
JP 5717678 B2 2015.5.13

10

20

(57)【特許請求の範囲】
【請求項１】
コンピュータシステムにおいて、
ｆｔｒａｃｅが装備されているＬｉｎｕｘ（登録商標）カーネルを有し、
アプリケーションの共有ライブラリを有するトレースライブラリ部と、
上記トレースライブラリ部の関数に対して、その入り口と出口において、上記関数の引数
あるいは戻り値を引数に含むとともにエラーとなるシステムコールを呼び出すことで、上
記ｆｔｒａｃｅを用いて上記関数の引数および戻り値を含めたｆｔｒａｃｅ出力トレース
ログの出力を行うトレースコマンド機能部、および、上記ｆｔｒａｃｅ出力トレースログ
および上記アプリケーションの関数情報を結合して上記関数の入り口および出口を含めた
アプリケーショントレースログを作成するトレース解析機能部を有するトレースプログラ
ム部とを備えるコンピュータシステム。
【請求項２】
上記トレースコマンド機能部は、複数のプロセスを対象に上記アプリケーショントレース
ログを出力する請求項１記載のコンピュータシステム。
【請求項３】
上記トレースコマンド機能部は、上記アプリケーショントレースログの出力を自動開始す
るためのトレース条件を上記トレースライブラリ部に設定する請求項１または請求項２記
載のコンピュータシステム。
【請求項４】

(2) JP 5717678 B2 2015.5.13

10

20

30

40

50

上記トレース解析機能部は、上記ｆｔｒａｃｅ出力トレースログのフィルタリングを行う
請求項１ないし請求項３のいずれか１項に記載のコンピュータシステム。
【請求項５】
上記トレースプログラム部は、上記アプリケーショントレースログをグラフ化形状に変更
する可視化機能部を備える請求項１ないし請求項４のいずれか１項に記載のコンピュータ
システム。
【請求項６】
ネットワークに接続された複数の端末を有し、上記一の端末には請求項１ないし請求項５
のいずれか１項に記載のコンピュータシステムを有し、
上記他の端末は、当該他の端末のアプリケーショントレースログの記録の開始および終了
を指示するトレースクライアント機能部を有し、
上記一の端末の上記トレースプログラム部は、トレースサーバ機能部を有し、
上記トレースサーバ機能部は、上記トレースクライアント機能部からの指示により、上記
ネットワークおよび上記トレースクライアント機能部を介して、上記他の端末の上記アプ
リケーショントレースログを作成するコンピュータシステムを用いたネットワークシステ
ム。
【発明の詳細な説明】
【技術分野】
【０００１】
　この発明は、ｆｔｒａｃｅが装備されているＬｉｎｕｘ（登録商標）カーネルにおいて
、通常の汎用アプリケーションの関数の入り口および出口のアプリケーショントレースロ
グを柔軟に取得でき、より効率的な障害解析、アプリケーションの稼動状態の確認や障害
原因の切り分けを可能とするコンピュータシステムおよびコンピュータシステムを用いた
ネットワークシステムに関するものである。
【背景技術】
【０００２】
　ビジネスや社会生活において、各種のサービスを実現するコンピュータシステムへの期
待は、ますます高まってきている。また、近年のいくつかの大規模システム障害の発生に
より、コンピュータシステムの品質が個人のみならず社会に大きな影響を与えることが強
く認識されてきている。一方、近年のコンピュータシステムは、ますます複雑化の傾向に
あり、その規模も大きくなるばかりである。そのため、効率的な障害解析（アプリケーシ
ョンの稼動状態の確認や障害原因の切り分け）の方法が、より一層求められている。現在
、アプリケーションの振る舞いを確認するための手段としては、デバッガとトレーサとの
２つのツールが主に用いられている。
【０００３】
　デバッガは、ＣＰＵを止めて特定プロセスの状態（メモリ、レジスタ、変数）を調べる
ことができる。また、デバッガの一種で、関数ごとの実行頻度や実行時間などといったプ
ロセスの振る舞いを測定することができるプロファイラと呼ばれるツールもある。ただ、
これらのツールを利用するためには、アプリケーションのコンパイル／リンク時に－ｐｇ
オプションを付ける必要があり、リソース等が非常に限られた環境以外では、この－ｐｇ
オプションにてコンパイル／リンクが行われるのが通常である。一方、トレーサは、一般
にＣＰＵを止めずに、システム全体で実行した命令とその結果を実行順に出力するツール
であり、プロセスを実行させながら、プロセスの振る舞いを可視化することができること
から、近年、脚光を浴びている。
【０００４】
　Ｌｉｎｕｘ（登録商標）カーネルでは、Ｌｉｎｕｘ（登録商標）カーネル２．６．２７
以降、ｆｔｒａｃｅと呼ばれるトレーサが標準装備されている。ｆｔｒａｃｅは、トレー
ス時に実行するモジュールを動的に組み込む動的トレーサと異なり、カーネルコード中に
直接トレース呼び出しが記述されている静的トレーサであるため、動的トレーサに比べて
高速に動作するのが特徴である。ここで、ｆｔｒａｃｅの動作について説明する。Ｌｉｎ

