
(12) STANDARD PATENT (11) Application No. AU 2013277589 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Offloading virtual machine flows to physical queues

(51) International Patent Classification(s)
G06F 9/50 (2006.01)

(21) Application No: 2013277589 (22) Date of Filing: 2013.06.12

(87) WIPO No: W013/191972

(30) Priority Data

(31) Number (32) Date (33) Country
13/529,747 2012.06.21 US

(43) Publication Date: 2013.12.27
(44) Accepted Journal Date: 2018.02.22

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Kandula, Srikanth;Kim, Changhoon;Dabagh, Alireza;Bansal, Deepak;Maltz, David A.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2010025127 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/191972 Al
27 December 2013 (27.12.2013) W I P 0 I P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/50 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2013/045290 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,

12 June 2013 (12.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
13/529,747 21 June 2012 (21.06.2012) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: MICROSOFT CORPORATION [US/US]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

One Microsoft Way, Redmond, Washington 98052-6399 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(72) Inventors: KANDULA, Srlkanth; c/o Microsoft Corpora- EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

tion, LCA - International Patents, One Microsoft Way, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

Redmond, Washington 98052-6399 (US). KIM, Chang- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

hoon; c/o Microsoft Corporation, LCA - International Pat- KM, ML, MR, NE, SN, TD, TG).

ents, One Microsoft Way, Redmond, Washington 98052- Declarations under Rule 4.17:
6399 (US). DABAGH, Alireza; c/o Microsoft Corpora
tion, LCA - International Patents, One Microsoft Way, as to applicant's entitlement to applyfor and be granted a

Redmond, Washington 98052-6399 (US). BANSAL, patent (Rule 4.17(ii))

Deepak; co Microsoft Corporation, LCA - International - as to the applicant's entitlement to claim the priority of the
Patents, One Microsoft Way, Redmond, Washington earlier application (Rule 4.17(iii))

98052-6399 (US). MALTZ, David A.; c/o Microsoft Cor- Published
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). - with international search report (Art. 21(3))

(54) Title: OFFLOADING VIRTUAL MACHINE FLOWS TO PHYSICAL QUEUES

Host 402 Virtual Machine Virtual Machines
412a 412

Virtual Switch 404 Data

Virtual Queues 408 432

RlQueue Queue
408a 408ni Virtual

Function
Driver

PhysivFunction
Driver 410

Data Path 428 Data Path 430

Physical Physical Queues 422 Functal Virtual Funclons 424
Rulesio Function 424a

Physek ork2 RulesEternt al

Physical Ntwo rk Neor ri ~~Device 416a rofc 2

Devices 416

(57) Abstract: The present invention extends to methods, systems, and computer program products for offloading virtual machine
flows to physical queues. A computer system executes one or more virtual machines, and programs a physical network device with
one or more rules that manage network traffic for the virtual machines. The computer system also programs the network device to

manage network traffic using the rules. In particular, the network device is programmed to determine availability of one or more
f4 physical queues at the network device that are usable for processing network flows for the virtual machines. The network device is

also programmed to identify network flows for the virtual machines, including identifying characteristics of each network flow. The
network device is also programmed to, based on the characteristics of the network flows and based on the rules, assign one or more
of the network flows to at least one of the physical queues.

BACKGROUND

[0001] 1. Background and Relevant Art

[0002] Computer systems and related technology affect many aspects of society.

Indeed, the computer system's ability to process information has transformed the way we

5 live and work. Computer systems now commonly perform a host of tasks (e.g., word

processing, scheduling, accounting, etc.) that prior to the advent of the computer system

were performed manually. More recently, computer systems have been coupled to one

another and to other electronic devices to form both wired and wireless computer networks

over which the computer systems and other electronic devices can transfer electronic data.

10 Accordingly, the performance of many computing tasks is distributed across a number of

different computer systems and/or a number of different computing environments.

[0003] Some computer systems are configured to provide virtualized environments for

hosting one or more virtual machines. For example, para-virtualized execution

environments include hypervisors. Hypervisors provide a parent partition (sometimes

15 referred to as a host) and one or more child partitions. The parent partition communicates

with and manages physical hardware, and is configured to run a host operating system and

to manage a virtualization stack. Each child partition is configured as a "virtual machine"

that runs a corresponding guest operating system.

[0004] Common scenarios in virtualization involve managing network packets among

20 virtual machines that are executing at a virtualization host computer system, and to

manage network packets flowing between the virtual machines and computers systems

remote from the host computer system. As such, virtualization stacks at host operating

systems may include networking virtualization stacks, including virtual switches. Virtual

switches are configured to intercept, inspect, and manipulate network packets being

25 communicated in connection with the virtual machines. Doing so, however, can be

inefficient, as it can cause frequent and costly (e.g., in terms of CPU usage) context

switches between the host operating system and guest operating systems and can introduce

latency in network communications.

[0005] Recent developments in virtualization include Single-Root I/O Virtualization

30 (SRIOV). SRIOV is an extension to the Peripheral Component Interconnect Express

(PCIe) bus architecture that enables PCIe devices to communicate directly with child

partitions. As such, SRIOV enables PCIe devices to expose themselves to child partitions

/ virtual machines through the hypervisor. For example, a SRIOV-compliant physical

Network Interface Card (NIC) or switch may present a physical function to the parent

1

partition and present one or more virtual functions to corresponding child partitions. The

host operating system can then include a physical function driver that communicates with

the physical function, and each guest operating system can execute a virtual function

driver that communicates with the corresponding virtual function. The physical NIC can

5 then communicate network packets directly with guest operating systems (bypassing the

host operating system), which can greatly improve network performance.

