(12) STANDARD PATENT (11) Application No. AU 2013277589 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Offloading virtual machine flows to physical queues

International Patent Classification(s)
GOG6F 9/50 (2006.01)

Application No: 2013277589 (22) Date of Filing: 2013.06.12
WIPO No: WO13/191972

Priority Data

Number (32) Date (33) Country
13/529,747 2012.06.21 us
Publication Date: 2013.12.27

Accepted Journal Date: 2018.02.22

Applicant(s)
Microsoft Technology Licensing, LLC

Inventor(s)
Kandula, Srlkanth;Kim, Changhoon;Dabagh, Alireza;Bansal, Deepak;Maltz, David A.

Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

Related Art
WO 2010025127 A1

wo 2013/191972 A1 [N 0000 O 0 OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/191972 Al

27 December 2013 (27.12.2013) WIPO | PCT

(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/50 (2006.01) kind of national protection available). AE, AG, AL, AM,
21) Tat tional Application Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUS2013/045290 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
12 June 2013 (12.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:

13/529.747 21 June 2012 (21062012) Us (84) Designated States (unless otherwise indicated, fO}" every
’ kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: MICROSOFT CORPORATION [US/US]J; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
One Microsoft Way, Redmond, Washington 98052-6399 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors: KANDULA, Srikanth; c/o Microsoft Corpora- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). KIM, Chang-
hoon; c/o Microsott Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). DABAGH, Alireza; c¢/o Microsott Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BANSAL,
Deepak; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). MALTZ, David A.; c¢/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: OFFLOADING VIRTUAL MACHINE FLOWS TO PHYSICAL QUEUES

400

Host 402

Virtual Switch 404

Virtual Queues 408
Rules
406

Queve | | Queue
408a 408n

\
\

\

Physical Function \\
Driver 410 Y

[]

Virtual Machine T Virtual Machines
4122 412

Virtual
Function
Driver
414

\
Data Path 428’@

jE\/Data Path 430

Y
\
1
L
T ses
L]

Physical
Function
418

Physical Queues 422

Queve | .
4223

A

Rules
420

Physical Network

Queue
422n

T
Virtual [~ Virtual Functions 424
Function 424a
External | ‘ Negjrk
Interface 426 |] =

Device 416a

Physical Network
Devices 416

(57) Abstract: The present invention extends to methods, systems, and computer program products for offloading virtual machine
flows to physical queues. A computer system executes one or more virtual machines, and programs a physical network device with
one or more rules that manage network traffic for the virtual machines. The computer system also programs the network device to
manage network traffic using the rules. In particular, the network device is programmed to determine availability of one or more
physical queues at the network device that are usable for processing network tlows for the virtual machines. The network device is
also programmed to identify network flows for the virtual machines, including identifying characteristics of each network flow. The
network device is also programmed to, based on the characteristics of the network flows and based on the rules, assign one or more
of the network flows to at least one of the physical queues.

12 Jan 2018

2013277589

10

15

20

25

30

BACKGROUND
[0001] 1. Background and Relevant Art

[0002] Computer systems and related technology affect many aspects of society.
Indeed, the computer system’s ability to process information has transformed the way we
live and work. Computer systems now commonly perform a host of tasks (e.g., word
processing, scheduling, accounting, etc.) that prior to the advent of the computer system
were performed manually. More recently, computer systems have been coupled to one
another and to other electronic devices to form both wired and wireless computer networks
over which the computer systems and other electronic devices can transfer electronic data.
Accordingly, the performance of many computing tasks is distributed across a number of
different computer systems and/or a number of different computing environments.

[0003] Some computer systems are configured to provide virtualized environments for
hosting one or more virtual machines. For example, para-virtualized execution
environments include hypervisors. Hypervisors provide a parent partition (sometimes
referred to as a host) and one or more child partitions. The parent partition communicates
with and manages physical hardware, and is configured to run a host operating system and
to manage a virtualization stack. Each child partition is configured as a “virtual machine”
that runs a corresponding guest operating system.

[0004] Common scenarios in virtualization involve managing network packets among
virtual machines that are executing at a virtualization host computer system, and to
manage network packets flowing between the virtual machines and computers systems
remote from the host computer system. As such, virtualization stacks at host operating
systems may include networking virtualization stacks, including virtual switches. Virtual
switches are configured to intercept, inspect, and manipulate network packets being
communicated in connection with the virtual machines. Doing so, however, can be
inefficient, as it can cause frequent and costly (e.g., in terms of CPU usage) context
switches between the host operating system and guest operating systems and can introduce
latency in network communications.

[0005] Recent developments in virtualization include Single-Root I/O Virtualization
(SRIOV). SRIOV is an extension to the Peripheral Component Interconnect Express
(PCle) bus architecture that enables PCle devices to communicate directly with child
partitions. As such, SRIOV enables PCle devices to expose themselves to child partitions
/ virtual machines through the hypervisor. For example, a SRIOV-compliant physical
Network Interface Card (NIC) or switch may present a physical function to the parent

1

12 Jan 2018

2013277589

10

15

20

25

30

partition and present one or more virtual functions to corresponding child partitions. The
host operating system can then include a physical function driver that communicates with
the physical function, and each guest operating system can execute a virtual function
driver that communicates with the corresponding virtual function. The physical NIC can
then communicate network packets directly with guest operating systems (bypassing the
host operating system), which can greatly improve network performance.
[0006] Despite the advances that SRIOV brings, there remain some inefficiencies in
the area of network packet processing in virtualization environments.
[0006a] 1t is desired to address or ameliorate one or more disadvantages or limitations
associated with the prior art, or to at least provide a useful alternative.
SUMMARY