(3) JP 5717678 B2 2015.5.13

10

20

30

40

50

ｕｘ（登録商標）カーネル上で動作するプロセスは、元となるアプリケーションと、Ｌｉ
ｎｕｘ（登録商標）カーネルから提供されたランタイムライブラリとからなり、プロセス
内からＬｉｎｕｘ（登録商標）カーネルに対して様々なシステムコールが呼び出される。
一方、Ｌｉｎｕｘ（登録商標）カーネルでは、ｆｔｒａｃｅの起動／終了を制御すること
ができ、ｆｔｒａｃｅが起動している場合には、システムコールＩ／Ｆによって、システ
ムコールが呼び出される度に、そのシステムコール名と引数、戻り値をＬｉｎｕｘ（登録
商標）カーネル上のメモリに格納し、ｆｔｒａｃｅが終了されるタイミングで、ｆｔｒａ
ｃｅ出力トレースログとして、ファイルに保存される。
【０００５】
　このようなｆｔｒａｃｅを用いることによって、Ｌｉｎｕｘ（登録商標）カーネル上の
システムコールの振る舞いを監視することができ、カーネルレベルの稼動状態の確認や障
害原因の切り分けを行うのに、非常に効果的である。また、ｆｔｒａｃｅは、アーキテク
チャ非依存であり、プラグインによって柔軟に拡張することが可能である。プラグインに
は、全てのカーネル関数の入り口と出口をトレースすることができるｆｕｎｃｔｉｏｎ＿
ｇｒａｐｈ（引数や戻り値は取得できない）等がある。しかしながら、プラグインを含め
たとしても、ｆｔｒａｃｅでは、汎用アプリケーションの関数レベルのトレースログを、
引数や戻り値も含めて取得することができない。
【０００６】
　このことを解決するために、カーネルやアプリケーションに専用の改良を加えることで
、関数レベルのトレースログを出力する手法が提案されている（例えば、特許文献１およ
び特許文献２参照）。
【先行技術文献】
【特許文献】
【０００７】
【特許文献１】特開２００１－３５６９０６号公報
【特許文献２】特開２００８－０５９４０２号公報
【発明の概要】
【発明が解決しようとする課題】
【０００８】
　従来のＬｉｎｕｘ（登録商標）カーネルでは、装備されているｆｔｒａｃｅやそのプラ
グインを用いても、システムコールやカーネル関数レベルのトレースログしか取得するこ
とができず、汎用アプリケーションの関数レベルのトレースログを、引数や戻り値も含め
て取得することができなかった。また、上記に示した各特許文献では、その課題の解決の
ために、カーネルやアプリケーションに専用の改良を加える必要があるという問題点があ
った。
【０００９】
　この発明は上記のような課題を解決するためになされたものであり、装備されているｆ
ｔｒａｃｅの仕組みをそのまま利用し、カーネルやアプリケーションに専用の改良を加え
ることなく、アプリケーションの関数レベルのアプリケーショントレースログを、引数や
戻り値も含めて取得できるコンピュータシステムおよびコンピュータシステムを用いたネ
ットワークシステムを提供することを目的とする。
【課題を解決するための手段】
【００１０】
　この発明のコンピュータシステムは、
コンピュータシステムにおいて、
ｆｔｒａｃｅが装備されているＬｉｎｕｘ（登録商標）カーネルを有し、
アプリケーションの共有ライブラリを有するトレースライブラリ部と、
上記トレースライブラリ部の関数に対して、その入り口と出口において、上記関数の引数
あるいは戻り値を引数に含むとともにエラーとなるシステムコールを呼び出すことで、上
記ｆｔｒａｃｅを用いて上記関数の引数および戻り値を含めたｆｔｒａｃｅ出力トレース

