
Ρ/00/008
Section 29(1)

Regulation 3.1(2)

NOTICE OF ENTITLEMENT

AUSTRALIA
Patents Act 1990

l/We DIGITAL EQUIPMENT CORPORATION
of 111 POWDERMILL ROAD

MAYNARD, MA 01754-1418
U.S.A.

being the applicant(s) in respect of an application for a patent for an invention entitled
Methods and Apparatus for Implementing Data Bases to Provide Object-Oriented
Invocation of Applications (Application No. 79309/91), state the following:

1. The nominated person(s) hcs/have, for the following reasons, gained entitlement
from the actual inventor(s):

The nominated person is the assignee c. the actual inventors.

2. The inventors in respect of the application are as follows:

Robert L. TRAVIS, Jr.
Andrew P. WILSON
Nea! F. JACOBSON
Michael J. RENZULLO
Alan N. EWALD

3. The nominated person(s) is/are the applicant(s) of the basic application(s) listed
on the patent request form.

4. The basic application(s) listed on the request form is/aie ihe first application(s)
made in a Convention country in respect of the inver Jon.

DATED this 29th day of June 1992

DIGITAL EQUIPMENT CORPORATION
GRIFFITH HACK & CO.

Patent Attorney for and
on behalf of the applicant(s)

< ‘ *
FORM 1

COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT
I\We,

DIGITAL EQUIPMENT CORPORATION
of 111 POWDERMILL ROAD

MAYNARD, MA 01754-1418
U.S.A.

hereby apply for the grant of a standard patent for an
invention entitled:

• · ·· • ·
• ·· ·

METHODS AND APPARATUS FOR IMPLEMENTING
DATA BASES TO PROVIDE OBJECT-ORIENTED

INVOCATION OF APPLICATIONS.
which is described in the accompanying complete specification
Details of basic application (s):
Number of basic

application
Name of Convention country in
which basic application was
filed

Date of basic
application

567298 US 14 AUG 90

My/our address for service is care of GRIFFITH HACK & CO.,
Patent Attorneys, 601 St. Kilda Road, Melbourne 3004,
Victoria, Australia.

. .. DATED this 26th day of June 1991• · ·
’* ” DIGITAL EQUIPMENT CORPORATION

GRIFFITH HACK & CO.

TO: The Commissioner of Patents.

0 I

AU9179309

(12) PATENT ABRIDGMENT (11) Document No. AU-B-79309/91
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance no 638138

(54) Title
METHODS AND APPARATUS FOR IMPLEMENTING DATA BASES TO PROVIDE OBJECT-ORIENTED
INVOCATION OF APPLICATIONS

International Patent Classification(s)
(51)5 G06F 015/40

(21) Application No. : 79309/91 (22) Application Date : 26.06.91

(30) Priority Data

(31) Number (32) Date (33) Country
567298 14.08.90 US UNITED STATES OF AMERICA

(43) Publication Date : 14.05.92

(44) Publication Date of Accepted Application : 17.06.93

(71) Applicant(s)
DIGITAL EQUIPMENT CORPORATION

(72) Inventor(s)
ROBERT L. TRAVIS JR.; ANDREW P. WILSON; NEAL F. JACOBSON; MICHAEL J. RENZULLO;
ALAN N. EWALD

(74) Attorney or Agent
GRIFFITH HACK & CO , GPO Box 1285K, MELBOURNE VIC 3001

(57) Claim
1. A system for organising communication among applications
in a data processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, each of said

method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a

.../2

(11) AU-B-79309/91

(10) 638138
3.

class consisting of one or more instances which share
common characteristics and further containing ai.
identification of one or more message entries,
and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
and
data base control means coupled to the memory in the

network including
means, responsive to a message from a client

application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,

means for selecting a platform capable of
executing the requested application, and

means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform.

(11) AU-B-79309/91
(10) 638138

3

8. A eystem for organising communication among
applications in an object oriented manner in a data
processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sendir - and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, oach of said

method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances

(11) AU-B-79309/91 4
(10)638138 '

associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
data base control means coupled to the memory in the

'etwork including
means, responsive to a message from a client

application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry referenced in
the selected message entry and corresponding to the
requested application, means for selecting a platform
capable of executing the requested application, and

means for transmitting the identifier for the
' instance and the reference to a procedure contained in

the selected method entry to the selected platform; and
an object definition facility coupled to the

memory in the network,
wherein the data base includes a global class portion

which is accessible throughout the network and local
portions which are each accessible to only a portion of the
network,

wherein the data base control means includes
wherein the data base control means includes

means for searching the local data bases in a
predetermined order before searching the global class
data base, and

wherein the object definition facility includes
means for generating globally unique identifiers for
types of operations and instances.

ο ο i 3 8'AUSTRALIA

PATENTS ACT 1952
COMPLETE SPECIFICATION

Form 10

(ORIGINAL)
FOR OFFICE USE

Short Title:
Int. Cl:
Application Number:

Lodged:
Complete Specification-Lodged:

Accepted:
Lapsed:

'Published:
Priority:
Related Art:

TO BE COMPLETED BY APPLICANT
Name of Applicant:

DIGITAL EQUIPMENT CORPORATION
Address of Applicant: 111 POWDERMILL ROAD

MAYNARD, MA 01754-1418
U.S.A.

Actual Inventor:
■Address for Service: GRIFFITH HACK & CO.,
' 601 St. Kilda Road,

,, Melbourne, Victoria 3004,
..· Australia.

Complete Specification for the invention entitled:
METHODS AND APPARATUS FOR IMPLEMENTING

.··. DATA BASES TO PROVIDE OBJECT-ORIENTED
··* INVOCATION OF APPLICATIONS.
• ·

e i

’The following statement is a full description of this invention
including the best method of performing it known to me:-

I. RELATED APPLICATIONS

This application is related to Australian patent
5 application serial no. 79454/91 entitled "Methods and

Apparatus for Providing Dynamic Invocation of Applications
In A Distributed Heterogeneous Environment," Australian
patent application serial no. 79455/91 entitled "Methods
and Apparatus for Implementing Server Functions In A

10 Distributed Heterogeneous Environment," and Australian
patent application serial no. 79310/91 entitled "Methods
and Apparatus for Providing a Client Interface To An
Object-Oriented Invocation Of An Application."
II. BACKGROUND OF THE INVENTION

15 This invention relates to a system for organising
communication among applications in a data processing
network.

Computers communicate with each other over data
processing networks. The computers themselves are referred

20 to generally as "nodes," and a specific type of computer,
that is a specific type of hardware using a specific type
of operating system, is referred to as a "platform".
Networks containing different types of platforms are called
"heterogeneous networks". One purpose for connecting

... 25 platforms in a network is to provide different environments
in which to execute application programs (referred to as

»·,1 "applications" for brevity) on shared data.
» ·• *• It

I · «

■0·»*,
&

1

5

10
ι

'.5

20

• ·
25'..·

■ ifrw of rices
;N£CAN,J4ENDERSON
"arabow, Garrett

β Dinner
'300 (5TBCCT, N W

ASHiNQTON. OC 2OOO&
2ΟΙ’*Οβ·*ΟΟΟ

In the typical data processing network, different platforms
and applications running on different platforms store information
in their own specific manner. For example, in a VAX.VMS
platform, text editing tasks may be accomplished using a TPU text
editor, while in a MIPS.ULTRIX platform, text editing tasks may
be accomplished using an EMACS text editor. Users of a network
having both platforms may wish to use operations from the
different text editors on the different platforms without having
to know the details of those platforms and text editors.

This compatibility has not previously been possible.
Instead, conventional networks require users of a heterogeneous
network to employ the specific interface each application
requires for operations on specific platforms. Conventional
networks fail to provide users with a capability to communicate
between applications using a standard interface.

As an example of the difficulties of interapplication
communication on a conventional heterogeneous network, suppose
that the user of a text editor application on one platform
desired to access a multi-user data base retrieval service, such
as DIALOG for scientific articles or LEXIS for court opinions, on
another platform. To do so on a conventional network, the text
editor application's operation would have to be suspended, and
the data base retrieval service would have to be invoked using
commands and messages specific to the data base retrieval
service. The user would not only need to know the specific names
of each service desired, but would also have to know the location
of the service in the network and would have to be familiar with

50 2

ι

5

Ο

Γ

ο

•.Αν oAicts■ ECAMWEfcDERiON
rabow, Garrett

8 DUNNER
00 I STRCCT. H W
MlNOTON, OC 20005
202**08**000

3

the different commands and command formats employed by each

service.

As yet no standard interface has been developed to allow an
application in one platform to invoke an application on a
different platform in a heterogeneous network in an efficient and
uncomplicated manner. Instead, conventional interapplication
communication merely provides mechanisms for physically
transporting messages and data between applications.

One example of a mechanism which is presently used to allow
an application on one platform to communicate with an application
on a different platform is a Remote Procedure Call (RPC) system.
An RPC system on one platform responds to queries from an
"invoking" application by first translating that application's
messages into a network data format, and then transmitting the
translated queries over the network to a receiving platform. At
the receiving platform, another component of the RPC system
decodes translated messages into queries in a data format
acceptable to the application invoked. The original messages
from the invoking platform, however, need to be consistent with a
syntax dictated by the invoked application.

Another difficulty with conventional networks occurs when
the application on a remote node is not currently loaded and
running. Many RPC systems only allow remote invocation of
applications that are already loaded and running. If this is not
the case, the user of the client applications must find some way
to load the server application on tha remote platform before
invoking it. This can be severely limiting.

3 -
ι

4
One obstacle to implementing a network-wide system to

facilitate interapplication communication has been the
large amount of system resources which had been thought to
be required of a system in order to handle all the

5 different types of data, operations and applications in a
network. As a network expands, the systems, resources, and
requirements would increase as well, making many proposed
implementations completely unwieldy.

There is, therefore, a need for an efficient and simple
10 manner for applications on different platforms to

communicate with each other, such as through uniform and
consistent interface for applications. There is also a
need for a dynamic invocation environment for applications
in a distributed heterogeneous environment.

15 III. SUMMARY OF THE INVENTION

20

25

30

In accordance with a first aspect of the invention
there is provided a system for organising communication
among applications in a data precessing network which
includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, each of said

method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to

\-0 UJI

WTOtX

5
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a

5 class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and

a plurality of message entries, each of said
10 message entries specifying information about the types

of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
15 entry containing information about the types of

operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
20 entry containing information relating to applications

capable of performing the types of operations specified
in said message entry;
and
data base control means coupled to the memory in the

25 network including
means, responsive to a message from a client

application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

30 means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,

means for selecting a platform capable of
executing the requested application, and

6
means for transmitting the identifier for the

instance and the reference to a procedure contained in
the selected method entry to the selected platform.
In accordance with a second aspect of the invention

5 there is provided a system for organising communication
among applications in an object oriented manner in a data
processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sending and

10 receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
15 operating systems frr executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, each of said

20 method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

, 25 a plurality of non-redundant class entries, each
of said class entries containing information about a

: class consisting of one or more instances which share
; common characteristics and further containing an
’ identification of one or more message entries,
! 3 0 and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected

f instancer and further containing a reference to one or

fi

6 A

more method entries,
the message entries identified in each class

entry containing information about the types of
operations which can be performed on instances

5 associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified

10 in said message entry;
data base control means coupled to the memory in

the network including
means, responsive to a message from a client

application, for selecting the class entries and
15 message entries associated with the instance and type

of operation identified in said message,
means for selecting a method entry referenced in

the selected message entry and corresponding to the
requested application, means for selecting a platform

20 capable of executing the requested application, and
means for transmitting the identifier for the

instance and the reference to a procedure contained in
the selected method entry to the selected platform; and

an object definition facility coupled to the
25 memory in the network,

wherein the data base includes a global class portion
which is accessible throughout the network and local
portions which are each accessible to only a portion of the
network,

30 wherein the data base control means includes
means for searching the local data bases in a
predetermined order before searching the global class
data base, and

, wherein the object definition facility includes

/> ·

6B

means for generating globally unique identifiers for
types of operations and instances.
The accompanying drawings which are incorporated in and

which constitute part of this specification, illustrate an
5 example of an embodiment of the invention and, together

with the description, explain the principles of the
invention.

£

7
IV. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of a network which can be used in

5

10

15

20

25

30

a preferred example, of the present invention.
Figure 2 is an illustration of the major components of

an example of an object-oriented model of this invention in
relationship to an application.

Figure 3 is an illustration of the relationships
between the components of the object-oriented model of this
example.

Figure 4 is an illustration of the relationships
between examples of the components of the object-oriented
model.

Figure 5 is an illustration of a structure for a class
data base according to the preferred example ai.d consistent
with the relationships illustrated in Figure 4.

Figure 6 is a diagram of the different components of
the preferred example, and of the preferred flow of
information between these components.

Figure 7 is a diagram showing the relationships of the
different memory systems in the preferred example.

Figure 8 is a diagram of a preferred structure of a
local class data base.

Figure 9 is a diagram of a preferred example of a block
in the local class data base shown in Figure 8.

Figure 10 is an illustration of the function of a
loader/unloader for a global data base, a local data base,
and a node cache.

Figure 11A is a diagram illustrating a preferred
example of a context object data base.

Figure 11B is a diagram illustrating a preferred
example of a method override table in the context object
data base shown in Figure 11A.

Figure lie is a diagram illustrating a preferred
storage structure for a server node table in the context

%

8

• · ·

object data base shown in Figure 11A.
Figure 11D is a diagram illustrating a preferred

example of a class data base override table in the context
object data base shown in Figure 11A.

5 Figure 12 is a diagram of individual software
components in the platforms of the network.

Figure 13 is a flow diagram of the general operation
performed by the preferred example of this invention for
remote invocation of applications.

10 Figure 14 is a more detailed diagram of components of
the network and the flow of information.

Figures 15A through 15D are a flow diagram of the
procedure performed by the invoker software component in
Figure 14.

15 Figure 16 is an illustration of the steps performed by
the invoker software component in Figure 14 to resolve a
method.

