Office de la Propriete Canadian CA 2786613 A1 2011/07/21

Intellectuelle Intellectual Property
du Canada Office (21) 2 786 61 3
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(86) Date de depot PCT/PCT Filing Date: 2011/01/11 (51) CLInt./Int.Cl. GO6F 9/44(2006.01),
(87) Date publication PCT/PCT Publication Date: 2011/07/21 GO6F 15/16(2000.01)
: : - _ (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2012/07/06 GOOGLE INC. US
(86) N° demande PCT/PCT Application No.: US 2011/020790
(72) Inventeur/Inventor:
(87) N publication PCT/PCT Publication No.: 2011/088022 DE LOS REYES. ANDREW, US
(30) Priorité/Priority: 2010/01/12 (US61/294,266) (74) Agent: MOFFAT & CO.

(54) Titre : PROCEDE DE MISE A JOUR AUTOMATIQUE D'UN SYSTEME D'EXPLOITATION
(54) Title: OPERATING SYSTEM AUTO-UPDATE PROCEDURE

FIG. 2

\l
!
!
r‘ \
1 ¥
] .n
N\
- . R '
PR N L T A
Pl e R)
SR S S Y é:ﬁ"ak'sfﬁf::q&i"‘ﬁz B o ; R T e VR o e [) IR R g Bare
':35!.. .‘.'..;3:{5--... gz : 3. ;I*:Ei-*;_.:; e :‘,'E s :: .-';;:ﬁ-}:: % " —— .; - ﬁi “i-" 4 b - f ::E. % ...9‘..-'} 1' 1 t". ‘:." o .

. R J] L & r'--.-. ’:L -_: X A\-:_ ¥ _-‘- P %.‘Ph _’ ‘ g.\. e vl E gm - '-‘:?- H=th '|\\-"-.}.' e O =4 3 s i i.m
S e S S R A R G R R o s Rt 8 1R R -ﬁgwgg
L R R N R R T b et

|\; X - - | ' .r:p " Spr e g« ‘ N vl

Cut edge to break cyele:
uses temp block T

(57) Abrégée/Abstract:

The present invention pertains to differential updating of an operating system In a client device (302, 306, 308, 310, 312). A delta
update file (100) includes an ordered list of operations to be performed on the new Iinstall partition iIn memory (326) that will port

R N
BRI 4,12 P
‘-‘:c‘u‘-_h_\:\'\: . . "y

e / [/ J

C an ad a http.//opic.ge.ca + Ottawa/Gatineau K1A 0C9 - htp://eipo.gecca op1c 41 e 2 CipO
OPIC - CIPO 191 N '

RN SR
4

CA 2786613 A1 2011/07/21

en 2 186 613
13) A1

(57) Abrege(suite)/Abstract(continued):

from the old install partition. A binary differential compression algorithm may be used to determine differences for the update and to
compress the data beling transmitted to the client device. Blocks In the partition may cyclically depend from one another (S202,
S204). Edges are cut to break cycles. During system operation, disk images are scanned (1 In FIG. 3). File operations are created
and a blocks vector Is developed (2 In FIG. 3). A graph is created (3 In FIG. 3) where the edge weights are set equal to the number
of blocks. Given this, cycles are then broken (4 in FIG. 3) and a final order resulting from a topological sort Is produced (5 In FIG. 3).

CA 02786613 2012-07-06

ABSTRACT

The present invention pertains to differential updating of an operating system in a client
device (302, 306, 308, 310, 312). A delta update file (100) includes an ordered list of
operations to be performed on the new install partition in memory (326) that will port from the
old install partition. A binary differential compression algorithm may be used to determine
differences for the update and to compress the data being transmitted to the client device.
Blocks in the partition may cyclically depend from one another (S202, S204). Edges are cut
to break cycles. During system operation, disk images are scanned (1 in FIG. 3). File
operations are created and a blocks vector is developed (2 in FIG. 3). A graph is created (3
in FIG. 3) where the edge weights are set equal to the number of blocks. Given this, cycles
are then broken (4 in FIG. 3) and a final order resulting from a topological sort is producea

(5 1n FIG. 3).

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

OPERATING SYSTEM AUTO-UPDATE PROCEDUR

L4

CROSS—-REFERENCE TO RELATED APPLICATION

[0001] The present application claims ©priority to United
States Provisional Application No. 61/294,266, filed January
12, 2010, the entire disclosure of which 1s hereby
incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] Software packages such as operating systems may be
updated from time to time to introduce new features, correct
errors and address security flaws. Due to file sizes for
large applications, it may be inconvenient or 1inefficient to
send and install an entirely new package with an update. One
sclution 1s to send a differential update to the client, which
covers only the specific changes from the prior software. 1f
the differential update 1s not performed correctly, the

modified software may cperate poorly or not at all.

SUMMARY CF THE INVENTIOXN
[0003] The present invention relates generally to
operating systems. More particularly, the present invention

relates tTo updating the version of an operating system.

[0004] In accordance with one embodiment, a method of
generating an update for a computer readable operating system
1s provided. The method comprises i1dentifying a version
numbper of a current version ©of the operating system; creating,
with a processor, an ordered list of operations for updating
the current version of the operating system to a new version
of the operating systemn, the processor performing iterations
over each regular file on the new version o©of the operating
system to obtain the ordered 1list for all data blocks
assoclated with the new version; and assembling, with the
processor, a differential update file including a magic number
indicator showing the differential update file 1s an actual

update file, a new version number 1dentifying the new version

— o ——

" CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

cf the operating system, and a protocel buffer including the
ordered list of operations.

