130, 230, and 330 (Figure 1), is used to
control the transfer of ACAS informetion to and from the local
data base 1020, the node cache 1030, and the global class data
base 1020. In the preferred implementaticn, the LOADER/UNLOADER
software component 1010 pexmits the local class data base 1000 to
load information into the global class data base 1020, and
permita the node cache 1030 to retrieve class data base
information from the global class data base 1020. During loading
and unloading the LORDER/UNLOADER component 1010 preferably uses

memoxry 150 for storage.

- 35 -

!

10

XY

'
a5

LAW QrricEa
{NECAN, HENDERSON
ARABOW, CARRETT

8 DUNNER
1300 | STREET, N. W.
ASHINOTON, DC 200083

1:202:400:4000

30

36

The LOADER/UNLOADER software component 1010 is activated by
a user wishing to transfer class information in local class data
base 1000 to the global class data base 1020. The transfer makes
information previously accessible only to the platform accessible

to all network users through global class data base 1020.

Transfer of class information from the local class data base 1000 |

to the global class data base 1020 is preferably achieved by

sending class and method object definitions in an ASCII format to:

the LOADER/UNLOADER software component 1010 for loading into the
global class data base. The LOADER/UNLOADER software component
1010 preferably executes a process to parse language definitions
stored by the lccal class data base, and translates those
definitions intc an appropriate ASCII representaticn. The
LOADER/UNLOADER 1010 then formats this ASCII representation to be

stored in an appropriate format by the global class data base.

LOADER/UNLOADER software componert 1010 must also respond to

requests from the user to unload or to retrieve information from
the global claass data base 1020 for loading into node cache 1030.
The retrieved information is preferably translated by the LOADER/
UNLOADER software component 1010 into language definitions which

are stored into the node cache 1030.

F. Creating Defining/Registering Classes and Methods
(1) Creation

Preferably classes are defined using non-procedural
language, such as that used in the LOADER/UNLOADER, and are then
compiled and loaded into a class data base. The language,

compiler and loader software are preferably components of an

- 36 -

10 |

LAW OFFICTS
<ECAN, HEMDERSON
RABOW, CARRETT

8 DUNNER
J00 1 BTREET. N W.
PHINOTON. DC 30008 ;
202:408:4000

37

object definition facility. Other well-known techniques would
also be apparent to those of ordinary skill in the art.

The object definition facility is part of the ACAS software
components 130, 230, and 330 (Figure 1) and provides a means to
define classes, messages, class attributes, methods and method
attributes. This facility also provides for the specification of
inheritance among classes and, along with the LOADER/UNLOADER
software component 1010 described above, can be used to modify
existing definitioné within the global class data base and the
local class data base. In addition, the object definition
facility preferably performs the necessary syntax checks of class
definition input and method definition input used to create new
class and method definitions within the global class data base.

A user of the object definition facility must specify
certain information to create a class. This information

preferably includes: a global class name and identifier; global

1

names and identifiers (if any) of the superclasses of this class;

messages supported by this class, along with their associated
types of argquments (if any); method maps defined and the messages
to which each map relates; and attributes defined for this class.
Each message is preferably specified by generating a

structure including the name of the message, parameters supported
by the message, and a corresponding method map. Eaca message
structure is converted into two sets of values in the preferred
implementation. One set of values includes the message name and

the list of parameters supported by the message. The other set

- 37 -

10

is

20

LAW QFPICCR |
INNECAN.HENDER&ON‘
FARABOW, CARRETT |

& DUNNER

200 t stREET. N.w. |
~ASHINOTON. DC 20008 .
1:202:408+4000

30

.
28

38

of values identifies a set of method objects that represent
implementations of the message.

Method objects are defined within the network environment in
the same manner as classes. The object definition facility of
the preferred implementation, however, has special provisions for
defining of method objects. The following information is
specified when defining a method object; the global name and
identifier of the method object; global names and identifiers of
the superclasses of'the method object; and metadata (i.e.,
descriptions of data) stored as the method attributes. The
method definition also specifies the arguments and their types
corresponding to the parameters in the message, and whether the
method involves a parameter list. This parameter list represents .
the input required by the executable code (discussed below)
capable of being invoked by the method.

{2) Method/Class Definition

In the preferred implementation, the loading of class and
method definitions may either be done prior to run-time or
dynamically during run-time. Classes and method objects may be
accessible either locally on a node within the network (called
"loc..l definition") or globally from all platforms in the network
(called global definition") Both local and global definition can
be accomplished using the LOADER/UNLOADER software component 1010
or any other acceptable mechanism.

(3) Server Registration
The purpose of server registration is to find method servers

which are available to service requests from messages. Method

- 38 -

10

13

25 2
[N Y
LAW QPPFICES
‘INNECAN, HENDERSON
FARABOW, GARRETT
8 DUNNER
1300 STRLLT, M. W.
W, INOTON, DC 20008
Wzoz-aoa-dooo

39

servers are the active (i.e., currently running) processes
implementing the methods. A method server may involve execution
of the code of a single application or of many portions of the
code of one or more applications.

The registration of method servers is distinct from the
definition of classes and method objects. Whereas the definition
of classes and method objects is used to identify their presence
in the system, the registration of method servers is used to
track their status (i.e., availability). If a method server is
not registered, it is not known to the system.

(4)

Preferably, support mechanisms are provided for registering

Application Installation & Definition
and installing applications in the network. The preferred
implementation prqvides the ability to define applications and
arplication fragments in the object-oriented model of classes,
subclasses, messages and methods stored in a class data base.
The definition of applications in this manner is critical to the
operation of the interapplication communication performed by the
preferred implementation of this invention. Specifically, the
storage of classes, subclasses, messages and methods in a class
data base permits an application, during run-time, to update the
class data base and continue processing using tiie updated class
data base without having to recompile and relink.
Applications are defined in the same manner as other

classes., In fact, as explained above, an application is itself

defined to be a particular kind of class.

- 39 -

10

23

LAW OPPFICES
FINMECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 [STRELT, N. W.
WASHINGTON, OC 20008
1:202+400:°4000

30

Applications are installed on specific platforms in the
manner required for the particular operating system on that
platform. In the preferred implementatiocn of this invention,
application installation also requires some additional functions.
For example, unless it has already been defined, an application
must provide its own class definition which is defined as a
subclass of the existing ACAS_APPLICATION.

Application installation may use class definitions already
installed or may adé new definitions. At application
installation time, an installation procedure may compile and
register the class definitions supported by the application into
either a local class data base or the global class data base
using the LOADER/UNLOADER software component 1010 described
above, and must update the method maps of the data object classes
affected by the new applications. Application installation also
involves the method object definition procedures discussed above.

G. Context Object Data Bases

In the preferred implementation of this invention, context
object data base 630 (ses Figure 6) provides a mechanism to
define preferences to be used for resolving methods, for
selecting platforms to execute a methcd, and for locating class
data bases in the network. Several levels of context object data :
bases can exist in the network 50 of Figure 1. For example, one
level may consist of a user context okiject data base and another
level may consist of a group context 2bjact data base. System
(or platform) context object data basaes may also be used to
identify preferences for users of the entire platform. All

- 40 -

10

20

)
28

LAW QFriCCS
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 { BTREET, N. W.
WASHINGTON, OC 20008
1:202:4068:4000

30

A/

context object data bases supply preferences during method
resolution, but, the group context object data base may be used
by the ACAS scftware components 130, 230, and 330 to recognize
the preferences of more than one user, and the system context
object data base may be used to recognize the preferences of more
than one group. Preferably, the data bases in context object
data base 630 are used such that in method resolution,
preferences in the user context object data bases override tliose
in the group context object data bases, which in turn overrides
the system context object data bases.

Context object data base 630 preferably resides on the
platform associated with a Qser during a particular network
sesgion. In the initial log-on procedure executed when a user
enters the network, the information stored in the context object
data base associated with the user is called up for later use
during the operation of the ACAS software. |

Figure 1l1A shows a preferred memory system for a context
object data base 1100. The context object data base 1100
includes a method override table 1110, a server node table 1150,
and a class data base override table 1170, and other user defined
tables 1180. The method override table is used during method
resolution, described in detail below, to select a preferred
method in response to a message name and a class identified in au
instance handle. The server node table 1150 is used during the
invoker operations, also described in detail below, to select and
locate platforms in the network capable of being a server

platform. Class data base override table 1170 defines an order

- 41 -

10

20

<5

CAW QPrFICKS
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 { BYRCLT, N\ W,
WABNMINGTON, OC 20008
1+202+°408°+4000

30

44 |

for searching the local class data bases for method and class
information.