[0006] Despite the advances that SRIOV brings, there remain some inefficiencies in

the area of network packet processing in virtualization environments.

[0006a] It is desired to address or ameliorate one or more disadvantages or limitations

10 associated with the prior art, or to at least provide a useful alternative.

SUMMARY

[0006b] In one embodiment, the present invention provides a virtualization host

computer system that is configured to manage network traffic for one or more virtual

machines that are executing at the virtualization host computer system, the virtualization

15 host computer system comprising:

one or more processors;

one or more physical network devices; and

one or more hardware storage devices having stored thereon computer-executable

instructions that, when executed by the one or more processors, cause the virtualization

20 host computer system to execute a virtual switch, the virtual switch being configured for

processing a plurality of network flows for the one or more virtual machines at one or

more virtual queues, the virtual switch also being configured to program each of the one or

more physical network devices with one or more corresponding rules for offloading

network flows and to perform the following based on the one or more rules:

25 determine availability of one or more physical queues at the physical

network device, each of the one or more physical queues being usable for

offloading one or more of the plurality of network flows for the one or more

virtual machines from the virtual switch at the virtualization host computer

system;

30 identify a first subset of the plurality of network flows for the one or

more virtual machines that are to be offloaded from the virtual switch at the

virtualization host computer system to the one or more physical queues, based on

one or more characteristics of each of the plurality of network flows, including

determining that both a first and second flow of the first subset of network flows

2

are to be concurrently offloaded to a first physical queue of the one or more

physical queues based on the first and second flows each having a relatively low

traffic level compared to a third flow of the subset of network flows, and

determining that the third flow is to be uniquely offloaded to a second physical

5 queue of the one or more physical queues based on the third flow having a

relatively high traffic level compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the one or

more physical queues, including concurrently offloading the first and second

flows to the first physical queue and uniquely offloading the third flow to the

10 second physical queue, wherein a second subset of the plurality of network flows

for the one or more virtual machines remain at the one or more virtual queues of

the virtual switch at the virtualization host computer system.

[0006c] In another embodiment, the present invention provides

method, implemented at a computer system that includes one or more processors

15 and one or more physical network devices, for managing network traffic, the method

comprising:

executing one or more virtual machines;

executing a virtual switch, the virtual switch being configured for processing a

plurality of network flows for the one or more virtual machines at one or more virtual

20 queues;

programming a physical network device with one or more rules for offloading

network flows, the one or more rules being configured to manage network traffic for the

one or more virtual machines; and

programming the physical network device to manage network traffic, including

25 the following:

determining availability of one or more physical queues at the physical

network device, each of the one or more physical queues being usable for

offloading one or more of the plurality of network flows for the one or more

virtual machines from the virtual switch at the virtualization host computer

30 system;

identifying a first subset of the plurality of network flows for the one or

more virtual machines that are to be offloaded from the virtual switch at the

virtualization host computer system to the one or more physical queues, based on

one or more characteristics of each of the plurality of network flows, including:

3

determining that both a first and second flow of the first subset of

network flows are to be concurrently offloaded to a first physical queue of the

one or more physical queues based on the first and second flows each having a

relatively low traffic level compared to a third flow of the subset of network

5 flows, and determining that the third flow is to be uniquely offloaded to a second

physical queue of the one or more physical queues based on the third flow having

a relatively high traffic level compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the one or

more physical queues, including concurrently offloading the first and second

10 flows to the first physical queue and uniquely offloading the third flow to the

second physical queue, wherein a second subset of the plurality of network flows

for the one or more virtual machines remain at the one or more virtual queues of

the virtual switch at the virtualization host computer system.

[0006d] In a further embodiment, the present invention provides one or more

15 hardware storage devices having stored thereon computer-executable instructions that,

when executed by one or more processors, cause a virtualization host computer system to

execute a virtual switch, the virtual switch being configured for processing a plurality of

network flows for the one or more virtual machines at one or more virtual queues, the

virtual switch also configured to program one or more physical network devices with one

20 or more corresponding rules for offloading network flows and to perform the following

based on the one or more rules:

determine availability of one or more physical queues at the physical network

device, each of the one or more physical queues being usable for offloading one or more

of the plurality of network flows for the one or more virtual machines from the virtual

25 switch at the virtualization host computer system;

identify a first subset of the plurality of network flows for the one or more virtual

machines that are to be offloaded from the virtual switch at the virtualization host

computer system to the one or more physical queues, based on one or more characteristics

of each of the plurality of network flows, including determining that both a first and

30 second flow of the first subset of network flows are to be concurrently offloaded to a first

physical queue of the one or more physical queues based on the first and second flows

each having a relatively low traffic level compared to a third flow of the subset of network

flows, and determining that the third flow is to be uniquely offloaded to a second physical

4

queue of the one or more physical queues based on the third flow having a relatively high

traffic level compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the one or more

physical queues, including concurrently offloading the first and second flows to the first

5 physical queue and uniquely offloading the third flow to the second physical queue,

wherein a second subset of the plurality of network flows for the one or more virtual

machines remain at the one or more virtual queues of the virtual switch at the

virtualization host computer system.

[0007] This summary is provided to introduce a selection of concepts in a simplified

10 form that are further described below in the Detailed Description. This Summary is not

intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used as an aid in determining the scope of the claimed subject matter.