[0006Db] In one embodiment, the present invention provides a virtualization host
computer system that is configured to manage network traffic for one or more virtual
machines that are executing at the virtualization host computer system, the virtualization
host computer system comprising;:

one or More Processors;

one or more physical network devices; and

one or more hardware storage devices having stored thereon computer-executable
instructions that, when executed by the one or more processors, cause the virtualization
host computer system to execute a virtual switch, the virtual switch being configured for
processing a plurality of network flows for the one or more virtual machines at one or
more virtual queues, the virtual switch also being configured to program each of the one or
more physical network devices with one or more corresponding rules for offloading
network flows and to perform the following based on the one or more rules:

determine availability of one or more physical queues at the physical

network device, each of the one or more physical queues being usable for

offloading one or more of the plurality of network flows for the one or more

virtual machines from the virtual switch at the virtualization host computer

system,;

identify a first subset of the plurality of network flows for the one or

more virtual machines that are to be offloaded from the virtual switch at the

virtualization host computer system to the one or more physical queues, based on

one or more characteristics of each of the plurality of network flows, including

determining that both a first and second flow of the first subset of network flows

2

12 Jan 2018

2013277589

10

15

20

25

30

are to be concurrently offloaded to a first physical queue of the one or more
physical queues based on the first and second flows each having a relatively low
traffic level compared to a third flow of the subset of network flows, and
determining that the third flow is to be uniquely offloaded to a second physical
queue of the one or more physical queues based on the third flow having a
relatively high traffic level compared to the first and second flows; and
offloading the first subset of the plurality of network flows to the one or
more physical queues, including concurrently offloading the first and second
flows to the first physical queue and uniquely offloading the third flow to the
second physical queue, wherein a second subset of the plurality of network flows
for the one or more virtual machines remain at the one or more virtual queues of
the virtual switch at the virtualization host computer system.
[0006¢] In another embodiment, the present invention provides
method, implemented at a computer system that includes one or more processors
and one or more physical network devices, for managing network traffic, the method
comprising:
executing one or more virtual machines;
executing a virtual switch, the virtual switch being configured for processing a
plurality of network flows for the one or more virtual machines at one or more virtual
queues;
programming a physical network device with one or more rules for offloading
network flows, the one or more rules being configured to manage network traffic for the
one or more virtual machines; and
programming the physical network device to manage network traffic, including
the following:
determining availability of one or more physical queues at the physical
network device, each of the one or more physical queues being usable for
offloading one or more of the plurality of network flows for the one or more
virtual machines from the virtual switch at the virtualization host computer
system,;
identifying a first subset of the plurality of network flows for the one or
more virtual machines that are to be offloaded from the virtual switch at the
virtualization host computer system to the one or more physical queues, based on

one or more characteristics of each of the plurality of network flows, including:

3

12 Jan 2018

2013277589

10

15

20

25

30

determining that both a first and second flow of the first subset of
network flows are to be concurrently offloaded to a first physical queue of the
one or more physical queues based on the first and second flows each having a
relatively low traffic level compared to a third flow of the subset of network
flows, and determining that the third flow is to be uniquely offloaded to a second
physical queue of the one or more physical queues based on the third flow having
a relatively high traffic level compared to the first and second flows; and
offloading the first subset of the plurality of network flows to the one or
more physical queues, including concurrently offloading the first and second
flows to the first physical queue and uniquely offloading the third flow to the
second physical queue, wherein a second subset of the plurality of network flows
for the one or more virtual machines remain at the one or more virtual queues of
the virtual switch at the virtualization host computer system.
[0006d] In a further embodiment, the present invention provides one or more
hardware storage devices having stored thereon computer-executable instructions that,
when executed by one or more processors, cause a virtualization host computer system to
execute a virtual switch, the virtual switch being configured for processing a plurality of
network flows for the one or more virtual machines at one or more virtual queues, the
virtual switch also configured to program one or more physical network devices with one
or more corresponding rules for offloading network flows and to perform the following
based on the one or more rules:
determine availability of one or more physical queues at the physical network
device, each of the one or more physical queues being usable for offloading one or more
of the plurality of network flows for the one or more virtual machines from the virtual
switch at the virtualization host computer system;
identify a first subset of the plurality of network flows for the one or more virtual
machines that are to be offloaded from the virtual switch at the virtualization host
computer system to the one or more physical queues, based on one or more characteristics
of each of the plurality of network flows, including determining that both a first and
second flow of the first subset of network flows are to be concurrently offloaded to a first
physical queue of the one or more physical queues based on the first and second flows
each having a relatively low traffic level compared to a third flow of the subset of network

flows, and determining that the third flow is to be uniquely offloaded to a second physical

12 Jan 2018

2013277589

10

15

20

25

30

queue of the one or more physical queues based on the third flow having a relatively high
traffic level compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the one or more
physical queues, including concurrently offloading the first and second flows to the first
physical queue and uniquely offloading the third flow to the second physical queue,
wherein a second subset of the plurality of network flows for the one or more virtual
machines remain at the one or more virtual queues of the virtual switch at the
virtualization host computer system.
[0007] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0008] [Deleted]

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Some embodiments of the present invention are hereinafter described, by way
of example only, with reference to the accompanying drawings, in which:

[0010] Figure 1 illustrates an exemplary computing system on which the principled
described herein may be employed.

