

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

(51) Int. Cl.3: F 23 L

7/00 25/02

F 02 M

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

Erfindungspatent für die Schweiz und Liechtenstein

12 PATENTSCHRIFT A5

625 871

(21) Gesuchsnummer:

10307/77

(73) Inhaber:

Fred Albert Wentworth, jun., Exeter/NH (US)

(11)

2 Anmeldungsdatum:

23.08.1977

30 Priorität(en):

31.08.1976 US 719343

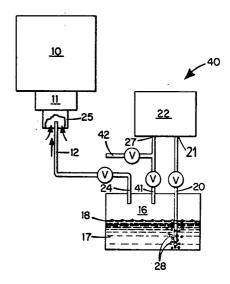
(72) Erfinder:

Fred Albert Wentworth, jun., Exeter/NH (US)

24) Patent erteilt:

15.10.1981

(45) Patentschrift veröffentlicht:


15.10.1981

(74) Vertreter:

Bovard & Cie., Bern

64 Einrichtung zum Liefern eines dampfförmigen Katalysators an eine mit fossilem Brennstoff betriebene Verbrennungsvorrichtung.

Die Druckseite (21) einer Pumpe (22) ist mit einem Wasserbehälter (16) durch eine Druckleitung (20) zum Blasen von Luft ins Wasser (17) des Behälters (16) verbunden. Die Saugseite (27) der Pumpe (22) ist mit dem Behälter (16) oberhalb des Flüssigkeitsspiegels im Behälter durch eine Saugleitung (41) zum Rückführen von Luft in die Pumpe (22) verbunden. Somit wird ein Luftkreislauf gebildet, der auch eine zur Verbrennungsvorrichtung (10) führende Luftzufuhrleitung (12) umfasst. Durch diese Luftzufuhrleitung (12) wird mit Wasserdampf beladene Luft zum Lufteinlass (11) der Verbrennungsvorrichtung (10) geführt, um deren Wirkungsgrad zu erhöhen.

PATENTANSPRÜCHE

- 1. Einrichtung zum Liefern eines dampfförmigen Katalysators an eine mit fossilem Brennstoff betriebene Verbrennungsvorrichtung, gekennzeichnet durch:
- a) einen geschlossenen Behälter (16) mit einer Flüssigkeit ⁵ (17), die mindestens teilweise aus Wasser besteht,
- b) einer Luftpumpe (22; 55) mit einer Druckseite (21; 56) und einer Saugseite (27; 54),
- c) eine erste Verbindungsleitung (20; 57), die die Druckseite (21; 56) der Pumpe (22; 55) mit dem mit Flüssigkeit (17) gefüllten Teil des Behälters (16) verbindet und unterhalb des Flüssigkeitsspiegels in den Behälter mündet,
- d) eine zweite Verbindungsleitung (41, 60), die die Saugseite (27; 54) der Pumpe (22; 55) direkt mit dem keine Flüssigkeit enthaltenden Teil des Behälters (16) verbindet und oberhalb des Flüssigkeitsspiegels in den Behälter mündet, welche zweite Leitung zum Erzeugen eines dauernd von der Pumpe durch die Flüssigkeit im Behälter zurück zur Pumpe fliessenden Luftstroms dient,
- e) eine dritte Verbindungsleitung (42, 51), die die Saugseite (27; 54) der Pumpe (22; 55) mit der Aussenluft verbindet, und
- f) Mittel zum Absaugen eines Teils der durch die Flüssigkeit (17) im Behälter (16) gegangenen Luft an die Verbrennungsvorrichtung (10; 50) und zum Ersetzen dieser Luft durch Aussenluft.
- 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Absaug- und Ersatzmittel die Verbindungsleitung (41; 60) zwischen dem Raum des Behälters oberhalb des Flüssigkeitsspiegels und der Saugseite der Pumpe umfassen.
- 3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Absaug- und Ersatzmittel eine Zufuhrleitung (12; 61) umfassen, die den Lufteinlass (11) der Verbrennungseinrichtung (10; 50) direkt mit dem feuchte Luft enthaltenden oberen Teil des Behälters verbindet.
- 4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Zufuhrleitung (12; 61) mit einem ersten Steuerventil versehen ist und entweder die erste Verbindungsleitung (20; 57) oder die zweite Verbindungsleitung (41; 60) ein zweites Steuerventil enthält, mit welchen Steuerventilen die Menge der im Kreislauf zwischen Pumpe (22; 55) und Behälter (16) strömenden Luft in bezug zur Menge der an die Verbrennungsvorrichtung (10; 50) gelieferten Luft einstellbar ist.
- 5. Einrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die zweite Verbindungsleitung (60) ein perforiertes Leitungsstück umfasst, das sich vom Boden des Behälters (16) bis zu dessen oberem Ende erstreckt und ein nicht perforiertes Leitungsstück, das sich vom oberen Ende des Behälters zur Saugseite (54) der Pumpe (55) erstreckt.
- 6. Verwendung der Einrichtung nach Patentanspruch 1, zum gesteuerten Beimischen eines dampfförmigen Katalysators der Verbrennungsluft einer Verbrennungsvorrichtung für fossilen Brennstoff, gekennzeichnet durch:
- a) Führen von Luft in einem kontinuierlichen Kreislauf von einer Druckquelle durch einen Wasserkörper und zur Druckquelle zurück,
- b) Halten eines festen Volumens der im Kreislauf strömenden Luft in einem mit dem Kreislaufweg verbundenen Raum,
- c) Verbinden einer Stelle des Kreislaufweges auf der Druckseite der Druckquelle mit dem Lufteinlass der Verbrennungsvorrichtung,
- d) Zuführen einer geregelten Menge Frischluft aus der Aussenatmosphäre dem Kreislaufweg auf der Saugseite der Druckquelle, und
- e) Steuern der Luftzufuhr, so dass die Menge der dem Einlass der Verbrennungsvorrichtung zugeführten Luft klein