[0008] [Deleted]

BRIEF DESCRIPTION OF THE DRAWINGS

15 [0009] Some embodiments of the present invention are hereinafter described, by way

of example only, with reference to the accompanying drawings, in which:

[0010] Figure 1 illustrates an exemplary computing system on which the principled

described herein may be employed.

[0011] Figure 2 illustrates an environment in which the principles described herein

20 may be employed.

[0012] Figure 3 illustrates a host on which the principles described herein may be

employed.

[0013] Figure 4 illustrates an example computer architecture that facilitates offloading

virtual machine flows to physical queues.

25 [0014] Figure 5 illustrates a flow chart of an example method for managing network

traffic.

DETAILED DESCRIPTION

[0015] Embodiments of the present invention extend to methods, systems, and

30 computer program products for offloading virtual machine network flows to physical

queues of network hardware. As such, embodiments of the present invention can enable

virtual machine network traffic to pass directly between virtual machines and physical

hardware, bypassing the parent partition and avoiding the inefficiencies associated with

routing network traffic through the parent partition. In particular, embodiments of the

4a

present invention include configuring physical network hardware to assign network flows

from virtual machines to physical queues at the physical network hardware, and

potentially to assign more network flows to physical queues than the number of physical

queues that exist at the physical network hardware.

5 [0016] In some embodiments, a method for managing network traffic includes a

computer system executing one or more virtual machines. The method also includes the

computer system programming a physical network device with one or more rules that are

used by the physical network device to manage network traffic for the virtual machines.

In particular, the physical network device is programmed to determine availability of one

10 or more physical queues at the physical network device. The physical queues are usable

for processing network flows for the virtual machines. The physical network device is

also programmed to identify a plurality of network flows for the virtual machines,

including identifying characteristics of each of the network flows. The physical network

device is also programmed to assign one or more of the plurality of network flows to at

15 least one of the physical queues based on the characteristics of the network flows and

based on the rules.

[0017] [Deleted]

[0018] First, some introductory discussion regarding general computing systems and

computing environments in or on which the principles described herein may be employed

20 will be described with respect to Figures 1-3. Then the basic principles for offloading

virtual machine network flows to physical queues of network hardware will be described

with respect to Figures 4 and 5.

[0019] Computing systems are now increasingly taking a wide variety of forms.

Computing systems may, for example, be handheld devices, appliances, laptop computers,

25 desktop computers, mainframes, distributed computing systems, or even devices that have

not conventionally been considered a computing system. In this description and in the

claims, the term "computing system" is defined broadly as including any device or system

(or combination thereof) that includes at least one physical and tangible processor, and a

physical and tangible memory capable of having stored thereon computer-executable

30 instructions that may be executed by the processor(s). The memory may take any form

and may depend on the nature and form of the computing system. A computing system

may be distributed over a network environment and may include multiple constituent

computing systems.

4b

[0020] Embodiments described herein may comprise or utilize a special purpose or

general-purpose computer including computer hardware, such as, for example, one or

more processors and system memory. For example, Figure 1 illustrates an exemplary

computing system 100. As illustrated in Figure 1, in its most basic configuration,

5 computing system 100 typically includes at least one processing unit 102 and memory

104. The memory 104 may be physical system memory, which may be volatile, non

volatile, or some combination of the two. The term "memory" may also be used herein to

refer to non-volatile mass storage such as physical storage media. If the computing system

100 is distributed, the processing, memory and/or storage capability may be distributed as

10 well. As used herein, the term "module" or "component" can refer to software objects or

routines that execute on the computing system 100. The different components, modules,

engines, and services described herein may be implemented as objects or processes that

execute on the computing system 100 (e.g., as separate threads).

4c

WO 2013/191972 PCT/US2013/045290

[0021] In the description that follows, embodiments are described with reference to

acts that are performed by one or more computing systems, such as the computing system

100. If such acts are implemented in software, one or more processors of the associated

computing system that performs the acts direct the operation of the computing system in

5 response to having executed computer-executable instructions. An example of such an

operation involves the manipulation of data. Within the context of the computing system

100, computer-executable instructions (and the manipulated data) may be stored in the

memory 104. Computing system 100 may also contain communication channels 108 that

allow the computing system 100 to communicate with other message processors over, for

10 example, network 110.

[0022] Embodiments described herein also include physical and other computer

readable media for carrying or storing computer-executable instructions and/or data

structures. Such computer-readable media can be any available media that can be

accessed by a general purpose or special purpose computer system. Computer-readable

15 media that store computer-executable instructions are physical storage media. Computer

readable media that carry computer-executable instructions are transmission media.Thus,

by way of example, and not limitation, embodiments of the invention can comprise at least

two distinctly different kinds of computer-readable media: computer storage media and

transmission media.

20 [0023] Computer storage media includes recordable-type storage media, such as

RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or

other magnetic storage devices, or any other medium which can be used to store desired

program code means in the form of computer-executable instructions or data structures

and which can be accessed by a general purpose or special purpose computer.

25 [0024] A "network" is defined as one or more data links that enable the transport of

electronic data between computer systems and/or modules and/or other electronic devices.

When information is transferred or provided over a network or another communications

connection (either hardwired, wireless, or a combination of hardwired or wireless) to a

computer, the computer properly views the connection as a transmission medium.