[0011] Figure 2 illustrates an environment in which the principles described herein
may be employed.

[0012] Figure 3 illustrates a host on which the principles described herein may be
employed.

[0013] Figure 4 illustrates an example computer architecture that facilitates offloading
virtual machine flows to physical queues.

[0014] Figure 5 illustrates a flow chart of an example method for managing network

traffic.

DETAILED DESCRIPTION

[0015] Embodiments of the present invention extend to methods, systems, and
computer program products for offloading virtual machine network flows to physical
queues of network hardware. As such, embodiments of the present invention can enable
virtual machine network traffic to pass directly between virtual machines and physical
hardware, bypassing the parent partition and avoiding the inefficiencies associated with

routing network traffic through the parent partition. In particular, embodiments of the

4a

12 Jan 2018

2013277589

10

15

20

25

30

present invention include configuring physical network hardware to assign network flows
from virtual machines to physical queues at the physical network hardware, and
potentially to assign more network flows to physical queues than the number of physical
queues that exist at the physical network hardware.

[0016] In some embodiments, a method for managing network traffic includes a
computer system executing one or more virtual machines. The method also includes the
computer system programming a physical network device with one or more rules that are
used by the physical network device to manage network traffic for the virtual machines.
In particular, the physical network device is programmed to determine availability of one
or more physical queues at the physical network device. The physical queues are usable
for processing network flows for the virtual machines. The physical network device is
also programmed to identify a plurality of network flows for the virtual machines,
including identifying characteristics of each of the network flows. The physical network
device is also programmed to assign one or more of the plurality of network flows to at
least one of the physical queues based on the characteristics of the network flows and
based on the rules.

[0017] [Deleted]

[0018] First, some introductory discussion regarding general computing systems and
computing environments in or on which the principles described herein may be employed
will be described with respect to Figures 1-3. Then the basic principles for offloading
virtual machine network flows to physical queues of network hardware will be described
with respect to Figures 4 and 5.

[0019] Computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices, appliances, laptop computers,
desktop computers, mainframes, distributed computing systems, or even devices that have
not conventionally been considered a computing system. In this description and in the
claims, the term “computing system’ is defined broadly as including any device or system
(or combination thereof) that includes at least one physical and tangible processor, and a
physical and tangible memory capable of having stored thereon computer-executable
instructions that may be executed by the processor(s). The memory may take any form
and may depend on the nature and form of the computing system. A computing system
may be distributed over a network environment and may include multiple constituent

computing systems.

4b

12 Jan 2018

2013277589

—
o}

[0020] Embodiments described herein may comprise or utilize a special purpose or
general-purpose computer including computer hardware, such as, for example, one or
more processors and system memory. For example, Figure 1 illustrates an exemplary
computing system 100. As illustrated in Figure 1, in its most basic configuration,
computing system 100 typically includes at least one processing unit 102 and memory
104. The memory 104 may be physical system memory, which may be volatile, non-
volatile, or some combination of the two. The term “memory” may also be used herein to
refer to non-volatile mass storage such as physical storage media. If the computing system
100 is distributed, the processing, memory and/or storage capability may be distributed as
well. As used herein, the term “module” or “component” can refer to software objects or
routines that execute on the computing system 100. The different components, modules,
engines, and services described herein may be implemented as objects or processes that

execute on the computing system 100 (e.g., as separate threads).

4c

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

[0021] In the description that follows, embodiments are described with reference to
acts that are performed by one or more computing systems, such as the computing system
100. If such acts are implemented in software, one or more processors of the associated
computing system that performs the acts direct the operation of the computing system in
response to having executed computer-executable instructions. An example of such an
operation involves the manipulation of data. Within the context of the computing system
100, computer-executable instructions (and the manipulated data) may be stored in the
memory 104. Computing system 100 may also contain communication channels 108 that
allow the computing system 100 to communicate with other message processors over, for
example, network 110.

[0022] Embodiments described herein also include physical and other computer-
readable media for carrying or storing computer-executable instructions and/or data
structures. Such computer-readable media can be any available media that can be
accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions are transmission media.Thus,
by way of example, and not limitation, embodiments of the invention can comprise at least
two distinctly different kinds of computer-readable media: computer storage media and
transmission media.

[0023] Computer storage media includes recordable-type storage media, such as
RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store desired
program code means in the form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special purpose computer.

[0024] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network (e.g., the network 110) and/or data links
which can be used to carry or desired program code means in the form of computer-
executable instructions or data structures and which can be accessed by a general purpose
or special purpose computer. Combinations of the above should also be included within

the scope of computer-readable media.

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

[0025] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be
transferred automatically from transmission media to computer storage media (or vice
versa). For example, computer-executable instructions or data structures received over a
network or data link can be buffered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system RAM and/or to less volatile
computer storage media at a computer system. Thus, it should be understood that
computer storage media can be included in computer system components that also (or
even primarily) utilize transmission media.

[0026] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.Although
the subject matter is described herein using language specific to structural features and/or
methodological acts, it is to be understood that the subject matter defined in the appended
claims is not necessarily limited to the described features or acts described herein. Rather,
the features and acts described herein are disclosed as example forms of implementing the
claims.

[0027] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention may also
be practiced in distributed system environments where local and remote computer
systems, which are linked (either by hardwired data links, wireless data links, or by a
combination of hardwired and wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may be located in both local and
remote memory storage devices.