Tables 1110, 1150, and 1170 are system-supplied tables.

Users may also supply their own tables 1180 to effect their
specific preferences.

A preferred implementation of a method override table 1110
is shown in Figure 11B. Method override table 1110 includes a
list of method selector attribute names 1115 and associated
values 1120, Each éntry specifies for an attribute name 1115, a
preferred value 1120. For example, in Figure 11B, the preferred !
platform is specified as a VAX.VMS, and the preferred interaction
type is BUILT_IN. If more than one method is identified in i
response to a message, the preferences in table 1110 will be used |
to choose one of those methods. 1If no value is specified for an |
attribute, the system assumes there is no preference.

! preferred implementation of a server node table 1150 of
the coi.text object data base 1100 is shown in Figure 11C. Server
node table 1150 is an ordered list of nodes in the network 50 of
Figure 1. Each of the entries in table 1150 corresponds to a
platform type 1152 and the location of nodes 1154 in the network
50 with the corresponding platform type which can be used to
implement the selected method. For example, table 1150
identifies two nodes for a platform type of TYPE A, node a and
node b.

Figure 11D contains a preferrad implementation of class data

base override table 1170, Table 1170 includes several entries

which includs a name 6f a local clasy data base 1172 and its

- 42 -

#3

1 locatic: 1174. Thus, for entry 1175, the data base DB_SCH_LST is
at locations dbl and db2, and is searched before other local
class object data bases listed further down table 1170.

The preferred implementation of the present invention
5 includes an interface available to all use:r= of the network which .
p ‘des the capability tc create context object data bases and
to add, modify and delete entries within each of the system
context object data bases. This interface preferably executes a
standard compiler to perform these functions. For example, to

10 add an entry to a context object data base, a user would enter a

command using the provided interface. The command would then bu
interpreted by the ACAS software components 130, 230, and 330
(Figure 1) to cause the standard compiler to translate the data
received by the interface into the proper formats.
13 H. ACAS Service ?
(1) General Operations

Wwith the preceding description of certain components of the
preferred implementation of this inventicn, a fuller i
understanding of the ACAS components may be gained. Preferably,
29 the present invention is implemented using a client/server model
in which a client generates requests and a server responds to !
requests. In the following discussion, the service or operation
assoclated with a client application on a client platform is
called the "client service," and the service or operation
23 assocliated with a server application executing on a server

mméﬂL%&ﬁiuou platform is called a "server service." The client service and

FARABOW, GARRETT

8 DUNNER the server service of the preferred implementation rely upon a
1300 | BTRECLT, N. W,
WASHINGTON, OC 20008
1:1202+408+4000

30 - 43 -

4

1 transport system which is capable of transmitting messages from
the client platform to and from the server platform. 1In the
preferred implementation, an RPC-like communications system is
used as the transport system.

5 Each of the ACAS software components 130, 230, and 330 shown
. ‘n Figure 1 preferably includes client service components and the
server service components which represent the client and server
services, respectively. This is shown, for example, in Figure 12
which is a diagram éf two platforms 1200 and 1300 and a network
10 bus 55. Platforms 1200 and 1300 can correspond to any of
platforms 100, 200, or 300 in Figure 1.

Located in platforms 1200 and 1300 are memories 1250 and
1350, respectively, and CPUs 1210 and 1310, respectively. The:
elements in the platforms 1200 and 1300 function in the same
18 manner as similar elements described above with reference to
Figure 1. CPU 1210 executes a client application 1220 and CPU
1310 executes a server application 1320, CPUs 1210 and 1310 also
execute OP SYS 1 1240 and OP SYS 2 1340, respectively, and ACAS
software components 1230 and 1330, respectively.

20 ACAS software components 1230 and 1330 preferably include
dispatcher software components 1232 and 1332, respectively,
control server software components 1234 and 1334, respectively,
invoker softwaré components 1236 and 1336, respectively, and the
auriliary software components 1237 and 1337, regspectively.

25 For the most part, invoker software components 1236 and 1336

LAw OrricEs represent the client service and dispatcher software components
FInNECAN, HENDERSON

FARADOW, CARRETT
& DUNNER 1232 and 1332 represent the server service. The auxiliary
1300 t 8TRELT, N. W.
WASHINQTON, OC 20008
1:202+408°4000

30 - 44 -

10

15

25

AW Qrrices
FINNECAN, HENDERSON
FARABOW. CARRETT
8 DUNNER
1300 t BYRLLT, N. W.
WASHINGTON, BC 20008
1:202:408:4000

30

software components 1237 and 1337 represent some other operations
of the preferred implementation. Since platforms 1200 and 1300
in the network contain an invoker software component 1236 and
1336, respectively, a control server software component 1234 and
1334, respectively, and a dispatcher software component 1232 and
1332, respectively, either platform can act as a client or a
server.

In the preferred implementatioﬁ, the invoker software

components 123§ and 1336 and the dispatcher software components

1232 and 1332 have the responsibility for interpreting class and

method information in the class data bases, as well as context
data in the context object data base, to determine the
appropriate method to invoke, to determine how to invoke that !
method, and ¢~ Zdispatch the necessary commands to execute the

code to implement the method. The invoker software components ;
1236 and 1336 and the dispatcher software components 1232 and
1332 also insulate client applications from the details of the
method invocation and the transport level mechanisms.

The control server softwars components 1234 and 1334 have
several funetions. One function is to store information on
currently running server applications on the platforms 1200 and
1300 in the network 50. The control server software components
1234 and 1334 also execute processes to start new applications
that become method servers. Another function performed by
control server software components 1234 and 1334 is method server
registration. For example, the control server software component:

1334 stores information regarding the method server, identified

- 45 -

10

15 I

20 :

25 !

LAW OrFPFICES |
FINNECAN, HENDERSON
FARABOW. CARRETT

8 DUNNER |

1300 t STRTET N W l
WASHINOTON. DC 20003 |
1:302-408:4000 1

30
|

#6

by the server application 1320, currently running on the server
platform 1300. The control server software component 1334 also
communicates with the server registration facility in network-

wide memory 704 (Figure 7) to store status information regarding

the server application 1320,

The auxiliary software components 1237 and 1337 represent
operations of the ACAS software components 1230 and 1330 such as
class and method object definition and registration, method
executable registration (described below) in a method executable
catalog of each platform, and functions of the LOADER/UNLOADER
software component 1010 (Figure 10).

For purpose of the following discussion, the platform 1200
is referred to as the client platform and the platform 1300 is
referred to as the server platform. In this example, the client

application 1220 communicates with the server application 1320 in

the server platform 1300 in an objected-oriented fashion. It is

‘| also possible in accordance with the present invention and in the

preferred implementation for a client application on one platform

| to communicate with a server application on the same platform.

When the client application 1220 communicates with the
server application 1320, the dispatcher sovftware component 1232
and control guorver software component 1234 of the client platform

1200 is not involved, and are therefore shaded in Figure 12.

Likewise, invoker software component 1336 of the server platform

1300 is shaded because it is not active.

Figure 13 is a flow diagram 1360 outlining the major

functions performed in an invocation of a method according to the

- 46 -

A7

1 preferred implementation. Prior to beginning the steps in flow
diagram 1360 the ACAS software gomponents 1230 and 1330 are
initially in a "wait" state.

When the client application 1220 transmits a method
5 il invocation request, the processes of the ACAS software components
1230 and 1330 shown in Figure 13 begin. This method invocation
request includes an input messaye which identifies the desired
operation of the cl%ent application 1220.

First, the method invocation request is received by the
10 invoker software component 1236 (step 1370) which processes the
method invocation request (step 1375). The invoker process is
described in greater detail below. The usual result of the
invoker process is a processed method invocation request.
i The invoker software component 1236 then transmits the
1¢ processed method invocation request, via network bus 55 to the
dispatcher software component 1332 (step 1380). The dispatcher
software component 1332 and control server 1334 then begin their

operations.