Figures 17A and 27B are a flow diagram of the steps
performed by the control server software component in

20 Figure 14.

Figures 18A - 18B are a flow diagram of the steps
performed by the dispatcher software component in Figure
14.
V. DETAILED DESCRIPTION OF THE PREFERRED IMPLEMENTATION

25 Reference will now be made in detail to preferred
examples of embodiments of the invention as illustrated in
the accompanying drawings .

These examples are preferably implemented by data
processors organised in a conventional network

30 architecture. The__________ __________________________

1

5

15

25 ·.

architecture for and procedures to implement application
interoperability, however, are not conventional, as they provide
for an object-oriented approach to the interactions between
applications in the network.

A. The Major Components of the Network
Figure 1 illustrates a network 50 which can be used to

implement the present invention. In Figure 1, network 50
contains three independent platforms 100, 200, and 300 which are
connected by a network bus 55. Although platforms 100, 200, and
300 are shown as completely heterogeneous (i.e., platform 100 is
shown as a VAX processor using a VMS operating system, platform
200 is shown as a MIPS processor using an ULTRIX operating
system, and platform 300 is shown as an 80286 processor using a
MS-DOS operating system), this invention will operate in a
homogeneous network as well. Also, the number of platforms is
not important.

The composition and protocol of the network bus 55 is not
important as long as it allows for communication of the
information between platforms 100, 200, and 300. In addition,
the specific network architecture is not crucial to this
invention. For example, another network architecture that could
be used in accordance with this invention would employ one
platform as a network controller to which all the other platforms
would be connected. It is believed, however, that the network 50
shown in Figure 1 enhances the advantages of the present
invention.tAwtorndcs I

\necXS, Henderson
Farabow, Garrett

δ DUNNER !
«300 t STBCCT. N W

JffJilNOTCH, OC 20005
202·*0β·*000

9

/0ί

ι

10

15

5'

• ornqea
-ΙΝΝέο’ΑΝ. Henderson

Fakabow. Garrett
δ Dt'NNER

1300 I STRCCT. N w

WAS 'INQTON.OC 20005

202 ’«Οβ·*ΟΟ0

In the preferred implementation of net' irk 50, platforms
100, .200, and 300 each include a central processing unit ("CPU")
110, 210, and 310 respectively, and a memory, 150, 250, 350,
respectively.

Included within each central processing unit 110, 210, and
31·., are applications 120, 220, and 320, respectively, operating
systems ("OP SYS") 140, 240, and 340, respectively, and the
Application Control Architecture Services ("ACAS") software
components 130, 230, and 330, respectively.

Applications 120, 220, and 320 can be programs that are
either previously written and modified to work with the present
invention, or that are specially written to take advantage of the
services offered by the present invention. For purposes of this
description, applications either invoke operations to be
performed in accordance with this invention, or respond to the
invocation by other applications .

ACAS software components, 130, 230, and 330 implement the
object-oriented approach of this invention. Preferably, ACAS
software components 130, 230, and 330 consist of a number of
software modules as described in greater detail below.

Operating sybtems 140? 240, and 340 are the standard
operating systems which are tied to the corresponding CPUs 110,
210, and 310, respectively, of the platform 100, 200, and 300,
respectively.

Memories 150, 250, and 350 serve several functions. One of
the functions is, of course, to provide general storage for the
associated platform. Another function is to store applications

30 10

ί

ίο

15

20

II■ I //

25. ·• fr*
* j.A*Jornscs

.NECt\X, HENDERSON
“arabow, Garrett

6 uUNNER
1300 l STOCCT, N W

3€ ,ΝΟΤΟΝ, OC sooos
202·*0β’«000

120, 220, and 320, ACAS software components 130, 230, and 330,
and operating systems 140, 240, and 340 prior to their execution
by the respective CPU 110, 310, and 310.

In addition, portions of memories 150, 250, and 350 contain
information for a network wide, or "global," data base which is
shared and available directly or indirectly by all of the
platforms 100, 200, and 300 in network 50. The global data base
is described in greater detail below.

B. Elements of the Object-Oriented Architecture
(1) Definitions of the Elements

Object-oriented methods have been used in programming to
separate the interface of data from actual implementation, but
such methods have not been applied to heterogeneous networks. In
the present invention, object-oriented techniques are used to
separate the actual applications and their data from the
implementation of operations on that data by other applications.

The object-oriented architecture of this invention
preferably includes certain key elements. Figure 2 explains the
relationship between certain of those elements and certain
conventional features of applications. Ab shown in Figure 2, an
application 260 can be described in two ways. First, that
application has certain application definitions 265. For
example, if the application 260 is a word processing program,
then the application definitions could include definitions of
what operations that word processing program can perform and what
kind of data that word processing system can operate upon.

11

1

10

15

20

25 ·
’ «

,orneca

-.‘ΚΕβ/s, Henderson
Farabow. Garrett

8 Dunner
1300 I STREET, N W

.ASHINOTON. OC 20005
202**06**000

a

In addition, application 260 includes application data 268.
Application data 268 is the specific data upon which application
260 operates.

In accordance with the present invention, the application
data is not "handled" by the object-oriented architecture.
Instead, the present invention is organized around characterizing
the application definitions and the application data in terms of
object types, as referred to in the remainder of this description
as objects. Objects are not shown in Figure 2, but they pervade i
the elements that are shown. ί

In the discussion which follows, the term "object" will
refer generally to se\eral different kinds of elements, all of
which have two characteristics in common. First, they refer to
external capabilities, meaning that objects refer to or describe
those portions of application definitions or application data
which need to be communicated with other applications. Second,
they are generic meaning that objects are intended to be
available to all applications, and as such have a universally
recognized and unique name for all applications that have
interfaces to the objects. The present invention involves the
handling of objects rather than tie handling of specific data or
applications .

As shown in Figure 2, two elements of the object-oriented
architecture of this invention are developed from the application
definitions 265. One is classes 270 and the other is methods
280. Classes are objects in the sense that the names of the
classes and the features of the classes are both external and

30 12

ft

I

1

It

0

5

0

□

generic. Furthermore, classes can be used as means for

describing not only applications, but also the data used by the

applications .

In addition, one can derive certain types of operations from

the application definitions 265 that are performed by that

application, and these are specific examples of methods 280.

Again, however, the specific methods 280 are not managed by the

system, but rather can be organized into classes. The classes

for those methods (called method objects) are generic and

external, even through the specific commands or operations

executed by the applications are not.

Instances 290, which are derived from the application data

268, are items that may be manipulated or accessed by an

application. Again, the instances are not objects managed by

this architecture. Instead, instances are organized into classes

such that instances in the same classes share common

characteristics. For example, a specific DECwrite application,

which is a compound document editor, may be operating on a

specific file called MY.FILE. This is a specific file, and it is

not handled by the ACAS system. Instead, MYFILE may belong to a

class of compatible files, such as ASCII_FILE, which is generic

and therefore a class object.

By the same token, a specific DECwrite application is not

managed by the entire system. Instead, however, the specific

DECwrite application may belong to a class called DECwrite which

is gene-ic and a class object.,*w ftrnccs
ecanI Henderson |
rabow. Garrett ,

δ DUNNER j
30 ί STRCCT N W

I NO TOM, 0 C 2000 5 '
202’*0β·*000 .

13

1 As can be seen from Figure 2, applications can then be

characterized by the classes to which the applications belong, by

the classes (method objects) which support the specific methods

5

10

15

?n

*
♦

law orncca
•SECAN, HENDER5ON
arabov. Garrett

β DINNER
300 t 9TRCCT. N W
SwjWQION. OC >000«

202*40β>·000

in that application, and by the class objects upon which the

method objects can operate.

One of the features of classes is that they may be

hierarchically organized. This is explained in greater detail

below, but may be understood preliminarily by considering the

concept of superclasses and subclasses. A superclass is a parent

of its subclasses, and each subclas3 is a child of at least one

superclass. The superclass/subclass relationship means that the

attributes or shared characteristics of the superclass are

inherited by the subclass. For example, a class of DATA_FILES

may have as attributes the capability of being opened, read, and

written. Two subclasses of the class DATA_FILES could be of

SEQUENTIAL_FILES and RANDOM_ACCBSS_FII.ES. In addition to the

attributes of being able to be opened, read, and written, the

subclass SEQUENTIAL_FILES could also have the attribute of being

accessible sequentially, and the subclass RANDOM_ACCESS_FILES

could have the attribute of being accessible directly by an

address.

Another element of ths object-oriented architecture of this

invention not reflected in Figure 2 is messages. Messages are

the interfaces between an application program and the methods,

and are used in the application program to specify types of

operations which can be performed on the instances identified in

the client application. The messages are generally in the form

!0 14

RANDOM_ACCBSS_FII.ES

/5"

1

5

10

15

20

23 ,• «' *
vaw ornecft

.necan, Henderson
:arabow. Carrett

δ Dunner
■300 I srnccr. n w

ASHINO'ON. OC JOOO5
202**00**000

of a selector of an operation, such as PRINT, and several
parairs>’'*>rs, which can be instances, strings, numbers, etc. The
relationship between these elements is described in the next
section.

(2) Relationship of Elements

Figure 3 is a diagram showing the relationship of the
different elements previously described. As Figure 3
demonstrates, each instance 370 is associated with a class 380.
Another way of understanding this is to consider class 380 as a
"template" for the creation of objects in that class, which can
be instances, as well as for the manipulation of such objects.
The term "template" denotes the fact that the objects (be they
data items, methods, or applications) in each class, share
certain characteristics or attributes determined by that class.

An instance 370 is manipulated by sending a message 360.
The message 360 might be an action, such as EDIT, READ or PRINT.
Messages arr said to be "supported" by the class, which means
that the interpretation of the message depends upon the classes
to which the instances in that message belong. For example, a
PRINT message may be interpreted differently if the instance is a
text file in the class TEXT_FILEy as opposed to a color graphics
file in a class COLOR_GRAPHICS.

A message 360 does not describe the implementation of a
particular operation; it only represents the interface to the
implementation of a particular operation. Thus, to find the
particular operation that is called for by a particular message
360 (i.e., the method), one must not only examine the message,

30 I 15

1
ί

!

5

II
ί
i

but also the class of the instance. To cause a specific action

to occur, the message 360 must be mapped to actual executable

program code. This mapping occurs by finding the particular

message 360 which corresponds to the particular class 380 of the

particular instance 370 and then finding the particular method

390 which corresponds to the message 360 supported by the class

380. The method 390 represents the actual executable program

code to imp_ement the desired operation of the message 360 on the

instance 370.

10 ί
I
J I
• t

1I
2.0

(3) Organization

Figure 4 shows a representation of how the different object-

oriented architecture elements can be organized preparatory to

their specific representation in memory. As is apparent from

Figure 4, there is a complex relationship involved between the

classes and the methods. A hierarchy is used for both methods

and classes in the preferred implementation to effect the object-

oriented approach necessary to reflect the behavioral

relationships which must exist among the applications. The

specific examples given, however, are merely illustrative, and

other types of representations for these classes and methods may

be apparent to those skilled in the art.

In the diagrammatic representation shown in Figure 4, there

are essentially two branches of the hierarchy. One is headed by

method object 400 and the other by class 450. The branches,

hierarchies differ by what is inherited. In the class hierarchy,

the inheritance is of behavior because such inheritance includes

messages. In the method hierarchy the inheritance is only of

25 .* ,
uaw or.lets

MNiCAN, HENDERSON

Farabow, Carrett
8 D'JNNER

13DO I StxetT, N »

A5WINOTON.OC JOCOfc

202-.00-.000

16
1

/7
I

1

5

10

15

20

J attributes. The bridge between the class hierarchy and the
! method hierarchy is by way of the messages, such as messages 490IIi and 495, and the method maps, such as maps 493 and 498. In the
1
: method hierarchy shown in Figure 4, method objects, 410, 415, and
, 420, which are represented as WORD_C_CUT_MS-DOS, WORD_C_READ_VMS,
1 and WORD_C_READ_ULTRIX, respectively, inherit from method object
, 400. For example, in Figure 4, method object 400 may have
η attributes (not shown) that indicate that the methods, use a
; certain interaction type, and have a certain server start-up
, type.
i Method object 410 is representative of the CUT function in
| EMACS applications. Associated with method 410 is a set of

’ attributes 430 which includes those inherited from method object
I
1 400. Briefly, the PlatformType attribute indicates the platform
i on which the method object can bi* executed. The InteractionType
' attribute describes the actual type of method which will be
I
! executed within a particular method server. Examples of values
I
j for this attribute which are explained below, ares BUILT_IN,
j SCRIPT SERVER and DYNAMIC LOAD. The ServerStartupType attribute
I ~ ~
indicates an appropriate invocation mechanism to be used for the
method server. Examples of values for this attribute, which are
also explained below, are: SHELL, DYNAMIC_LOAD and
NAMED APPLICATION.

>5

The set of attributes 430 specify that the associated
I
! methods operate on platforms which have an 80286 processor with

« · .
law orncca (,

NECAN, HENDERSON 1 j

arabow, Garrett , ‘
a Dunner .

300 I N w '
SHINQTON, OC ¢0005

202*408**000

sO

the MS-DOS operating system, and have a BUILT_IN, interaction
type, and a NAMED_.APPLICATION server start-up type.

17 -

I

I

ί I

10 :

ι

»

i
15 I

25'
I · '

omcu i
• NECAN. HENDERiON i|
arabow, Garrett : ι

a DINNER ,!

η

Similarly, method object 415, which is representative of the

READ function in EMACS applications. Associated with method 415

is a set of attributes 435 which include those inherited from

method object 400, but which also specify that the associated

methods operate on VAX platforms running the VMS operating

system, and have an interaction type of BUILT_IN, and a

NAMED_APPLICATI0N server start-up type.

Method object 420 is a subclass of method object 400

representative of the READ function in EMACS applications. The

attributes 440 for method class 420 have a platform type with a

MIPS processor running the ULTRIX operating system with a

BUILT_IN interaction type, and a NAMED_APPLICATION server start

up type.

Class 450, on the other hand, is a superclass of class 460

called FILES, and a class 465 called APPLICATIONS. Class 460

refers to data objects. As shown in Figure 4, class 460, which

would have attributes (not shown), is a superclass of class 470.