[0028] Figure 2 abstractly illustrates an environment 200 in which the principles
described herein may be employed. The environment 200 includes multiple clients 210
interacting with a system 210 using an interface 202. The environment 200 is illustrated

as having three clients 201A, 201B and 201C, although the ellipses 201D represents that
6

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

the principles described herein are not limited to the number of clients interfacing with the
system 210 through the interface 202. The system 210 may provide services to the clients
201 on-demand, and thus the number of clients 201 receiving services from the system
210 may vary over time.

[0029] One or more of the clients 201 may, for example, be structured as described
above in accordance with computing system 100 of Figure 1. Alternatively or in addition,
one or more of the clients 201 may be an application or other software module that
interfaces with the system 210 through the interface 202. The interface 202 may be an
application program interface (API) that is defined in such a way that any computing
system or software entity that is capable of using the APl may communicate with the
system 210.

[0030] The system 210 may be a distributed system, although this is not required. In
one embodiment, the system 210 is a cloud computing environment. Cloud computing
environments may be distributed, although not required, and may even be distributed
internationally and/or have components possessed across multiple organizations.

[0031] In this description and the following claims, “cloud computing” is defined as a
model for enabling on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services). The definition of
“cloud computing” is not limited to any of the other numerous advantages that can be
obtained from such a model when properly deployed.

[0032] For instance, cloud computing is currently employed in the marketplace so as
to offer ubiquitous and convenient on-demand access to the shared pool of configurable
computing resources. Furthermore, the shared pool of configurable computing resources
can be rapidly provisioned via virtualization and released with low management effort or
service provider interaction, and then scaled accordingly.

[0033] A cloud computing model can be composed of various characteristics, such as
on-demand self-service, broad network access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also come in the form of various
service models such as, for example, Software as a Service (“SaaS”), Platform as a Service
(“PaaS”), and Infrastructure as a Service (“laaS”). The cloud computing model may also
be deployed using different deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description and in the claims, a “cloud

computing environment” is an environment in which cloud computing is employed.

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

[0034] As depicted, the system 210 includes multiple hosts 211, that are each capable
of running virtual machines. Although the system 200 might include any number of hosts
211, there are three hosts 211A, 211B and 211C illustrated in Figure 2, with the ellipses
211D representing that the principles described herein are not limited to the exact number
of hosts that are within the system 210. There may be as few as one, with no upper limit.
Furthermore, the number of hosts may be static, or might dynamically change over time as
new hosts are added to the system 210, or as hosts are dropped from the system 210. Each
of the hosts 211 may be structured as described above for the computing system 100 of
Figure 1.

[0035] Each host is capable of running one or more, and potentially many, virtual
machines. For instance, Figure 3 abstractly illustrates a host 300 in further detail. As an
example, the host 300 might represent any of the hosts 211 of Figure 2. In the case of
Figure 3, the host 300 is illustrated as operating three virtual machines 310 including
virtual machines 310A, 310B and 310C. However, the ellipses 310D once again
represents that the principles described herein are not limited to the number of virtual
machines running on the host 300. There may be as few as zero virtual machines running
on the host with the only upper limit being defined by the physical capabilities of the host
300.

[0036] During operation, the virtual machines emulates a fully operational computing
system including an at least an operating system, and perhaps one or more other
applications as well. Each virtual machine is assigned to a particular client, and is
responsible to support the desktop environment for that client.

[0037] The virtual machine generates a desktop image or other rendering instructions
that represent a current state of the desktop, and then transmits the image or instructions to
the client for rendering of the desktop. For instance, referring to Figures 2 and 3, suppose
that the host 300 of Figure 3 represents the host 211A of Figure 2, and that the virtual
machine 310A is assigned to client 201 A (referred to herein as “the primary example”),
the virtual machine 310A might generate the desktop image or instructions and dispatch
such instructions to the corresponding client 201A from the host 211A via a service
coordination system 213 and via the system interface 202.

[0038] As the user interacts with the desktop at the client, the user inputs are
transmitted from the client to the virtual machine. For instance, in the primary example

and referring to Figures 2 and 3, the user of the client 201 A interacts with the desktop, and

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

the user inputs are transmitted from the client 201 to the virtual machine 310A via the
interface 201, via the service coordination system 213 and via the host 211A.

[0039] The virtual machine processes the user inputs and, if appropriate, changes the
desktop state. If such change in desktop state is to cause a change in the rendered desktop,
then the virtual machine alters the image or rendering instructions, if appropriate, and
transmits the altered image or rendered instructions to the client computing system for
appropriate rendering. From the prospective of the user, it is as though the client
computing system is itself performing the desktop processing.

[0040] The host 300 includes a hypervisor 320 that emulates virtual resources for the
virtual machines 310 using physical resources 321 that are abstracted from view of the
virtual machines 310. The hypervisor 321 also provides proper isolation between the
virtual machines 310. Thus, from the perspective of any given virtual machine, the
hypervisor 320 provides the illusion that the virtual machine is interfacing with a physical
resource, even though the virtual machine only interfaces with the appearance (e.g., a
virtual resource) of a physical resource, and not with a physical resource directly. In
Figure 3, the physical resources 321 are abstractly represented as including resources
321A through 321F. Examples of physical resources 321 including processing capacity,
memory, disk space, network bandwidth, media drives, and so forth.