After receiving the processed method invocation request,_the
20 disputcher software component 1332 and control server software
component 1334 cause the method identified by the invocation
request to be executed by the server application 1320 (step
1390). Once the server application 1320 completes execution of
the method, it outputs any arguments resulting from the execution
25 and the dispatchar software component 1332 generates a status

tav arrices message (e.g., "successful"). The output arguments and status
FINNECAN, HENDERSON

RABOW, CARRETT
FA 9 DINNER message are mapped into the processed method invocation request,
1300 { Y RELT, N. W,
‘wABRINOTON, OC 20003
1:202:408:4000

30

- 47 -

10

15 |

20

25

LAW OFFICES
FIMNECAN, HENDERSON
FARAZCW, CARRETT
8 DINNER
1300 [8 "RELT, N. W.
WASHINOTON, OC 20003 ‘.
1-202:-408-4000

30

31

now called a "response." This response is then transmitted by
the dispatcher software component 1332 to the invoker software
component 1236. The invoker software component 1236 completes
its processing by returning the response received from the
dispatcher software component 1332 mapped into the original
method invocation request, to the client application 1220 (step
1395).

 The preceding sxplanation of the ACAS software components
1230 and 1330 permiés a greater appreciation of the flow of
information in the preferred implementation of this invention.
Figure 14 shows additional elements of the network 50 affected by
a flow of information from the invoker software component 1236 toz
the dispatcher software component 1332. In addition to the
client application 1220, the server application 1320, the invoker
software component 1236, the dispatcher software component 1332,
and the control server software component 1334, Figure 14
includes context object data bases 630 (Figure 6), class data
bases 640 (Figure 6), a server registration facility 1420, and a
control server registry 1425, which is maintained by the control
server software component 1334 and keeps track of the executable
code in the server platform.

As shown in Figure 14, the context object data bases 630
includes a user context object data base 1402, a group context
object data base 1404, and a system context object data base
1406, each of which has been described above in the discussion of
context object data bases. The class data bases t40 include a

local data base 1000 (Figure 10), a node cache 1030, and a global

- 48 -

w

10

15

20

25

LAW OFPFICES
FINNESA, HENDERSON
FAR A20W, CARRETT
8 DUWNER
1300 t STRELT, N. W,

W INOTON, OC 20008
“202:4008°4000

4

class data base 1020. Each of these elements of class data bases
640 has been described above in the discussion of class data
bases.

As explained above, the flow of information begins when
client application 1220 generates a method invocation request
which is passed to invoker software component 1236. This
interface is preferably provided by an InvokeMethoa procedure
call of the preferred implementation.

In the InvokeMéthod procedure call, the client application
1220 passes to invoker software component 1236 an instance
handle, a message (including a message name, and parameter list),
a context object handle, and, optionally, an output instance
handle.

As discussed in detail above, the instance handle is a
structure that identifies the current instance the client
application 1220 has selected to be involved in the method
invocation. The message name represents the desired operation on
the instance. The message parameter list consists of the
parameters required by the message. The context object handle is
a reference identifying the context object data base to be used
in the invocation process described in detail below. The output
instance handle represents an instance of the running method
server associated with the invoked method. This allows the
client application to continue to have a dialog with the same
method server. The semantics of the output instance handle is

the same as that for the instance handle..

- 49 -

10

20

25

\AW OFFICES
FINNECAN, HENDERSON
FARABOW, CARRETT
& DUNNER
300 ° VTRELT, N. W,
WASHINOTON, 0C 20008
1:202:4008°4000

30

J0

When the invoker software component receives the method
invocation request, the invoker software component 1236 queries
the context object data bases 630 and the class data bases 640 to
find a method identifier. This procedure has been discussed
above.

Having determined the appropriate method identifier for the
message name, the invoker software component 1236 next queries
the server registration facility 1420 and the context object data
base 630 to find thé server platform on which to execute the
mathod associated witﬁ the method identifier. The server
registration facility 1420 is used to locate a running method
server (if any) capable of performing the method associated with
the method identifier. A running method server is a method
server, such as the server application 1320, that has made itself
known to the network 50 as being already started.

If there is a running method server, the invoker software
component also queries server platform tables of the context
object data base 630, to determine the location of a remote
platform in the network 50 (Figure. 1) which the user of the
client application 1220 would prefer to execute the method of
invocation request processed by the invoker software component
1236. TIf however, the server application 1320 is not available,
the control server software component 1334 notifies the invoker
software component 1236 that the server application is not
available on the selected remote platform. The invoker software
component 1236 processing outlined above begins again with

querying the server platform table of the context object data

- 50 =

10

15

20

25

LAW OFrFICCS
FININEGAY), HENDERSON
FARAROW, GARRETT
8 DUNNER
1300 t STRELT, N, W.
WALHINGIUN, DC 20003
1+202+4008+4000

30

bases 630 and server registration facility 1420 to select another
platform in the network 50 upon which to execute the identified
method.

Next, the invoker software component 1236 transmits a query
to the control server software component 1334 of the preferred
server platform which causes control server software component
1334 to query a control server registry 1425 to determine whether
the desired method server on the preferred server platform is
available to process the method identified in the processed
method invocation request. Availability of a method server is
determined in the preferred implementation by examining in the
control server registry 1425 to find out whether the method
server is currently able to process methods invoked by client i
applications.

If the control server software component 1334 indicates to
the invoker software component 1236 that the method server, in
the form of server application 1320, is available, the invoker .
gsoftware component 1236 transmits the processed method invocation;
request to the dispatcher software component 1332 of the server
platform. The invoker software component 1236 can also transmit
information from the context object data base 630, which can then
be used by the desired method server.

The dispatcher software component 1332 then begins to
process the desired method. This process, referred to as the
"dispatching process," generally involves dispatching the method
identifier to begin the execution of the method by the server

application 1320,

- 51 -

10

20

25

LAW OrriICES
FINNNECAN, HENDERSON
FAKRABOW, CARRETT
8 DUNNIR
390 t sTRECT MW,
WA IRINIJITON, DC ¥0003
1125R+408 4000

IR

If, however, the server registration facility 1420 does not
indicate that any copies of server application 1320 and currently
running on a platform in the network, then the invoker software
component 1236 may transmit a request to the control server
software component 1334, us‘ng the information retrieved from the
context object data bases 630 and the class data bases 640, to
start the server application 1340. After the server application
1320 is started, the control server software component 1334
notifies the server'registration facility 1420 to update the
network-wide memory 704 (Figure 7) to indicate that the server
application 1320 is running. Control server software component
also updates the control server registry 1405 to indicate that
the server application 1320 is available. The invoker software
component 1236 then transmits the processed method invocation
request to the dispatcher software component 1332 to execute the
method corresponding to the method identifier of the processed
method invocation request.

After the server application 1320 has completed its
processing, it returns any output information requested by the
processed method invocation request to the dispatcher software
component 1332. The dispatcher software component 1332 then
returns a responsae, as describe above, to the invoker software
component 1236 along with any output information mapped into the

output arguments of the processed method invocation request

received by the dispatcher software component 1332,

- 52 =

10

[
(88]

20

25

LAW OFPFICLS
FINNELAN, HENDERSON
FA2.ABOW, CARRETT
8 DUNNER
1290 * STALET, N. W,
I1HJTON, 0C 20008

1:202+:408+4000

Ve,

(2) Invoker Operation
The portion of the process of method invocation performed by

the invoker software component 1236 can now be described in
greater detail. Preferably, that portion consists of several
distinct phases including determining the proper method to be
invoked (method resolution), server connection or start-up, and
transport level communications to enable the dispatching of an
identifier to the proper method to be executed by the method

server or other executable code.

Figures 15A - 15D and 16 contain flow diagrams of proceduresi

performed or called by the invoker software component 1236 of
Figures 12 and 14. The main control procedure 1550 in Figures
15A - 15D represents the steps 1370, 1375, and 1380 (Figure 13)
performed by invokér software component 1236.

As with procédure 1366, prior to entering the main control
procedure 1550, the client application 1220 (Figures 12 and 14)
is running normally without a method invocation request, and the
ACAS software component 1230 is in a "wait" state. When the

client application 1220 generates a method invocation request

using the InvokeMethod procedure call, the main control procedure

1550 begins (step 1552 in Figure 15A) with the invoker software
component 1236 receiving the method invocation request (step
1555).

The invoker software component 1236 first validates the
method invocation request (step 1557). If there was an error,

the invoker software component 1236 generates an error message

- 53 =

10

15

20

25

LAW OrriCcce
FINNECAN, HENDERSON
EaR2RDW, GARRETT
8 DUNNER
130u { STREET, N.W.
WASHINOTON. DC 20008
1:202:408°4000

30

J#

(step 1558) which the invoker software component 1236 returns to
the client application 1220 (step 1599 in Figure 15D).

If the method invocation request is valid (step 1557 in
Figure 15A), the invoker software component 1236 next resolves
the method to be invoked from the message in the InvokeMethod
cali, the class data bases, and context object data bases (step
1560). Method resolution is the process of determining or
identifying the appropriate method.