Class 470 is called ASCII_FILE. For example, class 470 could

represent all the files within network 50 (see Figure 1) having

the common characteristics of ASCII files. The common

characteristics can be described in the attributes for class 470,

which are not shown in Figure 4.

The class 470 would then be the class for several instances,

but the instances are not shown in Figure 4 because they are not

managed by the object-oriented architecture. What is shown in

Figure 4 are the messages which the class 470 will support, and

300 I STStE’. M w
nSfllNOTON, DC tOOOS
"* *02 · *08 · *000

18

, i
I /9

ίο

15

20

’5

orntca

the only one shown for purposes of simplicity is the EDIT message

490.

A class supporting a message means that when the message is

i used as an interface into this object-oriented architecture, it

can be used with the class that supports it, and therefore

instances within that class. Thus, in the example shown in

Figure 4, an EDIT message, can be sent to all instances in the

ASCII_FILE Class.

APPLICATIONS class 465 is also a superclass, and one of its

subclasses, EDITOR class 475, is shown. EDITOR class 475 is a

superclass to specific applications classes 480, 483 and 485,

corresponding to WORD_A, WORD_B, or WORD_C. Each of the classes,

such as WORD_C 485, represents a specific application, such as

EMACS or TPU. Thus, each application is defined by one class.

Ar. application class may, however, refer to the implementation

behavior of more than one application.

The application classes also support messages, which is

shown by the message CUT 495 being supported by the application

class 485. This reflects the fact that at the time of class

definition, it was determined that any application represented by

the class 485 would have to support a message CUT.

As mentioned briefly above, in the preferred implementation,

applications are organized into a hierarchy of classes with a
I parent class, referred to as a superclass, and child classes
I
' referred to as subclasses. In Figure 4, class 465 is a

.! superclass called EDITOR. All subclasses of this superclass
.NECAN. HENDERSON
ar?8 du'nnerRETT i wou1^ have at least the same set of particular unique
■ 300 I STBCC*. NW 1 J

«5ΗΙΝΟΤΟΝ, OC 20005
202>40fi*«000

J

JO
I 19
I
i1

ao

1

5

10

characteristics or attributes of the superclass, in Figure 4,
ί the subclasses of super class 475 EDITOR are W0RD_A 480, WORD_B
i 483, and W0RD_C 485. W0RD_A might represent TPU applications,
' WORD_B 483 might represent all LSE applications, and WORD_C 485
, might represent all EMACS applications. Each of these subclasses
i would have, in addition to the characteristics and attributes
j I

' inherited from superclass 475, their own set of unique
' characteristics and attributes which differ in such a manner as
i to enable their separation as subclasses within the superclass
I

i 475 EDITOR.

, i

ί

20

L.w orricct
;necan. Henderson '
•ARAaott'. Garrett '

8 Dinner

• ι*• I

In the preferred implementation of this invention, specific
rules of inheritance allow for multiple inheritance among
classes. This means that any subclass may have more than one
superclass. Because this type of inheritance may create
ambiguities at definition time, the superclasses are considered
to be "ordered" at definition time to resolve potential
inheritance conflicts. For instance, at the time of the
definition of a subclass described below, if any conflicts arise
due to the duplicate definition of a message or attribute in more
than one of the listed superclasses, the message or attribute
defined in the highest ordered class is considered to be the one
inherited by the subclass.

As mentioned above, the relationship between the method
objects and the class is by way of method maps. Figure 4 shows
two method maps 493 and 498. Each of the classes has messages
each of which refers to a specific method map. Thus, method map

?5

ιΟΟ I STREET. NW ■ ‘
'WINOTON. DC 2ODO5 ' j
Τ02·*0β·*000 I

20

t

1

II
I)

5

10 iII
I' I

:ii

15 ίIIί

II!

20

25”, » ft * ft* · ft
law ornccs

nnecan, Henderson I
Farabow, Garrett :

8 dunner ·

493 is associated with EDIT message 490, and method map 498 is
associated with the CUT message 495.

Preferably, the method maps include the name of a method
object associated with the messages. Method maps could also
contain the name of another class and message. Thus, method map
493 includes the name of two method objects. Method map 493
includes the name of a method object W0RD_C_READ MIPS.ULTRIX 494
which is a name for method object 420, and the name of a method
object WORD_C_READ VMS 496, which is a name of method object 415

In a similar manner, the method map 498 for the message CUT
495 contains the name V?0RD_C_CUT 80286.MS-DOS 499, which is the
name of the method object 410.

In this way, the method maps 493 and 498 can be used to
locate the attribute sets 430, 435, and 440 corresponding to the
method objects 410, 415, and 420, respectively. The specific
manner in which this type of order is used to locate methods is
described in greater detail below.

C. Class Data Base Structure
The classes and method objects of the network architecture

are stored in a class data base 500 depicted in Figure 5. The
class data base 500 represents a nonredundant collection ,-.
interrelated, data items that can be shared and used by the
network 50.

In Figure 4, the class data base 500 consists of two types
of objects, similar to what is shown in Figure 4. The objects
are either classes 505 or methods 549. Each of the classes 505
corresponds to a generic external representation for the

1300 I STHttt, N W I
vaSmiNOTON, OC 20005 ' j

JO2 · <00· *OO0 ij

I
I 2130

1

ι

5

t

I
I

10

■ ι

15
•1 ■ I‘II

20 iι

I

25

instances of the corresponding class. For example, in Figure 5,
the class object ASCII_FILE 506 corresponds to a generic external
representation for all members of the set of instances that have
the characteristics of the class ASCII_FILE 506. The
characteristics are represented by the corresponding set of
attributes 510.

In the preferred implementation, the attributes 510 which
correspond to the classes 505 may be used in whatever manner the
system developer or user wishes. For example, the attributes 511
for the class ASCII_FILE 506 may include the name of an icon to
represent class 506 on display.

Each of the classes 505 also supports a set of messages 520.
A message consists of a "verb" or message name, such as CUT, READ
or EDIT, called a selector, and parameters. Each of the
parameters consists of a name and a type and a direction. The
name is "typed" which means that the name is of a particular
type, e.g., integer, character or string. The possible
directions for each parameter may be "in," "out," and "in/out."
When a parameter in a message has an "in" direction, this means
that the parameter is an input to a method to be invoked
(discussed below). When a parameter in a message has an "out"
direction, this means that the parameter is an output from a
method. When a parameter in a message has an "in/out" direction,
it meane that the parameter is both an input to and output from a
method.

The messages 520 are representations for the valid
operations that each of the instances represented by the

« · I
vaw orriecs '

<NECAN, HENDERSON |;
Farabow, Garrett |

8 dunner i
'300 1 STOUT, N w i

ASHINOTON, OC 20005 , ,
202**00**000 |

30 22

itt

5

10

15

20

ιι

iI

I « · · 1
ornccs t

nkecan. Henderson j
Farabow. Garrett .

S Dinner 1
«300 t 5TRCCT. M w j

.a&minOTON. OC 20005
202*408**000 '

' I

corresponding class 500 can support. For example, in Figure 5,
class object ASCII_FILE 506 supports the set of messages 520
which includes messages 521 and 525. The specific messages in
message set 520 are OPEN (PARA_1, PARA_2...) 521 and EDIT
(PARA_1, PARA_2...) 525. For example, in the message EDIT
(PARA_1), PARA_1 might represent "FileName: string, in/out,"
where FileName is the name of the parameter, string is the
parameter type, and in/out is the direction of the parameter.

Messages 521 and 525 each refers to respective method map
530 and 540. Each of the method maps 530 and 540 contains a set
of references to corresponding method objects 549 in the class
data base 500 or to the names of other classes and messages. For
example, method map 530 contains references 531 and 533 each of
which corresponds to a different method object (not shown).
Method map 540 also contains references 541 and 543, each of
which corresponds to a different one of the method objects 549 in
the class data base 500. The corresponding method object for the
reference 541 is not shown in Figure 5. For purposes of this
example, Figure 5 does show that the reference 543 on method map
540 refers to the method object 550 which is ED_3_READ.

As explained above, the method objects 549 in the class data
baee 500 are also stored hierarchically. Each of the method
objects 549 is representative of a reference to executable code
capable of performing a method.

In a network data processing system like the preferred
implementation, there may be many instances of the executable
code associated with each of the method objects 549 and capable

2330

Μ

1 ί

5

I

ι

III
io !

ι

15 Ii

I
il
: ι

20

of performing the functions identified by each method object. By
way of example, in each the memories 150, 250 and 350 (Figure 1)
there may be an installation of the executable code associated
with the method object ED_3_READ 550, with each of the executable
codes being capable of performing the functions of the method
object ED_3_READ 550 on a respective one of the platforms 100,
200, and 300. The system according to the preferred
implementation includes a process which selects between the three
executable codes .

Unlike the attributes 510 associated with the classes, the
method attributes 560 of the class data base 500 associated with
method objects 549 are used to locate and to execute an instance
associated with a particular method object, such as method object
550, in the network. For purposes of simplicity, Figure 5 shows
only one set of method attributes 561 in the class data base 500.
The set 561 is associated with the method object 550 of the
method objects 549 in the class data base 500. Although some of
the method attributes in sets 560, can be arbitrarily specified
by the users of the system and used by the system during
execution, certain attributes are critical to the operation.

As shown in Figure 5, the method attributes in set 561
includes PlatformType » 80286.MS-DOS, InteractionType = BUILT_IN,
and ServerStartupType = SHELL.

In the preferred implementation, two other method attributes
are included in the method attribute set 561. One is an
Invocationstring attribute which defines an invocation string to
be used in order to start the specified method server if it needs

ι' · ·!• ft25'· ,,
■ * 0 ,

« · 11
‘ law orricts I

s'NECAN, HENDERSON ■ I
Farabow, Garrett ■

6 Dusker i
‘300 (5TRCCT. N W

ASHINOTON, OC 20005
202·*0β·*000

30 24

Η
H.Z

1 ι

I

5

ι

!ι

15 ίt
ι

I
20

»I
t

I « «

• · :
bAW orricct j

nnegan, Henderson »
Farabow, carrett ·& DUNNER
»300 I 5TPCCT. N W ‘

SASHINGTON, OC 20005 ■
202**08**000

to be started. The value of this attribute must be a value
appropriate for the particular platform specified in the first
attribute. For example, if the value of the PlatformType
attribute is MIPS.ULTRIX and the value of the ServerStartupType
attribute is SHELL, then the value of this attribute should be an
appropriate ULTRIX shell command.

D. Information Flow

Before discussing the details of the preferred
implementation of this invention, the flow of information
throughout the entire system will be explained with reference to
Figure 6.

Figure 6 includes a diagram 600 showing different components
of the network 50.shown in Figure 1 and the information flowing
between those components. Applications 610 and 670 in Figure 6
each correspond to any one of the applications 120, 220, or 320,
respectively, and the ACAS software components 620 and 660 each
correspond to anyone of the ACAS software components 130, 230, or
330. The class data bases 640 and the context object data bases
630 are stored in one or more of the memories 150, 250, and 350.

As explained in greater detail below, an application 610,
which will be referred to as a "client application," sends
messages. The messages may include instance handles which are
the mechanisms used to identify the client (or any other)
application's instances. The messages are received by the ACAS
software component 620 in the client platform.

ACAS software component 620 then uses the names of the
messages and the classes of the instances referred to by the

30 25 -
i

1

5

10

£J>
I
1 I
I
I

11 , I

I

I
i

-5 :

ti

o

(

1

5'.·• f ·
t ·

• i.aw «J*rtCCl
.ecan, Henderson 11
rabow. Garrett

δ Dunner t

instance handles to find the method maps in class data bases 640.
ACAS software component 620 may also use context information from
context object data bases 630 to select a method identifier from
the method map which identifier represents the method to be
executed. The context information is also used to select a
platform, called the "server platform," on which to execute the
selected method. The context information will be described in
detail below.

ACAS software component 620 sends the method identifier
retrieved from the class data base 640 and the instance handles
to an ACAS software component 660 in the server platform.
Thereafter, the ACAS software component 660 takes the appropriate
steps to execute the identified method using a "server
application" 670 or informs the ACAS software component 620 that
the server platform containing ACAS software component 660 cannot
respond to the request. In this latter case, the ACAS software
component 620 then reviews the context information to select
another platform in the network as a server platform or else
informs the client that the request has failed.

If the execution of the method identified in Figure 6 by the
server application 670 generates a message to be returned fx the
client application 610, then that message along with additional
information is passed from server application 670 to ACAS
software component 660 in the server platform. ACAS software
component 660 in the server platform then sends responses to ACAS
software component 620 in the client platform, which relays those
responses to the client application 610 in the client platform.

!00 t JTOCCT, N w
HINOTON, oe JOOOJ
»0ί·*0β·»000

0 26

*7

below.

All these transactions will be described in greater detail

0

.5

’£)

i
I

II

u

1

• · >
* ■· I
UAW Ounces I

necan, Henderson '
arabow, Garrett)

Q DUNNER '|
300 i sTeccr. nw 11
5HIN0T0N. OC 2000S |

}Οί·*Οβ·*ΟΟΟ I

E . Memory Systems

(1) Global Class Data Base
A diagram of the entire memory system 700 is shown in

Figure 7. Memory system 700 includes a global class data base
705 and local class data bases 710, 730 and 750. A network-wide
memory 705 is also provided to make certain other information,
described Delow, available to users of the network.

Global class data base 705 contains information accessible
by all of the platforms. Preferably, global class data base 705
is distributed throughout the memories of the platforms. For
example, in Figure 7, global class data base 705 is shown as
being partially resident in each of memories 150, 250, and 350.
The remainder of the global class data base 705 would be resident
in other memories which are not shown in Figure 7. The contents
of the global class data base 705 have already been described
with regard to Figures 4 and 5.

Persons of ordinary skill in the art will recognize that the
distributed memory arrangement shown in Figure 7 is not required
to practice the present invention. For example, the entire
global class data base 705 could be stored in the memory of a
single node or in a dedicated memory, without affecting the
principles of thxs invention.