[0005] In one example, one or more operations in the
ordered 1list are each associated with a respective data blob
indicating a chunk of data. Here, the differential update
file 1s assembled to include the respective data blobs. In
another example, each operation 1in the ordered 1list 1is
applicable to one or more specific data blocks of a partition
of a client device. The operations include one or more of: a
copy operation where at least one of the data blocks in the
partition 1s to be copied to another block in a new partition
of tre client device for the new version of the operating
system; a difference operation where at least a given one of
the data blocks 1s read into memory and a difference routine
is performing on the at least one given data block using a
data blob of the differential update file; a replace operation
where a selected data blcbhb 0of the differential update file 1is
contfigured t¢ be written to specified blocks in the new
partition; and a replace with uncompression operation where a
compressed data Dblob is included in the differential update
file and 1s configured to be written to selected specified
blocks 1n the new partition for the new version of the
operating system.

[0006] In one alternative, each operation in the ordered
list 1s associated with a file object, and the method further
comprises creating a vertex in a graph for each file obiject;
and c¢reating a vectocr representing each block. In one
variation, the method further comprises setting reader and
writer parameters for the vector of each block; and for each
block with a different reader and writer, creating an edge in
the graph from the writer to the reader. The edge points to a
file operation to be completed before a source file operation
assoclated with the edge starts. In an example, each edge
has a weight, and the weight identifies a number of blocks in

the graph associated with that edge. In another example, if

"CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

the graph 1includes cycles, the method further comprises
breaking each of the cycles. In this case, breaking a given
one ¢f the cycles may include finding a lowest-weight edge
associated with the given cycle; and cutting the lowest-weight
edge. Here, cutting the lowest-weight edge may comprise
creating a new node representing an operation of copyving an
extent to a scratch space; and making the lowest-weight edge's
source node polnt to the new node. And a new edge may be made
frecm a destination node oI the lowest-welight edge in order to
ensure trhat a new copy operation occurs before & consumer of

the new copy operation.

[0007] In accordance with another embodiment of the
present invention, a device for generating an update for a
computer readable operating system 1s provided. The device
comprigses memory for storing differential update information
assoclated with the operating system, and a processor coupled
to the memory. The processor 1s configured to 1dentify a
version number of a current version of thrhe operating system;
create, using the differential update information, an ordered
list of operations for updating the current version of the
operating system to a new version of the operating system,
ircluding performing 1terations over each regular file on the
new version of the operating system to obtain the ordered list
for all data blocks associated with the new versior; assemble
a differential update file including a magic number indicator
shhowing the differential update file is an actual update file,
a new version number i1dentifying the new version of the
operating system, and a protoccl buffer including the ordered
list of operations; and store the differential update file in
the memory.

[0008] In one example, each operation in the ordered list
1s associated with a file object, and the processor is further
configured to create a vertex in a graph for each file object,
and create a vector representing each block. In an

alternative, the processor is further configured to set reader

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

and writer parameters for the vector of each block; and for
cach block with a different reader and writer, create an edge
in the graph from the writer to the reader. The edge points
to a file operation to be completed before a source file
operaticn assoclated with the edge starts. In this case, if
the graph 1ncludes cycles, the processor 1is optionally
ocperable to break each of the cycles. Here, breaking a given
one of the cycles may include finding a lowest-weight edge
assoclated with the given cycle, and cutting the lowest-weight
edge. In this case, the processor may be operable to cut the
lowest-weight edge by <creating a new node representing an
operation of copying an extent to a scratch space; and making
the lowest-welght edge's source node point to the new node,
And a new edge may be made from a destination node o0of the
lowest-weight edge 1n order to ensure that a new copy
ocperation occurs before a consumer of the new copy operation.

00091} In a further embodiment, a tangible computer-
readable storage medium stores computer readable instructions
of a computer programn. The 1instructions, when executed by a
computer, cause the computer to perform a method of generating
an update for a computer readable operating systemn. The
method comprises 1dentifying a version number of a current
version of the operating system; creating, with a processor,
an ordered 1list o©of coperations for updating the current version
of the operating system to a new version of the operating
system, the processor performing iterations over each regular
file on the new version of the operating system to obtain the
ordered 1list for all data blocks associated with the new
vergion; and assembling, with the processor, a differential
update file including a magic number indicator showing the
differential wupdate file 1s an actual update file, a new
version number i1dentifying the new version of the operating
system, anda a protocol buffer including the ordered list of

operations.,

CA 02786613 ;2012—07—06

WO 2011/088022 PCT/US2011/020790

[0010] In one example, each operation in the ordered list
1s associated with a file obiject, and the method further
comprises creating a vertex in a graph for each file obiject;
and creatling a vector representing each block. In this case,
the method may further comprise setting reader and writer
parameters for the vector of each block; and for each block
with a different reader and writer, creating an edge in the
graph from the writer to the reader. Tre edge points tc¢ a
file operation to be completed before a source file opveration
associated with the edge starts. Here, 1f the graph includes
cycles, the method may further comprise breaking each of zhe
cycies by finding a lowest-weight edge associated with each
given cycle; and cutting the lowest-weight edge for each
cycle. Cutting the lowest-weight edge may include creating a
new node representing an operation of copying an extent to a
scratch space; and making the lowest-weight edge's source node
polint to the new node. And a new edge may be made from a
destination node ¢©f the lowest-weight edge in order to ensure
that a new copy operation occurs before a consumer ©f the new
cCopy ©operation.

[CO11] In a further embodiment, a client device comprises
memory for storing a current version of an operating system
and a processor coupled to the memory. The processor 1s
configured to transmit a reguest to a remote device regarding
an update for tne current version of the operating system, the
request i1ncluding a version number identifying the current
version of the operating system; receive a differential update
fi1le from the remote device, the differential update file
including a magic number indicator showing the differential
update file 1s an actual update file, a new version number
identifying the new version of the operating system, and a
protceccol Dbuffer including an orderecd 1list of operations;
verify the magic number; extract the ordered 1list of
operatlions from the protocol buffer; and perform a

differential update Dby executing the ordered list of

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

operaticns 1n order to update the current wversion of the
operating system to the new version of the operating system.

[0012] In one example, the processor 1is operable to
perform the differential update of the operating system to the
new version of the operating system without saving the
differential update file i1n the memory while the differential

update file is being streamed to the client device.

BRIEF DESCRIPTION OF TEHE DRAWINGS

[0013] FIG. 1 1llustrates a file format in accordance
with aspects of the invention.