Figure 16 shows a preferred procedure 1600 to resolve
methods. Although method resolution has been referred to above,

procedure 1600 shows such resolution in much more detail than has !

been provicled. j

In the preferred implementation, the determination of the
proper method to be invoked is indirectly handled by the invoker
software component 1236. Most of the work for method resolution {
is then handled by the auxiliary software components 1237 and
1337 of the ACAS software components 1230 and 1330. 1In the
preferred implementation, auxiliary software component 1237
retrieves information from the context object data bases and the
class data bases. Of course, invoker software component 1236
could also retrieve such information.

After beginning the method resolution procedure 1600 (step
1605), the invoker software component 1236 determines whether the ,
instance handle includes the storage class name portion (step
1610). If a storage class exists, it is located (step 1620) a

special method is invoked to retrieve the name of the class

associated with the instance handle (step 1630).

- 54 -

10

15

20

25

LAW OFricEt .
FIN'NECAN HENDERSON
FARAJLW, GARRETT
8 DUNNER
1300 | STRECT, N. W.

‘NOYON, DC 20008
%vu\:-noo-nooo

After invoking the method identified by the storage class to
retrieve the class name, or after determining that the instance
handle did not include the storage class name, a process is
executed by the invoker software component 1236 to locate class
information for the class data bases 640 (Figures 6 and 14) using
the searching order described above (step 1640) For example, if
the messages was EDIT (INSTANCE_HANDLE), where the instance
handle was ASCII_TFILE/NODE_l/MYFILE.TXT, the class name
ASCII_FILE can be uéed to find class ASCII_FILE 1645 in class
data bases 640.

With the name of the message, EDIT, the appropriate method
' map 1655 is then retrieved from the class data basas 640 (step
1650). In the specific example under discussion, the auxiliary
software component 1237 of the preferred implementation would
then retrieve method map 1655 and check to ensure that the class
information located in step 1640 includes with the message name
EDIT. This ensures that the corresponding message is supported
by the class.

As Figure 16 shows, the method map 1555 includes method
objects METHOD 1 and METHOD 2 for the message name EDIT and the
class ASCII_FILE 1645. Associated with the method object METHOD
1 is a set of attributes 1657 and associated with method object

indicates that METHOD 1 is capable of being executed on

PLATFORM_TYPE A, and the set of attributes 1659 indicates that

Method 2 is capable of being executed on PLATFORM_TYPE B.

- 55 =

METHOD 2 18 a set of attributes 1659. The set of attributes 1657

10

20

25

AW QPrICES
FINNECAN, HENDERSON
FARABOW, CARRETT
M DUNNER
1300 t SYRELT, N. W.

WAAMINATON, DC 20008

| 202 4UB*4000

30

JO

Because there might be several method objects in the method
map, the context object data bases 630 are referenced to resolve
any ambiguities (step 1660). In referencing the context object
data bases 630, the appropriate server node table maintained is

also retrieved to be used later.

The entries (if any) in the context object data bases 630

are then compared with the attributes in set of method objects on

the method map (step 1670) to select the method object and thus

the appropriate method to execute the desired operation

| represented by the message (step 1680). 1In Figure 16, a method

override table 1665 includes an entry 1668 indicating the user
preference is for PlatfoxrmType A. Using this entry 1668 the
invoker software component 1236 selecta from the class data bases
640 the appropriate method 1686 to execute the desired operation
EDIT. In the example shown in Figure 16 the appropriate method
is Method 1 to be executed on PLATFORM_TYPE A. The procedure
1600 now returns to the main control procedure of 1550 of

Figure 15 (step 1685).

If at any point during the operation of method resolution
procedure 1600, there is an error (such as during step 1640, the
class identified in the instance handle was not a class locatable
in the class data bases), the method resolution procedure 1600
returns with a message indicating this error.

After returning from the method resolution procedure 1600, a

determination is made whether an error occurred during the method .

resolution process (step 1562 in Figure 15A). If the answer is

"yes", then the invoksr software component 1236 generates the

- 56 =

1 appropriate error message (step 1563), and returns the error
message to the client application 1220 (step 1599 in Figure 1i5D). °

Otherwise, having resolved the method without error (step
1562 in Figure 15A), the invoker software component 1236 then
5 reviews the method attributes corresponding to the identifier of
the resolved method to execute the appropriate method on an
appropriate platform in the network. If these method attributes
indicate that the method is already linked into the client
| application 1220 (séep 1565 in Fiqure 15B), for example, the
10 value of the InteracticnType method attribute is "BUILT_IN," then
a check is made for an activation error (step 1566). If there
was one, an error message 1s generated (step 1576) and control is
returned to client application 1220 (step 1599 in Figure 15D).

If there was no error, a success flag is generated (step
15 1567), and the resolved method is executed by code already
resident in the client application 1220 (step 1569).

If the method attributes do not indicate that the method is
already linked to the client application 1220 (step 1565 in
Figure 15B), invoker software component 1236 asks whether the
20 method attributes indicate that the method is dynamically
loadable (step 1570). Dynamically-loadable methods represent
method executables which may be merged with executable code of
client applications at run-time. Those skilled in the art will
recognize that a dynamically-loadable method might be a method
Y : executable identified by a subprocedure or function of a client

mm&ﬁlxmmﬁuon application., Preferably the test for a dynamically-loadable

FARAPOW, CGARRETT ;

8 DUNWER method server is accomplished by determining whether the value of
1300 t aTRLET, N, W,
w..8AINOON, 0C 20003
1+202:408+4000

30 - 57 -

10

20

25

VAW QPFPICES
FINNECAN, HENDERSON
FAR.BOX', CARRETT
8 UUNNER
130v | 8 RECET. N. W.
WABMINOTYON, DC 20008
1:202:408+4000

30

JO

the InteractionType method attribute is "DYNAMIC_LOAD." If so,
then the invoker software component 1236 attempts to load the
executable code identified by the resolved method into the client
application 1220 (step 1572).

If an error occurred during the loading of the executable
code (step 1574), then the invoker software component 1236
generates a message indicating that a load error occurred (step
1576) and returns the load error message to the client
application 1220 (sﬁep 1599 in Figure 15D).

Otherwise, Lf there was no load error (step 1574), then the
invoker software component 123f then generates a flag indicating
the successful completion of the method invocation (step 1567).
Next, the dynamically loaded executable code corresponding to the
resolved method is executed (step 1569), and control returns to
the client application 1220 along with any output arguments (step
1599 in Figure 15D). Any errors in executing linked or

dynamically-loadable method servers are preferably returned as

parameter values.

If the method attributes do not indicate a previously-linked

or dynamically-loadable method (steps 1565 and 1570 in

Figure 15R), then the invoker software component 1236 must locate

a running method server on a platform in the network that can
handle the resolved method as described above with regard to
Plgure 14.

If the information retrieved from the sexrver registration

facility 1420 (step 1578) indicates that there is at least one

running method server capable of performing the method identified

- 58 -

'

10

15

20

25

CAw OorFFicEe |
FIMNPCAN HENDERSON
Fr.RAJOW, CARRETT
8 DUNNER
120C 1 LTAEET, N. W,
wsvmomn. 0¢C 20008
.202:408+4000

by the resolved method (step 1579 in Figure 15C), then the
invoker software component 1236 compares the information
retrieved from the server registration facility 1420 with the
entries on the server node table retrieved from the context
object data bases 630 during the method resolution procedure 1600
to select a server platform in the network (step 1580).

Having selected a server platform, the invoker software
component 1236 then transmits a QueryServer call to the control
server software coméonent 1334 of the selected server platform
(step 158l1)., The functioning of the control server software
component 1334 is deacribed_in detail below in connection with
Figures 17A and 17B. Briefly, control server software component
1334 determines whether the desired method server is available or
not.

The main control procedure 1550 of the invoker software
component 1236 then continues in step 1582 (Figure 15C) by
receiving a message generated by the control server software
component 1334 about the desired method server’s availability and
translating the message into a format recognizable by the client
platform. The invoker software component 1236 determines from
the contrecl server software component 1334 whether the method
sexver corresponding to the resolved method is available to
process the method identified by the resolved method (step 1583).
If the corresponding method server is available, then processing

of the invoker software component continues on Figure 15D by

asking whether the method server is an asynchronous method server

- 59 -

10

20

| 3]
«

AW OPPICRS
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
8JV ¢ STRELT, N. W.
WA BMING™ON, D& 20008
14402 408+4000

30

(step 1593) in Figure 15D. Asynchronous method servers are known
in the art.

