(54) 发明名称
基于网络和传感器的车载智能应急启动电源
防盗终端

(57) 摘要
本发明提供一种基于网络和传感器的车载智能应急启动电源防盗终端，结合了现有的汽车应急启动电源实现方式，GPS 全球定位技术、GSM/GPRS 通信技术、及陀螺仪、三轴等传感技术，具备蓝牙、WIFI 配对、RFID 等身份识别能力，能够实时监测智能应急启动电源电量，当电量即将低于汽车点火阈值时，通过 GSM 通信模块将设备电量不足的报警信息告知用户；车载智能应急电源防盗终端具备翻转、触碰、位移等多种人体行为分析模型，放在汽车里面或其他载体均可起到防盗作用；在危急时刻按下 SOS 紧急求助，通过 GSM 通信模块向救援中心发送求助信号，包括位置信息到救援中心，救援中心收到救援信号后准确定位实施救援，缩短救援时间。
权利要求书

1. 一种基于网络和传感器的车载智能应急启动电源防盗终端，其特征在于：所述终端包括：MCU、GSM通信模块、GPS定位模块、射频身份识别模块、陀螺仪传感器、三轴传感器、ARM处理器以及电压检测电路；

终端在预设的时间范围内上报车辆位置信息到数据服务器，且终端的MCU能通过数据服务器或手机端查询车辆位置；用户通过身份识别卡或者手机蓝牙、WIFI与终端的射频身份识别模块配合进行身份识别；通过ARM处理器对陀螺仪传感器和三轴传感器灵敏度设定，当大于陀螺仪角速度阈值时快速唤醒车辆系统；检查身份识别卡配对情况，配对不上则开启GPS定位模块、GSM通信模块将位置信息及车辆被盗情况上报数据服务器；数据服务器自动将车辆被盗信息通过短消息或数据通道反馈到用户手机端，在数据服务器设置终端上报的频率，对车辆进行实时追踪；终端设置有SOS按键，实现一键式紧急求助，所述终端在定时上报数据的过程中ARM处理器控制电压检测电路对汽车应急电源模组的电量进行监测，当电量即将低于点火阈值时，立即通过GSM通信模块将电量不足信息发送到数据服务器，数据服务器自动下发短消息到用户手机端或用户手机客户端提醒用户为汽车应急电源模组充电。

2. 根据权利要求1所述的基于网络和传感器的车载智能应急启动电源防盗终端，其特征在于：车辆被盗时，只要损坏、翻转、或非法触碰，所述车载智能应急启动电源防盗终端，则立即将偷盗报警信息通知到数据服务器，数据服务器自动将车辆被盗信息反馈到用户端，避免了终端被非法解除的可能性；且发现车辆被盗能通过数据服务器设置上报时间间隔，对车辆进行实时追踪。

3. 根据权利要求1所述的基于网络和传感器的车载智能应急启动电源防盗终端，其特征在于：SOS按键进行一键式紧急求助时，通过按键SOS发送救援信号，包括车辆位置信息到救援中心，救援中心收到救援信号后准确定位实施救援，缩短救援时间。

4. 根据权利要求1所述的基于网络和传感器的车载智能应急启动电源防盗终端，其特征在于：所述终端有自动报警功能，发生严重危险时，终端会将GPS定位模块、陀螺仪传感器、三轴传感器同时开启，绘制出完整的遇险模型，GSM通信模块将报警上报到救援中心。

5. 根据权利要求1所述的基于网络和传感器的车载智能应急启动电源防盗终端，其特征在于：确定车辆被盗后，数据服务器或客户端远程操作车辆制动命令，车载智能应急启动电源防盗终端收到制动指令，开启车辆安全预警模型，经过GPS定位模块、陀螺仪传感器、三轴传感器的技术分析位置，车速安全的情况下，对车辆的各节点发出间歇制动命令，实现车辆安全停稳。
基于网络和传感器的车载智能应急启动电源防盗终端