[0041] The host 300 may operate a host agent 302 that monitors the performance of
the host, and performs other operations that manage the host. Furthermore, the host 300
may include other components 303, such as a virtual switch as described later.

[0042] Referring back to Figure 2, the system 200 also includes services 212. In the
illustrated example, the services 200 include five distinct services 212A, 212B, 212C,
212D and 212E, although the ellipses 212F represents that the principles described herein
are not limited to the number of service in the system 210. A service coordination system
213 communicates with the hosts 211 and with the services 212 to thereby provide
services requested by the clients 201, and other services (such as authentication, billing,
and so forth) that may be prerequisites for the requested service.

[0043] Turning now to Figure 4, Figure 4 illustrates an example computer architecture
400 that facilitates offloading virtual machine flows to physical queues. As depicted,
computer architecture 400 includes host 402, one or more virtual machines 412 (including
virtual machine 412a), and one or more physical network devices 416 (including physical

network device 416a).

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

[0044] Host 402 is configured to provide a virtualization environment. In some
embodiments, host 402 may correspond to host 300 of Figure 300. For example, host 402
may include a parent partition (which executes a host operating system) and one or more
child partitions. Each child partition can be viewed as providing a virtualized hardware
environment for executing a corresponding virtual machine, such as virtual machine 412a.
Host 402 may be used a part of a cloud computing environment that hosts virtual machines
on behalf of tenants.

[0045] Each of virtual machines 412 (including virtual machine 412a) executes one or
more virtualized applications, such as an operating system, application software, etc. Each
of virtual machines 412 is capable of sending and receiving network packets. For
example, each of virtual machines 412 includes a network stack (e.g., a TCP/IP stack) and
is capable of sending and/or receiving network packets and other information through host
402 over data path 432 and/or through physical network devices 416 over data path 430.
As such, virtual machines 412 can create network flows.

[0046] Each physical network device 416 is connected to other computer systems
and/or networks using one or more external interfaces. Figure 4 depicts that physical
network device 416a is connected to network 434 using external interface 426. Physical
network devices 416 can include any appropriate type of physical networking hardware,
such as NICs, switches, ctc.

[0047] In addition, each physical network device 416 comprises physical hardware
that is compatible with a virtualized environment. For example, Figure 4 depicts that
physical network device 416a presents virtual functions 424 to virtual machines 412. In
particular, physical network device 416a may present one or more virtual functions to each
of virtual machines 412. For example, Figure 4 depicts that physical network device 416a
presents virtual function 424a to virtual machine 412a. Each of virtual machine 412, in
turn, includes a corresponding virtual function driver. For example, Figure 4 depicts that
virtual machine 412a includes virtual function driver 414. As such, each of virtual
machines 412 can access its corresponding virtual function 424 over data path 430, and
can use data path 430 to communicate network packets with physical network device 416a
without routing the network packets through host 402. Doing so can reduce processor
usage and network latency when compared to routing network packets through host 402.
[0048] In addition, Figure 4 also depicts that physical network device 416 a presents
physical function 418 to host 402. Figure 4 also depicts that host 402 includes a
corresponding physical function driver 410, and that data path 428 connects physical

10

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

function 418 at physical network device 416a and physical function driver 410 at host 402.
As such, physical function 418 and physical function driver 410 can operate for exchange
of network packets between physical network device 416a and host 402.

[0049] As indicated previously, physical NIC 110 may, in some embodiments,
comprise PCle hardware that is SRIOV-compliant. In such embodiments, one or more of
virtual functions 424 or physical function 418 may comprise PCle functions. However, it
will be appreciated that the principles described herein may be applicable to a variety of
hardware devices, and are not limited to SRIOV-compliant devices or to PCle devices.
[0050] Each of physical network devices 416 can include one or more physical
queues, which can be used by physical network devices 416 when processing network
flows that are associated with virtual machines 412. For example, Figure 4 depicts that
physical network device 416a includes physical queues 422, including queue 422a and any
additional number (i.e., zero or more) of additional physical queues, as represented by the
horizontal ellipses and queue 422n. According to one or more embodiments, host 402
configures one or more of physical network devices 416 to manage use of its physical
queues when processing network flows for virtual machines 412, As depicted, for
example, virtual switch 404 at host 402 can include rules 406. Using rules 406, virtual
switch 404 can program physical network device 416a with rules 420, and can program
physical network device 416a to manage network flow assignments to physical queues
422 based on those rules. Rules 420 may be identical to rules 406, may be altered in some
manner, and/or may include a subset of rules 406. As such, physical network device 416a
can be configured to efficiently handle network flows from virtual machines 412,
including making assignments of network flows to physical queues 422, without involving
host 402 for every network flow.

[0051] Rules 420 can include rules that enable physical network device 416a to assign
a number network flows to physical queues 422 that is greater in number than a number of
queues present at physical queues 422. In a simple example, network traffic from virtual
machines 412 may involve eight active network flows, but physical network device 416a
may use rules 420 to assign these eight flows to only four available queues in physical
queues 422. Physical network device 416a can be configured to make network flow to
queue assignments based on characteristics of the flows, and/or based on classifications of
the flows. In some embodiments, physical network device 416a places network flows into
different classifications based on characteristics of the flows and based on rules 420. In

some additional or alternative embodiments, physical network device 416a places network