In addition, each of the memories 150, 250, and 350, is
shown as hcving a local class data base 710, 730, and 750 as well
as a node cache 720, 740, and 760, respectively. The information

1 2730

■ I

1

5

I
10 ί

15 5

I

I
2-0 ;

I

25'

in the local class data bases is accessible only by users on the

corresponding platform. Node caches 720, 740, and 760 are used

to hold a copy of portions of global class data base 705 which

are accessed frequently by the corresponding platform.

The data base system used to implement the global class data

base structure should support global uniqueness of names within a

single data base, uniqueness of identifiers across data bases,

access control mechanisms, and proper storage and retrieval

mechanisms. Global name uniqueness is important for objects

because they are generic. Xcisntifier uniqueness allows data

bases to be combined, as explained below.

Access control mechanisms of the data base system must allow

an authorized user on any platform in the network to store and

retrieve objects and attributes, and must provide security

control and syntax checking to avoid compromising the integrity

of global class data base 705. Some of the details of this

control are discussed below. The remainder involve well-known

data base management techniques.

The preferred implementation requires that each object in

global class data base 705 can be assigned an object idezitifier

which, like an object name, can be used to refer to an object.

Object identifiers are also preferably language neutral because

they are binary codes.

Object identifiers are assigned based upon a "globally"

agreed-upon scheme, and are unique throughout any number of class

data bases. Object names, on the other hand, need be unique only

within a single class data base. The differences between the

* · <
law orncCB I

.necan, Henderson 1 I
arabow, Garrett !

δ DINNER ;
100 t 5T«CtT Μ Ή

>1ΜΙΗΟΤΟΝ. OC 10005
20ί·4θθ·*000

50 28

10

15

20

25'·.·*

' Μ
I

NECAN, HENDERSON

ARaBOW. Carrett
8 Dunner

300 I STRCCt N W |
ShinOTON, OC 20005

202*406**000

class names and identifiers can be better appreciated by an

example. Assuming two companies each have their own class data

base and wish to merge those data bases. Those data bases may

have classes with the same names which should be different in the

merged data base, and that difference can be maintained through

the globally-unique identifiers. The data bases may also have

two classes with different names which should be the same in the

merged data base. Those classes can be set to have the same

class identifier. Thus, the object identifiers also permit the

same class in the global class data base to be identified by more

than one class name. For example, the class name EDITORS in the

global class data base in the network may also be identified by

the class name WPROCESSORS.

Another software component which is also included in each of

the ACAS software components 130, 230, and 330, provides the

mechanism to create a unique object identifier for use and

storage in the class data bases. Preferably, any storage scheme

employed by an application which requires the persistent storage

of object names ehould store the object identifiers rather than

the object names to avoid naming conflicts between multiple

global class data bases.

The global class data base 705 is not meant to store

application instance data because preferably applications

completely manage their own sets of application instance data.

This allows existing applications to continue their current

storage strategies, and does not restrict the storage options

available for new applications.

50 29
ι
i

30

ί
ι ι I

iI

5

1

10
1
I

15 ί
I

20

« ·

• ornccs
Finnegan. Henderson

Farabow. Carrett
Θ Dunner

The preferred implementation provides two mechanisms,

however, storage classes and instance naming, which enable

applications to link their privately managed instances with the

global class data base 705 maintained by the preferred

implementation.

Storage classes are au abstraction that allow an application

to specify how privately managed instances are to be interpreted.

The storage classes give an alternative to identifying the class

of each instance when the instance is used in a message. In the

preferred implementation, storage classes identify storage

systems, such as repositories or files, which contain names of

instances. For example, a storage class can describe a known

storage mechanism such as "RMS_FILE" or "UNIX_FILE."

In the object-oriented architecture of this invention,

storage classes are also considered to be classes. Similar to

other classes stored in the class data base, the storage class

can be viewed as an actual object-oriented class definition that

consists of attributes, messages, and methods. The methods

associated with each storage class are used to retrieve the class

name for an instance associated with the particular storage

system identified by the instance's storage class.

The other mechanism, instance naming, employs a standard for

the naming of instances in the preferred implementation. The

standard instance handle is a string represented by the following

logical structure!

<class><8torage_class><location><instance_reference_data>

The term "class" is the name of the associated ACAS class. The
1300 I smtCT, M w ι 1

WaSminOTON. 0C I000S '1
IO1-A0S-A000 '!

30 30

3/

»
t ·

I ·
UAW 0'HCl»

.necan, Henderson
arabow. Garrett

8 Dunner
,360 t »t*m N w

.SHINOTOH 06 1000B
I-JOS-AOS <000

term "storage_class" is an alternative to the class name and is
the name of the storage class. The term "location" is the
logical location, such as the node, of the instance. The
"location" is optional and will be used if a client desires a '
method to run at the same location as tha instance is located.
The term "instance_reference_data" is the application private ■
portion of the instance handle.

Instance handles allow implementations to refer to instances ■
• ιabstractly, thereby avoiding the need to manage the instances |

themselves. J
The instance handle preferably includes tha class or storage J

class (if necessary), location of the instance, and the ;
identifier for the instance. For example, in the message: :

EDIT (INSTANCE_HANDLE)
EDIT represents the desired operation. The INSTANCEJKANDLE
string could be ASCII_FILE/NODE_1/MYFILE.TXT. In this instance
handle, ASCII^FILE represents the class, NODE_1 is the location
of the instance, and MYFILE.TXT is the identifier of the
instance. This message provides sufficient class and message
information to find the proper method map. It will be apparent
to those of ordinary skill in the art that other formats may be
employed for the INSTANCE_HANDLE string to accomplish the same
objectives as the preferred implementation does.

As explained above, all classes in a global class data base
of the preferred implementation have unique names with the
particular global class data base. The class name is generally
assigned by the user who first defines the class.

- 31 -
ι

1

5

Ο

.5

’ΰ

-· < ·
uaw orncci

■'fECAN. Henderson
\rabow. Garrett

6 DUNNER
300 I aTwen. n w
3HINOTON OC 20009
1*902*409**000

(2) Local Class Data Bases

In addition to a global class data base, the preferred
implementation also supports local class data bases for class and
method definitions. The local class data bases function similar 1
to the global class data base, except the contents of the local
class data bases are not globally available. They need only be
available for their local node. Thus, the local class data bases
need not be distributed or replicated in other nodes.

Figure 7 shows a preferred implementation of the local class I
data bases 710, 730, and 750 in memories 150, 250 and 350, '

respectively. The local class data bases 710, 730 and 750 hold ;
the class and method information created by the corresponding ί
nodes which has not yet been added to the global class data base. 1

In the preferred embodiment, memories 150, 250 and 350 also
contain node caches 720, 740 and 760, respectively, which hold 1
method and class information loaded from global class data base ί
705. Caches are an optimization and are not strictly required.

I
The data base system used to implement the local class data '

base must provide name uniqueness within a single data base.
Access control for the local class data base is only required at
the data base level. The preferred implementation of a local '
class data base relies upon the underlying security mechanisms
within the data base system to control access to the contents of
the local class data base.

Use of the local class data base provides several advantages ,
over use of the global class data base. For example, the local
class data base provides the ability for applications on each

30 32

25

ι

5

10

15

20

(I* ft
25''I ftt H

LAU*orricet
.NECAN, HENDERSON
•’arabow. Garrett

δ Dunner
□00 t STBCCT. N W

ASHINOTON. OC 20009
1*202*409*4000

node to continue to communicate with each other in an object-
oriented manner even when the network is unavailable. In such a
situation, applications on the node can continue to invoke other
applications that are local to that node.

In addition, using a local class data base provides better
performance for applications that reside in the same node as the
local class data base because many invocations can be handled
completely within the confines of a single platform. On
platforms in which most applications will most likely use
invocations that can be handled locally, use of the local class
data base may eliminate or greatly reduce the need for network
activity, such as accessing the global class data base, to
accomplish an invocation.

The class data bases are preferably searched for class and
method information by searching the local data bases before
searching the global data base. The local data bases of each
node are preferably searched in a predetermined order as
explained below. As soon as the desired information is located,
the search stops. Only if the desired information cannot be
located in a local data base is the global data base searched.
Thus the search order defines the "priority" of the class data
bases.

Figure 8 shows one design of a portion of a local class data
base 800. This design, however, is not critical to the
invention. Preferably local class data base 800 contains a data
base header 810 which is used to locate other organizational
information in the local class data base 800 such as indices and

30 33 -

ι

LO

15

20

ί Μ

·:
« ·' I ·

UAW or^icca
slECAH, HENDERSON
\rabow. Garrett

a DUNNER

300 I STREET, N W.
9HINOTON. OC 20009
1*202*40” <*000

30

allocation maps. Local class data base 800 also includes a block
storage space 815 containing a number of blocks 820, 822, and 824
which hold the information about the classes and methods .

Figure 9 shows a preferred arrangement of block 900 which
could be block 820, 822, or 824. Block 900 includes a directory
910, located at the beginning of block 900, to identify the
location of the objects within the blocks, and an object storage
portion 920.

Entries 955 and 965 in directory 910 each correspond to a
different object 950 and 960 located in object storage portion
920 of block 900. Each directory entry includes a value for an
ID field 912, which identifies the corresponding object, a value
for an OFFSET field 915, which represents the relative location
of the corresponding object in the block 900, and a value for a
SIZE field 917 which indicates the amount of block 900 allocated
to the corresponding object.

Objects 950 and 960 are preferably formatted as character
string, although other techniques can be used.

Referring again to Figure 8, local class data base 800
preferably contains a NAME-ΤΟ-ID-INDEX 830 which allows objects
to be retrieved by correlating their name to object identifiers.

The object identifiers are included in the ID-TO-BLOCK NO.
MAP 840. The map 840 provides block numbers for each unique
object identified in the local class data base 800.

The remaining field in the local class data base 800 is
BLOCK TABLE 850. BLOCK TABLE 850 preferably includes the
locations of the blocks 820, 822, and 824 and the locations of

- 34 -

I

^5-

ο

5

Ο

« ·

5* ·.:
law orrtcc*

,ecan. Henderson
rabov. Garrett

δ DUNNER
^00 t stwcct. m. w.
ΉΙΝ0Τ0Ν, OC 20009

• 202 · 409 · *000

the available space 829 within the local class data base 800.
Available space 829 is the unused space of the block storage
space 815 allocated by the local class data base 800. '

To retrieve an object from local class data base 800, the ·
name for that object is mapped to the NAME-TO-ID-INDEX 830. The ,
identifier information from the NAME-TO-INDEX 830 is then mapped ·
to the appropriate block number using the ID-TO-BLOCK NO. MAP
840.
The mapping yields the block number where the desired object <I
currently resides. Once the block with the desired object is :

Ilocated, the object is found using the object directory 910 !
(Figure 9). i

(3) The Loader/Unloader '

As shown in Figure 10, preferably a LOADER/UNLOADER software '
component 1010 is coupled between a local class data base 1000, a i
global class data base 1020, and a node cache 1030. The LOADER/ :
UNLOADER software component 1010, which is part of the ACAS i
software components 130, 230, and 330 (Figure 1), is used to ’

control the transfer of ACAS information to and from the local ·
data base 1020, the node cache 1030, and the global class data
base 1020. In the preferred implementation, the LOADER/UNLOADER 1
software component 1010 permits the local class data base 1000 to
load information into the global class data base 1020, and
permits the node cache 1030 to retrieve class data base
information from the global class data base 1020. During loading
and unloading the LOADER/UNLOADER component 1010 preferably uses
memory 150 for storage.

0 35

3/

5

10

15

20

la** orricca
.necan. Henderson
arabow. Garrett

8 Dunner
1300 I STREET, N. w.

ASHINOTON. OC 2OOOS
1*202*400*4000

30

The LOADER/UNLOADER software component 1010 is activated by
a user wishing to transfer class information in local class data
base 1000 to the global class data base 1020. The transfer makes
information previously accessible only to the platform accessible

to all network users through global class data base 1020. ;
Transfer of class information from the local class data base 1000 |
to the global class data base 1020 is preferably achieved by
sending class and method object definitions in an ASCII format to

• I
the LOADER/UNLOADER software component 1010 for loading into the j
global class data base. The LOADER/UNLOADER software component j

1010 preferably executes a process to parse language definitions
stored by the local class data base, and translates those j

definitions into an appropriate ASCII representation. The :
LOADER/UNLOADER 1010 then formats this ASCII representation to be
stored in an appropriate format by the global class data base.

LOADER/UNLOADER software component 1010 must also respond to
requests from the user to unload or to retrieve information from
the global class data base 1020 for loading into node cache 1030.
The retrieved information is preferably translated by the LOADER/ i
UNLOADER software component 1010 into language definitions which
are stored into the node cache 1030.

F. Creating DefInlnq/Reqisterinq Classes and Methods
(1) Creation

Preferably classes are defined using non-procedural
language, such as that used in the LOADER/UNLOADER, and are then
compiled and loaded into a clase data base. The language,
compiler and loader software are preferably components of an

- 36 -

ι

I 31

ι

5

10

.3

'0

UAW orrtct*
.ecan, Henderson
rabow. Garrett

8 Dunner
300 1 STREET, N W.
J.INOTON. oo aoooa j
Hsoa-400-4000

object definition facility. Other well-known techniques would
also be apparent to those of ordinary skill in the art.

The object definition facility is part of the ACAS software
components 130, 230, and 330 (Figure 1) and provides a means to
define classes, messages, class attributes, methods and method ;
attributes. This facility also provides for the specification of ,
inheritance among classes and, along with the LOADER/UNLOADER ,
software component 1010 described above, can be used to modify
existing definitions within the global class data base and the t
local class data base. In addition, the object definition !

!
facility preferably performs the necessary syntax checks of class !
definition input and method definition input used to create new
class and method definitions within the global class data base. '

A user of the object definition facility must specify
certain information to create a class. This information !
preferably includes: a global class name and identifier; global :
names and identifiers (if any) of the superclasses of this class; I
messages supported by this class, along with their associated ’
types of arguments (if any); method maps defined and the messages
to which each map relates; and attributes defined for this class.