技术领域
[0001] 本发明涉及通信设备技术领域，尤其涉及一种基于网络和传感器的车载智能应急启动电源防盗终端。

背景技术
[0002] 目前汽车应急启动电源产品的销售以每月30%的速度直线递增，市场稳步上升。汽车应急启动电源功能是用于汽车亏电或其他原因无法启动汽车的时候能启动汽车。然而现有的汽车存在如下缺陷：
[0003] 1. 汽车应急启动电源不具有通信功能，给汽车打火不能低于最低电量，往往需要用到时，应急启动电源电量不足以点火。
[0004] 2. 汽车GPS防盗器供电需要破线安装，即损坏汽车原车线路又对汽车电瓶造成损伤，不利于隐蔽安装。现有部分GPS定位器内置电池虽然避免了破线安装，但电池容量却最大问题，正常工作几个小时也就没电了，作用也不大被找到后随手一扔就不起作用了。
[0005] 3. SOS 紧急求助，现有的汽车应急启动电源只能发射照明信号。
[0006] 4. 汽车被盗，驾驶员无法从交通部门提供的数据服务器获取到车辆的位置。
[0007] 现有技术中公开了一种“包含电源单元的汽车远程监控系统”，见公开号为，202257267U，公开日为2012-05-30，该系统包括汽车、安装于汽车上的远程车诊断终端以及远程控制中心；所述远程控制中心与所述远程车诊断终端无线连接；所述远程车诊断终端进一步包括：MCU、电源单元；所述电源单元与所述MCU连接。所述电源单元与所述汽车自带的蓄电池连接，所述电源单元包括应急电源，可选择蓄电池供电或者应急电源供电的电源控制子单元；所述蓄电池和应急电源均与所述电源控制子单元连接。但是该专利涉及的电源单元仅是电源管理单元，也是传统GPS设备的一种取电方式。如：[0084] 所述电源单元与汽车自带的蓄电池连接；另外，该专利披露“系统能够实现汽车的远程诊断，不需要汽车进入4S店，汽车故障信息、GPS坐标信息，通过无线传输到控制中心，由控制中心专家判断是否要进行维修，要求维修的，将诊断结果及维修建议，传送给故障车辆的维修厂，进行故障排除。”主要通过总线 CAN、K、LINE读取车辆发动机等车身系统数据，通过无线的方式传输到控制中心。而本专利申请是基于大容量电池载体，并且电池载体成为一套完整的防盗系统及紧急情况智能服务的终端，特别是汽车（便携）应急启动电源；二者并不相同。
[0008] 现有技术中还公开了一种“基于云服务器的车辆防盗报警方法”，见公开号为103465870A，公开日为2013-12-25，该专利亦包括以下步骤：通过智能移动终端设置车辆的防护状态及报警方式，并将所述车辆的防护状态以及报警方式数据发送至云服务器；当车辆启动后，车辆上的车载通讯设备向所述网络云服务器发送数据连接请求，所述网络云服务器接收到所述数据连接请求后，判断车辆的防护状态是否为低防状态；在车辆的防护状态为低防状态的情况下，所述网络云服务器根据预设的报警方式通过智能
移动终端进行报警。而本专利申请是自身带有身份识别模组，不需要预先通过智能移动终端设置车辆的防护状态及报警方式，及一系列的交互延时，只要非法碰触车载智能应急电源防盗终端，立即将偷盗报警信息通知到数据服务器（车辆管理平台），数据服务器自动将车辆被盗信息返回到用户端，避免了装置被非法解除的可能性。相比而言本专利申请在车辆防盗方法方面更为优越。

发明内容

[0009] 本发明要解决的技术问题，在于提供一种基于网络和传感器的车载智能应急启动电源防盗终端，保证了汽车亏电或者其他原因无法启动汽车的时候，终端电量可以以启动车辆;利用汽车智能应急电源防盗终端的防盗报警功能，防止盗车事件发生，及时处理被盗事件。

[0010] 本发明是这样实现的:一种基于网络和传感器的车载智能应急启动电源防盗终端，所述终端包括：MCU、GSM 通信模块、GPS 定位模块、射频身份识别模块、陀螺仪传感器、三轴传感器、ARM 处理器以及电压检测电路；

[0011] 终端在预设的时间范围内上报车辆位置信息到数据服务器，且终端的 MCU 能通过数据服务器或手机端查询车辆位置；用户通过身份识别卡或者手机蓝牙、WIFI 与终端的射频身份识别模块配对进行身份识别；通过 ARM 处理器对陀螺仪传感器和三轴传感器灵敏度设定，当大于陀螺仪角速度阈值时快速唤醒车辆系统，检查身份识别卡配对情况，配对不上则开启 GPS 定位模块，GSM 通信模块将位置信息及车辆被盗情况上报数据服务器，数据服务器自动将车辆被盗信息通过短消息或数据通道返回到用户手机，在数据服务器设置终端上报的频率，对车辆进行实时追踪，终端设置有 SOS 按键，实现一键式紧急求助，所述终端在定时间过程中 ARM 处理器控制电压检测电路将对汽车应急电源模组的电量进行监测，当电量即将低于点火阈值时，立即通过 GSM 通信模块将电量不足信息发送到数据服务器，数据服务器自动下发短消息到用户手机端或用户手机客户端提醒用户为汽车应急电源模组充电。

[0012] 进一步地，车辆被盗时，只要损坏、翻转、或者非法触碰，所述车载智能应急启动电源防盗终端，则立即将偷盗报警信息通知到数据服务器，数据服务器自动将车辆被盗信息返回到用户端，避免了终端被非法解除的可能性；且发现车辆被盗能通过数据服务器设置上报间隔时间，对车辆进行实时追踪。

[0013] 进一步地，SOS 按键进行一键式紧急求助时，通过按键 SOS 发送救援信号，包括车辆位置信息到救援中心，救援中心收到救援信号后准确定位实施救援，缩短救援时间。

[0014] 进一步地，所述终端有自动报警功能，发生严重危险时，终端会将 GPS 定位模块、陀螺仪传感器、三轴传感器同时开启，绘制出完整的遇险模型，GSM 通信模块将报警上报到救援中心。