If the method server is asynchronous (step 1593), then the
control server software component 1334 is called using the
SignalServer call to signal the method server (step 1594). If
the method server is not asynchronous (step 1593), or after an
asynchronous method server is signaled (step 1594), the processed
method invocation request, including ti> identifier for the
method and information retrieved from the context object data
bases during method resolution, is packed into a data structure
used for communication in the network (step 1595) and the invoker
software component 1236 then transmits the packed and processed
method invocation request to the dispatcher software component
1332, The processes of the dispatcher software component 1332
will be described below with reference to Figures 18A and 18B.

After the dispatcher software component 1332 completes its
processing and transmits a packed response, the invoker software
component 1236 receives the packed response (step 1597), unpacks
the response (step 1598), and returns the response to the client
application 1220 to complete its processing (step 1599).

If in the earlier determination (step 1583 in Figure 15C),
the running method sexrver was found not to be available, the
invoker software component 1236 determines whether the server
registration facility 1420 indicated any other running method
gervers capable of performing the method identified by the
resolved method (step 1584). If so, then the retrieved

information is compared to the server node table in the context

- 60 -

10

15

20

25

LAW Qrricce
FINNECAN, HENDERSON
FARALOW, CARRETT
& UUNNER
1300 { YRECT, N. W.
wASMINOTON, DC 20008
1:27'2 406:4000

30

6/

object data base 630 and a QueryServer call is made to control

gserver software component 1334 (step 1581).

Otherwise, the invoker software component selects the server

node with the highest priority from the server node table (step
1586). The control server software component 1334 of that
selected server platform is then contacted using the StartServer
call which indicates to the control server software component
1334 to attempt to start the appropriate application which
corresponds to the ﬁethod identified by the resolved method (step
1587).

After the control server software component 1334 has
completed its processing and transmitted a massage, the invoker
goftware component 1236 receives the transmitted message which it
then unpacks (step 1588).

If the appliéation was started and becain» a method server
(step 1589), then the invoker software component 1236 completes
its processes which have already been described (step 1593 of
Flgure 15D), If the application was not started (step 1589),
then the ilnvoker suftware component 1236 asks whether there are
any more nodes in the server node table of the context object
data bases 630 (step 1590). If not, then an error message is
generated indicating that the method invocation was unsuccessful
because a sexver platform could not be located (step 1592), and
that error messaywu is returned to the client application 1220
(step 1599 in Figure 15D).

If, however, there are other nodes on the garver node table

(step 1590 in Figure 15C) then the platfofm with the next highest

- 61 -

10

15

20

2%

LAW OFPFICED
Fl.INLCAN, HENDERSON
FARABOW, CGARREYT
8 DUNNER
1300 1 STRLLT, N W.
WASHINOTON, OC 20003
1:202+408+4000

2C

2

priority is selected (step 1591) and the proceesing of the
invoker software component 1236 returns to step 1587 of
Figure 15C. The loop consisting of steps 1587, 1588, 1589, 1590,
and 1591 will be performed until the method server is started
(step 1589) or until there are no more platforms on the server
platform lists (step 1590).
(3) Control Server Qperation

Figures 17A ana 17B show the control server procedure 1700
which represents the operations of the contrel server software
component 1334. Persons skilled in the art will recognize many
other ways of implementing the functions of control server
software component 1334.

After beginning the control server procedure 1700 in step .
1702 of Figure 17A, the control server software component 1334
receives a control'server message (step 1705). In response, the
control server software comporient 1334 determines whether the
control server message indicates that an application running on a
common platform with the control server software component 1334
requests to be registered as a method server to handle method
invocation requests (step 1710). If the answer is "yes" then the
control server software component 1334 reyisters the server
application as a method server by recording the necessary
informatio’t about the server application with the centrol server
registry 1425 to indicate that thie method server is available.
Control server software component 1334 also notifies the server
registration facility 1420 to indicate that the method s\ cver is

running (step 1715). The running and available method servsr may

- 62 -

10

15

25

AW OFPICCS
FINNES N, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 1 8TRCET, N. W,
WABHINOTON, OC 20008
11302+408+4000

30

63

also execute appropriate methods. The control server software
component 1334 alsc generates a success message (step 1729) to be
returned to the now registered application (step 1799 in

Figure 178).

If the control server message does not indicate that an
application wishes to he registered (step 1710 in Figure 17a),
the control sexver software component determines whether the
control server message indicates that a currently registered
method server requests to be unregistered with the control server
software component 1334 and server registration facllity 1425
(step 1720). If so, then the control server software component
1334 unregisters the method server by removing the informatiocn
from the control server registry 1425. This indicates that the
application, identified by the method server, is no longer
available. Control server software component 1334 also notifies
the server registration facility 1420 to remove the information
stored in network-wide memory 704 (step 1725). The control
server software component 1334 then generates a success message
(stap 1729) to be returned to the now-unregistered application
{step 1799 in Figure 17B).

If the control server message does not indicate that an
application has requeated to register or unregister itself, the
control server software component determines whether the control
server message indicates that the invoker software component 1236
wishaes to signal an asynchronous method server to expect to be
invoked to execute a processed method in§ocatlon request (step

1730). If this is the case, the control server software

- 63 =

|
|
|
3

4k |

1 component 1334 executes a process that signals the asynchronous
method server (step 1735) and completes processing (step 1799 in
Figure 17B).

As explained above, the preferred implementation of this
5 invention can operate both with applications written to take
| advantage of the features of this invention, or previously-
written applications that have been modified for us with the
preferred implementation. In so writing or modifying , ;
asynchronous applications to operate with the preferred !
10 implementation, a user includes program code that, in part,
racognizes these asynchronous signals and, as described below,
registers these signals and 'the following processed method |

invocation requests in queue. These operations are described

below with reference to the processes performed by the dispatcher%
15 software component 1332.

If no other function has been requested, the control server
software component 1334 determines whether the control server

message indicates that the invoker software component 1236 is

requesting that a new application, which resides on the same

29 p.atform as the control server software component 1334, should bel
started to become a method server to process a method (step 1740 i
in Figure 17B). If so, then the control server software !
component 1334 checks the control server registry 1425 (step

1745) to determine whether the method executable of the new i
25 application, corresponding to the resolved method, resides »n the .

Enneon Henoerson || 8@Lected platform (step 1750).

FARABOW, GARRETT
8 DUNNER
1300 { STREEZT, N. W,
wwmovou. OC 30003
202:408+4000

- 64 =

10

15

25

LAW OPPICES
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 t STRELT, N. W,
WASHINOTON. DC 20008
1:202:408°4000

30

65

Control server registry 1425 has a local scope so that only
the server platform 1300 is aware of resident method executables.
The registration of method executables in registry 1425 involves
registr-tion of the actual executable code in executable files,
for example shell scripts, that implement a method, and the
status of those method executables. These items preferably have
¢ . - 4 local registration scope because it is not necessary to
manage the executable code globally.

If the corresponding method executable is identified in the
control server registry 1425, then the selected platform can be a
server platform. The control server software component 1334
executes a process to start the corresponding method executable
and registers the resulting method server with the sexver
registration facility 1420 and with the control server registry
1425 to indicate that the newly started method server is both
running and available (step 1752). During this starting process,
the control sexrver software component 1334 also creates a context
object data base capable of being used by the started method
server. Next the control server software component 1334 then
generates a message indicating that the application corresponding
to the resolved method has been started and is now a method
gerver (step 1754). This message is then transmitted to the
invoker software component 1236 that requested that the method
server be started (step 1790), and the control server software
component. 1334 has completed its processing (step 1799).

If the method executable corresponding to the resolved

method is not identified in the control server registry 1425,

- 65 =

10

15

25

LAW OFrICES
TINVIECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 t STRELT, N W,
WASHINGTON, OC 20008
1:202:408+4000

20

65

then the control server software component 1334 generates an
appropriate message indicating that the method executable was not
started (step 1756). This message is then transmitted to the
invoker software component 1236 that requested that the method
server be started (step 1790), and the control server software
component 1334 has completed its processing (step 1799).

If no other function has been requested, the control server
software component 1334 determines whether the control server
message is a request from the invoker software component 1236 for
information concerning the availability of a running method
server to execute a method identified by the resolved method
(step 1760). If not, the control server software component 1334
generates an error message (step 1780), trarnsmits that message to
the invoker software componant 1236 (step 1790), and completes
its processing (step 1799).