Each message is preferably specified by generating a
structure including the name of the message, parameters supported
by the message, and a corresponding method map. Each message
structure is converted into two sets of values in the preferred
implementation. One set of values includes the message name and
the list of parameters supported by the message. The other set

- 37I
Ί

I

1

I

5 ,I

10

I
1

15

ι
III

20

}

law orncei ,
innegan. Henderson i
Farabow, Garrett i

δ dunner *
1300 t STRCCT. N W I

WASHINOTON. OC 2OOOS .
Ι·202·408·4000

of values identifies a set of method objects that represent
implementations of the message.

Method objects are defined within the network environment in
the same manner as classes. The object definition facility of
the preferred implementation, however, has special provisions for
defining of method objects. The following information is
specified when defining a method object; the global name and
identifier of the method object; global names and identifiers of
the superclasses of the method object; and metadata (i.e.,
descriptions of data) stored as the method attributes. The
method definition also specifies the arguments and their types
corresponding to the parameters in the message, and whether the
method involves a parameter list. This parameter list represents
the input required by the executable code (discussed below)
capable of being invoked by the method.

(2) Method/Class Definition
In the preferred implementation, the loading of class and

method definitions may either be done prior to run-time or
dynamically during run-time. Classes and method objects may be
accessible either locally on a node within the network (called
"loc^l definition") or globally from all platforms in the network
(called global definition") Both local and global definition can
be accomplished using the LOADER/UNLOADER software component 1010
or any other acceptable mechanism.

(3) Server Registration
The purpose of server registration is to find method servers

which are available to service requests from messages. Method

30 38

Μ

ι

5
i
ίI
ιI

10

20

law orricc»

:innecan. Henderson
Farabow. Garrett

S DUNNER

servers are the active (i.e., currently running) processes
implementing the methods. A method server may involve execution
of the code of a single application or of many portions of the
code of one or more applications.

The registration of method servers is distinct from the
definition of classes and method objects. Whereas the definition
of classes and method objects is used to identify their presence
in the system, the registration of method servers is used to
track their status (i.e., availability). If a method server is
not registered, it is not known to the system.

(4) Application Installation & Definition

Preferably, support mechanisms are provided for registering
and installing applications in the network. The preferred
implementation provides the ability to define applications and
application fragments in the object-oriented model of classes,
subclasses, messages and methods stored in a class data base.
The definition of applications in this manner is critical to the
operation of the interapplication communication performed by the
preferred implementation of this invention. Specifically, the
storage of classes, subclasses, messages and methods in a class
data base permits an application, during run-time, to update the
claes data base and continue processing using the updated class
data base without having to recompile and relink.

Applications are defined in the same manner as other
classes. In fact, as explained above, an application is itself
defined to be a particular kind of clase.

1300 t STREET, NW.
WJLSLWINOTON. OC 20009

w Η2Ο2·40β·Α00Ο

39

1

10

15

20

α-,<U«J

uaw orricc»
Finnegan, Henderson

Farabow. Garrett
8 DUNNER

1300 I STRICT, N w
WASHINGTON, OC 20009

|.202««»00·4000

30

Applications are installed on specific platforms in the
manner required for the particular operating system on that
platform. In the preferred implementation of this invention,
application installation also requires some additional functions.
For example, unless it has already been defined, an application
must provide its own class definition which is defined as a
subclass of the existing ACAS_APPLICATION.

Application installation may use class definitions already
installed or may add new definitions. At application
installation time, an installation procedure may compile and
register the class definitions supported by the application into
either a local class data base or the global class data base
using the LOADER/UNLOADER software component 1010 described
above, and must update the method maps of the data object classes
affected by the new applications. Application installation also
involves the method object definition procedures discussed above.

G. Context Object Data Bases
In the preferred implementation of this invention, context

object data base 630 (see Figure 6) provides a mechanism to
define preferences to be used for resolving methods, for
selecting platforms to execute a method, and for locating class
data bases in the network. Several levels of context object data
bases can exist in the network 50 of Figure 1. For example, one
level may consist of a user context object data base and another
level may consist of a group context object data base. System
(or platform) context object data bases may also be used to
identify preferences for users of the entire platform. All

- 40 -
I

1

I
5

I

10

13

20

law orncc·
Finnecan, Henderson

Farabo'*', Garrett
a DUNNER

I30G I BTWeET, N. w.
WASHINGTON, OC 20003

|.202·403·4000

context object data bases supply preferences during method
resolution, but, the group context object data base may be used
by the ACAS software components 130, 230, and 330 to recognize
the preferences of more than one user, and the system context
object data base may be used to recognize the preferences of more
than one group. Preferably, the data bases in context object
data base 630 are used such that in method resolution,
preferences in the user context object data bases override those
in the group context object data bases, which in turn overrides
the system context object data bases.

Context object data base 630 preferably resides on the
platform associated with a user during a particular network
session. In the initial log-on procedure executed when a user
enters the network, the information stored in the context object
data base associated with the user is called up for later use
during the operation of the ACAS software.

Figure 11A shows a preferred memory system for a context
object data base 1100. The context object data base 1100
includes a method override table 1110, a server node table 1150,
and a class data base override table 1170, and other user defined
tables 1180. The method override table is used during method
resolution, described in detail below, to select a preferred
method in response to a message name and a class identified in an
instance handle. The server node table 1150 is used during the
invoker operations, also described in detail below, to select and
locate platforms in the network capable of being a server
platform. Class data base override table 1170 defines an order

30 - 41

5

10

15

20

25
uaw orncc·

Finnecan. Henderson
FaRABOW. GARRETT

S DUNNER
1300 i ameer, n,w.

WAiHINOTOM. oc 1000S
!·10ί·40β·<000

for searching the local class data bases for method and class
information.

Tables 1110, 1150, and 1170 are system-supplied tables.
Users may also supply their own tables 1180 to effect their
specific preferences.

A preferred implementation of a method override table 1110
is shown in Figure 11B. Method override table 1110 includes a
list of method selector attribute names 1115 and associated
values 1120. Each entry specifies for an attribute name 1115, a j

I
preferred value 1120. For example, in Figure 11B, the preferred 1
platform is specified as a VAX.VMS, and the preferred interaction j
type is BUILT_IN. If more than one method is identified in iI
response to a message, the preferences in table 1110 will be used i

to choose one of those methods. If no value is specified for an
attribute, the system assumes there is no preference.

·’ preferred implementation of a server node table 1150 of
the context object data base 1100 is shown in Figure 11C. Server
node table 1150 is an ordered list of nodes in the network 50 of
Figure 1. Each of the entries in table 1150 corresponds to a
platform type 1152 and the location of nodes 1154 in the network
50 with the corresponding platform type which can be used to
implement the selected method. For example, table 1150
identifies two nodes for a platform type of TYPE A, node a and
node b.

Figure 11D contains a preferred implementation of class data
base override table 1170. Table 1170 includes several entries
which include a name of a local class data base 1172 and its

30 42

5

10

13

20

23
law emcee

Finnecan. Henderbon
Farabow. Garrett

β DUNNER
1300 I iTnccr, N. w.

WASHINOTOM. OC ΙΟΟΟ»
Ι·301·Α0β·Α000

locatic .1 1174. Thus, for entry 1175, the data base DB_SCH_LST is
at locations dbl and db2, and is searched before other local
class object data bases listed further down table 1170.

The preferred implementation of the present invention
includes an interface available to all user» of the network which .
p ides the capability tc create context object data bases and
to add, modify and delete entries within each of the system
context object data bases. This interface preferably executes a
standard compiler to perform these functions. For example, to (
add an entry to a context object data base, a user would enter a ,ί
command using the provided interface. The command would then be
interpreted by the ACAS software components 130, 230, and 330
(Figure 1) to cause the standard compiler to translate the data
received by the interface into the proper formats.

H. ACAS Service ;
(1) General Operations

With the preceding description of certain components of the
preferred implementation of this invention, a fuller 1
understanding of the ACAS components may be gained. Preferably,
the present invention is implemented using a client/server model
in which a client generates requests and a server responds to
requests. In the following discussion, the service or operation
associated with a client application on a client platform is
called the "client service," and the service or operation
associated with a server application executing on a server
platform is called a "server service." The client service and
the server service of the preferred implementation rely upon a

30 43 -

5

10

15

20

25
uaw ornec·

Finnecan, Henderson
Farabow, Garrett

S Dunner
1300 t STntCT, N. W.

WA8MJNOTON. OC 20008
μΐ04·40β·40Ο0

transport system which is capable of transmitting messages from
the client platform to and from the server platform. In the
preferred implementation, an RPC-like communications system is
used as the transport system.

Each of the ACAS software components 130, 230, and 330 shown
<,n Figure 1 preferably includes client service components and the
server service components which represent the client and server
services, respectively. This is shown, for example, in Figure 12
which is a diagram of two platforms 1200 and 1300 and a network
hue 55. Platforms 1200 and 1300 can correspond to any of
platforms 100, 200, or 300 in Figure 1.

Located in platforms 1200 and 1300 are memories 1250 and
1350, respectively, and CPUs 1210 and 1310, respectively. The
elements in the platforms 1200 and 1300 function in the same
manner as similar elements described above with reference to
Figure 1. CPU 1210 executes a client application 1220 and CPU
1310 executes a server application 1320. CPUs 1210 and 1310 also
execute OP SYS 1 1240 and OP SYS 2 1340, respectively, and ACAS
software components 1230 and 1330, respectively.

ACAS software components 1230 and 1330 preferably include
dispatcher software components 1232 and 1332, respectively,
control server software components 1234 and 1334, respectively,
invoker software components 1236 and 1336, respectively, and the
auxiliary software components 1237 and 1337, respectively.

For the most part, invoker software components 1236 and 1336
represent the client service and dispatcher software components
1232 and 1332 represent the server service. The auxiliary

30 44

1

5

10

15

20

25
uaw ornec·

Finnegan, Henderson
Farabcw CariUtt

a Dunner1300 I βΤΚΪΪΤ. N. W
WASHINGTON, 06 20009 Ι·401·*0β·*000
30

/if I

I

software components 1237 and 1337 represent some other operations
of the preferred implementation. Since platforms 1200 and 1300
in the network contain an invoker software component 1236 and
1336, respectively, a control server software component 1234 and
1334, respectively, and a dispatcher software component 1232 and
1332, respectively, either platform can act as a client or a
server.

In the preferred implementation, the invoker software
components 1236 and 1336 and the dispatcher software components
1232 and 1332 have the responsibility for interpreting class and
method information in the class data bases, as well as context
data in the context object data base, to determine the
appropriate method to invoke, to determine how to invoke that
method, and 'dispatch the necessary commands to execute the
code to implement the method. The invoker software components
1236 and 1336 and the dispatcher software components 1232 and
1332 also insulate client applications from the details of the
method invocation and the transport level mechanisms.

The control server software components 1234 and 1334 have
several functions. One function is to store information on
currently running server applications on the platforms 1200 and
1300 in the network 50. The control server software components
1234 and 1334 also execute processes to start new applications
that become method servers. Another function performed by
control server software components 1234 and 1334 is method server
registration. For example, the oontrol server software component
1334 stores information regarding the method server, identified

- 45 -

I
I

1

5 ι
ι

ι

I

10

15 ιI
i

20

ι

25

uaw orricei I
Finn ecan, Henderson i

Farabow Carrett I
8 Dunner

1300 I STBW, N <*
WASHINGTON. OC 20009

Ι·202*Α0β*4000

30

by the server application 1320, currently running on the server
platform 1300. The control server software component 1334 also
communicates with the server registration facility in network
wide memory 704 (Figure 7) to store status information regarding
the server application 1320.

The auxiliary software components 1237 and 1337 represent
operations of the ACAS software components 1230 and 1330 such as
class and method object definition and registration, method
executable registration (described below) in a method executable
catalog of each platform, and functions of the LOADER/UNLOADER
software component 1010 (Figure 10).

For purpose of the following discussion, the platform 1200
is referred to as the client platform and the platform 1300 is
referred to as the server platform. In this example, the client
application 1220 communicates with the server application 1320 in
the server platform 1300 in an objected-oriented fashion. It is
also possible in accordance with the present invention and in the
preferred implementation for a client application on one platform
to communicate with a server application on the same platform.

When the client application 1220 communicates with the
server application 1320, the dispatcher software component 1232
and control server software component 1234 of the client platform
1200 is not involved, and are therefore shaded in Figure 12.
Likewise, invoker software component 1336 of the server platform
1300 is shaded because it is not active.

Figure 13 ie a flow diagram 1360 outlining the major
functions performed in an invocation of a method according to the

- 46 -

I

*7

5

10

20

25

la v arncc·
Finnan, Henderson

Farabow. Garrett
ii Dl'NNER

1300 t 4'iACCT, N.W.
•rtAanfWOTON, OC 20009

Ι»202·40β·4000

preferred implementation. Prior to beginning the steps in flow
diagram 1360 the ACAS software qomponents 1230 and 1330 are
initially in a "wait" state.

When the client application 1220 transmits a method
invocation request, the processes of the ACAS software components
1230 and 1330 shown in Figure 13 begin. This method invocation
request includes an input message which identifies the desired
operation of the client application 1220.

First, the method invocation request is received by the
invoker software component 1236 (step 1370) which processes the
method invocation request (step 1375). The invoker process is
described in greater detail below. The usual result of the
invoker process is a processed method invocation request.

The invoker software component 1236 then transmits the
processed method invocation request, via network bus 55 to the
dispatcher software component 1332 (step 1380). The dispatcher
software component 1332 and control server 1334 then begin their
operations.