[0014] FIG. 2 1s a process of for cutting edges to break
cycles 1n accordance with aspects of the present invention.
[0015] FIG. 3 1illustrates a differential update process
in accordance with aspects of the present invention.

[0016] FIGS. 4A-B illustrate computer systems for use in
the invention.

CETAILED DESCRIPTION

[0017] The aspects, features and advantages of the
present 1invention will Dbe appreciated when considered with

reference to the following description of preferred

enmbodiments and accompanying figures. The same reference

numpers 1n different drawings may identify the same or similar

cilements.
[CO018] From time to time different features of an
operating system are updated. Those updates may be sent to

client computers that perform a predefined update process.
This may involve deleting, changing and/or adding files to the
client. In one process, an update 1s prepared Dby the
operating system provider. Tnhis may 1nclude c¢reating a
differential update file, which indicates to the c¢client what
crhanges need to be made., The differential update file is then
sent to each client to be updated. The <c¢lients desirably
sequentially execute the operations in the file to perform the

update.

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

(0019] A partiticon containing an operating system may be
configured as one or more Dblocks, with each block containing
file 1infeormation or bookkeeping information. kFach block may
be, e.g., 4 kbytes, although the invention is not limited to
this or any particular Dblock size. T'he operatling system
itself comprises programs (e.g., instructions) as well as data
that run on a computer processor and manages computer hardware
resources and provides commcn services for efficient execution
of wvarilous applicaticn software. When updating the operating
system, a new partition may be created. The new partition is
pre-populated with the o01d version o©of the operating system.
BEach disk block on the resultant install partition (which will
contain the roct file system) 1is desirably exactly (bit for
bit) specified by the orerating system vendocr so that it can
bhe signed on the server (e.g., for a verified boot).

[0020] It 1s desirable for updates tco be as small as
possible. In one scenario, the updates are applied in place,
so that many delta (differential) updates can be installed
without rebooting. Thus, 1f a user is booted into version N,
and N+1 1is released, the user (client) downloads the N=-2N+1
updated and 1nstalls it. Then the user is still booted into N
when N+2 comes out. The user then downloads the N+1-2N+2
update and installs it in-place cver N+1.

[0021] In one example, the client contacts the update
server and provides the version number of the system installed
on the present 1install partition. Tre server provides the
client with &an incremental (delta) update that is downlcaded
to the client. The delta update file contains an ordered list
of operations to perform on the install partition that will
take it from the old (existing) version to the new version.
[0022] Desirably, the update file is an ordered list of
operaticns to Dbe performed by the client, Each operation
operates on specific blocks of the partition. Each creration
may contain an optional data "blob" inside the delta file.

Trhe term "blob" indicates a large chunk of data that may have

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790
an arbitrary collection of bytes. There are several types of
install operations, including "Copy," "Diff", "Replace" and
"Replace with Uncompression."” In Copy, some of the blocks in

the current 1install partition are copilied over to other blocks
in the new install partition. For Diff, some blocks are read
into memory, and a binary difference routine 1is performed
using an attached data Dblob. The results are written into
specified blocks 1n the new install partition. t'or Replace,
the attached data blob 1s written to specified blocks in the
new install partiticn. A compression yrocess may also be
performed, where a compressed data bleob 1s sent to the client,
uncompressed, and the results are written to specified blocks
in the new 1install partition. Eere, Czip, Bzip? or another
compressicn algorithm may be emploved.

[0023] In one scenario, a patch program is instructed
that the old file 1is the 1install partition. Rather t—han
having the program read the entlre partiticon into memory, it
i1s instructed which blocks to read to get the file 1n menmory.
Then, a patch operation 1s performed in memory. Finally, the
result is written directly to the new install partition, but
not at the beginning of the device. Instead, the program 1is
told which blocks to write the results to.

[0024] A delta/differential update file may be generated
according to the following discussion. The update file format
may be as shown 1n file format 100 of FIG. 1. Specifically,
the format preferably includes a "magic number® indicator or
sanity check to show the file is actually an update file. In
one instance, the magic number 1includes four bytes containing
the binary version of a short phrase, such as "CrAU."™ Next 1is

a version number, followed by a protocol Dbuffer offset and

length, each ¢f which may be 8 bytes. The protoccol buffer
itself follows. The protocol Dbuffer is a series c¢f
instructions that the client 1s to perform in order. Next,

one or meore data bleobs are provided, followed by an end of

file (EOF} indicator. While the ordering may be as shown in

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

this figure, the different - ccocmponents may be ordered
differently if desired.

[0025] In one scenario, the concept of an "extent" is
emp loyed. An extent 1s a contiguous range of disk blccks.
For example, rather than specify blocks {10, 11, 12, 13, 14,
15, 17, 18} i1t can be simpler to svecify { (10, 6), (17, 2) }
(a list of extents). An exemplary process for generating

delta updates 15 as follows.

message Manifest {
message InstallOperation {
enum CompressionType
NO_CEANGE = 0, // file 1is unchanged; Jjust move data
blocks
BSDIFF = 1, // Read scurce data blocks as old file,
incliluded binary blob 1s diff, output to new blocks
FULL = 2, // Output included binary blob to new

blocks
FULL_BZIP = 3 // Bunzip binary blob into new blocks

uinto4 blob_offset; // 1f present, the offset in the
update 1mage of the binary blob for this file
uint o4 blob_length; // 1if present, binary blob length

message extent {
uintoé offset; // in blocksize

uint64 length; // in blocksize

repeated extent input_extents;
repeated extent output_extents;

}

repeated InstallOperation install_operaztions;

}
[0026] The manifest indicates a list of install

operaticns. Input extents indicate blocks to be read. Qutput
extents i1ndicate blocks to be written.