Otherwise the control server software component 1334 retries
the requested information on the running method server from the
control server registry 1425 (step 1765). If the information
from the control server registry 1425 indicates that the method
server identified by the resolved method is available (step
1770), then the control server software component 1334 generates
a message indicating the method server’s availability (step
1775). This message is then transmitted to the invoker software
component 1236 (step 1790), and the prbceseing of the control
server software component is complete (step 1799).

If, however, the control server registry 1425 indicates that

the method server is not. available (step 1770), then the control

- 66 -

'

10

15

20

3]

LAW QrFPICED
FINNECAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 t STRELT, N, W.
WASHINOTON, OC 20008
11 302:408:4000

30

67

server software component 1334 generates a message indicating the
unavailability of the method server (step 1777). The control
server software compénent 1334 then transmits the generated
message to the invoker software component (step 1790), and the
processing of the control server software component 1334 is
complete (step 1799).

(4)

The process of dispatching method servers consists of

Dispatcher Operation

dispatching methods:to be processed by method servers and
transport level communications. The dispatcher software
component 1332 also handles different types of method
invocations.

Asynchronous method invocations do not require that the
c%ient application wait for the identified method server to
complete processing. For example, the invocation request can be
placed on a queue to be performed, and the RPC transport level
call can return to the invoker software component 1334 and allow
the client application to continue its own processing without
being "blocked" or prevented from continuing. The queue of
processed method invocation requests received from invoker
software components is then examined by dispatcher software
component 1332, such as in a dispatcher procedure 1800 of
Pigure 18, and performed according to a predetermined order.

Asynchronous method invocations may be requested if the
client application does not expect to receive back a response
from the method server. The only response will be an indication

of whether the method invocation was successfully received by an

- 67 =

10

15

20

25

LA N OPPFICES
FIMNERAN, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 { STRELT, N. W,
WASHINGYGN, BC 20608
11202+406:4000

30

63

ACAS software component on a server platform. The response does
not indicate whether the execution was successful, and will not
contain any outputs of the actual method invocation, as it could
for synchronous method invocations.

Synchronous method invocations are the default mode for all
method invocations. With synchronous method invocations the
client application that invoked the method awaits a response
before continuing its own processing.

Figures 18A and 18B are a flow diagram of procedures
performed or called by the dispatcher software component 1332 of
Figures 12 and 14. The dispatcher procedure 1800 represents the
steps 1385, 1390, and 1395 (Figure 13) performed by the
dispatcher software component 1332,

Prior to entering the dispatcher procedure 1800, the
dispatcher software comporient 1332 is in a "wait" state waiting
for a processed method invocation request from an invoker
software component in the network. After beginning the

dispatcher procedure 1800 (step 1802), the dispatcher software

| component 1332 receives a transport data structure, via the

network transport service. This transport data structure

represents a packed and processed method invocation request

trar xitted by an invoker software component in the network (step
1805), Afiter receiving this transport data structure, the
dispatcher software component 1332 unpacks and translates the
transport data structure into a data structure recognizable by

the server platform (step 1810). The dispatcher software

component 1332 then updates a context object data base associated

- 68 -

10

15

20

25

LAW OPPICED
FINIECA:, HENDERSON
FARABOW, CARRETT
8 DUNNER
1300 | STRELT, N. W,
w? INOTON, 0C 20003
1Y202+408+4000

69

with the running method server (step 1815). A context object
data base may become associated with the running method server
either by being created by the control server souftware component
1334 when starting the method server or by a user logging onto

the server platform and starting the method server.

The dispatcher software component 1332 next asks whether the

proceed method invocation request it received is an asynchronous
invocation request to be processed by an asynchronous method
server (step 1820).°' If not, then the dispatcher software
component 1332 asks whether the invocation request includes the
identification of a valid method, which is a method that can be
processed by the method server (step 1825). If not, then an

error message is generated (step 1840), which is then packed as a

response (step 1890 in Figure 18B) and transmitted to the invoker :

software componenf (step 1895) before completing the dispatcher
processing (step 1849).

If the invocation request included the identification «f a
valid method (step 1825 in Figure 18A), then the dispatcher

gsoftware component 1332 dispatches the valid method identified by !

the received invocation request to be executed by the method

server (step 1830). If an error occurred during the execution of

the valid method by the method server (step 1835), the dispatcher:

software component 1332 generates an appropriate error massage
(step 1840). The dispatcher software component 1332 then packs
the error message as a response (step 1890 in Figure 18B) and

transits the packed error message to the invoker software

- 69 -

\

20 l

1 component (step 1895) before completing the dispatcher processing '
(step 1899).

If no execution error occurred (step 1835 in Figure 18Aa),
then the dispatcher software component 1332 packs a response
5 (step 1890 in Figure 18B), which in this case is the processed
method invocation request including any output from the method i
server that processed the method identified by the resolved
method (step 1560 of Figure 15A). After the response is packed, !
it ie transmitted to the invoker software component that I
10 originally sent the original processed method invocation request

(step 1895), and the dispatcher processing is completed (step
1899).

If the processed method invocation request received by the
dispatcher seoftware component is an asynchronous invocation
15 request (step 1820 in Figure 18A), then the asynchroncus
invocation request is preferably placed on a queue to be

dispatched by the dispatcher software component 1332 to be later

processed as a method server (step 1850). A message indicating
the success of the asynchronous invocation request is generated
20 (step 1855), packed as a response to the received processed

method invocation request (step 1860), and then transmitted to
the invoker software component that originally sent the processed .

method invocation request (step 1865).

In the preferred implementation, asynchronous method servers
28 execute asynchronous method invocation requests in the order they

Law OrriSEe are first placed on a queue. In executing the aasynchronous
FINNECAN HENDERSON

RABOW, CARRETT

A 8 DUNNER requests, the dispatcher software component 1332 asks whether
1300 1 8TRELT N W, ;
WASHINOTON, DC 20001 ' !
1:202+408+4000

3C - 70 -

10

15

20

’

2b

LAW OrPiCES
FIANECAN, HENDERSON
FARAROW, CARRETT
8 DUNNER
1300 t ATRECT, N\ W,
WASNHINOTON OC 20008
1+202:408+4000

30

7

there are any method invocation requests on the queue to be
processed by the asynchronous method server (step 1870 in
Figure 18B). If there are no method invocation requests on the
queue (step 1870), then tha dispatcher processing is complete
(step 1899).

If there were asynchronous method invocation requests on the -
queue (step 1870), the dispatcher software component 1332 takes
the next asynchronous method invocation request off of the queue
(step 1875). If thé request taken off of the queue is invalid

(step 1880), such as a request that cannot be processed by the

method server, then processing returns to f£ind out whether there
are other gueued method invocation requests (step 1870). |

If the request taken of the queue is valid (step 1880), then |
the dispatcher software component 1332 dispatches the |
asynchronous method invocation request taken off the queue to be
processed by the asynchronous method server (step 1885).

The question is then asked whether an error occurred in the
processing of the method server (step 1887), The error, if any, i
is recorded (step 1888) then, or if an error did not occur, the .
dispatcher software component 11332 checks the queue (step 18‘70).i
In this manner all asynchronous invocation requests on the queue
are processed, in turn, without blocking the client application
that originated the method invocation request.

I. Summaxry

exameples
The prasenqétanantﬁnn;thua provide an efficient and simple

manner for an application on one platform to invoke an

application on the same or a different platform without needing

-7l =

10

15

VAW OrriCESs
FINNLCAN, HENDERSON
" RASOW, GARRETT
8 DUNNER
1200 | BTRELY, N. W,
WASHINOTON, OC 20008

1:202:408+4000

72

to know details about the other platform, or even about the other -

application. Such invocation can even take place between unlike
platforms in a heterogeneous network.

Because, in accordance with the object-oriented techniques

| Tf—thtr—iaeontor, the data (or instances) and applications are

not managed, those data and applications can he managed in the
manner chosen by the application developers. By managing only
objects and references to applications instead, the requirements
on system resources‘are reduced, and the flexibility of the
system is increased.

Persons of ordinary skill will recognize that modifications
and variations may be made to this invention without departing
from the spirit and scope of the general inventive concept. This
invention in its broader aspects is therafore not limited to the

specific details or representative methods shown and described.