(4) JP 5717678 B2 2015.5.13

10

20

30

40

50

ログの出力を行うトレースコマンド機能部、および、上記ｆｔｒａｃｅ出力トレースログ
および上記アプリケーションの関数情報を結合して上記関数の入り口および出口を含めた
アプリケーショントレースログを作成するトレース解析機能部を有するトレースプログラ
ム部とを備える
ものである。
【００１１】
　また、この発明のコンピュータシステムを用いたネットワークシステムは、
ネットワークに接続された複数の端末を有し、上記一の端末には請求項１ないし請求項５
のいずれか１項に記載のコンピュータシステムを有し、
上記他の端末は、当該他の端末のアプリケーショントレースログの記録の開始および終了
を指示するトレースクライアント機能部を有し、
上記一の端末のトレースプログラム部は、トレースサーバ機能部を有し、
上記トレースサーバ機能部は、上記トレースクライアント機能部からの指示により、上記
ネットワークおよび上記トレースクライアント機能部を介して、上記他の端末の上記アプ
リケーショントレースログを作成する
ものである。
【発明の効果】
【００１２】
　この発明のコンピュータシステムによれば、
アプリケーションの関数の入り口および出口のアプリケーショントレースログを、引数や
戻り値も含めて取得できる。
【００１３】
　また、この発明のコンピュータシステムを用いたネットワークシステムは、
ネットワークに接続された複数の端末を有し、上記一の端末には請求項１ないし請求項５
のいずれか１項に記載のコンピュータシステムを有し、
上記他の端末は、当該他の端末のアプリケーショントレースログの記録の開始および終了
を指示するトレースクライアント機能部を有し、
上記一の端末のトレースプログラム部は、トレースサーバ機能部を有し、
上記トレースサーバ機能部は、上記トレースクライアント機能部からの指示により、上記
ネットワークおよび上記トレースクライアント機能部を介して、上記他の端末の上記アプ
リケーショントレースログを作成するので、
ネットワークに接続された一の端末から他の端末の、アプリケーションの関数の入り口お
よび出口のアプリケーショントレースログを、引数や戻り値も含めて取得できる。
【図面の簡単な説明】
【００１４】
【図１】この発明の実施の形態１のコンピュータシステムの構成を示す図である。
【図２】図１に示したコンピュータシステムにおけるｆｔｒａｃｅ出力トレースログの一
例を示した図である。
【図３】図１に示したコンピュータシステムにおけるアプリケーショントレースログの一
例を示した図である。
【図４】図１に示したコンピュータシステムにおけるトレースライブラリ部のｍｏｕｎｔ
（）関数の手順を示すフローチャートである。
【図５】図１に示したコンピュータシステムにおけるトレースライブラリ部のｒｅｔｕｒ
ｎ＿ｆｕｎｃｔｉｏｎ（）関数の手順を示すフローチャートである。
【図６】図１に示したコンピュータシステムにおけるトレースプログラム部のトレースコ
マンド機能部の手順を示すフローチャートである。
【図７】図１に示したコンピュータシステムにおけるトレースプログラム部のトレース解
析機能部の手順を示すフローチャートである。
【図８】この発明の実施の形態２におけるコンピュータシステムの構成を示す図である。
【図９】図８に示したトレースプログラム部のトレースコマンド機能部の手順を示すフロ

(5) JP 5717678 B2 2015.5.13

10

20

30

40

50

ーチャートである。
【図１０】この発明の実施の形態３におけるコンピュータシステムの構成を示した図であ
る。
【図１１】図１０に示したコンピュータシステムにおけるトレースライブラリ部のｍｏｕ
ｎｔ（）関数の手順を示すフローチャートである。
【図１２】図１０に示したコンピュータシステムにおけるトレースプログラム部のトレー
スコマンド機能部の手順を示すフローチャートである。
【図１３】この発明の実施の形態４におけるコンピュータシステムの構成を示す図である
。
【図１４】この発明の実施の形態５におけるコンピュータシステムの構成を示す図である
。
【図１５】図１４に示したコンピュータシステムにおけるアプリケーショントレースグラ
フ（状態遷移図）の一例を示した図である。
【図１６】図１４に示したコンピュータシステムにおけるアプリケーショントレースグラ
フ（シーケンス図）の一例を示した図である。
【図１７】この発明の実施の形態６におけるコンピュータシステムを用いたネットワーク
システムの構成を示した図である。
【発明を実施するための形態】
【００１５】
実施の形態１．
　以下、本願発明の実施の形態について説明する。図１はこの発明の実施の形態１におけ
るコンピュータシステムの構成を示す図、図２は図１に示したコンピュータシステムにお
けるｆｔｒａｃｅ出力トレースログの具体的な一例を示した図、図３は図１に示したコン
ピュータシステムにおけるアプリケーショントレースログの具体的な一例を示した図、図
４は図１に示したコンピュータシステムにおけるｍｃｏｕｎｔ（）関数のトレースログの
出力手順を示したフローチャート、図５は図１に示したコンピュータシステムにおけるｒ
ｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数のトレースログの出力手順を示したフローチャート
、図６は図１に示したコンピュータシステムにおけるトレースコマンド機能部の手順を示
したフローチャート、図７は図１に示したコンピュータシステムにおけるトレース解析機
能部の手順を示したフローチャートである。
【００１６】
　図において、－ｐｇオプション付きのアプリケーション１０では、プロファイラ等に使
用されるプロファイル情報を保存するために、各関数の入り口で、ｍｃｏｕｎｔ（）とい
うｍｃｏｕｎｔ（）関数５を呼び出す。この発明に係わるアプリケーショントレース機能
では、このｍｃｏｕｎｔ（）関数５を、アプリケーショントレース用に置き換えるため、
Ｌｉｎｕｘ（登録商標）カーネル１のＬＤ＿ＰＲＥＬＯＡＤ６と呼ばれる機能を利用する
。Ｌｉｎｕｘ（登録商標）カーネル１では、同じ名前の関数を持つ複数のライブラリがダ
イナミックリンクされている場合、最初に見つかった関数が使用される性質がある。その
ため、環境変数として、あらかじめＬＤ＿ＰＲＥＬＯＡＤ６で共有ライブラリ作成し、指
定しておくことで、システム標準のランタイムライブラリ４の関数を、別の関数に置き換
えることができる。
【００１７】
　よって、アプリケーショントレース機能では、環境変数をＬＤ＿ＰＲＥＬＯＡＤ６とし
て、トレースライブラリ部１１を指定しておくことで、Ｌｉｎｕｘ（登録商標）カーネル
提供のランタイムライブラリ４のｍｃｏｕｎｔ（）関数５の代わりに、トレースライブラ
リ部１１のｍｃｏｕｎｔ（）関数１４およびｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数１５
が実行されるようにする。また、トレースプログラム部１２は、トレースコマンド機能部
１７とトレース解析機能部１８とを備えた単独のアプリケーションとして提供される。ト
レースプログラム部１２のトレースコマンド機能部１７は、アプリケーショントレース記
録の開始／終了を行う。アプリケーショントレース記録を開始する場合、トレースコマン