[0027] To generate a delta update, lterations are
vperformed over each regular file on the new file system to
obtain an crdered list o©of all data rlocks it has. This is
stored 1n a file structure having the following format:

struct Extent {
uintecd4 start;
uint 64 length;
}
struct File {
string path; // path within the filesystem

- — — e b ket AP

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

vector<Extent> dst extents; // ordered 1list of all
extents on the new fililesystem

vector<Extent> src_extents; // Applies only for
NO_CHANCGE and BSDIEFF

enum CompressionType; // one of: NO_CHANGE, BSDIFF,
FULL, FULL_BRZIP

}
[0028] Eventually, each file obiject will be converted
into an InstallOperation message 1in the protocol buffer. For

ecach file, 1t 1s desirable to determine the optimal way to

compress 1t. There are four cases. In one case, the file
hasn't changed. In the other three c¢cases, the file has
changed. In one scenario, the changed file can be compressed

to the smallest size wusing BzipZ or another compression
algorithm. In another scenario, the file has changed and it
is smallest uncompressed. In the third scenario, the file has
changed and 1t binary-diffs the smallest. If a file 1s new,
meaning that it was not present in the old version of the
operating system, then only two of the cases apply. The data
may be sent down in full, or sent down 1n full with
compression.

[0029] In accordance withh one aspect o©of the invention, a
vertex 1s created 1in a graph for each file object. Along side
the graph, a vector 1s created to represent each block in the
install partition.

st ruct EBlock |
InstallCperation* reader;
InstallOreration* writer;

}
vector<Block> blocks; // length is the size of the
install partition

[0030] The process then goes through each block in each
file object. For each block, reader and writer parameters are
set for the block's vector.

[0031] Next, iterations are performed through the block's
array. For each Dblock with a different reader and writer
(which are both non-null), an edge (arrow) 1s created in the
graph from the writer to the reader. An edge 1in the

(directed) graph points to a file operation that must comolete

lo

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

before the edge's source file operation starts. Trhus, this
process tries to ensure that if a block is both read and
written by different file operations, the block is read before
1t is written. The edge represents blocks in the graph, so the
edge's welgnt is the number of blocks.

[0032] At this point, the result is likely to Frave a
graph with cycles., Trhe cycles should be broken. The cycles

may Dbe found wusing Donald B. Johnson's <c¢ircuit finding

algorithm as set forth in "Finding all the Elementary Circuits
of a Directed Graph,™ SIAM J. Comput., vol.4 no.l, March 1975,
the entire disclosure of which is incorpcrated by reference
herein. The cycles may also be found wusing Tarjan's

Algorithm, as set forth in "Tarjan's Strongly Connected

Components Algorithm," DPavid Eppstein, Ed., Wikipedia, the
entire disclosure of which 1s incorporated by reference
herein. For each cycle, the lowest-weight edge is found and
Cut. An edge may be cut as follows. First, create a new node
that represents an operation of copying some extents to
scratch space. Then, make the edge's source node point to the
new node. Here, an edge may be made from the cut edge's
destination node to the new node to enforce that the new COpYy
operation occurs before the consumer of the copy. Preferably,
modify the cut edge's destination node to read from the
scratch space rather than from the blocks represented by the
edge keing cut.

[C033] An example of cutting an edge to break a cycle is
shown 1in prccess 200 of FIG. 2. Arrows 1indicate that an
operation pointed to needs to occur before the operation
that's doing the pointing, and needs to happen in that order
oecause the pointing operation will overwrite data needed by
the pointee. As shown 1n this figure, at S$202 operation A
reads block 3 to write block 4. And at S204 cperation B reads
block 4 to write block 10. The cycle is broken by cutting the
edge (arrow 206) Dbetween A and B; this may be done by using

temp block T. Thus, as shown, at S208 operation A reads block

_.]_l._

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

3 and writes blocx 4. At S210, operation C reads block 4 and
writes block T. And at S212, operation B' reads block T and
writes block 10. Once the cycles are brokxen, a topological
sort may be used to order all the nodes. That covers
installation of all file-data blocks.
[C034] In one example, 1t would be possible to pick an
ecdge and cut 1it, such as B'->C->A->Temp. In this case, the
Temp operation would copy the block A to a temp area. B would
be modified to B', which would then read from the temp area.
However, 1f a second edge (e.g., C->»A) is cut, then the result
would Dbe: B'->C->Temp2, and A'->Temp. This would result in
two completely i1ndependent graphs, and the final order of
operations could be arranged as follows:

TempZ (the client executes this first)

C

R

Tenp

A' (the client executes thilis last)
[0035] Fowever, 1in this <case B' would read the data
written by the Temp operation, but Temp occurs after B'. This
may happeéen pecause the graph transform done when the A->B was
cut edge did not specifically state that Temp must occur
before B'. In order to avolid this situation, another edge 1is
adced to make this explicit. The result is:

A->B->C~>A (original)

cut A->B to obtain:

B'->C->A->Temp<-B"’
Then, cut C->A to obtain:
B'->C'"->TenpZ2<-A->Temp<—-B'

Now, when a final order of operation is chosen based on the

gravh, tne operations will occur in the correct order.

[0036] An exemplary process 1s shown in FIG. 3. At stage
1, disk 1mages are scanned. Block 1ndices (0-7) may be
assoclated with different images (e.g., "sh," "foo," "bar,"
and "dog"). New 1mages may be associated with the same or

—12 -

CA 02786613 2012-07-06

WO 2011/088022 . PCT/US2011/020790
different blocks. Thus, "fco" may now be associated with
blocks 2-3 instead of block 4. "Sh" may be associated with
blocks 4-5 instead of blocks 2-3. "Bar" may be associated
with block 6 1instead of bock 5. And new 1image "cat" may be

assocliated with block 7.

[0037] At stage 2, file operations are created. This
corresponds to a file on the new partition. This is followed
by a blocks wvector. A Dblocks vector 1s an ordered list, where
each element includes a file operation for a given Dblock.
Each 1lmage may have one or more source blocks and one or more
destination blocks. Thus, the source blcck for "foo" is block
4, and 1ts destination blocks are shown as "dst: (2,2)",
indicating that the first block is Dblock 2 and there are 2
blocks allocated. This portion also shows how each image may
be provided to the client. Thus, foc and bar may be provided
using a bilnary difference algorithm such as bsdiff, sh may
nmerely copied, and cat may Dbe sent 1in full without
compression., Bsdiff is a known algorithm that computes the
different between two files.