After receiving the processed method invocation request, the
dispatcher software component 1332 and control server software
component 1334 cause the method identified by the invocation
request to ba executed by the server application 1320 (step
1390). Once the server application 1320 completes execution of
the method, it outputs any arguments resulting from the execution
and the dispatcher software component 1332 generates a status
message (e.g., "successful"). The output arguments and status
message are mapped into the processed method invocation request,

30 47

1

5

now called a "response." This response is then transmitted by
the dispatcher software component 1332 to the invoker software
component 1236. The invoker software component 1236 completes
its processing by returning the response received from the

■ dispatcher software component 1332 mapped into the original
j method invocation request, to the client application 1220 (step
: 1395).
I

io !III

15

1

20

25

UAW O..ICII
Finnecan. Henderson

Fara:cw. Garrett
6 D'lNNER

1300 t s n. w. j
WASHINGTON. 00 2OOOS ’

I 202 -.03-1000 :

i

The preceding explanation of the ACAS software components
1230 and 1330 permits a greater appreciation of the flow of
information in the preferred implementation of this invention.
Figure 14 shows additional elements of the network 50 affected by
a flow of information from the invoker software component 1236 to
the dispatcher software component 1332. In addition to the
client application 1220, the server application 1320, the invoker
software component 1236, the dispatcher software component 1332,
and the control server software component 1334, Figure 14
includes context object data bases 630 (Figure 6), class data
bases 640 (Figure 6), a server registration facility 1420, and a
control server registry 1425, which is maintained by the control
server software component 1334 and keeps track of the executable
code in the server platform.

Aa shown in Figure 14, the context object data bases 630
includes a user context object data base 1402, a group context
object data base 1404, and a system context object data base
1406, each of which has been described above in the discussion of
context object data bases. The class data bases 640 include a
local data base 1000 (Figure 10), a node cache 1030, and a global

30 48

1

I

5

10

15

20

UAW OFFICE»

Finnegvj. Henderson
Far ot, Carrett

6 DUNNER

class data base 1020. Each of these elements of class data bases
640 has been described above in the discussion of class data
bases .

As explained above, the flow of information begins when
client application 1220 generates a method invocation request
which is passed to invoker software component 1236. This
interface is preferably provided by an InvokeMethoa procedure
call of the preferred implementation.

In the InvokeMethod procedure call, the client application
1220 passes to invoker software component 1236 an instance
handle, a message (including a message name, and parameter list),
a context object handle, and, optionally, an output instance
handle.

As discussed in detail above, the instance handle is a
structure that identifies the current instance the client
application 1220 has selected to be involved in the method
invocation. The message name represents the desired operation on
the instance. The message parameter list consists of the
parameters required by the message. The context object handle is
a reference identifying the context object data base to be used
in the invocation process described in detail below. The output
instance handle represents an instance of the running method
server associated with the invoked method. This allows the
client application to continue to have a dialog with the same
method server. The semantics of the output instance handle is
the same as that for the instance handle..

i3oo t STflecr, n. w.
I3MIMOTON. OO 20003
Ρ202·40β·4000

- 49 -
i

1 When the invoker software component receives the method
invocation request, the invoker software component 1236 queries
the context object data bases 630 and the class data bases 640 to

10

ι

15

20

25
orricc·

FiNnecan. Henderson
Farabow. Carrett

δ DUNNER
•300 ί ITBCCr, N.W.

WA3HINOTON. OC 20009
Ι'202·ΑΟβ·40ΟΟ

find a method identifier. This procedure has been discussed
above.

Having determined the appropriate method identifier for the
message name, the invoker software component 1236 next queries
the server registration facility 1420 and the context object data
base 630 to find the server platform on which to execute the
method associated with the method identifier. The server
registration facility 1420 is used to locate a running method
server (if any) capable of performing the method associated with
the method identifier. A running method server is a method
server, such as the server application 1320, that has made itself
known to the network 50 as being already started.

If there is a running method server, the invoker software
component also queries server platform tables of the context
object data base 630, to determine the location of a remote
platform in the network 50 (Figure. 1) which the user of the
client application 1220 would prefer to execute the method of
invocation request processed by the invoker software component
1236. If however, the server application 1320 is not available,
the control server software component 1334 notifies the invoker
software component 1236 that the server application is not
available on the selected remote platform. The invoker software
component 1236 processing outlined above begins again with
querying the server platform table of the context object data

30 50

ο >
I

1

5

10

15
I(

20

25

law orricca
Finnegmi, Henderson

Hrabow, Garrett
8 Dunner

1300 I STREET, N, W.
WAuHINCrUN, OC 20009

|·202·40β·40ΟΟ

bases 630 and server registration facility 1420 to select another
platform in the network 50 upon which to execute the identified
method.

Next, the invoker software component 1236 transmits a query
to the control server software component 1334 of the preferred
server platform which causes control server software component
1334 to query a control server registry 1425 to determine whether
the desired method server on the preferred server platform is
available to process the method identified in the processed
method invocation request. Availability of a method server is
determined in the preferred implementation by examining in the
control server registry 1425 to find out whether the method
server is currently able to process methods invoked by client
applications.

If the control server software component 1334 indicates to
the invoker software component 1236 that the method server, in
the form of server application 1320, is available, the invoker
software component 1236 transmits the processed method invocation
request to the dispatcher software component 1332 of the server
platform. The invoker software component 1236 can also transmit
information from the context object data base 630, which can then
be used by the desired method server.

The dispatcher software component 1332 then begins to
process the desired method. This process, referred to as the
"dispatching process," generally involves dispatching the method
identifier to begin the execution of the method by the server
application 1320.

30 51

1

5

15

20

25

If, however, the server registration facility 1420 does not
indicate that any copies of server application 1320 and currently
running on a platform in the network, then the invoker software
component 1236 may transmit a request to the control server
software component 1334, using the information retrieved from the
context object data bases 630 and the class data bases 640, to
start the server application 1340. After the server application
1320 is started, the control server software component 1334
notifies the server registration facility 1420 to update the
network-wide memory 704 (Figure 7) to indicate that the server
application 1320 is running. Control server software component
also updates the control server registry 1405 to indicate that
the server application 1320 is available. The invoker software
component 1236 then transmits the processed method invocation
request to the dispatcher software component 1332 to execute the
method corresponding to the method identifier of the processed
method invocation request.

After the server application 1320 has completed its
processing, it returns any output information requested by the
processed method invocation request to the dispatcher software
component 1332. The dispatcher software component 1332 then
return· a responset as describe above, to the invoker software
component 1236 along with any output information mapped into the
output arguments of the processed method invocation request
received by the dispatcher software component 1332.

law orricc·
Finnecan. Henderson

Farabow, Carrett
8 DuNNJR

jtyll I STREET. L W.
WaJnMN'JTDN, OC 20009

V20$*409*4000

52

5

10

Μ »·
*J

20

25
UAW OFKICC·

FlNNdt-AN, HENDERiON
Fv.abow. Garrett

8 DUNNER
ITOO 1 STBtCT, N,W.

«/ΐφυκοτοΝ. oe aoooo
Ι·202·40β·4000

(2) Invoker Operation

The portion of the process of method invocation performed by
the invoker software component 1236 can now be described in
greater detail. Preferably, that portion consists of several
distinct phases including determining the proper method to be
invoked (method resolution), server connection or start-up, and
transport level communications to enable the dispatching of an
identifier to the proper method to be executed by the method
server or other executable code.

Figures 15A - 15D and 16 contain flow diagrams of procedures
performed or called by the invoker software component 1236 of
Figures 12 and 14. The main control procedure 1550 in Figures
15A - 15D represents the steps 1370, 1375, and 1380 (Figure 13)
performed by invoker software component 1236.

As with procedure 1360, prior to entering the main control
procedure 1550, the client application 1220 (Figures 12 and 14)
is running normally without a method invocation request, and the
ACAS software component 1230 is in a "wait" state. When the
client application 1220 generates a method invocation request
using the InvokeMethod procedure call, the main control procedure
1550 begins (step 1552 in Figure 15A) with the invoker software
component 1236 receiving the method invocation request (step
1555).

The invoker software component 1236 first validates the
method invocation request (step 1557). If there was an error,
the invoker software component 1236 generates an error message

53

5

10

15

20

25
law orricc·

Fnnelan. Henderson
F.iRaeow. Garrett

a DUNNER
ISO. t 1TBECT, N.W.

WASHINGTON. OC 40003
I' 404 · AO β · AOOO

(step 1558) which the invoker software component 1236 returns to
the client application 1220 (step 1599 in Figure 15D).

If the method invocation request is valid (step 1557 in
Figure 15A), the invoker software component 1236 next resolves
the method to be invoked from the message in the InvokeMethod ,
call, the class data bases, and context object data bases (step
1560). Method resolution is the process of determining or
identifying the appropriate method.

Figure 16 shows a preferred procedure 1600 to resolve ;
methods. Although method resolution has been referred to above, |

procedure 1600 shows such resolution in much more detail than has !
■ I

been provided. i
In the preferred implementation, the determination of the ;

proper method to be invoked is indirectly handled by the invoker ,
software component 1236. Most of the work for method resolution i
is then handled by the auxiliary software components 1237 and

i1337 of the ACAS software components 1230 and 1330. In the .
preferred implementation, auxiliary software component 1237
retrieves information from the context object data bases and the
class data bases. Of course, invoker software component 1236
could also retrieve such information.

After beginning the method resolution procedure 1600 (step
1605), the invoker software component 1236 determines whether the
instance handle includes the storage class name portion (step
1610). If a storage class exists, it is located (step 1520) a
special method is invoked to retrieve the name of the class
associated with the instance handle (step 1630).

30 54

1 After invoking the method identified by the storage class to

5

retrieve the class name,, or after determining that the instance
handle did not include the storage class name, a process is
executed by the invoker software component 1236 to locate class
information for the class data bases 640 (Figures 6 and 14) using
the searching order described above (step 1640) For example, if
the messages was EDIT (INSTANCE_HANDLE), where the instance
handle was ASCII_FILE/NODE_1/MYFILE.TXT, the class name
ASCII FILE can be used to find class ASCII FILE 1645 in class

10

15

25
uaw orriccfc ,

Finnecan Henderson
Farajow, Garrett

8 D'JNNER

data bases 640. I
With the name of the message, EDIT, the appropriate method |

map 1655 is then retrieved from the class data bases 640 (step J

1650). In the specific example under discussion, the auxiliary !
software component 1237 of the preferred implementation would
then retrieve method map 1655 and check to ensure that the class j

I
information located in step 1640 includes with the message name j

EDIT. This ensures that the corresponding message is supported 1
by the class. !

Aa Figure 16 shows, the method map 1555 includes method I
t

objects METHOD 1 and METHOD 2 for the message name EDIT and the ;
Iclass ASCII_FILE 1645. Associated with the method object METHOD ' “ i

1 ie 9 set of attributes 1657 and associated with method object !
METHOD 2 is a set of attributes 1659. The set of attributes 1657
indicates that METHOD 1 is capable of being executed on :
PLATFORMJTYPE A, and the set of attributes 1659 indicates that
Method 2 is capable of being executed on PLATFORM_TYPE B.

1300 I trnEcr, n. w.
<9γ*Ν0ΤΧ3Ν, OC 20003
'Y'2C2»40e*4000

55

Jb

5

10

15

20

25

law ott'Ce*

Finnecan, Henderson
F/iRabow, Garrett

« DUNNER.
1300 t STRICT, N, W.

WA*1MINAT6N> OC 10009 >
I 201 409**000

Because there might be several method objects in the method ι
map, the context object data bases 630 are referenced to resolve '
any ambiguities (step 1660). In referencing the context object
data bases 630, the appropriate server node table maintained is
also retrieved to be used later.

The entries (if any) in the context object data bases 630 j
I

are then compared with the attributes in set of method objects on '
the method map (step 1670) to select the method object and thus j
the appropriate method to execute the desired operation
represented by the message (step 1680). In Figure 16, a method
override table 1665 includes an entry 1668 indicating the user
preference is for PlatformType A. Using this entry 1668 the
invoker software component 1236 selects from the class data bases
640 the appropriate method 1686 to execute the desired operation i
EDIT. In the example shown in Figure 16 the appropriate method j

is Method 1 to be executed on PLATFORM_TYPE A. The procedure
1600 now returns to the main control procedure of 1550 of ,

i
Figure 15 (step 1685).

If at any point during the operation of method resolution :
i

procedure 1600, there is an error (such as during step 1640, the :
class identified in the instance handle was not a class locatable ί

ι
in the class data bases), the method resolution procedure 1600 'I
returns with a message indicating this error.

After returning from the method resolution procedure 1600, a
determination is made whether an error occurred during the method .
resolution process (step 1562 in Figure 15A). If the answer is
"yes", then the invoker software component 1236 generates the

30 56

I!

5

10

lb

20

2 b
vaw or,ie»

Finnecan, hiinderson
Far vow. (Jarrett

8 DUNNER
1300 t iTKcr, N.W.

W..SHINO.ON, OC 20009
1*202*409*4000

appropriate error message (step 1563), and returns the error
message to the client application 1220 (step 1599 in Figure 150).

Otherwise, having resolved the method without error (step
1562 in Figure 15A), the invoker software component 1236 then
reviews the method attributes corresponding to the identifier of !
the resolved method to execute the appropriate method on an ,
appropriate platform in the network. If these method attributes .
indicate that the method is already linked into the client ;
application 1220 (step 1565 in Figure 15B), for example, the
value of the InteracticnType method attribute is "BUILT_IN," then
a check is made for an activation error (step 1566). If there
was one, an error message is generated (step 1576) and control is
returned to client application 1220 (step 1599 in Figure 15D).

•
If there was no error, a success flag is generated (step :

1567), and the resolved method is executed by code already !
resident in the client application 1220 (step 1569). 'I

If the method attributes do not indicate that the method is IIalready linked to the client application 1220 (step 1565 in
Figure 15B), invoker software component 1236 asks whether the ίι
method attributes indicate that the method is dynamically 1I
loadable (step 1570). Dynamically-loadable methods represent
method executables which may be merged with executable code of
client applications at run-time. Those skilled in the art will
recognize that a dynamically-loadable method might be a method
executable identified by a subprocedure or function of a client
application. Preferably the test for a dynamically-loadable
method server is accomplished by determining whether the value of

30 57

I

5

10

13

20

25

vaw ornoCB
Finnegan, Hendepjson

Γλλ.»βοτ, Gamutt
d UUNNEP.

iIOj (s'.nccr. n.w.
WA8HINOTON. DC IOOO8

i>aoi’4oe«-»ooc

the InteractionType method attribute ia "DYNAMIC_LOAD." If so,
then the invoker software component 1236 attempts to load the
executable code identified by the resolved method into the client
application 1220 (step 1572).