(6) JP 5717678 B2 2015.5.13

10

20

30

40

50

ド機能部１７は、対象となるアプリケーションの起動とともにアプリケーショントレース
記録を開始するか、すでに起動しているアプリケーションのプロセスに対して、アプリケ
ーショントレース記録を開始するように要求する。
【００１８】
　また、アプリケーショントレース記録を終了する場合、トレースコマンド機能部１７は
、対象となっている、すでにアプリケーショントレース記録中のプロセスに対して、アプ
リケーショントレース記録を終了するように要求する。もちろん、アプリケーションのプ
ロセスが終了した際に、自動的にアプリケーショントレース記録を終了することも可能で
ある。こうして、アプリケーショントレース記録を終了した際に、ｆｔｒａｃｅ出力トレ
ースログ９をファイルに保存する。一方、トレース解析機能部１８は、アプリケーション
トレース記録が終了した際に呼び出される。トレース解析機能部１８は、ｆｔｒａｃｅ８
が出力するｆｔｒａｃｅ出力トレースログ９と、アプリケーション１０の関数情報を結合
して、最終的な関数の入り口および出口（関数レベル）を有するアプリケーショントレー
スログ２４を出力する。例えば、図２に示すようなｆｔｒａｃｅ出力トレースログ９の場
合、アプリケーショントレースログ２４は、図３のようになる。
【００１９】
　次に上記のように構成された実施の形態１のコンピュータシステムの動作について説明
する。まず、ｍｃｏｕｎｔ（）関数１４の入り口を示すトレースログの出力手順を図４に
基づき説明する。トレースライブラリ部１１のｍｃｏｕｎｔ（）関数１４が呼び出される
と、最初に、トレースライブラリ部１１内のトレースフラグ１３がＯＮになっているか否
かを確認する（図４のステップＳ１０００）。そして、ＯＦＦになっている場合（Ｎｏ）
には、アプリケーショントレースログの出力を行わないまま、ここで処理を終了する。ま
た、ＯＮになっている場合（Ｙｅｓ）には、ｍｃｏｕｎｔ（）関数１４を呼び出した元の
関数のスタック情報を調べ、呼び出し元関数が終了した際のリターンアドレスを、別メモ
リに記憶する（図４のステップＳ１０１０）。次に、上記リターンアドレスを、トレース
ライブラリ部１１のｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数１５の開始アドレスに置き換
える（図４のステップＳ１０２０）。
【００２０】
　よって、呼び出し元関数が終了した際に、必ずトレースライブラリ部１１のｒｅｔｕｒ
ｎ＿ｆｕｃｔｉｏｎ（）関数１５が呼び出されるようになる。次に、同じくスタック情報
から、呼び出し元関数の各引数の値を取得する（図４のステップＳ１０３０）。最後に、
ｆｔｒａｃｅ８に関数の入り口のトレースログを残すため、あえて明示的にエラーとなる
ｓｙｓ＿ｓｐｌｉｃｅ（）システムコール７をシステムコールＩ／Ｆ２が呼び出す（図４
のステップＳ１０４０）。ここでは、なるべくエラーの処理が短く、システムコールの引
数が多いｓｙｓ＿ｓｐｌｉｃｅ（）システムコール７を用いる（尚、ｓｙｓ＿ｓｐｌｉｃ
ｅ（）システムコール７は、６個の引数を持っているものである）。そして、ｓｙｓ＿ｓ
ｐｌｉｃｅ（）システムコール７の引数（６個）として、必ずシステムコールがエラーと
なり、後に、ここで埋め込んだことがわかるようなエラー値と、呼び出し元関数のアドレ
ス位置と、呼び出し元関数の引数を最大４個までとを指定して、ｓｙｓ＿ｓｐｌｉｃｅ（
）システムコール７を実行する。以上で、トレースライブラリ部１１のｍｃｏｕｎｔ（）
関数１４の処理は終了である。
【００２１】
　次に、ｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数１５の出口を示すトレースログの出力手
順を図５に基づいて説明する。まず、トレースライブラリ部１１のｒｅｔｕｒｎ＿ｆｕｃ
ｔｉｏｎ（）関数１５が呼び出されると、最初に、ｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関
数１５を呼び出した元の関数のスタック情報を調べ、呼び出し元関数の戻り値を取得する
（図５のステップＳ１１００）。次に、ｆｔｒａｃｅ８に関数出口のトレースログを残す
ため、あえて明示的にエラーとなるｓｙｓ＿ｓｐｌｉｃｅ（）システムコール７をシステ
ムコールＩ／Ｆ２が呼び出す（図５のステップＳ１１１０）。ここでは、上記において説
明した場合と同様に、ｓｙｓ＿ｓｐｌｉｃｅ（）システムコール７を用いる。