[0038] As shown at stage 3, a graph 1s created where the
adge welght (e.g., 1 cr 2) is equal to the number of blocks.
At stage 4, the cycles are Dbroken, Desirably, cycle(s) are
cut by cutting the least weight edge in each cycle. Thus, in
this example, the c¢ycle including the arrow from sh to foo
(having a weight of 1) is brcken and a modified foo (foo') is

obtained. And at stage 5, the final order resulting from the

topological sort is shown. This 1s the order as executed on
the client.

[C039] After setting the file data, the client will
overwrite the non-file-data blocks with a final

InstallOperation that unzips the remaining data into all non-
file—data Dblocks. In a typical example, this is about 2
megabytes of data compressed. It may be feasible to perform a

delta compressicn process on this data.

13

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

[0040} Because the protocol buffer (which 1lists all
operations) occurs at the beginning o¢f the file, the update
doesn’'t need to be saved to disk. It can be applied while
streaming from the server. It is desirable to make sure that
the update 1s signed by the 0S5 wvendor. The system can begin
to apply the update and not mark it bootable until after the
delta update signature 1s verified.

[0041] The embodiments presented here have been Ifound to
give the Dbest compression ratio 1in practice. It also allcws
the operating system vendor employ alternative compressicn
schemes in the future. For instance, one process developed by
Google is Courgette, which may replace bsdiff.

[0042] Another possible scolution 1s to delta-compress the
entire partition. However, bsdiff would be unworkable in tnis
sCcenario because its menory requirements are too high. During
vatching, bsdiff needs enough memory Lo store the original and
new files, which may exceed 1 gigabyte. Another delta
compression program, Xdelta, wuses a sliding window. In
testing, this resulted in poor compression (e.g., hundreds c¢f
megapytes) . A further alternative 1s t¢ use rdiff, which
works by storing only changed blocks in the delta file. It
uses a sliding window so that blocks don't need to be aligned.
When tested, an rdiff delta of the entire partition was 104
megabytes. This 13 well above the roughly 10 megabytes that
may be used 1n accordance with the aforementioned procedure.
[0043] In the future, 1t may be possible to use rdiff-
(1.e., rsync-—) style delta compression at the file level.
This could be used alongside bsdiff in the future.

[0044] The updating procedures according to aspects of
the invention may be 1impiemented with the followling exemplary
computer system. FIG. 4A presents a schematic diagram of a
computer system depicting various computing devices that can
be used alone or 1in a networked configuration 1n the
invention. For example, this figure 1llustrates a computer

network 300 having a plurality of computers 302, 304, 2306 and

—14 —

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

308 as well as other types of devices suchk as portable
clectronic devices such as a mobile phone 310 and a PDA 312Z.
However, the invention 1s no so limited, and other devices
including netbooks and pad-type handheld computers (not shown)
may alsc be used. Such devices may be interconnected via a
local or direct connection 314 and/or may be coupled via a
communications network 316 such as a LAN, WAN, the Internet,

etc., and which may be wired or wireless.

(0045] Fach device may 1include, for example, one or more
processing devices and have user inputs such as a keyboard 318
and mouse 320 and/or variocus other types of input devices such
as pen-—-inputs, Jjoysticks, Dbuttons, touch screens, etc., as
well as a display 322, which could 1include, for instance, a
CRT, LCD, plasma screen monitor, TV, projector, etc. Fach
computer 302, 304, 306 and 308 may be a perscnal computer,
serveyr, etc. By way of example only, computers 302 and 306
may be personal computers while computer 304 may be a server
and ccmputer 308 may be a laptop.

[0046] As shown in FIG. 4B, each computer such as computers
302 and 304 contains & processor 324, memory/storage 326 and
other components typically present 1i1n a computer. Eor
instance, memcry/storage 326 stores information accessible by
processcr 324, including instructions 328 that may be executed
by the processor 324 and data 330 that may be retrieved,
manipulated or stored by the processcr. The instructions 328
at the server may 1include operations for creating a
differential update to be installed by one or more client
devices. And the 1nstructions at the cllent device may
include operations for performing the differential update.
[0047] The data may 1include one or mcre differential
updates maintained 1n a database for service to client
devices. The memory/storage may be of any type ¢r any device
capaple of storing information accessible Dby the processor,
such as a hard-=-drive, ROM, RAM, CD-ROM, flash menmories, write-

capable or read-oniy memories. The processor 324 may comprise

15

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

any number of well known processors, such as processors from
Intel Corporation or Advanced Micro Devices. Alternatively,
the processor may be a dedicated controller for executing
operations, such as an ASIC or other processing device.

[0048] The instructions 328 may comprise any set of

instructions to be executed directly (such as machine code) or

Lndirectly (such as scripts) by the processor(s). In that
regard, the terms "instructions," "steps" and "programs" may
be used 1Interchangeably nherein. Trhe 1nstructions may be

stored in any computer language or format, such as in object
code or modules of source code. The functions, methods and
routines of instructions 1in accordance with the present

invention are explained ir more detail below.

[0049] Data 330 may be retrieved, stored or modified by
processor 324 in accordance with the instructions 328. The
data may be stored as a collection of data. For instance,

although tre 1nvention 1s not limited by any particular data
structure, the data may be stored in computer registers, in a
relational database as a table having a plurality of different
fields and records, 1n a web page cache, as XML documents,
etc. |

[0050] Tne data may also be formatted 1in any computer
readable fcrmat such as, but not limited to, binary wvalues,
ASCIT or Unicode. Mcreover, the data may include any
information sufficient to identify the relevant information,
suckh as descriptive text, proprietary codes, polnters,
references to data stored 1in other memories (including other
network locations) or information which 1s used by a function
to calculate the relevant data. Furthermore, a given item may
comprise one or more files, a data set stored in a database, a
web cache, etc. Depending on the size and content of the
data, parts therecf may be stored or otherwise maintained
separately.