[0015] 进一步地，确定车辆被盗后，数据服务器或客户端远程操作车辆制动命令，车载智能应急启动电源防盗终端收到制动指令，开启车辆安全预警模型，经过 GPS 定位模块、陀螺仪传感器、三轴传感器的技术分析位置、车速安全的情况下，对车辆的各节点发出间歇制动命令，实现车辆安全停稳。

[0016] 本发明具有如下优点：1. 提高行车安全。汽车智能应急电源防盗终端，最低电量
报警功能保证了汽车亏电或者其他原因无法启动汽车的时候，终端电量足以启动车辆。

2. 有利于维护社会治安，利用汽车智能应急电源防盗终端的防盗报警功能，防止盗车事件发生，及时处理被盗事件。

3. 远程紧急求助，SOS紧急求助按钮，提供了既简单又有效的“一键式”服务。

4. 为大赎减负。当对车辆的资产已经超过购买时的金额时，可以将汽车智能应急电源防盗终端放置在上面并通过手机客户端报警设定，在没有解警的情况下，非法挪动，触碰终端都会产生报警，通过网上报数据服务器平台自动通过短消息通知用户。

附图说明

图 1 为本发明终端硬件的原理图。

具体实施方式

请参阅图 1 所示。本发明的一种基于网络和传感器的车载智能应急启动电源防盗终端，所述终端包括 MCU、GSM 通信模块、GPS 定位模块、射频身份识别模块、陀螺仪传感器，三轴传感器（陀螺仪传感器和三轴传感器为传感器模组）、ARM 处理器以及电压检测电路；

终端在预设的时间范围内上报车辆位置信息到数据服务器，且终端的 MCU 能通过数据服务器或手机端查询车辆位置；用户通过身份识别卡或手机蓝牙、WIFI 与终端的射频身份识别模块进行身份识别；通过 ARM 处理器对陀螺仪传感器和三轴传感器灵敏度设定，当大于陀螺仪角度阈值时快速唤醒车辆系统，检查身份识别卡配对情况，配对不上则开启 GPS 定位模块、GSM 通信模块将位置信息及车辆被盗情况上报数据服务器。

数据服务器自动将车辆被盗信息通过短消息或数据通道返回到用户手机端，在数据服务器设置终端上报的频率，对车辆进行实时追踪；终端设有 SOS 按键，实现一键式紧急求助，所述终端在定时上报数据的过程中 ARM 处理器控制电压检测电路将对汽车应急电源模组的电量进行监测，当电量即将低于点火阈值时，立即通过 GSM 通信模块将电量不足信息发送到数据服务器，数据服务器自动下发短消息到用户手机端或用户手机客户端提醒用户为汽车应急电源模组充电。

本发明采用汽车应急启动电源供电，众所周知汽车应急启动电源容量至少大于 1 万毫安时，完全解决了核心部件 ARM 控制检测模组供电问题，可以隐蔽放置；车辆被盗时，只要损坏、翻转或非法触碰，所述车载智能应急启动电源防盗终端，则立即将偷盗报警信息通知到数据服务器，数据服务器自动将车辆被盗信息返回到用户端，避免了终端被非法解除的可能性；且发现车辆被盗后能通过数据服务器设置上报时间间隔，对车辆进行实时追踪。

其中，SOS 按键进行一键式紧急求助时，通过按键 SOS 发送救援信号，包括车辆位置信息到救援中心，报警中心收到救援信号后准确定位实施救援，缩短救援时间。

所述终端有自动报警功能，发生严重危险时，终端会将 GPS 定位模块、陀螺仪传感器、三轴传感器、同时开启，绘制出完整的遇险模型，GSM 通信模块将报警上报到救援中心。

本系统通过 RFID、ZEBBI 等射频技术对车辆等载体进行短距离无线矩阵布控，确定车辆被盗后，数据服务器或客户端远程操作车辆制动命令，车载智能应急启动电源防盗
终端收到制动指令，开启车辆安全预警模型，经过 GPS 定位模块、陀螺仪传感器、三轴传感器的技术分析位置，车速安全的情况下，对车辆的各节点发出间歇制动命令（通过车载智能应急启动电源防盗终端的 RFID 对节点 1 油路 FRID 继电器、节点 2 电门 FRID 继电器、节点 3 档位 FRID 继电器分别发出制动命令），实现车辆安全停稳。

[0027] 总之，本发明结合了现有的汽车应急启动电源实现方式，GPS 全球定位技术、GSM/GPRS 通信技术、及陀螺仪、三轴等传感技术，配备蓝牙、WIFI 配对、RFID 等身份识别能力，能够实时监测智能应急启动电源电量，当电量即将低于汽车点火阈值时，通过 GSM 通信模块将设备电量不足的报警信息告知用户，车载智能应急电源防盗终端具备翻转、触碰、位移等多种人体行为分析模型，放在汽车里面或者其其他载体均可起到防盗作用，在危急时刻按下 SOS 紧急求助，通过 GSM 通信模块向救援中心发送救援信号，包括位置信息到救援中心，救援中心收到救援信号后准确定位实施救援，缩短救援时间。

[0028] 以上所述仅为本发明的较佳实施例，凡依本发明申请专利范围所做的均等变化与修饰，皆应属本发明的涵盖范围。
图 1