(7) JP 5717678 B2 2015.5.13

10

20

30

40

50

【００２２】
　そして、ｓｙｓ＿ｓｐｌｉｃｅ（）システムコール７の引数として、必ずシステムコー
ルがエラーとなり、後に、ここで埋め込んだことがわかるようなエラー値と、呼び出し元
関数のアドレス位置と、呼び出し元関数の戻り値とを指定して、ｓｙｓ＿ｓｐｌｉｃｅ（
）システムコール７を実行する。最後に、先に別メモリに保存しておいた、呼び出し元関
数の本来のリターンアドレスを呼び出し、ｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数１５の
リターンアドレスの代わりに置き換える（図５のステップＳ１１２０）。このようにすれ
ば、ｒｅｔｕｒｎ＿ｆｕｃｔｉｏｎ（）関数１５が終了した際に、呼び出し元関数を呼び
出した本来の関数に処理が戻ることとなる。
【００２３】
　次に、トレースプログラム１２のトレースコマンド機能部１７の手順を図６に基づいて
説明する。まず、アプリケーショントレースログ記録を開始する場合は、まず、ｆｔｒａ
ｃｅ８の開始を行う（図６のステップＳ１２００）。次に、アプリケーショントレースロ
グを記録する対象がすでに起動済みのアプリケーションか否かを判断する（図６のステッ
プＳ１２１０）。そして、起動済みのアプリケーションでない場合（Ｎｏ）には、対象ア
プリケーションのプロセスを新しく起動する（図６のステップＳ１２２０）。また、起動
済みのアプリケーションである場合（Ｙｅｓ）、および、ステップＳ１２２０にてアプリ
ケーションを起動した後に、対象プロセスにアタッチされているトレースライブラリ部１
１のトレースフラグ１３をＯＮに設定する（図６のステップＳ１２３０）。このことで、
アプリケーショントレースログ出力が開始となる。
【００２４】
　一方、アプリケーショントレースログ出力を終了する場合は、まず、アプリケーション
トレースログを記録する対象のプロセスが終了しているか否かを判断する（図６のステッ
プＳ１２４０）。そして、起動中のプロセスである場合（Ｎｏ）には、対象プロセスにア
タッチされているトレースライブラリ部１１のトレースフラグ１３をＯＦＦに設定する（
図６のステップＳ１２５０）。また、起動中のプロセスでない場合（Ｙｅｓ）、および、
ステップＳ１２５０にてプロセスを終了した場合には、ｆｔｒａｃｅ８のを終了を行う（
図６のステップＳ１２６０）する。次に、ｆｔｒａｃｅ出力トレースログ９の出力を行う
（図６のステップＳ１２７０）。このことにより、アプリケーショントレースログ記録が
終了となる。
【００２５】
　次に、トレースプログラム１２のトレース解析機能部１８の手順を図７に基づいて説明
する。まず、トレースプログラム１２のトレースコマンド機能部１７が出力したｆｔｒａ
ｃｅ出力トレースログ９の読み込みを行う（図７のステップＳ１３００）。次に、対象の
アプリケーション１０本体から関数情報（各関数の名前とアドレス位置）を取得する（図
７のステップＳ１３１０）。次に、ｆｔｒａｃｅ出力トレースログ９に出力されているダ
ミーシステムコール（引数に呼び出し元関数のアドレスが位置が記録されている）から関
数情報を検索し、ダミーシステムコールを置換する（図７のステップＳ１３２０）。次に
、このようにダミーシステムコールと置き換えることによって、最終的なアプリケーショ
ントレースログ２４を出力する（図７のステップＳ１３３０）。
【００２６】
　上記のように構成された実施の形態１のコンピュータシステムによれば、トレースライ
ブラリ部では、関数の入り口と出口で呼び出され内部でアプリケーショントレースログを
埋め込むための関数を備え、トレースプログラム部では、アプリケーショントレース記録
の開始／終了を制御するトレースコマンド機能部と、生成したｆｔｒａｃｅのトレースロ
グを解析し最終的なアプリケーショントレースログを出力するトレース解析機能部とを備
え、トレースライブラリ部によって、アプリケーションの各関数の入り口と出口において
、あえてエラーとなるシステムコールを呼び出し、この状態でｆｔｒａｃｅによるトレー
スログを取得し、その後、取得したｆｔｒａｃｅのトレースログに含まれている、先ほど
のダミーのシステムコールを、そのアプリケーション本体から取得した関数情報に置き換