11

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

flows into different classifications based on suggestions made by virtual machines 412.
For example, virtual machine 412a may attach some attribute to a flow, or may
communicate a suggested classification to physical function 418 separate from the flow.
[0052] Rules 420 can enable various types of queue assignment algorithms. For
example, rules 420 may specify that a plurality of network flows having a relatively low
traffic level maybe assigned together on a single physical queue, while flows having a
relatively high traffic level are to each be assigned exclusively to corresponding physical
queue. In another example, rules 420 may specify that a plurality of flows having similar
or compatible requirements are be combined on the same queue. For example, if network
packets of a plurality of flows are to be paced (rate limited) at a similar rate, those flows
may be assigned together on a single physical queue. Other similar or compatible
requirements may include priority (e.g., grouping flows of low priority together on a
single queue), quality of service (QoS) (e.g., grouping flows with low QoS requirements
together on a single queue), etc. Rules 420 may also specify that flows from the same
virtual machine are to be grouped onto a single physical queue or group of physical
queues. As such, the embodiments herein can facilitate the partitioning of hardware
resources among virtual machines 412,

[0053] In some embodiments, physical network devices 416 and virtual switch 404
can work together to balance execution of network flows there between. For example,
Figure 4 depicts that virtual switch 404 can include software-based virtual queues 408
(including queue 408a and any additional number (i.e., zero or more) of additional queues,
as represented by the horizontal ellipses and queue 408n). As such, some network flows
may be assigned to physical queues 422, and some flows may be assigned to virtual
queues 408. One will appreciate that physical queues 422 may provide faster, more
granular, and/or more reliable performance than virtual queues 408. As such, network
flows may be classified into flows that should be assigned to physical queues 422 to take
advantage of the faster, more granular, and/or more reliable performance at physical
network device 416a, and flows that may be assigned to virtual queues 408 at host 402
because fast, granular, and/or reliable performance may not be as important for these
flows. Such an assignment may be suggested by virtual machines 412, and/or may be
made by physical network devices 416 and/or virtual switch 404.

[0054] In some embodiments, a flow may pass through a plurality of physical network
devices 416 (e.g., a NIC and a switch), and host 402 can program each physical network

device to handle the flow independently. For example, one physical network device may

12

10

15

20

25

30

WO 2013/191972 PCT/US2013/045290

be programmed to assign the flow to a single physical queue at the device, while another
physical network device may be programmed to assign combine the flow with other flows
at a single physical queue at the device.

[0055] Figure 5 illustrates a flowchart of a method 500 for managing network traffic.
Method 500 will be described with respect to the components and data of computer
architecture 400.

[0056] Method 500 includes an act of executing one or more virtual machines (act
502). For example, host 402 can execute virtual machines 412, which can include virtual
machine 412a. In some embodiments, act 502 can include executing the virtual
machine(s) in a para-virtualized manner, including using one or more SRIOV-compliant
physical network devices. As such, at least one physical network device (e.g., physical
network device 418) may present a virtual function (e.g., virtual function 424a) to virtual
machine 412a, and virtual machine 412a may include a corresponding virtual function
driver (e.g., virtual function driver 414) for communicating network packets directly with
the physical network device.

[0057] Method 500 also includes an act of programming a physical network device
with one or more rules, the one or more rules being configured to manage network traffic
for the one or more virtual machines (act 504). For example, virtual switch 404 can
program physical network device 416a with rules 420. Rules 420 can be a copy of, or be
based on, rules 406 at virtual switch 404. Rules 420 can be configured to enable physical
network device 416a to make assignments between network flows associated with virtual
machines 412 and physical queues 422 at physical network device 416a.

[0058] Method 500 also includes an act of programming the physical network device
to manage network traffic (act 506). For example, virtual switch 404 can configure
physical network device 416a to make flow assignments based on rules 420. In some
embodiments, programming physical network device 416a to manage network traffic
occurs as a consequence of programming physical network device 416a with rules 420. In
other embodiments, programming physical network device 416a to manage network traffic
includes expressly programming physical network device 416a with additional computer-
executable instructions and/or additional configuration settings.

[0059] Act 506 includes programming the physical network device to determine
availability of one or more physical queues at the physical network device, the one or

more physical queues being usable for processing network flows for the one or more

13

12 Jan 2018

2013277589

10

15

20

25

30

virtual machines (act 508). For example, physical network device 416a can be configured
to identify physical queues 422, including a present availability of physical queues 422.
[0060] Act 506 includes programming the physical network device to identify a
plurality of network flows for the one or more virtual machines, including identifying one
or more characteristics of each of the plurality of network flows (act 510). For example,
physical network device 416a can be configured to identify network flows that are
associated with virtual machines 412. Physical network device 416a can also be
configured to analyze characteristics of the flows, categorization suggestions from virtual
machines 412, or any other appropriate information, to classify or otherwise categorize the
flows.

[0061] Act 506 includes programming the physical network device to, based on the
one or more characteristics of each of the plurality of network flows and based on the one
or more rules, assign one or more of the plurality of network flows to at least one of the
one or more physical queues (act 512). For example, based on rules 420, and based on
characteristics and categorizations identified in act 510, physical network device 416a can
assign the flows to physical queues 422. In doing so, physical network device 416a may
assign a number of flows to physical queues 422 that exceeds the number of physical
queues. For example, physical network device 416a may assign flows having similar
characteristics, compatible priorities or traffic loads, etc. to the same physical queue.
Additionally or alternatively, physical network device 416a may work with virtual switch
404 to assign a first subset of flows to virtual queues 408 at virtual switch 404 and a
second subset of flows to physical queues 422 at physical network device 416a.