If an error occurred during the loading of the executable
code (step 1574), then the invoker software component 1236 '
generates a message indicating that a load error occurred (step
1576) and returns the load error message to the client
application 1220 (step 1599 in Figure 15D). j

Otherwise, if there was no load error (step 1574), then the
invoker software component 1236 then generates a flag indicating I
the successful completion of the method invocation (step 1567).
Next, the dynamically loaded, executable code corresponding to the j

resolved method is executed (step 1569), and control returns to
the client application 1220 along with any output arguments (step j
1599 in Figure 15D). Any errors in executing linked or (
dynamically-loadable method servers are preferably returned as ·
parameter values. J

If the method attributes do not indicate a previously-linked
or dynamically-loadable method (steps 1565 and 1570 in
Figure 155), then the invoker software component 1236 must locate j
a running method server on a platform in the network that can
handle the resolved method as described above with regard to
Figure 14.

If the information retrieved from the server registration
facility 1420 (step 1578) indicates that there is at least one
running method server capable of performing the method identified

30 58

1

5

10

by the resolved method (step 1579 in Figure 15C), then the
invoker software component 1236 compares the information
retrieved from the server registration facility 1420 with the
entries on the server node table retrieved from the context
object data bases 630 during the method resolution procedure 1600
to select a server platform in the network (step 1580).

Having selected a server platform, the invoker software
component 1236 then transmits a QubryServer call to the control
server software component 1334 of the selected server platform
(step 1581). The functioning of the control server software
component 1334 is described in detail below in connection with
Figures 17A and 17B. Briefly, control server software component
1334 determines whether the desired method server is available or
not.

15

20

orrie»· .
Finnpcan Henderson

Faraso*'. Garrett
a Dunner

The main control procedure 1550 of the invoker software
component 1236 then continues in step 1582 (Figure 15C) by
receiving a message generated by the control server software
component 1334 about the desired method server's availability and
translating the message into a format recognizable by the client
platform. The invoker software component 1236 determines from
the control server software component 1334 whether the method
server corresponding to the resolved method is available to
proceae the method identified by the resolved method (step 1583).
If the corresponding method server is available, then processing
of the invoker software component continues on Figure 15D by
asking whether the method server is an asynchronous method server

iooc. I imtcr. n.w.INOTOH. oe »0008ΙΟίΆΟβ-.ΟΟΟ
59

5

10

20

4« J

uaw or nee»
finnecan, Henderson

Farabow, Garrett
δ hunner

•IJJ I 8THCIT, M.W.
w>)mino*om. oe joooo

1*401 408*4000

30

(step 1593) in Figure 15D. Asynchronous method servers are known
in the art.

If the method server is asynchronous (step 1593), then the
control server software component 1334 is called using the
SignalServer call to signal the method server (step 1594). If
the method server is not asynchronous (step 1593), or after an
asynchronous method server is signaled (step 1594), the processed
method invocation request, including th? identifier for the
method and information retrieved from the context object data
bases during method resolution, is packed into a data structure
used for communication in the network (step 1595) and the invoker
software component 1236 then transmits the packed and processed
method invocation request to the dispatcher software component
1332. The processes of the dispatcher software component 1332
will be described below with reference to Figures 18A and 18B.

After the dispatcher software component 1332 completes its
processing and transmits a packed response, the invoker software
component 1236 receives the packed response (step 1597), unpacks
the response (step 1598), and returns the response to the client
application 1220 to complete its processing (step 1599).

If in the earlier determination (step 1583 in Figure 15C),
the running method server was found not to be available, the
invoker software component 1236 determines whether the server
registration facility 1420 indicated any other running method
servers capable of performing the method identified by the
resolved method (step 1584). If so, then the retrieved
information is compared to the server node table in the context

- 60 -
I

6/

5

10

15

20

25
LAW OFFICE·

Finneoan. Henderson
Faralow, Garrett

8 DUNNER
1300 t 8TRCCT, N. W.

WASM'HOTON, 00 30005
I'J'l 405-4000

30

object data base 630 and a QueryServer call is made to control
, J
server software component 1334 (step 1581). 1

Otherwise, the invoker software component selects the server ;
node with the highest priority from the server node table (step |
1586) . The control server software component 1334 of that j
selected server platform is then contacted using the StartServer {

I
call which indicates to the control server software component jI
1334 to attempt to start the appropriate application which
corresponds to the method identified by the reeolved method (step
1587) .

After the control server software component 1334 has
completed its processing and transmitted a message, the invoker
software component 1236 receives the transmitted message which it
then unpacks (step 1588).

If the application was started and became a method server
(3tep 1589), then the invoker software component 1236 completes
its processes which have already been described (step 1593 of
Figure 15D). If the application was not started (step 1589),
then the invoker software component 1236 asks whether there are
any more nodes in the server node table of the context object
data bases 630 (step 1590). If not, then an error message is
generated indicating that the method invocation was unsuccessful
because a server platform could not be located (step 1592), and
that error messes is returned to the client application 1220
(step 1599 in Figure 15D). j

If, however, there are other nodes on the server node table
(step 1590 in Figure 15C) then the platform with the next highest

- 61 - I
I

I

5

10

15

20

25 '

law orricn

FI.JNi.CAN, HENDERJON
Farabuw, Carrett 8 DUNNER laoo t arnccr. n. w.

WASHINGTON. 00 1OOOS
i>20i*aos*aooo

3C

priority is selected (step 1591) and the processing of the
invoker software component 1236 returns to step 1587 of
Figure 15C. The loop consisting of steps 1587, 1588, 1589, 1590,
and 1591 will be performed until the method server is started
(step 1589) or until there are no more platforms on the server
platform lists (step 1590).

(3) Control Server Operation
Figures 17A and 17B show the control server procedure 1700

which represents the operations of the control server software
component 1334. Persons skilled in the art will recognize many
other ways of implementing the functions of control server
software component 1334.

After beginning the control server procedure 1700 in step
1702 of Figure 17A, the control server software component 1334
receives a control server message (step 1705). In response, the
control server software component 1334 determines whether the
control server message indicates that an application running on a
common platform with the control server software component 1334
requests to be registered as a method server to handle method
invocation requests (step 1710). If the answer is "yes" then the
control server software component 1334 registers the server
application as a method server by recording the necessary
information about the server application with the control server
registry 1425 to indicate that tho method server is available.
Control server software component 1334 also notifies the server
registration facility 1420 to indicate that the method server is
running (step 1715). The running and available method server may

62

5

10

15

20

2 b
law orncE·

Finnec..n, Henderson
Farabow, Carrett

8 DUNNER
1300 t STREET, N.W.

WA9HINOTON, OC 10005
i«tna«4oe*4ooo

/3

also execute appropriate methods. The control server software
component 1334 also generates a success message (step 1729) to be
returned to the now registered application (step 1799 in
Figure 173).

If the control server message does not indicate that an
application wishes to be registered (step 1710 in Figure 17A),
the control seiver software component determines whether the
control server message indicates that a currently registered
method server requests to be unregistered with the control server
software component 1334 and server registration facility 1425
(step 1720). If so, then the control server software component
1334 unregisters the method server by removing the information
from the control server registry 1425. This indicates that the
application, identified by the method server, is no longer
available. Control server software component 1334 also notifies
the server registration facility 1420 to remove the information
stored in network-wide memory 704 (step 1725). The control
server software component 1334 then generates a success message
(step 1729) to be returned to the now-unregistered application
(step 1799 in Figure 17B).

If the control server message does not indicate that an
application has requested to register or unregister itself, the
control server software component determines whether the control
server message indicates that the invoker software component 1236
wishes to signal an asynchronous method server to expect to be
invoked to execute a processed method invocation request (step
1730). If this is the case, the control server software

30 63

I

1

5

15

20

25
LAW OFFICE»

Finnegan. Henderson
Farabow, CArrett

8 DUNNER
1300 I STBiCT. H,<M.

WAWNOTON, DC >0003
j V>0>'A03‘4000

component 1334 executes a process that signals the asynchronous
method server (step 1735) and completes processing (step 1799 in
Figure 17B).

As explained above, the preferred implementation of this
invention can operate both with applications written to take
advantage of the features of this invention, or previously-
written applications that have been modified for us with the
preferred implementation. In so writing or modifying
asynchronous applications to operate with the preferred
implementation, a user includes program code that, in part,
recognizes these asynchronous signals and, as described below,
registers these signals and the following processed method
invocation requests in queue. These operations are described
below with reference to the processes performed by the dispatcher
software component 1332.

If no other function has been requested, the control server
software component 1334 determines whether the control server
message indicates that the invoker software component 1236 is
requesting that a new application, which resides on the same
p*atform as the control server software component 1334, should be
started to become a method server to process a method (step 1740
in Figure 17B). If so, then the control server software
component 1334 checks the control server registry 1425 (step
1745) to determine whether the method executable of the new
application, corresponding to the resolved method, resides on the
selected platform (step 1750).

64

1

10

15

20

25

law orriei»
FlNNECAN, HENDEMON

Farabow, Garrett
8 Dunner

1900 t STREET, N. W.
WASHINGTON. OC 2OOOS

|·202·4θβ·4000

Control server registry 1425 has a local scope so that only
the server platform 1300 is aware of resident method executables.
The registration of method executables in registry 1425 involves
registration of the actual executable code in executable files,
for example shell scripts, that implement a method, and the
status of those method executables. These items preferably have
¢, - x local registration scope because it i3 not necessary to
manage the executable code globally.

If the corresponding method executable is identified in the
control server registry 1425, then the selected platform can be a
server platform. The control server software component 1334
executes a process to start the corresponding method executable
and registers the resulting method server with the server
registration facility 1420 and with the control server registry
1425 to indicate that the newly started method server is both
running and available (step 1752). During· this starting process,
the control server software component 1334 also creates a context
object data base capable of being used by the started method
server. Next the control server software component 1334 then
generates a message indicating that the application corresponding
to the resolved method has been started and is now a method
server (step 1754). This message is then transmitted to the
invoker software component 1236 that requested that the method
server be started (step 1790), and the control server software
component■1334 has completed its processing (step 1799).

If the method executable corresponding to the resolved
method is not identified in the control server registry 1425,

30 65

5

10

15

20

25
law orncit·

Γιν.ιεοαν, Henderson
Farabow, Carrett

a dunner
1300 t sTncer, n,w.

WASHINGTON, OC 20008
Ι·202·40β·4000

30

& I

• 1

then the control server software component 1334 generates an
appropriate message indicating that the method executable was not
started (step 1756). This message is then transmitted to the
invoker software component 1236 that requested that the method
server be started (step 1790), and the control server software
component 1334 has completed its processing (step 1799). '

If no other function has been requested, the control server i
software component 1334 determines whether the control server ;
message is a request from the invoker software component 1236 for
information concerning the availability of a running method
server to execute a method identified by the resolved method
(step 1760). If not, the control server software component 1334 ■
generates an error message (step 1780), transmits that message to I

the invoker software component 1236 (step 1790), and completes
its processing (step 1799). ,

Otherwise the control server software component 1334 retries
the requested information on the running method server from the :
control server registry 1425 (step 1765). If the information j
from the control server registry 1425 indicates that the method f
server identified by the resolved method i3 available (step '
1770), then the control server software component 1334 generates '
a message indicating the method server's availability (step :
1775). This message is then transmitted to the invoker software
component 1236 (step 1790), and the processing of the control
server software component is complete (step 1799).

If, however, the control server registry 1425 indicates that
the method server is not available (step 1770), then the control

- 66 -
I

61

5

10

15

20

25
law office»

FlNNEfAN, HENDERiON
Fakabo^, Carrett

8 DUNNER
1300 I 8TNCCT, N, W.

WASMINOTON, OC 10008
»·»Οί'ΑΟ»·*ΟΟ0

I

server software component 1334 generates a message indicating the
unavailability of the method server (step 1777). The control
server software component 1334 then transmits the generated
message to the invoker software component (step 1790), and the
processing of the control server software component 1334 is
complete (step 1799). ,

i
(4) Dispatcher Operation

The process of dispatching method servers consists of :
dispatching methods-to be processed by method servers and ,
transport level communications. The dispatcher software
component 1332 also handles different types of method

iinvocations. I
Asynchronous method invocations do not require that the ΐ

client application wait for the identified method server to '
complete processing. For example, the invocation request can be ;
placed on a queue to be performed, and the RPC transport level
call can return to the invoker software component 1334 and allow :
the client application to continue its own processing without |
being "blocked" or prevented from continuing. The queue of
processed method invocation requests received from invoker
software components is then examined by dispatcher software ,
component 1332, such as in a dispatcher procedure 1800 of 1
Figure 18, and performed according to a predetermined order.

Asynchronous method invocations may be requested if the
client application does not expect to receive back a response
from the method server. The only response will be an indication
of whether the method invocation was successfully received by an

30 - 67

6$ I

5

10

15

20

25
L> n orriCM

FlNNE'VN, HENDERSON
Fakabcw. Garrett% DUNNER '

1300 I STRttT, H.W,
WASHINGTON, OC 10003

l<30t-40e*4000

JO

iACAS software component on a server platform. The response does |
not indicate whether the execution was successful, and will not
contain any outputs of the actual method invocation, as it could ;
for synchronous method invocations . ■·

Synchronous method invocations are the default mode for all
i

method invocations. With synchronous method invocations the ΐ
client application that invoked the method awaits a response j
before continuing its own processing. j

Figures 18A and 18B are a flow diagram of procedures j
performed or called by the dispatcher software component 1332 of
Figures 12- and 14. The dispatcher procedure 1800 represents the
steps 1385, 1390, and 1395 (Figure 13) performed by the
dispatcher software component 1332.