ist im Vergleich zur im Kreislaufweg zwischen der Druckquelle und dem Wasserkörper strömenden Luftmenge.

Die vorliegende Erfindung bezieht sich auf eine Einrichtung zum Liefern eines dampfförmigen Katalysators an eine mit fossilem Brennstoff betriebene Verbrennungsvorrichtung.

Es ist bekannt, dass eine hohe Feuchtigkeit den Wirkungsgrad einer Brennkraftmaschine oder einer Ölfeuerung verbessert. Es sind bereits Wassereinspritzvorrichtungen für Automobilmotoren auf dem Markt, die den Wirkungsgrad dieser Motore verbessern sollen. Bei kommerziellen Ölfeuerungen wird seit langem Dampf zum Zerstäuben des Öls verwendet, um ein besseres Verbrennen des Öls zu erzielen.

Bei allen diesen Anordnungen stammt die zusätzlich erzeugte Energie entweder von einer Energieumwandlung der zusätzlich zugeführten Masse oder von einer besseren Ausnützung des fossilen Brennstoffs. Mit Wasser als Zusatz kann beides erzielt werden, wobei in den meisten Fällen eine kombinierte Wirkung vorhanden ist. Wesentliche Mengen von Wasserdampf wurden bis jetzt nur Brennkraftmaschinen zur Erhöhung von deren Wirkungsgrad zugeführt. Bei Heizanlagen für Wohnungen waren die Kosten für die dazu notwendige Zusatzeinrichtung bisher zu hoch.

Es ist auch bekannt, dass Wasserdampf als Katalysator für die Verbrennung wirken kann; siehe Van Nostrand's Scientific Encyclopedia, 4. Auflage, Seite 1501. Jedoch wird diese Eigenschaft von Wasserdampf bei den meisten bisher erzeugten Heizanlagen nicht ausgenützt.

Aufgabe der vorliegenden Erfindung ist die Schaffung einer Einrichtung zum Liefern eines dampfförmigen Katalysators an eine Verbrennungsvorrichtung für fossilen Brennstoff, um deren Wirkungsgrad zu erhöhen. Die Einrichtung nach der Erfindung umfasst einen geschlossenen Behälter mit einer Flüssigkeit, die mindestens teilweise aus Wasser besteht, eine Luftpumpe mit einer Druckseite und einer Saugseite, eine erste Verbindungsleitung, die die Druckseite der Pumpe mit dem mit Flüssigkeit gefüllten Teil des Behälters verbindet und unterhalb des Flüssigkeitsspiegels in den Behälter mündet, eine zweite Verbindungsleitung, die die Saugseite der Pumpe direkt mit dem keine Flüssigkeit enthaltenden Teil des Behälters verbindet und oberhalb des Flüssigkeitsspiegels in den Behälter mündet, welche zweite Leitung zum Erzeugen eines dauernd von der Pumpe durch die Flüssigkeit im Behälter zurück zur Pumpe fliessenden Luftstroms dient, eine dritte Verbindungsleitung, die die Saugseite der Pumpe mit der Aussenluft verbindet, und Mittel zum Absaugen eines Teils der durch die Flüssigkeit im Behälter gegangenen Luft an die Verbrennungsvorrichtung und zum Ersetzen dieser Luft durch Aussenluft.