30 Transmissions media can include a network (e.g., the network 110) and/or data links

which can be used to carry or desired program code means in the form of computer

executable instructions or data structures and which can be accessed by a general purpose

or special purpose computer. Combinations of the above should also be included within

the scope of computer-readable media.

5

WO 2013/191972 PCT/US2013/045290

[0025] Further, upon reaching various computer system components, program code

means in the form of computer-executable instructions or data structures can be

transferred automatically from transmission media to computer storage media (or vice

versa). For example, computer-executable instructions or data structures received over a

5 network or data link can be buffered in RAM within a network interface module (e.g., a

"NIC"), and then eventually transferred to computer system RAM and/or to less volatile

computer storage media at a computer system. Thus, it should be understood that

computer storage media can be included in computer system components that also (or

even primarily) utilize transmission media.

10 [0026] Computer-executable instructions comprise, for example, instructions and data

which, when executed at a processor, cause a general purpose computer, special purpose

computer, or special purpose processing device to perform a certain function or group of

functions. The computer executable instructions may be, for example, binaries,

intermediate format instructions such as assembly language, or even source code.Although

15 the subject matter is described herein using language specific to structural features and/or

methodological acts, it is to be understood that the subject matter defined in the appended

claims is not necessarily limited to the described features or acts described herein. Rather,

the features and acts described herein are disclosed as example forms of implementing the

claims.

20 [0027] Those skilled in the art will appreciate that the invention may be practiced in

network computing environments with many types of computer system configurations,

including, personal computers, desktop computers, laptop computers, message processors,

hand-held devices, multi-processor systems, microprocessor-based or programmable

consumer electronics, network PCs, minicomputers, mainframe computers, mobile

25 telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention may also

be practiced in distributed system environments where local and remote computer

systems, which are linked (either by hardwired data links, wireless data links, or by a

combination of hardwired and wireless data links) through a network, both perform tasks.

In a distributed system environment, program modules may be located in both local and

30 remote memory storage devices.

[0028] Figure 2 abstractly illustrates an environment 200 in which the principles

described herein may be employed. The environment 200 includes multiple clients 210

interacting with a system 210 using an interface 202. The environment 200 is illustrated

as having three clients 201A, 201B and 201C, although the ellipses 201D represents that

6

WO 2013/191972 PCT/US2013/045290

the principles described herein are not limited to the number of clients interfacing with the

system 210 through the interface 202. The system 210 may provide services to the clients

201 on-demand, and thus the number of clients 201 receiving services from the system

210 may vary over time.

5 [0029] One or more of the clients 201 may, for example, be structured as described

above in accordance with computing system 100 of Figure 1. Alternatively or in addition,

one or more of the clients 201 may be an application or other software module that

interfaces with the system 210 through the interface 202. The interface 202 may be an

application program interface (API) that is defined in such a way that any computing

10 system or software entity that is capable of using the API may communicate with the

system 210.

[0030] The system 210 may be a distributed system, although this is not required. In

one embodiment, the system 210 is a cloud computing environment. Cloud computing

environments may be distributed, although not required, and may even be distributed

15 internationally and/or have components possessed across multiple organizations.

[0031] In this description and the following claims, "cloud computing" is defined as a

model for enabling on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services). The definition of

"cloud computing" is not limited to any of the other numerous advantages that can be

20 obtained from such a model when properly deployed.

[0032] For instance, cloud computing is currently employed in the marketplace so as

to offer ubiquitous and convenient on-demand access to the shared pool of configurable

computing resources. Furthermore, the shared pool of configurable computing resources

can be rapidly provisioned via virtualization and released with low management effort or

25 service provider interaction, and then scaled accordingly.

[0033] A cloud computing model can be composed of various characteristics, such as

on-demand self-service, broad network access, resource pooling, rapid elasticity, measured

service, and so forth. A cloud computing model may also come in the form of various

service models such as, for example, Software as a Service ("SaaS"), Platform as a Service

30 ("PaaS"), and Infrastructure as a Service ("IaaS"). The cloud computing model may also

be deployed using different deployment models such as private cloud, community cloud,

public cloud, hybrid cloud, and so forth. In this description and in the claims, a "cloud

computing environment" is an environment in which cloud computing is employed.

7

WO 2013/191972 PCT/US2013/045290

[0034] As depicted, the system 210 includes multiple hosts 211, that are each capable

of running virtual machines. Although the system 200 might include any number of hosts

211, there are three hosts 211 A, 211 B and 211 C illustrated in Figure 2, with the ellipses

211 D representing that the principles described herein are not limited to the exact number

5 of hosts that are within the system 210. There may be as few as one, with no upper limit.

Furthermore, the number of hosts may be static, or might dynamically change over time as

new hosts are added to the system 210, or as hosts are dropped from the system 210. Each

of the hosts 211 may be structured as described above for the computing system 100 of

Figure 1.

10 [0035] Each host is capable of running one or more, and potentially many, virtual

machines. For instance, Figure 3 abstractly illustrates a host 300 in further detail. As an

example, the host 300 might represent any of the hosts 211 of Figure 2. In the case of

Figure 3, the host 300 is illustrated as operating three virtual machines 310 including

virtual machines 310A, 310B and 310C. However, the ellipses 310D once again

15 represents that the principles described herein are not limited to the number of virtual

machines running on the host 300. There may be as few as zero virtual machines running

on the host with the only upper limit being defined by the physical capabilities of the host

300.