(8) JP 5717678 B2 2015.5.13

10

20

30

40

50

えることによって、アプリケーショントレースログを作成しているため、ｆｔｒａｃｅ出
力トレースログに、汎用アプリケーション関数レベルのトレースログを容易に追加するこ
とができる。このため、カーネルやアプリケーションに専用の改良を加えることなく、汎
用アプリケーションの関数レベルのアプリケーショントレースログを、引数や戻り値も含
めて取得することができるようになる。その結果、アプリケーションの稼動状態の確認や
障害原因の切り分けが容易となり、より効率的に障害の解析を行うことができる。
【００２７】
実施の形態２．
　上記実施の形態１においては、単独のプロセスを対象とした場合について示したが、Ｌ
ｉｎｕｘ（登録商標）はマルチタスクＯＳであり、複数のプロセスが、互いにどのように
交じりあっているかを明らかにしたい場合がある。そこで、本実施の形態２においては、
上記実施の形態１に加えて、複数のプロセスについてのアプリケーショントレースログを
取得できるようにした場合について説明する。
【００２８】
　図８はこの発明の実施の形態２におけるコンピュータシステムの構成を示す図、図９は
図８に示したコンピュータシステムにおけるトレースコマンドの手順を示したフローチャ
ートである。図において、上記実施の形態１とは異なり、対象となるアプリケーション１
０が複数となっている。尚、複数のプロセス３についてのアプリケーショントレースログ
２４を取得する場合、それぞれのプロセス３のアプリケーショントレースログ２４をひと
つのファイルにまとめることも、また、プロセス３ごとにアプリケーショントレースログ
２４のファイルを分けることも両方場合が可能である。
【００２９】
　次に、上記のように構成された実施の形態２のコンピュータシステムの動作について説
明する。トレースプログラム１２のトレースコマンド機能部１７の動作手順について図９
に基づいて説明する。まず、アプリケーショントレースログ記録を開始する場合は、すで
にトレース中のプロセスがあるか否かを確認する（図９のステップＳ１２８０）。そして
、トレース中のプロセスがない場合（Ｎｏ）は、ｆｔｒａｃｅ８の開始を行う（図９のス
テップＳ１２００）。また、トレース中のプロセスがある場合（Ｙｅｓ）、および、ステ
ップＳ１２００にてｆｔｒａｃｅ８が開始されると、すでに起動されているプロセスがア
プリケーショントレースログを出力する対象であるか否かを判断する（図９のステップＳ
１２１０）。そして、起動中のプロセスが対象でない場合（Ｎｏ）は、対象アプリケーシ
ョンのプロセスを新しく起動する（図９のステップＳ１２２０）。また、起動中のプロセ
スが対象である場合（Ｙｅｓ）、および、ステップＳ１２２０にてプロセスが起動される
と、対象プロセスにアタッチされているトレースライブラリ部１１のトレースフラグ１３
をＯＮに設定する（図９のステップＳ１２３０）。このことにより、アプリケーショント
レースログ記録が開始される。
【００３０】
　一方、アプリケーショントレースログ出力を終了する場合は、アプリケーショントレー
スログを出力する対象のプロセスが終了しているか否かを判断する（図９のステップＳ１
２４０）。そして、対象とするプロセスが終了していない場合（Ｎｏ）は、対象プロセス
にアタッチされているトレースライブラリ部１１のトレースフラグ１３をＯＦＦに設定す
る（図９のステップＳ１２５０）。次に、今回の対象プロセス以外にもトレース中のプロ
セスがあるか否かを確認する（図９のステップＳ１２９０）。そして、トレース中のプロ
セスがない場合（Ｎｏ）は、ｆｔｒａｃｅ８の終了を行う（図９のステップＳ１２６０）
。次に、ｆｔｒａｃｅ出力トレースログ９の出力して（図９のステップＳ１２７０）、ア
プリケーショントレースログ記録が終了する。また、ステップＳ１２９０においてトレー
ス中のプロセスがある場合（Ｙｅｓ）にも、終了する。
【００３１】
　上記のように構成された実施の形態２のコンピュータシステムによれば、上記実施の形
態１と同様の効果を奏するのはもちろんのこと、複数のプロセスを対象に、アプリケーシ