Die Verbindungsleitungen sind zweckmässig so dimensioniert und/oder enthalten Steuerventile, so dass eine wesentlich grössere Menge Luft im Kreislauf durch die Einrichtung fliesst als an die Verbrennungsvorrichtung abgegeben wird.

Nachfolgend wird die Erfindung anhand der beiliegenden Zeichnung beispielsweise beschrieben. In der Zeichnung zeigt:

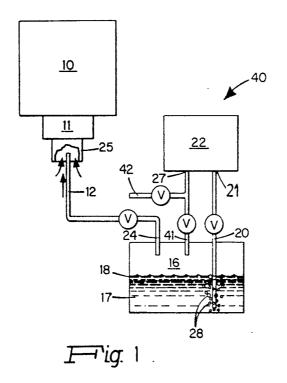
Fig. 1 ein vereinfachtes Blockschema eines Ausführungsbeispiels der Einrichtung nach der Erfindung und

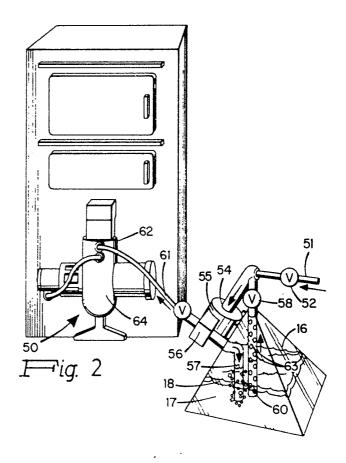
Fig. 2 eine vereinfachte perspektivische Darstellung der Einrichtung nach der Fig. 1 in Verbindung mit einem Ölofen.

Im Blockschema nach der Fig. 1 ist mit 10 eine Verbrennungsvorrichtung bezeichnet, die von einer Einrichtung 40 über einen Auslass 12 eine gesteuerte Menge von mit Dampf gesättigter Luft erhält. Die Einrichtung 40 umfasst einen Behälter 16, der teilweise mit Wasser 17 gefüllt ist, auf welchem 3 625 871

eine Schicht 18 aus einer mit Wasser nicht mischbaren Flüssigkeit schwimmt. Diese Flüssigkeit kann ein synthetisches Öl sein. Die Schicht 18 verhindert die Absorption von Feuchtigkeit oder anderen Teilen der Atmosphäre im oberen Teil des Behälters 16 durch das Wasser 17 im unteren Teil des Behälters 16. Die Schicht 18 soll praktisch nicht verdunsten, so dass sie von der aus dem Behälter 16 strömenden Luft nicht abgebaut wird. Eine Leitung 20 liefert Druckluft von der Druckseite 21 einer Pumpe 22 an den unter dem Wasserspiegel liegenden Teil des Behälters 16. Der obere Teil des 10 pe 55 bis zum Boden des Behälters 16. Das Saugrohr 60 ist Behälters 16 ist über einen Auslass 24 und den Auslass 12 mit einer Mischkammer 25 verbunden.

Die Pumpe 22 erzeugt einen Unterdruck im oberen Teil des Behälters 16 und einen Überdruck am Auslass der Leitung 20, so dass Luftblasen 28 erzeugt werden, die durch das 15 sor 64 der Verbrennungsvorrichtung 50 verbunden. Wie aus Wasser 17 und die Schicht 18 nach oben steigen. Der Auslass 12 des Behälters 16 ist über die Mischkammer 25 mit dem Einlass 11 der Verbrennungsvorrichtung 10 verbunden. Die Menge der mit Wasserdampf gesättigten Luft, welcher Dampf als Katalysator wirkt, wird dem direkt mit der Aussenatmo- 20 sphäre verbundenen Einlass 11 zugeführt.