[0036] During operation, the virtual machines emulates a fully operational computing

20 system including an at least an operating system, and perhaps one or more other

applications as well. Each virtual machine is assigned to a particular client, and is

responsible to support the desktop environment for that client.

[0037] The virtual machine generates a desktop image or other rendering instructions

that represent a current state of the desktop, and then transmits the image or instructions to

25 the client for rendering of the desktop. For instance, referring to Figures 2 and 3, suppose

that the host 300 of Figure 3 represents the host 21 1A of Figure 2, and that the virtual

machine 310A is assigned to client 201A (referred to herein as "the primary example"),

the virtual machine 310A might generate the desktop image or instructions and dispatch

such instructions to the corresponding client 201A from the host 211A via a service

30 coordination system 213 and via the system interface 202.

[0038] As the user interacts with the desktop at the client, the user inputs are

transmitted from the client to the virtual machine. For instance, in the primary example

and referring to Figures 2 and 3, the user of the client 20 1A interacts with the desktop, and

8

WO 2013/191972 PCT/US2013/045290

the user inputs are transmitted from the client 201 to the virtual machine 31 0A via the

interface 201, via the service coordination system 213 and via the host 21 1A.

[0039] The virtual machine processes the user inputs and, if appropriate, changes the

desktop state. If such change in desktop state is to cause a change in the rendered desktop,

5 then the virtual machine alters the image or rendering instructions, if appropriate, and

transmits the altered image or rendered instructions to the client computing system for

appropriate rendering. From the prospective of the user, it is as though the client

computing system is itself performing the desktop processing.

[0040] The host 300 includes a hypervisor 320 that emulates virtual resources for the

10 virtual machines 310 using physical resources 321 that are abstracted from view of the

virtual machines 310. The hypervisor 321 also provides proper isolation between the

virtual machines 310. Thus, from the perspective of any given virtual machine, the

hypervisor 320 provides the illusion that the virtual machine is interfacing with a physical

resource, even though the virtual machine only interfaces with the appearance (e.g., a

15 virtual resource) of a physical resource, and not with a physical resource directly. In

Figure 3, the physical resources 321 are abstractly represented as including resources

321A through 321F. Examples of physical resources 321 including processing capacity,

memory, disk space, network bandwidth, media drives, and so forth.

[0041] The host 300 may operate a host agent 302 that monitors the performance of

20 the host, and performs other operations that manage the host. Furthermore, the host 300

may include other components 303, such as a virtual switch as described later.

[0042] Referring back to Figure 2, the system 200 also includes services 212. In the

illustrated example, the services 200 include five distinct services 212A, 212B, 212C,

212D and 212E, although the ellipses 212F represents that the principles described herein

25 are not limited to the number of service in the system 210. A service coordination system

213 communicates with the hosts 211 and with the services 212 to thereby provide

services requested by the clients 201, and other services (such as authentication, billing,

and so forth) that may be prerequisites for the requested service.

[0043] Turning now to Figure 4, Figure 4 illustrates an example computer architecture

30 400 that facilitates offloading virtual machine flows to physical queues. As depicted,

computer architecture 400 includes host 402, one or more virtual machines 412 (including

virtual machine 412a), and one or more physical network devices 416 (including physical

network device 416a).

9

WO 2013/191972 PCT/US2013/045290

[0044] Host 402 is configured to provide a virtualization environment. In some

embodiments, host 402 may correspond to host 300 of Figure 300. For example, host 402

may include a parent partition (which executes a host operating system) and one or more

child partitions. Each child partition can be viewed as providing a virtualized hardware

5 environment for executing a corresponding virtual machine, such as virtual machine 412a.

Host 402 may be used a part of a cloud computing environment that hosts virtual machines

on behalf of tenants.

[0045] Each of virtual machines 412 (including virtual machine 412a) executes one or

more virtualized applications, such as an operating system, application software, etc. Each

10 of virtual machines 412 is capable of sending and receiving network packets. For

example, each of virtual machines 412 includes a network stack (e.g., a TCP/IP stack) and

is capable of sending and/or receiving network packets and other information through host

402 over data path 432 and/or through physical network devices 416 over data path 430.

As such, virtual machines 412 can create network flows.

15 [0046] Each physical network device 416 is connected to other computer systems

and/or networks using one or more external interfaces. Figure 4 depicts that physical

network device 416a is connected to network 434 using external interface 426. Physical

network devices 416 can include any appropriate type of physical networking hardware,

such as NICs, switches, etc.

20 [0047] In addition, each physical network device 416 comprises physical hardware

that is compatible with a virtualized environment. For example, Figure 4 depicts that

physical network device 416a presents virtual functions 424 to virtual machines 412. In

particular, physical network device 416a may present one or more virtual functions to each

of virtual machines 412. For example, Figure 4 depicts that physical network device 416a

25 presents virtual function 424a to virtual machine 412a. Each of virtual machine 412, in

turn, includes a corresponding virtual function driver. For example, Figure 4 depicts that

virtual machine 412a includes virtual function driver 414. As such, each of virtual

machines 412 can access its corresponding virtual function 424 over data path 430, and

can use data path 430 to communicate network packets with physical network device 416a

30 without routing the network packets through host 402. Doing so can reduce processor

usage and network latency when compared to routing network packets through host 402.

[0048] In addition, Figure 4 also depicts that physical network device 416 a presents

physical function 418 to host 402. Figure 4 also depicts that host 402 includes a

corresponding physical function driver 410, and that data path 428 connects physical

10

WO 2013/191972 PCT/US2013/045290

function 418 at physical network device 416a and physical function driver 410 at host 402.