[0062] Accordingly the embodiments described herein can improve network
performance and utilization of physical hardware by enabling a physical network device to
make assignments between flows and physical queues. When making such assignments,
the embodiments described herein can enable the physical hardware to process a greater
number of flows with physical queues than the number of physical queues are available.
Additionally or alternatively, when making such assignments, the embodiments described
herein can enable the physical hardware to balance processing of flows between physical
queues and virtual queues.

[0063] The present invention may be embodied in other specific forms without
departing from its essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the

invention is, therefore, indicated by the appended claims rather than by the foregoing

14

12 Jan 2018

2013277589

—
o}

description. All changes which come within the meaning of the claims are to be embraced
within their scope.

[0064] Throughout this specification and the claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers
or steps.

[0065] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that the prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

15

12 Jan 2018

2013277589

5

10

15

20

25

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A virtualization host computer system that is configured to manage
network traffic for one or more virtual machines that are executing at the virtualization
host computer system, the virtualization host computer system comprising:

one or More processors;
one or more physical network devices; and
one or more hardware storage devices having stored thereon computer-
executable instructions that, when executed by the one or more processors, cause
the virtualization host computer system to execute a virtual switch, the virtual
switch being configured for processing a plurality of network flows for the one or
more virtual machines at one or more virtual queues, the virtual switch also being
configured to program each of the one or more physical network devices with one
or more corresponding rules for offloading network flows and to perform the
following based on the one or more rules:
determine availability of one or more physical queues at the
physical network device, each of the one or more physical queues being
usable for offloading one or more of the plurality of network flows for the
one or more virtual machines from the virtual switch at the virtualization
host computer system;
identify a first subset of the plurality of network flows for the one or
more virtual machines that are to be offloaded from the virtual switch at the
virtualization host computer system to the one or more physical queues,
based on one or more characteristics of each of the plurality of network
flows, including determining that both a first and second flow of the first
subset of network flows are to be concurrently offloaded to a first physical
queue of the one or more physical queues based on the first and second
flows each having a relatively low traffic level compared to a third flow of
the subset of network flows and determining that the third flow is to be
uniquely offloaded to a second physical queue of the one or more physical
queues based on the third flow having a relatively high traffic level
compared to the first and second flows; and
offloading the first subset of the plurality of network flows to the

one or more physical queues, including concurrently offloading the first

16

12 Jan 2018

2013277589

10

15

20

25

30

and second flows to the first physical queue and uniquely offloading the
third flow to the second physical queue, wherein a second subset of the
plurality of network flows for the one or more virtual machines remain at
the one or more virtual queues of the virtual switch at the virtualization host
computer system.

2. The virtualization host computer system as recited inclaim 1, further
comprising:

determining one or more flows that are assigned to the first subset and one or more
flows that are assigned to the second subset based on one or more suggestions from at
least one virtual machine.

3. The virtualization host computer system as recited in claim 1, wherein the
at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having similar
rate limiting characteristics.

4. The virtualization host computer system as recited in claim 1, wherein the
at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows being
associated with the same virtual machine.

5. The virtualization host computer system as recited in claim 1, wherein the
one or more physical network devices include a physical network interface card.

6. The virtualization host computer system as recited in claim 1, wherein the
one or more physical network devices include a physical switch.

7. The virtualization host computer system as recited in claim 1, wherein the
at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having the
same priority.

8. The virtualization host computer system as recited in claim 1, wherein the
at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having the
same Quality of Service (QoS).

9. A method, implemented at a computer system that includes one or more
processors and one or more physical network devices, for managing network traffic, the
method comprising:

executing one or more virtual machines;

17

12 Jan 2018

2013277589

10

15

20

25

30

executing a virtual switch, the virtual switch being configured for
processing a plurality of network flows for the one or more virtual machines at one
or more virtual queues;
programming a physical network device with one or more rules for
offloading network flows, the one or more rules being configured to manage
network traffic for the one or more virtual machines; and
programming the physical network device to manage network traffic,
including the following:
determining availability of one or more physical queues at the
physical network device, each of the one or more physical queues being
usable for offloading one or more of the plurality of network flows for the
one or more virtual machines from the virtual switch at the virtualization
host computer system;
identifying a first subset of the plurality of network flows for the one
or more virtual machines, that are to be offloaded from the virtual switch at
the virtualization host computer system to the one or more physical queues,
based on one or more characteristics of each of the plurality of network
flows including determining that both a first and second flow of the first
subset of network flows are to be concurrently offloaded to a first physical
queue of the one or more physical queues based on the first and second
flows each having a relatively low traffic level compared to a third flow of
the subset of network flows, and determining that the third flow is to be
uniquely offloaded to a second physical queue of the one or more physical
queues based on the third flow having a relatively high traffic level
compared to the first and second flows; and
offloading the first subset of the plurality of network flows to the
one or more physical queues, including concurrently offloading the first
and second flows to the first physical queue and uniquely offloading the
third flow to the second physical queue, wherein a second subset of the
plurality of network flows for the one or more virtual machines remain at
the one or more virtual queues of the virtual switch at the virtualization host

computer system.

18

12 Jan 2018

2013277589

10

15

20

25

30

10, The method as recited in claim 9, wherein the at least two of the first subset
of network flows are concurrently offloaded to a single physical queue based on the at
least two of the first subset of network flows having similar rate limiting characteristics.