Prior to entering the dispatcher procedure 1800, the >
dispatcher software component 1332 is in a "wait" 3tate waiting j

I
for a processed method invocation request from an invoker J
software component in the network. After beginning the j

dispatcher procedure 1800 (step 1802), the dispatcher software
component 1332 receives a transport data structure, via the
network transport service. This transport data structure

I
represents a packed and processed method invocation request j

i
trar Knitted by an invoker software component in the network (step !

1805). After receiving this transport data structure, the ί
dispatcher software component 1332 unpacks and translates the

!transport data structure into a data structure recognizable by ί
i

the server platform (step 1810). The dispatcher software 1
i

component 1332 then updates a context object data base associated 1

1

- 68 - '

10

15

20

25

vaw orricc*
FINI.ECAU, HENDERJON

Farabow. Carrett 8 DUNNER
1300 I 8TBCET, N.W,

WASHINGTON, OC 20009
^P202‘409»4000

with the running method server (step 1815). A context object !
data base may become associated with the running method server
either by being created by the control server software component
1334 when starting the method server or by a user logging onto ,
the server platform and starting the method server.

The dispatcher software component 1332 next asks whether the I
1

proceed method invocation request it received i3 an asynchronous ,
invocation request to be processed by an asynchronous method '
server (step 1820).' If not, then the dispatcher software
component 1332 asks whether the invocation request includes the
identification of a valid method, which is a method that can be
processed by the method server (step 1825). If not, then an
error message is generated (step 1840), which is then packed as a
response (step 1890 in Figure 18B) and transmitted to the invoker j

■ ίsoftware component (step 1895) before completing the dispatcher !
processing (step 1899).

If the invocation request included the identification of a 1
valid method (step 1825 in Figure 18A), then the dispatcher II
software component 1332 dispatches the valid method identified by !
the received invocation request to be executed by the method '
server (step 1830). If an error occurred during the execution of ;
the valid method by the method server (step 1835), the dispatcher ;
software component 1332 generates an appropriate error message
(step 1840). The dispatcher software component 1332 then packs
the error message as a response (step 1890 in Figure 18B) and
transits the packed error message to the invoker software

- 69 -

5

10

15

20

25

law ornet·
FlNNtCAN.’HENDEfUON

Farabow, Garrett
δ DUNNER

1300 I STREET. N.W.
WASHINOTOM.OC 2000L

Ι·10ί·40β·4000

3C

W

component (step 1895) before completing the dispatcher processing '
(step 1899).

If no execution error occurred (step 1835 in Figure 18A),
then the dispatcher software component 1332 packs a response '
(step 1890 in Figure 18B), which in this case is the processed ,
method invocation request including any output from the method j

server that processed the method identified by the resolved
method (step 1560 of Figure 15A). After the response is packed, I
it is transmitted to the invoker software component that
originally sent the original processed method invocation request
(step 1895), and the dispatcher processing is completed (step
1899).

If the processed method invocation request received by the
dispatcher software component is an asynchronous invocation
request (step 1820 in Figure 18A), then the asynchronous ,
invocation request is preferably placed on a queue to be ,

Idispatched by the dispatcher software component 1332 to be later !
processed as a method server (step 1850). A message indicating |
the success of the asynchronous invocation request is generated |

(step 1855), packed as a response to the received processed :
method invocation request (step 1860), and then transmitted to j
the invoker software component that originally sent the processed ί
method invocation request (step 1865). jI

In the preferred implementation, asynchronous method servers '
execute asynchronous method invocation requests in the order they
are firet placed on a queue. In executing the asynchronous ;I
requests, the dispatcher software component 1332 asks whether !

, t

- 70 -

7/

ι

5

10

15

20

2 b

law orriec·

Finnegan, Hendemon
Faf/eo^. Garrett

a OWNER
1300 t BTRtrf, N.W.

WAftHINOTON OC 10009
1*101*406*4000

30

there are any method invocation requests on the queue to be
processed by the asynchronous method server (step 1870 in
Figure 18B). If there are no method invocation requests on the
queue (step 1870), then tha dispatcher processing is complete
(step 1899).

If there were asynchronous method invocation requests on the '·
queue (step 1870), the dispatcher software component 1332 takes
the next asynchronous method invocation request off of the queue
(step 1875). If tha request taken off of the queue is invalid '
(step 1880), such as a request that cannot be processed by the !
method server, then processing returns to find out whether there I
are other queued method invocation requests (step 1870). i

If the request taken of the queue is valid (step 1880), then I
the dispatcher software component 1332 dispatches the
asynchronous method invocation request taken off the queue to be ί
processed by the asynchronous method server (step 1885).

The question is then asked whether an error occurred in the ,
processing of the method server (step 1887), The error, if any, i
is recorded (step 1888) then, or if an error did not occur, the
dispatcher software component 11332 checks the queue (step 1870),
In this manner all asynchronous invocation requests on the queue
are processed, in turn, without blocking the client application
that originated the method invocation request.

I· Summary
. €.xcum^»I<s

The presentyC±tt»»odi±aflft thus provide an efficient and simple

manner for an application on ona platform to invoke an
application on the same or a different platform without needing

71 -

1

5

10

15

to know details about the other platform, or even about the other '
application. Such invocation can even take place between unlike
platforms in a heterogeneous network. 1

Because, in accordance with the object-oriented techniques
Of—t,hls~lnvenfekgrf. the data (or instances) and applications are
not managed, those data and applications can be managed in the
manner chosen by the application developers. By managing only
objects and references to applications instead, the requirements ,
on system resources*are reduced, and the flexibility of the
system is increased. I1Persons of ordinary skill will recognize that modifications I
and variations may be made to this invention without departing !
from the spirit and scope of the general inventive concept. This j
invention in its broader aspects is therefore not limited to the
specific details or representative methods shown and described.

law orriec·
Hnnlcan, Henderson

!7 P aaO'*', GARRETT
ft DUNNER

1300 1 «Τ IttCT, N. W,
WASMINOTON. OC JOOOO

ι·ιο>.4θβ*4θΰο

72 -

73

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A system for organising communication among applications
in a data processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances corresponding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, each of said

method entries corresponding to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and

a plurality of message entries, each of said
message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances

Ί4

associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry?
and
data base control means coupled to the memory in the

network including
means, responsive to a message from a client

application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry reference in
the selected message entry and corresponding to the
requested application,

means for selecting a platform capable of
executing the requested application, and

means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform.

2. The system of claim 1 wherein method entries are
referenced in each of the message entries by means of a
method map.
3. The system of claim 1 wherein each of the method
entries includes a list of attribute values describing the
corresponding application.
4. The system of claim 1 wherein the class entries or
method entries are hierarchically ordered into superclasses
and subclasses such that the ones of the class entries or
method entries which represent subclasses of a
corresponding superclass inherit the information about the
corresponding superclass.
5. The system of claim 1 wherein the data base includes a

75

global class portion which is accessible throughout the
network.
6. The system of claim 1 wherein the data base includes
local portions which are each accessible to only a portion
of the network.
7. A system according to claim 1 further including an
object definition facility coupled to the memory in the
network.
8. A system for organising communication among
applications in an object oriented manner in a data
processing network which includes

a plurality of applications capable of performing
operations on instances and capable of sending and
receiving messages including indentifiers for instance and
types of operations,

a plurality of instances cv responding to each of said
applications, and

a plurality of platforms operating under the control of
operating systems for executing said applications,

said system comprising
memory in the network containing a data base, said data

base including
a plurality of method entries, each of said

method entries corresponding- to one of said
applications and containing a reference to a means
external to the data base for invoking a procedure to
allow that application to perform a specified operation
on a specified instance,

a plurality of non-redundant class entries, each
of said class entries containing information about a
class consisting of one or more instances which share
common characteristics and further containing an
identification of one or more message entries,
and

76
a plurality of message entries, each of said

message entries specifying information about the types
of operations which may be performed on selected
instances and further containing a reference to one or
more method entries,

the message entries identified in each class
entry containing information about the types of
operations which can be performed on instances
associated with said class entry,
and

the method entries identified in each message
entry containing information relating to applications
capable of performing the types of operations specified
in said message entry;
data base control means coupled to the memory in the

network including
means, responsive to a message from a client

application, for selecting the class entries and
message entries associated with the instance and type
of operation identified in said message,

means for selecting a method entry referenced in
the selected message entry and corresponding to the
requested application, means for selecting a platform
capable of executing the requested application, and

means for transmitting the identifier for the
instance and the reference to a procedure contained in
the selected method entry to the selected platform; and

an object definition facility coupled to the
memory in the network,
wherein the data base includes a global class portion

which is accessible throughout the network and local
portions which are each accessible to only a portion of the
network,

Λ4-

fi

wherein the data base control means includes

77
wherein the data base control means includes

means for searching the local, data bases in a
predetermined order before searching the global class
data base, and

wherein the object definition facility includes
means for generating globally unique identifiers for
types of operations and instances.

9. A system as claimed in any one of the preceding claims
and substantially as herein described with reference to the
accompanying drawings.

DATED THIS 5TH DAY OF APRIL 1993

DIGITAL EQUIPMENT CORPORATION

By Its Patent Attorneys:
GRIFFITH HACK & CO.
Fellows Institute of Patent
Attorneys of Australia

1

~-?S-

5

10

15

ABSTRACT
The data bases include method entries, message entries, and

class entries. Method entries refer to commands or other ,
mechanisms used to invoke applications. Message entries each
represent a type of operation which can be performed on instances i
in a class which correspond to that message and 'dentify a method |
map which contains one or more references to method entries 1
stored in the data base. Class entries, each of which is unique j
in a data base, and identify types of instances having common j

ιcharacteristics as well as identifying a corresponding group of |
ιmessage entries. The data bases may be in a data processing

network comprised of one or more platforms or nodes and may be ί

either global data bases accessible to the entire network or
local data bases, each of which is accessible to only a part of i

the network. 1

uaw orncca
Fib'NEcvj, Henderson

bARAAow. Garrett
β Dunner

1300 I STREET, n. w.
WASHINGfbN. OC 20009

1-202-409-4000 |

50

<
NETWORK

BUS -I

V FIG. 1

-J

ba
-o

2./.2.1 1930^/t

FIG. 3

METHOD

FIG. 4A

H

to

4-/2.1

493-
494^_WORD C READ

MIPS.ULTRIX

496t|3VORD_C_READ
VAX.VMS

490-> / MESSAGE

EDIT

METHOD MAP

495-y /MESSAGE

CUT

498-λ I METHOD MAP
499iLwORD C_CUT

80286.MS-DOS
FIG. 4B

5/ 2. I

500-7.

FIG. 5

6/λ I

FIG. 6

"7/ λ I

150 Γ~250
710

LOCAL CACHE 52θ CACHE LOCAL 730

F/G. 7

GLOBAL
CLASS

DATA BASE

705

CACHE

.CL
350

LOCAL 750

760

HEADER „

/

(

820^

822-5
AVAILABLE

SPACE
829

824^

NAME-TO-ID INDEX .

ID-TO-BLOCK NO. MAP-

BLOCK TABLE -

810
A

>815

830

840
850

F/G. β

?I XI

912 <915 <917

<

910 Λ

BLOCK N
ID ’ OFFSET SIZE

OBJECT 1 DS + 0 1024 -
OBJECT 2 DS + 1024 290 __

L_p955

965

920<

OBJECT

OBJECT

FIG. 9

•950

960

X 1000

LOCAL
CLASS
DATA
BASE

1010
X 1020

X 1030

LOADER/
UNLOADER

GLOBAL
CLASS
DATA
BASE

NODE
CACHE MEMORY

(-150

FIG. 10

p1370

(-1100

FIG. 11A

(START

INVOKER RECEIVES

1375

INVOKER PROCESS

r1380

INVOKER TRANSMITS

J c1385

DISPATCHER RECEIVES

r-1390
DISPATCHER/CONTROL

SERVER PROCESS
| c-1395

DISPATCHER RETURNS

FIG. 13

METHOD OVERRIDE
TABLE

SERVER NODE
TABLE

1121METHOD iaa

CLASS DATABASE
OVERRIDE TABLE

1170

DATABASE LOCATION
NAME ^—1172 r 1174

DB_SCH„LST Db1, Db2

FIG. 11B FIG. 11C FIG. 11D

50

CLIENT 1200
55-^

NETWORK
> BUS

FIG. 12

<640<630
CONTEXT
OBJECT

DATA
BASES1402-φ USER

! CONTEXT
! OBJECT
{ DATA
Ϊ BASEl I
L

REQUEST
PLATFORM—*

METHOD ID-
r1220 *-> - — >

CLIENT
APPLI

CATION

PASS
INVOCATION'

REQUEST

' RETURN
FROM

REQUEST

IN
VOKER

CLASS
DATA

BASES

-MESSAGES
-CLASSES
r1236

SEND INVOCATION REQUEST
WITH INVOCATION STRING

JL· 1332
DISPATCH

FT?

RETURN MESSAGE

._______QUERY______
SERVER INFORMATION

SERVER
INFORMATION ,-1420

SERVER
REGISTRATION

FACILITY

<1320

DIS
PATCHER

CONTROL
SERVER

INVOCATION
STRING

CONTROL *I ΟΙ-ΓΜ.Γ-Γ-. ,. SERVER
1425 2- REGISTRY

RETURN
OUTPUT

1334

SIGNAL/START

SERVER
APPLICATION

(METHOD)
(SERVER)

I_ SERVER INFORMATION
RUNNING
SERVER

INFORMATION

QUERY

FIG. 14

I 3 I X t

FIG. 15A
MAIN CONTROL

PROCEDURE

ILf-l 2. I

J-155Q

Y
*1 ^1576

GENERATE
ERROR

MESSAGE

f-1567
GENERATE
SUCCESS

FLAG

___ ,, /-1569
EXECUTE

FIG. 15B

I s/1 I

FIG. 15C

iu/xl

FIG. 15D

η /

FIG. 16

RESOLVE METHOD
EXAMPLE PROCEDURE

I */λΙ

FIG. 17A
CONTROL SERVER

Μ/λ I

I λ 1799

ENDFIG. 17B
CONTROL SERVER

-LO/ Ll

DISPATCHER PROCEDURE

7.1 I 2. I

DISPATCHER PROCEDURE