As such, physical function 418 and physical function driver 410 can operate for exchange

of network packets between physical network device 416a and host 402.

[0049] As indicated previously, physical NIC 110 may, in some embodiments,

5 comprise PCIe hardware that is SRIOV-compliant. In such embodiments, one or more of

virtual functions 424 or physical function 418 may comprise PCIe functions. However, it

will be appreciated that the principles described herein may be applicable to a variety of

hardware devices, and are not limited to SRIOV-compliant devices or to PCIe devices.

[0050] Each of physical network devices 416 can include one or more physical

10 queues, which can be used by physical network devices 416 when processing network

flows that are associated with virtual machines 412. For example, Figure 4 depicts that

physical network device 416a includes physical queues 422, including queue 422a and any

additional number (i.e., zero or more) of additional physical queues, as represented by the

horizontal ellipses and queue 422n. According to one or more embodiments, host 402

15 configures one or more of physical network devices 416 to manage use of its physical

queues when processing network flows for virtual machines 412. As depicted, for

example, virtual switch 404 at host 402 can include rules 406. Using rules 406, virtual

switch 404 can program physical network device 416a with rules 420, and can program

physical network device 416a to manage network flow assignments to physical queues

20 422 based on those rules. Rules 420 may be identical to rules 406, may be altered in some

manner, and/or may include a subset of rules 406. As such, physical network device 416a

can be configured to efficiently handle network flows from virtual machines 412,

including making assignments of network flows to physical queues 422, without involving

host 402 for every network flow.

25 [0051] Rules 420 can include rules that enable physical network device 416a to assign

a number network flows to physical queues 422 that is greater in number than a number of

queues present at physical queues 422. In a simple example, network traffic from virtual

machines 412 may involve eight active network flows, but physical network device 416a

may use rules 420 to assign these eight flows to only four available queues in physical

30 queues 422. Physical network device 416a can be configured to make network flow to

queue assignments based on characteristics of the flows, and/or based on classifications of

the flows. In some embodiments, physical network device 416a places network flows into

different classifications based on characteristics of the flows and based on rules 420. In

some additional or alternative embodiments, physical network device 416a places network

11

WO 2013/191972 PCT/US2013/045290

flows into different classifications based on suggestions made by virtual machines 412.

For example, virtual machine 412a may attach some attribute to a flow, or may

communicate a suggested classification to physical function 418 separate from the flow.

[0052] Rules 420 can enable various types of queue assignment algorithms. For

5 example, rules 420 may specify that a plurality of network flows having a relatively low

traffic level maybe assigned together on a single physical queue, while flows having a

relatively high traffic level are to each be assigned exclusively to corresponding physical

queue. In another example, rules 420 may specify that a plurality of flows having similar

or compatible requirements are be combined on the same queue. For example, if network

10 packets of a plurality of flows are to be paced (rate limited) at a similar rate, those flows

may be assigned together on a single physical queue. Other similar or compatible

requirements may include priority (e.g., grouping flows of low priority together on a

single queue), quality of service (QoS) (e.g., grouping flows with low QoS requirements

together on a single queue), etc. Rules 420 may also specify that flows from the same

15 virtual machine are to be grouped onto a single physical queue or group of physical

queues. As such, the embodiments herein can facilitate the partitioning of hardware

resources among virtual machines 412.

[0053] In some embodiments, physical network devices 416 and virtual switch 404

can work together to balance execution of network flows there between. For example,

20 Figure 4 depicts that virtual switch 404 can include software-based virtual queues 408

(including queue 408a and any additional number (i.e., zero or more) of additional queues,

as represented by the horizontal ellipses and queue 408n). As such, some network flows

may be assigned to physical queues 422, and some flows may be assigned to virtual

queues 408. One will appreciate that physical queues 422 may provide faster, more

25 granular, and/or more reliable performance than virtual queues 408. As such, network

flows may be classified into flows that should be assigned to physical queues 422 to take

advantage of the faster, more granular, and/or more reliable performance at physical

network device 416a, and flows that may be assigned to virtual queues 408 at host 402

because fast, granular, and/or reliable performance may not be as important for these

30 flows. Such an assignment may be suggested by virtual machines 412, and/or may be

made by physical network devices 416 and/or virtual switch 404.

[0054] In some embodiments, a flow may pass through a plurality of physical network

devices 416 (e.g., a NIC and a switch), and host 402 can program each physical network

device to handle the flow independently. For example, one physical network device may

12

WO 2013/191972 PCT/US2013/045290

be programmed to assign the flow to a single physical queue at the device, while another

physical network device may be programmed to assign combine the flow with other flows

at a single physical queue at the device.

[0055] Figure 5 illustrates a flowchart of a method 500 for managing network traffic.

5 Method 500 will be described with respect to the components and data of computer

architecture 400.

[0056] Method 500 includes an act of executing one or more virtual machines (act

502). For example, host 402 can execute virtual machines 412, which can include virtual

machine 412a. In some embodiments, act 502 can include executing the virtual

10 machine(s) in a para-virtualized manner, including using one or more SRIOV-compliant

physical network devices. As such, at least one physical network device (e.g., physical

network device 418) may present a virtual function (e.g., virtual function 424a) to virtual

machine 412a, and virtual machine 412a may include a corresponding virtual function

driver (e.g., virtual function driver 414) for communicating network packets directly with

15 the physical network device.