- 72 =

73

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. A system for organising communication among applications
in a data processing network which includes
a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,
a plurality of instances corresponding to each of said
applications, and
a plurality of platforms operating under the control of
operating systems for executing said applications,
said system comprising
memory in the network containing a data base, said data
base including
a plurality of method entries, each of said
method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,
a plurality of non-redundant class entries, each
of sald class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and
a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,
the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances

74

associated with said class entry,
and
the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
and
data base control means coupled to the memory in the
network including
means, responsive to a message from a client
application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,
means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,
means for selecting a platform capable of
executing the requested application, and
means for transmitting the identifier Efor the
instance and the reference to a procedure contained in
the salected method entry to the selected platform.
2. The system of claim 1 wherein method entries are
referenced in each of the message en’ries by means of a
method map.
3. The system of claim 1 wherein each of the method
entries inciudes a list of attribute values describing the
corresponding application.
4. The system of claim 1 wherein the class entries or
method entries are hierarchically ordered into superclasses
and subclasses such that the ones of the class entries or
method entries which represent subclasses of a
corresponding superclass inherit the information about the

corresponding superclass.

5. The system of claim 1 wherein the data base includes a

75

global class portion which is accessible throughout the
network.
6. The system of claim 1 wherein the data base includes
local portions which are each accessible to only a portion
of the network.
7. A system according to claim 1 further including an
object definition facility coupled to the memory in the
network.
8. A system for organising communication among
applications in an object oriented manner in a data
processing network which includes
a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,
a plurality of instances c7:responding to each of said
applications, and
a plurality of platforms operating under the control of
operating systems for executing said applications,
said system comprising
memory in the network containing a data base, said data
base including
a plurality of method entries, each of said
method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,
a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an

identification of one or more message entries,

and

76

a plurality of mesgage entries, each of said
megsage entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entrxry conctaining information relating to applications
capable of performing the types of operations specified

in said message entry;

data base control means coupled to the memoxy in the
network including
means, responsive to a message from a client
application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,
means for selecting a method entry referenced in
the selected message entry and corresponding to the
requested application, means for selecting a platform
capable of executing the requested application, and
means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform; and
an object definition facility coupled to the
memory in the network,
wherein the data base includes a gleobal class portion
which is accessible throughout the network and local
portions which are each accessible to only a portion of the

network,

wherein the data base control means includes

717

wherein the data base control means includes
means for searching the local data bases in a
predetermined order before searching the global class
data base, and
wherein the object definition facility includes
means for generating globally unique identifiers for
types of operations and instances.
9. A system as claimed in any one of the preceding claims
and substantially as herein described with reference to the
accompanying drawings.

DATED THIS STH DAY OF APRIL 1993
DIGITAL EQUIPMENT CORPORATION
By Its Patent Attorneys:
GRIFFITH HACK & CO.

Fellows Institute of Patent

Attorneys of Australia

10

15

LAW OPFICES
Fl1iNECAY, HENDERSON
FAR ARAW, CARRETT
8 DUNNER
130C | STREET, N. W.
WALHING (UN, DC 20003
1+202°408-4000

“-78"

ABSTRACT

The data bases include method entries, message entries, and
class entries. Method entries refer to commands or other
mechanisms used to invoke applications. Message entries each
represent a type of operation which can be performed on instances
in a class which correspond to that message and ‘dentify a method
map which contains one or more references to method entries
stored in the data Base. Class entries, each of which is unique
in a data base, and identify types of instances having common
characteristics as well as identifying a corresponding group of
message entries. The data bases may be in a data processing
network comprised of one or more platforms or nodes and may be
either global data bases accessible to the entire network or
local data bases, each of which is accessible to only a part of

the network.

— 100 /\r

K—

NETWORK

BUS | <:>

K—>

VAX.VMS
— 110
CPU ~120 ~130
APPLICATION
T ~ia0 |ACAS
OP SYS
| 150
MEMORY
MIPS.ULTRIX 200
210
BU ~220 230
APPLICATION
| 240 ACAS
OP SYS
| 250
MEMORY

35
—/

80286.MS-DOS _ ~300

—310
320 330
APPLICATION
T 340 |ACAS
QP SYS
1 —350
MEMORY
FIG. 1

1~/

/é/éOEbL

2[x 79304/41

— 260
APPLICATION
— 265 / — 268
APPLICATION APPLICATION
DEFINITIONS DATA
Pl - :;“\\
-7 —270 —~ 280 S.
" CLASSES METHODS
INSTANCES
FIG. 2
360 ~— 370
MESSAGE | | INSTANCE
 —380 ~— 390
CLASSES »y METHOD

FIG. 3

420

WORD_C_READ
ULTRIX

ATTRIBUTES) ,—430 ATTRIBUTES) ,—435 ATTRIBUTESY —440

PLATFORM TYPE = PLATFORM TYPE = PLATFORM TYPE =
80286.MS-DOS VAX.VMS MIPS.ULTRIX
INTERACTION TYPE = INTERACTION TYPE = INTERACTION TYPE =
BUILT_IN BUILT_IN BUILT_IN
SERVERSTARTUP SERVERSTARTUP SERVERSTARTUP
TYPE = TYPE = TYPE =

NAMED_APPLICATION

NAMED_APPLICATION

NAMED_APPLICATION

FIG. 4A

R

/@@0854

g-[2|

/ 480 483

490~ / MESSAGE
EDIT WORD_A WORD_8

493 METHOD MAP

494~ WORD_C_READ Y 485
MIPSULTRIX
496 VW_WORD_C_READ ,
VAX.VMS)
/
/

495~ / MESSAGE
GUT

498 METHOD MAP

4994 WORD_C_CUT
80286.MS-DOS

FIG. 4B

s/ 2|

5002
OBJECTS ATTRIBUTES ~ 511
0 7 510
506 = — |
e A
T CLASSES | 220
501 OPEN (PARA_1, PARA 2..)
525 —|EDIT (PARA_1, PARA_2... I
METHOD MAP 530
531~ METHOD 1
533 —{{ METHOD 2
METHOD MAP &40
541~ ED_1_READ
543 1 ep 3 READ
ATTRIBUTES 560" 561
550 —5490 SERVERSTARTUP TYPE = SHELL-
0 3 READ 2 | 'INTERACTION_TYPE = BUILT IN
SRy PLATFORM_TYPE = 80286.MS-DOS
: INVOCATION_STRING:STRING = "EDLIN"
METHODS . ,

FIG. 5

6/ 11

59.0.1 — 630
CONTEXT
DATA
BASES INFORMATION
|/
A ~ 640
610 REQUEST
CLASS
APPLI. | MESSAGES i
CATION | |NSTANCE
(CLIENT) H{ANDLES —
— 620
RESPONSE -
| ACAS |\MESSAGE NAME
CLASSES
-~ METHOD IDS
METHOD 1D AND
¢ INSTANGE ID
RESPONSE| [~ 660
k %
ACAS 670
QUERY)
’ APPLI-
o — CATION
SERVER INFORMATION (SERVER;

FIG. 6

-2/

150

710

JLOCAL

720
CACHE |7

250

\CACHE

730
LOCAL [}

FIG. 7

GLOBAL
CLASS

| DATA BASE

105

350

760

800

CACHE

LocAL | [7?0

HEADER

J 810

[
820~

{
822>

- 815

AVAILABLE
829

({
SPACE 824>

S
NAME-TO-ID INDEX .| s~ 830

ID-TO-BLOCK NO. MAP.J_s~ 840

BLOCK TABLE

] 850

FIG. 8

7

910 <

920<

1000

LOCAL
CLASS
DATA
BASE

1030

NODE
CACHE

g/l_l

912 915 917
BLOCK N f f f
ID OFFSET | SizE
OBJECT1 | DS+0 |1024 45955
OBJECT 2 | DS +1024 | 290 | 965
OBJECT 950
OBJECT 960
FIG. 9
1020
1010 " 3
LOADER/ > GLOBAL
UNLOADER | CLASS
- DATA
BASE
MEMORY

FiG. 10

—1100
~—1110 ~1150
METHOD SERVER
OVERRIDE NODE
TABLE TABLE
—1170
CLASS DATA
BASE OVERRIDE
TABLE
—1180
CONTEXT USER-
OBJECT DEFINED
DATA TABLES
BASE
FIG. 11A

e

INVOKER RECEIVES
[1375
INVOKER PROCESS
[~1380
INVOKER TRANSMITS |
3 1385
DISPATCHER RECEIVES

| —1390

DISPATCHER/CONTROL
SERVEFR PROCESS

r1370

—1395
DISPATCHER RETURNS

FlG. 13

17|

METHOD OVERRIDE

TABLE
METHOD 1110

SELECTOR
ATTRIBUTE VALUE
NAME 1115 1120

PLATFORM | VAX.VMS

INTERACTICN -| BUILT_IN
TYPE

FlG. 11B

SERVER NODE
TABLE

1150

PLATFORM LOCATICON

TYPE 1152

1154

TYPE A NODE b

FiG. 11C

CLASS DATABASE
OVERRIDE TABLE
nun

DATABASE ~ LOCATION
NAME 1172 1174

DB_SCH_LST| Dbi, Db2

FiG. 11D

'“C/O’