[0051] Although the processor 324 and memory 326 are

functionally illustrated in FIG. 4B as being within the same

~16—

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

block, 1t will ke understood that the processor and memory nay
actually comprise multiple processors and memories that may or
may not Dbe stored within the same physical housing or
location. For example, some or all o©of the instructions and
data may be stored on a removable CD-ROM, DVD-ROM or flash
drive, and others within a read-only computer chip. some Oor
all of the instructions and data may be stored 1n a location
physically remote from, vet still accessible Dby, the
processor. similarly, the processor may actually comprise a
collection of processors which may or may not operate in
parallel. Data may be distributed and stored across multiple
memories 3260 such as hard drilives or the 1like.

[0052] In one aspect, server 304 may communicate with one
or more c¢lient computers 302, 306 and/or 208, as well as
devices such as mobile phene 310 and PDA 312. Fach client
computer or other client device may be configured similarly to
the server 304, with a processor, memory and instructions, as

well as one or more user input devices 318, 320 and a user

output device, such as display 322. Each client computer may
be a general purpose computer, intended for use by a person,
hraving all the ccmponents normally found 1n a personal
computer such as a central processing unit ("CkPU"), displav,
CD~ROM or DVD drive, hard-drive, mouse, Kkeyboard, touch-
sensitive screen, speakers, microphone, modem and/or router
(telephone, cable or otherwise}) and all of the components used
for connecting these elements to one ancother.

[C053] The server 304, user computers and other devices are
capable o0of direct and indirect communication with other
computers, such as over network 316. Although only a few
comouting devices are depicted in FIGS. 4A-B, it should b»e
appreciated that a typical system can 1include a large number
of connected servers and clients, with each different computer
belng at a different ncde of the network. The network 316,
and 1ntervening nodes, may comprise various configurations and

protocols 1including the Internet, intranets, wvirtual private

-17-

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

networks, wide area networks, local networks, private networks
using communication protocols proprietary to one or more
companies, Ethernet, WiFi, Bluetooth or TCP/IP,

[0054] Communication acress the network, including any
intervening nodes, may be facilitated by any device capable of
transmitting data to and from other computers, such as mcdems
(e.g., dial-up or cable), network interfaces and wireless
interfaces. Server 304 may be a web server. Although certain
advantages are obtained when information 1s transmitted or
received as noted above, other aspects of the inventicn are
not limited to any particular manner of transmission of
information. For example, 1in some aspects, the information
may be sent via a medium such as a disk, tape, CD-ROM, or
directly between two computer systems via a dial-up modem. In
other aspects, certain information may be transmitted in a
non-electronic format and manually entered into the system.
[0055] Moreover, computers and user devices in accordance
with the systems and methods described herein may comprise any
device capable o0f processing instructions and transmitting
data to and from humans and other computers, including network
computers lacking local storage capability, PCA's with modems
such as PPDA 312, Internet-capable wireless phones such as

mobile phone 310, netbooks and pad-type handrheld computers.

[0056] As shown 1n FIC. 4A, the network 300 may alsoc
include an update database 332 for serving differential
updates to clilient dqevices. I're update database may be
directly or indirectly coupled to server 304. In an

alternative, the update database 332 may be part of or
octherwise logically associated with the server 304.

[0057] Although the invention herein has been described
with reference to particular embodiments, it 1s to Dbe
understood that these embodiments are merely i1llustrative of
the principles and applications of the present invention., [t
1s therefore to be understood that numerous modifications may

be made to the i1illustrative embodiments and that other

_18....

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

arrangements may be devised without departing from the spirit
and scope 0f the present i1invention as defined by the appended
claims. For 1nstance, while c¢ertain embodiments are shown
with regard to operating systems, differential updates
according to aspects of the 1invention may be employed with
otner software packages, applications and services.
Furthermore, while particular processes are shown 1in a
specific order 1in the appended drawings, such processes are
not limited tTo any particular order unless such order 1is
expressly set forth herein, and may be performed in a
different order or 1n parallel. And additional processes may
be added or other processes omitted unless 1t 1s specifically
stated ctherwise.

INDUSTRIAL APPLICABILITY
[0058] The present 1invention enjoys wide industrial

applicability including, but not limited to, computer system
operation and wupdates of applications for such computer

systems.

_]_9_

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

IN THE CLAIMS
1. A method o0f generating an update for a computer
readable operating system, the method comprising:

identifying a version number of a current version cf

the operating system;

creating, with a processor, an ordered 1list of
operations for updating the current wversion of the operating
system to a new version of the operating system, the processor
performing iterations over each regular file on the new
version of the operating system to obtain the ordered list for
all data blocks associated with the new version; and

assembling, with the ©processor, a differential
update file including a magic number wndicator showlng the
differential update Zile 15 an actual update file, a new
version number identifying the new wversion o©0f the operating
system, and a protocol buffer 1including the ordered Llist of

operations.

2. The method of claim 1, wherein one oOr more operations
in the ordered list are each associated with a respective data
blob indicating a chunk of data, and wherein the differential

update file is assembled to include the respective data blobs.

3. The method of any of the preceding claims, wherein
each operation 1in the ordered 1list 1s applicable to one oOr
more specific data blocks of a partition of a client device,
the operations including one or more of: a copy operation
where at least one of the data blocks in the partition 1s to
be copied to another block in a new partition of the client
cevice for the new version of the co¢operating system; a
difference operation where at least a given one of the data
blocks 1is read 1intoc memory and a difference routine 18
performing on the at least one given data block using a data
blob o©f the differential update file; a replace overaticn

where a selected data blob of the differential update file 4is

~20—~

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

configured to be written to specified blocks 1in the new
partition; and a replace with uncompression operation where a
compressed data blob 1s included 1In the differential update
file and 1s configured to be written to selected specified
blocks 1in the new partition for the new version of the

operating system.