[0057] Method 500 also includes an act of programming a physical network device

with one or more rules, the one or more rules being configured to manage network traffic

for the one or more virtual machines (act 504). For example, virtual switch 404 can

program physical network device 416a with rules 420. Rules 420 can be a copy of, or be

20 based on, rules 406 at virtual switch 404. Rules 420 can be configured to enable physical

network device 416a to make assignments between network flows associated with virtual

machines 412 and physical queues 422 at physical network device 416a.

[0058] Method 500 also includes an act of programming the physical network device

to manage network traffic (act 506). For example, virtual switch 404 can configure

25 physical network device 416a to make flow assignments based on rules 420. In some

embodiments, programming physical network device 416a to manage network traffic

occurs as a consequence of programming physical network device 416a with rules 420. In

other embodiments, programming physical network device 416a to manage network traffic

includes expressly programming physical network device 416a with additional computer

30 executable instructions and/or additional configuration settings.

[0059] Act 506 includes programming the physical network device to determine

availability of one or more physical queues at the physical network device, the one or

more physical queues being usable for processing network flows for the one or more

13

virtual machines (act 508). For example, physical network device 416a can be configured

to identify physical queues 422, including a present availability of physical queues 422.

[0060] Act 506 includes programming the physical network device to identify a

plurality of network flows for the one or more virtual machines, including identifying one

5 or more characteristics of each of the plurality of network flows (act 510). For example,

physical network device 416a can be configured to identify network flows that are

associated with virtual machines 412. Physical network device 416a can also be

configured to analyze characteristics of the flows, categorization suggestions from virtual

machines 412, or any other appropriate information, to classify or otherwise categorize the

10 flows.

[0061] Act 506 includes programming the physical network device to, based on the

one or more characteristics of each of the plurality of network flows and based on the one

or more rules, assign one or more of the plurality of network flows to at least one of the

one or more physical queues (act 512). For example, based on rules 420, and based on

15 characteristics and categorizations identified in act 510, physical network device 416a can

assign the flows to physical queues 422. In doing so, physical network device 416a may

assign a number of flows to physical queues 422 that exceeds the number of physical

queues. For example, physical network device 416a may assign flows having similar

characteristics, compatible priorities or traffic loads, etc. to the same physical queue.

20 Additionally or alternatively, physical network device 416a may work with virtual switch

404 to assign a first subset of flows to virtual queues 408 at virtual switch 404 and a

second subset of flows to physical queues 422 at physical network device 416a.

[0062] Accordingly the embodiments described herein can improve network

performance and utilization of physical hardware by enabling a physical network device to

25 make assignments between flows and physical queues. When making such assignments,

the embodiments described herein can enable the physical hardware to process a greater

number of flows with physical queues than the number of physical queues are available.

Additionally or alternatively, when making such assignments, the embodiments described

herein can enable the physical hardware to balance processing of flows between physical

30 queues and virtual queues.

[0063] The present invention may be embodied in other specific forms without

departing from its essential characteristics. The described embodiments are to be

considered in all respects only as illustrative and not restrictive. The scope of the

invention is, therefore, indicated by the appended claims rather than by the foregoing

14

description. All changes which come within the meaning of the claims are to be embraced

within their scope.

[0064] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

5 "comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers

or steps.

[0065] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as an

10 acknowledgment or admission or any form of suggestion that the prior publication (or

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

15

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A virtualization host computer system that is configured to manage

network traffic for one or more virtual machines that are executing at the virtualization

5 host computer system, the virtualization host computer system comprising:

one or more processors;

one or more physical network devices; and

one or more hardware storage devices having stored thereon computer

executable instructions that, when executed by the one or more processors, cause

10 the virtualization host computer system to execute a virtual switch, the virtual

switch being configured for processing a plurality of network flows for the one or

more virtual machines at one or more virtual queues, the virtual switch also being

configured to program each of the one or more physical network devices with one

or more corresponding rules for offloading network flows and to perform the

15 following based on the one or more rules:

determine availability of one or more physical queues at the

physical network device, each of the one or more physical queues being

usable for offloading one or more of the plurality of network flows for the

one or more virtual machines from the virtual switch at the virtualization

20 host computer system;

identify a first subset of the plurality of network flows for the one or

more virtual machines that are to be offloaded from the virtual switch at the

virtualization host computer system to the one or more physical queues,

based on one or more characteristics of each of the plurality of network

25 flows, including determining that both a first and second flow of the first

subset of network flows are to be concurrently offloaded to a first physical

queue of the one or more physical queues based on the first and second

flows each having a relatively low traffic level compared to a third flow of

the subset of network flows and determining that the third flow is to be

30 uniquely offloaded to a second physical queue of the one or more physical

queues based on the third flow having a relatively high traffic level

compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the

one or more physical queues, including concurrently offloading the first

16

and second flows to the first physical queue and uniquely offloading the

third flow to the second physical queue, wherein a second subset of the

plurality of network flows for the one or more virtual machines remain at

the one or more virtual queues of the virtual switch at the virtualization host

5 computer system.

2. The virtualization host computer system as recited in claim 1, further

comprising:

determining one or more flows that are assigned to the first subset and one or more

flows that are assigned to the second subset based on one or more suggestions from at

10 least one virtual machine.

3. The virtualization host computer system as recited in claim 1, wherein the

at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows having similar

rate limiting characteristics.

15 4. The virtualization host computer system as recited in claim 1, wherein the

at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows being

associated with the same virtual machine.