(9) JP 5717678 B2 2015.5.13

10

20

30

40

50

ョントレースログを出力することが可能となり、複数プロセスが互いにどのように交じり
あっているかの状態をトレースすることができるようになる。
【００３２】
実施の形態３．
　上記各実施の形態においては、トレースプログラムから明示的にアプリケーショントレ
ースの開始を指示する必要があったため、通常はアプリケーショントレースログを記録し
ないが、本実施の形態３においては、何らかの問題が発生した場合にだけ、アプリケーシ
ョントレースログを記録する場合について説明する。本実施の形態３では、上記各実施の
形態に加えて、新たにトレース条件１６を設定できるようにすることで、何か問題が発生
したときに、自動的にアプリケーショントレースログ記録の開始を制御できる機能を有す
るものである。
【００３３】
　図１０はこの発明の実施の形態３におけるコンピュータシステムの構成を示した図であ
る。上記各実施の形態と比べて、新たにトレースライブラリ部１１の中に、トレース条件
１６が追加されている。このトレース条件１６には、アプリケーションから取得した関数
情報からその関数のアドレス位置を取得することで、例えば、ある関数が呼び出された場
合にアプリケーショントレースログ出力を開始するなどの設定を行うことができる。また
、トレース条件１６は、トレースプログラム１２のトレースコマンド機能部１７によって
、外部からトレース条件データ２２が読み込まれ自由に変更することができる。
【００３４】
　ここで、トレース条件１６を変更するためのデータが、トレース条件データ２２であり
、例えば以下のような情報が設定できる。
　＊指定した関数の入り口／出口で、アプリケーショントレースログ記録を開始／終了す
る。また、その関数の引数や戻り値に応じて、アプリケーショントレースログ記録を開始
／終了する。
　＊指定した時間に、アプリケーショントレースログ記録を開始／終了する。
　＊指定した関数が、ある一定回数以上呼び出された際に、アプリケーショントレースロ
グ記録を開始／終了する。
【００３５】
　次に上記のように構成された実施の形態３のコンピュータシステムの動作について説明
する。この発明の実施の形態３によるトレースライブラリ部１１のｍｃｏｕｎｔ（）関数
１４の動作について図１１に基づいて説明する。まず、上記各実施の形態と同様に、トレ
ースフラグがＯＮになっているか否かを判断する（図１１のステップＳ１０００）。そし
て、ＯＦＦの場合（Ｎｏ）には、処理を終了する。また、ＯＮの場合（Ｙｅｓ）には、ト
レース条件１６を満たしているか否かを判断する（図１１のステップＳ１０５０）。そし
て、満たしていない場合（Ｎｏ）には、処理を終了する。また、トレース条件１６を満た
している場合（Ｙｅｓ）には、すでにｆｔｒａｃｅが開始されているか否かを判断する（
図１１のステップＳ１０６０）。そして、ｆｔｒａｃｅが開始されていない場合（Ｎｏ）
には、ｆｔｒａｃｅの開始を行う（図１１のステップＳ１２００）。また、ｆｔｒａｃｅ
が開始されている場合（Ｙｅｓ）、および、ステップＳ１２００にてｆｔｒａｃｅを開始
した場合には、上記各実施の形態と同様に、ステップＳ１０１０からステップＳ１０４０
の工程を行う。
【００３６】
　次に、トレースプログラム１２のトレースコマンド機能部１７の手順を図１２に基づい
て説明する。まず、アプリケーショントレースログ記録を開始する場合は、ｆｔｒａｃｅ
８はすでに開始されているため、上記各実施の形態のような、ｆｔｒａｃｅの開始の工程
は省略され、以下、上記各実施の形態と同様に、ステップＳ１２１０ないしステップＳ１
２３０の工程を行う。また、終了する場合には、上記各実施の形態と同様の工程にて行う
。
【００３７】

(10) JP 5717678 B2 2015.5.13

10

20

30

40

50

　上記のように構成された実施の形態３によれば、上記各実施の形態と同様の効果を奏す
るのはもちろんのこと、ユーザが明示的にアプリケーショントレースの開始を指示しなく
ても、あらかじめ設定しておいた条件によって、自動的にアプリケーショントレースログ
の記録ができるようになる。
【００３８】
実施の形態４．
　上記各実施の形態においては、対象とするアプリケーション１０の全ての関数レベルの
アプリケーショントレースログをファイルに出力している。そのため、アプリケーション
１０によっては、非常に膨大のアプリケーショントレースログが出力されてしまい、ログ
が溢れてしまう恐れがある。そこで、本実施の形態４は、上記各実施の形態に加えて、ｆ
ｔｒａｃｅ出力トレースログ９に対して、フィルタリングを施し、必要な箇所に絞ってア
プリケーショントレースログ２４を出力できるものについて説明する。
【００３９】
　図１３はこの発明の実施の形態４におけるコンピュータシステムのトレースプログラム
の部分の詳細を示した図である。上記各実施の形態と比べて、トレースプログラム１２の
トレース解析機能部１８が、フィルタリング設定データ２３を入力とすることで、アプリ
ケーショントレースログ２４の情報をフィルタリングする。このとき、フィルタリング設
定データ２３には、例えば、以下のような情報を設定することができる。
　＊指定した関数の入り口／出口を、アプリケーショントレースログ２４として出力する
／しない。また、その関数の引数／戻り値に応じて、アプリケーショントレースログ２４
として出力する／しない。
　＊指定した時間に呼び出された関数の入り口／出口を、アプリケーショントレースログ
２４として出力する。
　＊複数回呼び出される関数で最初に呼び出された関数の入り口／出口を、アプリケーシ
ョントレースログ２４として出力する。尚、これらのフィルタリングは、後から何度でも
自由に条件を変えて行うことができる。
【００４０】
　上記のように構成された実施の形態４のコンピュータシステムによれば、上記各実施の
形態と同様の効果を奏するのはもちろんのこと、事前に、不必要なアプリケーショントレ
ースログをフィルタリングすることでき、障害の解析が容易となる。
【００４１】
実施の形態５．
　上記各実施の形態においては、出力されるアプリケーショントレースログ２４は、単な
るログの並びであるため、上記実施の形態３のように、そのログのサイズが膨大になった
場合、人間が解析を行うのが困難になる場合があった。そこで、本実施の形態５において
は、上記各実施の形態に加えて、出力したアプリケーショントレースログ２４を、人間が
理解しやすいグラフの形に変更し、可視化する場合について説明する。
【００４２】
　図１４はこの発明の実施の形態５のコンピュータシステムにおけるトレースプログラム
の部分の詳細を説明するための図である。上記各実施の形態と比べて、トレースプログラ
ム１２に、新たに可視化機能部１９が追加されている。可視化機能部１９は、トレース解
析機能部１８が出力したアプリケーショントレースログ２４を入力として、アプリケーシ
ョントレースグラフ２５を出力する。具体的には図１５および図１６に示すようなアプリ
ケーショントレースグラフ２５の一例である。これらの図のように、出力されるグラフと
しては、状態遷移図やシーケンス図が想定される。
【００４３】
　上記のように構成された実施の形態５のコンピュータシステムによれば、上記各実施の
形態と同様の効果を奏するのはもちろんのこと、単なるログの並びであったアプリケーシ
ョントレースログをグラフ化することができ、より容易に解析することが可能となる。
【００４４】