4. The method of any of the preceding claims, wherein
each operation 1n the ordered list 1s associliated with a file
object, and the methcd further comprises:

creating a vertex in a graph for each file object;
and

creating a vector representing each blcck.

5. The method of c¢laim 4, further comprising:
setting reader and writer parameters for the vector
of each block; and
for each Pblock with a different reader and writer,
creating an edge in the graph from the writer to the reader,

the edge pointing to a file operation to be completed before a

source file operation associated with the edge starts.

c. The method of claim 5, wherein each edge has a weight,
and the weight 1dentifies a number o©f blocks in the graph

assoclated with that edge.

7. The method of claim 5 or claim 6, wherein 1f the graph

includes cycles, the method further comprises breaking each of

the cycles.

8. The method cof claim 7, wherein breaking a given one of

the cycles includes:
finding a lowest-weight edge associated with the
given cycle; and

cutting the lowest-weight edge.

w21~

- y— - ——

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

9. The method of claim 8, wherein cutting the lowest-
welght edge comprises:
creating a new node representing an operation of
copying an extent to a scratch space; and
maxlng the lowest-weight edge's scurce nrnode point to

the new node.

10. The method of claim 92, wherein a new edge 13 made
from a destination node ©f the lowest-weight edge in order to
ensure that a new cCcopy operation occurs before a consumer of

the new copy cperation.

11. A cdevice for generating an update for a computer
readable operating system, the device comprising:
memory for storing differential update information
associated with the operating system; and
a processor coupled to the memory, the processor
being configured to:
identify a wversion number of a current version
of the cperating system;
create, using the differential update
information, an ordered list of orerations £for updating the
current wversion of the operating system to a new version of
the operating system, including performing iterations over
each regular file on the new version of the operating system
to obtain the ordered list for all data blocks associated with
the new version;
assemble a differential update file including a
magic number indicator showing the differential update file 1is
an actual update file, a new version number identifying the
new version of the c¢perating system, and a protocol Dbuffer
including the ordered list of operations; and
store the differential update file in the

memory.

—20—

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/0207990

12. The device of claim 11, wherein each operation in the
ordered list 1s assocliated with a file object, and the
processor is further configured to:

create a vertex 1in a graph for each file object; and

create a vector representing each block,

13. The device o0f claim 12, wherein the processor 1s
further configured to:
set reader and writer parameters for the vector of
each block; and
for each block with a different reader and writer,
create an edge 1in the graph from the writer to the reader, the
edge polnting to a file operaticon to be completed before a

source file c¢operation associated with the edge starts.

14, The device of claim 13, wherein if the graph includes
cycles, the processor 1s further operable to break each ¢of the

cycles.

15. The device of claim 14, wherein breaking a given one
of the cyc.es i1ncludes:
finding a lLowest—-weight edge associated with the
given cycle; and

cutting the lowest-welght edge.

16. The device of c¢laim 15, wherein the processor is
operapble to cut the lowest-welght edge by:
creating a new node representing an operation of
copying an extent to a scratch space; and

making the lowest-weight edge's source node point to

the new node.

17. The device of claim 16, wherein a new edge 1s made

from a destination ncocde of the lowest-weight edge in order to

—-73 -

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

ensure that a new copy operation occurs before a consumer of

the new copy operation.

18. A tangible computer-readable storage medium on which
computer readable 1instructions of a computer program are
stored, the instructions, when executed by a computer, cause
the computer to perform a method of generating an update for a
computer readable operating system, the method comprising:

identifying a version number of a current version of
the operating system;

creating, with a processor, an ordered 1list of
operations for updating the current version of the operating
system to a new version of the operating system, the processor
performing i1terations over each regular file on the new
version of the operating system to obtain the ordered list for
all data blocks associated with the new version; and

assembling, with the ©processor, a dlfferential
update file 1ncluding a magic number indicator showing the
differential wupdate file 1is an actual update file, a new
version number identifying the new version of the operating
system, and a prcotoccel buffer including the ordered 1list of

operations.

19. The storage medium of c¢laim 18, wherein each
operation 1in the ordered 1list 1s associated with a file
object, and the method further comprises:

creating a vertex in a graph for each file object;

and

creating a vector representing each block.

20. The storage medium of claim 19, wherein the method

further comprises:

setting reader and writer parameters for the vector

of each block; and

....24.....

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

for each block with a different reader and writer,
creating an edge 1in the graph from the writer to the reader,
the edge pointing to a file operatlion to be completed before a

source file coperation associated with the edge starts.

21. The storage medium of claim 20, wherein if the graph
includes cycles, the method further comprises breaking each o¢f
the cycles by:

finding a lowest—-welght edge associated with each
given cycle; and

cutting the lowest-weight edge for each cycle.

22. The storage medium of c¢laim 21, wherein cutting the
lowest-weight edge comprises:
creating a new node representing an operation of
copyling an extent to a scratch space; and
making the lowest-welight edge's source node point to

the new node.

23. The storage medium of claim 22, whereln a new edge 1is
made from a destination node o©f the lowest-weight edge in
order to ensure that a new copy operation occurs before a

consumer of the new copy operation.

24. A cllent device, comprising:
memory for storing a current versicn of an operating
system; and
a processor coupled to the memory, the processor
being configured to:

transmit a request to a remote device regarding

an update for the current version o0f the operating svstem, the
request including a version number 1identifying the current
version of the operating system;

recelve a differential update file from the

remote device, the differential update file including a magic

25.

CA 02786613 2012-07-06

WO 2011/088022 PCT/US2011/020790

number indicator showing the differential update file is an
actual update file, a new version number identifying the new
version of the operating system, and a protocol buffer
including an ordered list of operations;

verify the magic number;

extract the ordered list of oprerations from the
prctocol buffer; and

perform a differential update by executing the
ordered 1list of operations 1in order to update the c¢current
version of the operating system to the new version of the

cperating system.,

25. The client device of claim 24, wherein the processor
1s operable to perform the differential update of the
operating system to the new version of the operating system
without saving the differential update file in the memory
while the differential update file is being streamed to the

client device.