5. The virtualization host computer system as recited in claim 1, wherein the

20 one or more physical network devices include a physical network interface card.

6. The virtualization host computer system as recited in claim 1, wherein the

one or more physical network devices include a physical switch.

7. The virtualization host computer system as recited in claim 1, wherein the

at least two of the first subset of network flows are concurrently offloaded to a single

25 physical queue based on the at least two of the first subset of network flows having the

same priority.

8. The virtualization host computer system as recited in claim 1, wherein the

at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows having the

30 same Quality of Service (QoS).

9. A method, implemented at a computer system that includes one or more

processors and one or more physical network devices, for managing network traffic, the

method comprising:

executing one or more virtual machines;

17

executing a virtual switch, the virtual switch being configured for

processing a plurality of network flows for the one or more virtual machines at one

or more virtual queues;

programming a physical network device with one or more rules for

5 offloading network flows, the one or more rules being configured to manage

network traffic for the one or more virtual machines; and

programming the physical network device to manage network traffic,

including the following:

determining availability of one or more physical queues at the

10 physical network device, each of the one or more physical queues being

usable for offloading one or more of the plurality of network flows for the

one or more virtual machines from the virtual switch at the virtualization

host computer system;

identifying a first subset of the plurality of network flows for the one

15 or more virtual machines, that are to be offloaded from the virtual switch at

the virtualization host computer system to the one or more physical queues,

based on one or more characteristics of each of the plurality of network

flows including determining that both a first and second flow of the first

subset of network flows are to be concurrently offloaded to a first physical

20 queue of the one or more physical queues based on the first and second

flows each having a relatively low traffic level compared to a third flow of

the subset of network flows, and determining that the third flow is to be

uniquely offloaded to a second physical queue of the one or more physical

queues based on the third flow having a relatively high traffic level

25 compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the

one or more physical queues, including concurrently offloading the first

and second flows to the first physical queue and uniquely offloading the

third flow to the second physical queue, wherein a second subset of the

30 plurality of network flows for the one or more virtual machines remain at

the one or more virtual queues of the virtual switch at the virtualization host

computer system.

18

10. The method as recited in claim 9, wherein the at least two of the first subset

of network flows are concurrently offloaded to a single physical queue based on the at

least two of the first subset of network flows having similar rate limiting characteristics.

11. The method as recited in claim 9, wherein the at least two of the first subset

5 of network flows are concurrently offloaded to a single physical queue based on the at

least two of the first subset of network flows being associated with the same virtual

machine.

12. The method as recited in claim 9, wherein the one or more physical

network devices include one or more of a physical network interface card or a physical

10 switch.

13. The method as recited in claim 9, wherein the at least two of the first subset

of network flows are concurrently offloaded to a single physical queue based on the at

least two of the first subset of network flows having the same priority.

14. The method as recited in claim 9, wherein the at least two of the first subset

15 of network flows are concurrently offloaded to a single physical queue based on the at

least two of the first subset of network flows having the same Quality of Service (QoS).

15. One or more hardware storage devices having stored thereon computer

executable instructions that, when executed by one or more processors, cause a

virtualization host computer system to execute a virtual switch, the virtual switch being

20 configured for processing a plurality of network flows for the one or more virtual

machines at one or more virtual queues, the virtual switch also configured to program one

or more physical network devices with one or more corresponding rules for offloading

network flows and to perform the following based on the one or more rules:

determine availability of one or more physical queues at the physical

25 network device, each of the one or more physical queues being usable for

offloading one or more of the plurality of network flows for the one or more virtual

machines from the virtual switch at the virtualization host computer system;

identify a first subset of the plurality of network flows for the one or more

virtual machines that are to be offloaded from the virtual switch at the

30 virtualization host computer system to the one or more physical queues, based on

one or more characteristics of each of the plurality of network flows, including

determining that both a first and second flow of the first subset of network flows

are to be concurrently offloaded to a first physical queue of the one or more

physical queues based on the first and second flows each having a relatively low

19

traffic level compared to a third flow of the subset of network flows, and

determining that the third flow is to be uniquely offloaded to a second physical

queue of the one or more physical queues based on the third flow having a

relatively high traffic level compared to the first and second flows; and

5 offloading the first subset of the plurality of network flows to the one or

more physical queues, including concurrently offloading the first and second flows

to the first physical queue and uniquely offloading the third flow to the second

physical queue, wherein a second subset of the plurality of network flows for the

one or more virtual machines remain at the one or more virtual queues of the

10 virtual switch at the virtualization host computer system.

16. The one or more hardware storage devices as recited in claim 15, wherein

the at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows having similar

rate limiting characteristics.

15 17. The one or more hardware storage devices as recited in claim 15, further

comprising:

determining one or more flows that are assigned to the first subset and one or more

flows that are assigned to the second subset based on one or more suggestions from at

least one virtual machine.

20 18. The one or more hardware storage devices as recited in claim 15, wherein

the at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows being

associated with the same virtual machine.

19. The one or more hardware storage devices as recited in claim 15, wherein

25 the at least two of the first subset of network flows are concurrently offloaded to a single

physical queue based on the at least two of the first subset of network flows having the

same priority.

20. The one or more hardware storage devices as recited in claim 15, wherein

the at least two of the first subset of network flows are concurrently offloaded to a single

30 physical queue based on the at least two of the first subset of network flows having the

same Quality of Service (QoS).

20

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