557\7

1200
~1210
CPU
~1220 1230
CLIENT ACAS
APPLICATION \F ’2<
1240 PATCHE\R
r~ N
OPSYS1 \\\
1234
NN
[CONTROL
\SERV.:R\
NN\ N\
-1237 1236
D INVOKER
I ~ 1250

MEMORY

FIG. 12

N

50

(1300

1310

~ 1320

— 1330

SERVER
APPLICATION

— 1340

OP SYS 2

H

ACAS
1332

DIS-
PATCHER

— 1334

CONTROL
SERVER

1337 1336

N

NI
\WOKERY

l ~1350

MEMORY

NETWORK

\V BUS

y T/

630 — 640

: 1CONTEXT ,1020 CLASS
1406 < OBJECT DATA
1402—N USER BASES NODE

[CONTEXT 10007| CACHE
OBJECT i

DATA

BASE LOCAL

A A

17/

«<—REQUEST | 1 _J—MESSAGES
PLATFORM— | _— CLASSES 1332 1320
1220METHOD iD— 1238 | DISPATCH |
s - [INVOCATION |
s | (s woosmon azouest] pOSien | TS | SERER
CLIENT > - | WITH INVOCATION STRING (METHOD)
INVOCATION ,
APPLI- | "peqUEST | VOKER (SERVER)
CATION " RETURN
RETURN RETURN MESSAGE OUTPUT ¥ '
FHOM g CONTROL i
REQUEST L QUERY SERVER {5 1334 L
SERVER INFORMATION _ |r=moom==o- ' !
CONTHOL' : '
SERVER | SERVER |[-SIGNALSTART _J
INFORMATION _ (1420 1425 lw_&gc_s._gr_ay_: 5
SERVER ¥ !
QUERY FEaCRVER 1___SERVER INFORMATION____!
4 FACILITY RUNNING
SERVER

FIG. 14 INFORMATION

13/ 2l

BEGIN) '>2 g 10

4 1555
RECEIVE METHOD
INVOCATION
REQUEST
1558
GENERATE
ERROR
MESSAGE
1560
RESOLVE
METHOD
— 1563
Cecon 1562 GENERATE
LUTION RESOLUTION
N ERROR MESSAGE

FIG. 15A

MAIN CONTROL
PROCEDURE

1 2|

ACTIVATION
ERROR ?

prd ~ 1572
DYNAMICALLY Y
< LOADABLE ? LOAD

1578
INFORMATION FROM v
: ' 1576

SERVER REGISTRATION e 1567

FACILITY GENERATE GENERATE

ERROR SUCCESS

MESSAGE FLAG

, ~1569

EXECUTE

3
>

FIG. 158 @

(sl

1550 ’(
(1586 ANY 1579
SELECT NODE
FROM SERVER |- N 7 RONING
NODE TABLE SERVERS
V1587 :
START SERVER Y
| 1580
(1588 COMPARE RETRIEVED
RECEIVE INFORMATION WITH
MESSAGE FROM SERVER PLATFORM
CONTROL SERVER LISTS AND SELECT FIRST
SERVER PLATFORM

I 1581
QUERY SERVER

1589

SERVER
STAF;TED

1582

RECEIVE
MESSAGE FROM
CONTROL SERVER

SERVER NODES
IN SERVER NODE

TABLE
?
Y 1591
SELECT NEXT
C
NODE TABLE N ANY MORE
. RUNNING HMETHOD
c1592 | SERVERS
oHE Y
MESSAGE 1585
COMPARE RETRIEVED
INFORMATION WITH
SERVER NODE TABLE
(8) AND SELECT NEXT
SERVER NODE

FIG. 15C

Ifa/l'

SERVER?

SIGNAL SERVER

3
>

y 1595

PACK INVOCATION
REQUEST

v 1596

TRANSMIT PACKED
INVOCATION REQUEST

V1897

RECEIVE PACKED
HESPONSE

| 1598

UNPACK
RESPONSE

<-
<

] 1599
RETURN

FIG. 15D

17/ 2

/cmm

1605

1610

STORAGE
CLASS 7

Y
- 1620
LOCATE

STORAGE
CLASS

L 1630

EXECUTE STORAGE
CLASS METHOD TO
RETRIEVE CLASS NAME

CLASS 1645
ASCII_FILE B ! 1640
1657 E LOCATE CLASS
PLATFORM_ ! INFORMATION
TYPE = A N —
: RETRIEVE
JMF'THOD MAP METHOD MAP
L-METHOD 1 \ | | “— ;
-4~ METHOD 2 [1660
REFERENCE
| 1659 CONTEXT OBJECT
STATEGAN DATA BASES
TYPE =8 ~]
1665 y__ 1670
1e68-A— | COMPARE:
] METHOD OBJECTS
WITH:
/ CONTEXT OBJECTS
/{/ y (1680
PLATFORM L 5 SELECT
METHOD OBJECT
1686 _i
L S
TYPE=A @
EXAMPLE

FIG. 16

RESOLVE METHOD

PROCEDURE

1702
@GIN

\ 1705

SERVER MESSGE

RECEIVE CONTROL‘I

REGISTER

SERVER ?

SIGNAL
SERVER?

UNREGISTERY.

1710
Y

1720

;%/;l

—
N
<

j—___

1715

REGISTER SERVER
WITH SERVER
REGISTRATION

FACILITY AND CONTROL
SERVER REGISTRATION

1725

UNREGISTER SERVER
WITH SERVER
REGISTRATION

FACILITY AND CONTROL
SERVER REGISTRATION

\4

1735

EXECUTE PROCESS
TO SIGNAL METHOD
| SERVER (It'VOCATION
REQUEST WILL BE

PLACED ON QUEUE)
1729
GENERATE
SUCCESS
MESSAGE
®
FIG. 17A

CONTROL SERVER

19/2 1

1ZQQ"K
1740
START
SERVER
?
1760
Y~ QUERY
<_SERVER
1785 ?
LOOK UP IN N} ~1780
CONTROL SERVER SENEATE
REGISTRY TO 2 %R
DETEPMINE IF g"s* .
METHCD SERVER MESSAG
IS AVAILABLE

o~ |~
GENERATE | [GENERATE

~1745

CHECK METHOD
EXECUTABLE
CATALOG

IS SERVER IN
METHOD EXECUTABLE
CATALOG ?

1750

lY ~1752

EXECUTE PROCESS TV
START SERVER AND
REGISTER SERVER WITH
SERVER REGISTRATION
FACILITY AND CONTROL
SERVER REGISTRY

JE——
1754 1756~

GENERATE
MESSAGE
SERVER

GENERATE
MESSAGE
SERVER NOT

STARTED

STARTED

AVAILABLE | [UNAVAILABLE
MESSAGE MESSAGE

FiG. 17B
CONTROL SERVER

A

~1790

TRANSMIT MESSAGE

3 1799
Ceed

2,0/ 2|

1800

— —k 1802
BEGIN

~1805

RECEIVE PACKED
INVOCATION REQUEST

| ~ 1810
UNPACK

~ 1815

UPDATE CONTEXT
OBJECT DATA BASE

1820

ASYNCHRONOUS
INVOCATIO[;I REQUEST

Y ~1850

PLACE INVOCATION
REQUEST ON QUEUE

GENERATE SUCCESS
MESSAGE

e

1860

PACK
RESPONSE

~1865

TRANSMIT
PACKED \#
RESPONSE VY ~1840

GENERATE
ERROR
MESSAGE

e 18—

DISPATCHER PROCEDURE

7_(/1!

ASYNCHRONOUS
‘NVO%'?\]T{)OLTESE%UEST
\/

YJ, —~ 1875

TAKF. FIRST
ASYCHRONOUS
INVOCATION REQUEST
OFF QUEUE

1880
N

&

VALID
N7

Y
— 1885
EXECUTE

1887
N

ERROR
?

®

1890

PACK
RESPONSE

~1895

TRANSMIT
PACKED
RESPONSE

~1888 |Y

RECORD |
ERROR

FIG. 18B

DISPATCHER PROCEDURE

) 4

—X 1899