...26.,..

PCT/US2011/020790

1/5

el ——— e M e . - . . - — tg—— tmmmmiEr s s s m sms mm o ow eee o, L L eies e b A .Yy a on 'mms -
Y _—

CA 02786613 2012-07-06

WO 2011/088022

y ——— o ———

yibus Jayng }9SHO

0001044 ﬂ aUng j020j0id

e c—m emm e = s .
.- = s mimies mamibemsssmmmmmemirsmares s s simisme i m mmei sies) sim neiem; aae s e i e R —

sgoig eleq layng joo0j01d JOqUINN UoISIBA | Jaquinp 2ibepy

001
L Old

PCT/US2011/020790

2/5
FIG. 2

s ———

CA 02786613 2012-07-06

WO 2011/088022

- .
-

N ..y

1
OEN
.
]
-
N

-

.
'.b‘i'O‘I.('G‘D LI

.
S O S

-
L) 0
swws s v)

»
7’
’
s
-~
*-

.' ..b‘

sav g

-

+* v
-

- AU

DA .4-:”“-;!.

A RPN

D
l-.c.-u.’roﬁ
eel w,r - -

A4

.

s # wvawvrearSsemavw
s o s mery Tmgresygs

v s ~d 1.

+ - -
v A vyrevredw
-. v

LRI

-
r
h)
-
.
-
-

+*

I

* +0

.
’l
+

.
+*
’
-
+*
*
.
>

FAaspEa
- v

yap e watan

"e

T

B as P47 1 8 rd " A&peagy

K

K
C

g
0

&

LT
bl

&

4 'R

m

gge to
es e

v
L]

1
.
.

-

LU

OGO R et S

L) -
T8> rvaba

ré et e

\

hd
rvmeavlbdvyaiws

LAENE L
L3 .

Yore *

v
-+
e

g i I

CA 02786613 2012-07-06

. de me

[——

el u;
§T D} MRTAR DU 30§ |IETBL:
(7) Wl GLUIUS |[HisL:

W ey
s et e e e e

- = e - PP
DRI AW N R R R O R N
4 mmteTetn N R M N RN s

I PR R P

| 2 I O} § 49014 AdOC

— 1) JUBTAS 9 B RIS o o
m |21 mmh_. PPN . -3-L 255w Rex S, ocki22 2205 s Koo Gt Lu ke - PPN,

= L | -

i JUSHD UO PBINJexXs SE 'UoS {e31B0j0do] woly Jspio jeuls (G)

3 (5320]q Jo Jaquinu == Jybiem abpa)

Ay

o
10325, SHITHT -

.l.l\"'\ l. .

-
A Lvamwrsw

e
#ale e

- - -
.~ -
0’.;1..\.-0.‘5 .‘. 00 ‘\\ .Q

..
- -
O
e w
LR LD
', ‘lv v
4 ‘

+ -

-
.a
-~

N
b

L

.

v
-

v . e-

»

.
v
i

1JagA 520}
| uay} ‘sunieiado sy ejeard (Z

.
-

P

s,

.4y
.

-nt- sa-.a
Y .
-

~ LN + 0
R M

y o r 4 » U

+ 1
-

- 4 '
= 208U 280U - 1 :
8 4] -~ -3 ".
- ’ +> =
8 CR N O N N e ”bs‘b-b .\nvnov BOH G K) ey . .. v . 1 -0-..- . rn-v -“ . "
Lada 2y Z 2L 2l l et bl Lty G dat L L 2 2 Pl) R A e L AGEOTIS G EPIEPSEEPIELL PO PP O IT L PO IO OS IS, AP LR PO BE S PPE L PTPPLS PP rP P s Poi s b s P
f
—
o~ e, . : :
(4 : . : X '
. 247 7R : ,
SRl LG . :
' " |}
. 3
X »
. 4
- L 8 C A I : : :
ﬁ v.__ .V—u . * .M s00Y .. : :
. : .
) - . . *
RN S . R : i - T - — R o H

CA 02786613 2012-07-06

PCT/US2011/020790

4/5

WO 2011/088022

oo Tl LA

O R Y
N s .

.
. 0»1-!0050 .. .-..
. |- - ..

Frava e eaea ey -

.................

pOE

N
- -~ .

-~

—
-

- -

r)
m :
. asegeleg |
| .hp.n.,\.\sn T fJ.fa../.,ucw

b
b
N

-

vy Old

80¢

e e
rhevbe

Al
w.\-“\lt.o ”0 ” QHO\Q\\\\\

4

e .
hhhhh

*

a a s ly ~ .»\\0
v - ~
Ot et ot
C - e O
e . -

.
v

* crrwwar/erwsamswe-
- (s '

e
O MO
PR B

(Y

...........

.........
................................

..........
......

......
nnnnnnnnnnnnnnnnnn

. SIS

A -

L

— — Y ol

CA 02786613 2012-07-06

PCT/US2011/020790

WO 2011/088022

S/§

I
i
:
f
¢
i
i

e _

|

|

I

.

.ﬁ.

i

¢

!

8¢t

SUOKHONJISU|

9zE -,

) . | i
= . HIOMIaN
ejeq’ |)
m . .o .. ! : @ Pm .
_ Aowsiy

|>~
&
Q.
D
e

v 10S$890.1d

T Y-

s

- — — d— —

Emwwmw esn S VEE

dv Ol

suoRoNJISU;
ajepdn J

ey

| eleQ
Aoway
..!..,..x./..
108S800J4| -
JBAIRG alepdn)|

- e g R SO ————
L
X

- pog

Tl gze

- 928

lepdn| | | T gee

R (4>

FIG. 2

edge {0 break cycle
uses temp block T

=
L

e o
f 4 s BN 2
TR B % .
BRAOREICELY oy
. DU " M OD ; e,
U ° ! "
o Ry d
'lv - A . A) Ll
: AR
A AY "N "l. .

TR
: hEa:
SEY RSy
It SR

S

v

b
L4

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