(11) JP 5717678 B2 2015.5.13

10

20

30

40

実施の形態６．
　上記各実施の形態においては、スタンドアローンのシステム構成について示したが、近
年の複雑化したコンピュータシステムにおいては、遠隔地にあるような端末に対してアプ
リケーショントレースログ２４を取得したい場合がある。そこで、本実施の形態６は、上
記各実施の形態に加えて、コンピュータシステムを用いたネットワークシステムを構築し
、遠隔地からネットワーク越しに、アプリケーショントレースログ記録の開始／終了や、
アプリケーショントレースログ２４の取得ができるようにする場合について説明する。
【００４５】
　図１７はこの発明の実施の形態６おけるコンピュータシステムを用いたネットワークシ
ステムの構成を示す図である。上記各実施の形態と異なり、一の端末としてのサーバ端末
２７と他の端末としてのクライアント端末２６とがネットワーク３０に接続された状態と
なっている。そして、クライアント端末２６上には、トレースクライアント機能部２１が
備えられている。また、サーバ端末２７上には、上記各実施の形態と同様なコンピュータ
システムに加えて、トレースプログラム部１２にはトレースサーバ機能部２０が追加され
る。尚、クライアント端末２６は、自身のアプリケーショントレースを行わないならば、
サーバ端末２７と同様に、上記各実施の形態と同様なコンピュータシステムを備えていて
もよい。但し、本実施の形態においては、クライアント端末２６は、自身でｆｔｒａｃｅ
を直接使用しないため、Ｌｉｎｕｘ（登録商標）である必要はない。
【００４６】
　次に、上記のように構成された実施の形態６のコンピュータシステムを用いたネットワ
ークシステムの動作について説明する。まず、クライアント端末２６のトレースクライア
ント機能部２１は、ネットワーク３０でつながった遠隔地のサーバ端末２７のトレースサ
ーバ機能部２０と接続を行い、アプリケーショントレースログの記録の開始および終了を
指示する。次に、指示を受けたトレースサーバ機能部２０は、その指示にしたがって、上
記各実施の形態と同様に、クライアント端末２６における、アプリケーショントレースロ
グ記録の開始／終了を行う。そして、アプリケーショントレースログ記録を終了し、最終
的なアプリケーショントレースログ２４やアプリケーショントレースグラフ２５が出力さ
れたタイミングで、そのデータをクライアント端末２６上のトレースクライアント機能部
２１に送信する。
【００４７】
　上記のように構成された実施の形態６によれば、上記各実施の形態と同様の効果を奏す
るのはもちろんのこと、遠隔地に設置されたＬｉｎｕｘ（登録商標）コンピュータシステ
ムでも、リモートでアプリケーショントレースログを取得することができ、一層の解析の
容易化を図ることができる。
【００４８】
　尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各
実施の形態を適宜、変形、省略することが可能である。
【符号の説明】
【００４９】
　１　Ｌｉｎｕｘ（登録商標）カーネル、８　ｆｔｒａｃｅ、
９　ｆｔｒａｃｅ出力トレースログ、１１　トレースライブラリ部、
１２　トレースプログラム部、１７　トレースコマンド機能部、
１８　トレース解析機能部、１９　可視化機能部、２０　トレースサーバ機能部、
２１　トレースクライアント機能部、２２　トレース条件データ、
２３　フィルタリング設定データ、２４　アプリケーショントレースログ、
２６　クライアント端末、２７　サーバ端末、３０　ネットワーク。

(12) JP 5717678 B2 2015.5.13

【図１】 【図２】

【図３】 【図４】

【図５】

(13) JP 5717678 B2 2015.5.13

【図６】 【図７】

【図８】 【図９】

(14) JP 5717678 B2 2015.5.13

【図１０】 【図１１】

【図１２】

【図１３】

【図１４】

(15) JP 5717678 B2 2015.5.13

【図１５】 【図１６】

【図１７】

(16) JP 5717678 B2 2015.5.13

10

フロントページの続き

 審査官 多賀　実

(56)参考文献 特開２００９－２３７６１０（ＪＰ，Ａ）　　　
 丸山直也 外１名，大規模分散システムにおける故障の解析，電子情報通信学会技術研究報告，
 社団法人電子情報通信学会，２００６年　７月２５日，第１０６巻，第１９８号，ｐ．１９－２
 ４
 今井浩二，ＵＮＩＸ処方箋，ＵＮＩＸ ＵＳＥＲ，ソフトバンクパブリッシング株式会社，２０
 ０５年　２月　１日，第１４巻，第２号，ｐ．１３３－１３７

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ１１／２８－１１／３６

	biblio-graphic-data
	claims
	description
	drawings
	overflow