Die Leitung 41 verbindet den Oberteil des Behälters 16 mit der Saugseite 27 der Pumpe 22. Die Saugseite 27 ist über einen Frischlufteinlass 42 auch direkt mit der Aussenatmosphäre verbunden. Die Menge der durch die Einrichtung 40 zur Verbrennungsvorrichtung 10 strömenden Luft in bezug zur im Kreislauf durch die Einrichtung 40 strömenden Luft kann durch Ändern des Durchflussquerschnitts des Lufteinlasses 42 oder des Luftauslasses 12 geregelt werden.


Bei der Anordnung nach der Fig. 1 ist die Menge der zur Verbrennungsvorrichtung 10 strömenden Luft gleich der Menge der durch den Einlass 42 in die Einrichtung 40 strömenden Luft und ist völlig unabhängig vom Volumen und der Strömungsgeschwindigkeit der im Kreislaufweg strömenden Luft. Der Luftraum im Oberteil des Behälters 16 und der
Grössen, Formen, Materialien und die örtliche Anordnur Luftraum in der Pumpe 22 dienen als Kammern von Luft mit konstantem Wasserdampfgehalt. Solange die Menge der im Kreislauf strömenden Luft gross ist gegenüber der Menge Wasserdampfgehalt der letzteren relativ unabhängig vom Wasserdampfgehalt der über dem Einlass 42 eintretenden Frischluft.

Die Fig. 2 zeigt die an einen Ölofen 50 angeschlossene Einrichtung 40 nach der Fig. 1. Die in der Fig. 2 dargestellte Einrichtung zur Lieferung von mit Wasserdampf gesättigter Luft hat einen Lufteinlass 51, der von einem Ventil 52 steuer-5 bar ist und der mit der Saugseite 54 einer Luftpumpe 55 verbunden ist. Die Druckseite 56 der Pumpe 55 ist über eine Leitung 57 mit einer Stelle des Behälters 16 unterhalb der Oberfläche des Wassers 17 verbunden. Ein Saugrohr 60 mit einem Ventil 58 erstreckt sich von der Saugseite 54 der Pumim Luftraum oberhalb des Wassers 17 im Behälter 16 perforiert, so dass in das Rohr 60 Luft und kein Wasser gesaugt wird. Die Druckseite 56 der Pumpe 55 ist über eine Leitung 61 mit einer Stelle 62 niederen Drucks im Eingangskompresder Fig. 2 ersichtlich ist, sind die Leitungen 57 und 60 für den Kreislauf von Luft zwischen Behälter 16 und Pumpe 55 grösser als das Lufteinlassrohr 51 und die dem Kompressor 64 feuchte Luft zuführende Leitung 61. Ferner sind Ventile 52 und 58 zum Regeln der Luftmenge in den beiden Strömungswegen vorgesehen. Der Raum im Pumpengehäuse 55 und der Raum im Oberteil des Behälters 16 dienen als Mischkammern, jedoch kann auch eine zusätzliche Mischkammer vorgesehen sein. Im Betrieb ist das Ventil 58 so eingestellt, dass auf der Auslassseite 56 der Pumpe 55 Luft mit konstanter relativer Feuchtigkeit austritt und das Ventil 52 so, dass der Wirkungsgrad der Verbrennung in der Vorrichtung 50 maximal ist, was durch bekannte Prüfeinrichtungen festgestellt werden kann. Wie festgestellt wurde, bewirken diese Einstel-30 lungen, dass die Menge der im Kreislauf zwischen Pumpe 55 und Behälter 16 strömenden Luft wesentlich grösser ist als die Menge der durch die Leitungen 51 und 61 strömenden Luft.

Wesentlich ist ein ständiger Kreislauf einer relativ grossen Grössen, Formen, Materialien und die örtliche Anordnung von Behälter 16, Pumpe 22 bzw. 55, der Ventile und Verbindungsleitungen entsprechend anders sein können.

Die Pumpe 22 muss nicht wie dargestellt eine Zentrifugalder der Verbrennungsvorrichtung 10 zugeführten Luft, ist der 40 pumpe sein, sondern kann auch eine Kolbenpumpe oder eine Balgenpumpe sein. Beispielsweise haben sich Gummibalgpumpen, wie sie für Aquarien verwendet werden, als geeignet erwiesen.