11. The method as recited in claim 9, wherein the at least two of the first subset
of network flows are concurrently offloaded to a single physical queue based on the at
least two of the first subset of network flows being associated with the same virtual
machine.

12. The method as recited inclaim 9, wherein the one or more physical
network devices include one or more of a physical network interface card or a physical
switch.

13, The method as recited in claim 9, wherein the at least two of the first subset
of network flows are concurrently offloaded to a single physical queue based on the at
least two of the first subset of network flows having the same priority.

14, The method as recited in claim 9, wherein the at least two of the first subset
of network flows are concurrently offloaded to a single physical queue based on the at
least two of the first subset of network flows having the same Quality of Service (QoS).

15. One or more hardware storage devices having stored thereon computer-
executable instructions that, when executed by one or more processors, cause a
virtualization host computer system to execute a virtual switch, the virtual switch being
configured for processing a plurality of network flows for the one or more virtual
machines at one or more virtual queues, the virtual switch also configured to program one
or more physical network devices with one or more corresponding rules for offloading
network flows and to perform the following based on the one or more rules:

determine availability of one or more physical queues at the physical
network device, each of the one or more physical queues being usable for
offloading one or more of the plurality of network flows for the one or more virtual
machines from the virtual switch at the virtualization host computer system;

identify a first subset of the plurality of network flows for the one or more
virtual machines that are to be offloaded from the virtual switch at the
virtualization host computer system to the one or more physical queues, based on
one or more characteristics of each of the plurality of network flows, including
determining that both a first and second flow of the first subset of network flows
are to be concurrently offloaded to a first physical queue of the one or more

physical queues based on the first and second flows each having a relatively low

19

12 Jan 2018

2013277589

10

15

20

25

30

traffic level compared to a third flow of the subset of network flows, and

determining that the third flow is to be uniquely offloaded to a second physical

queue of the one or more physical queues based on the third flow having a

relatively high traffic level compared to the first and second flows; and

offloading the first subset of the plurality of network flows to the one or
more physical queues, including concurrently offloading the first and second flows
to the first physical queue and uniquely offloading the third flow to the second
physical queue, wherein a second subset of the plurality of network flows for the
one or more virtual machines remain at the one or more virtual queues of the
virtual switch at the virtualization host computer system.

16. The one or more hardware storage devices as recited in claim 15, wherein
the at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having similar
rate limiting characteristics.

17. The one or more hardware storage devices as recited in claim 15, further
comprising:

determining one or more flows that are assigned to the first subset and one or more
flows that are assigned to the second subset based on one or more suggestions from at
least one virtual machine.

18. The one or more hardware storage devices as recited in claim 15, wherein
the at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows being
associated with the same virtual machine.

19. The one or more hardware storage devices as recited in claim 15, wherein
the at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having the
same priority.

20. The one or more hardware storage devices as recited in claim 15, wherein
the at least two of the first subset of network flows are concurrently offloaded to a single
physical queue based on the at least two of the first subset of network flows having the

same Quality of Service (QoS).

20

PCT/US2013/045290

WO 2013/191972

115

| 9anbi4

9[lej0A-UON

807

sjpuuBYyD
UONBIUNWIWOY)

9|HejoA

vl
Aiows|y

00}
wajsAg bunndwon

i

(s)Jossao0.d

PCT/US2013/045290

~TTY =75 T4 Lic
J SJSOH
akic

_
_
_
_
_
! g alic glic Viic
_
_
_
_
_

215

aa]

~—

N
S
~—
N

V0 [t—» —

WO 2013/191972

! 707
_ 2z
R 3717 717 A717 a71l7 Y717

{Sm | ; El4¥ aziz 3212 A4 YA A
suely 1212

|

|

“ 017 Wweyshs

002

¢ 9.nbi4

PCT/US2013/045290

3/5

S
e

L 174%

aoie

™

0L
SWA

JSOH

WO 2013/191972

PCT/US2013/045290

WO 2013/191972

415

 a1nbi4

91y s30M8(
%:o\émz [eaisAud
— | 975 B9y 0IAe(Q
— OgF aoepaju|
" M\mgvmz . BUIONT —p o o 5 — yJomja [edishyd
ananp ananp sy o
Epcy uoouny P _ —p={ UOJJOUN4
pZp suonound [enuIA [enyIA Zey senanp [eaishyd oIS
o & o *
[N B) _ _
]
0€y Uied eleQ _, 8¢y Uied eleq
\
\
/ 0Ly Jaaug
/ uonoun4 [ea1sAyd
viv \
Janug \
uonoun4 A
[ENMIA ugoy .o 280y 505
ananp ananp somy
cey Q0F senanp [enMIA
yied
Eleq P0¥ YOUMS [enuIA
434 eCLy _—
S8UIYOB [enJIA ——~— BUIYOB [BNUIA ¢0¥ 1S0H
o o O _ Q

WO 2013/191972 PCT/US2013/045290

5/5
500

A

502 ~

Executing One Or More Virtual Machines

504 ~

Programming A Physical Network Device With One Or More Rules,
The One Or More Rules Being Configured To Manage Network
Traffic For The One Or More Virtual Machines

Programming The Physical Network Device To
Manage Network Traffic, Including The Following:

508 —~

Determining Availability Of One Or More Physical Queues
At The Physical Network Device, The One Or More
Physical Queues Being Usable For Processing Network
Flows For The One Or More Virtual Machines

510 —~

Identifying A Plurality Of Network Flows For The One Or More
Virtual Machines, Including Identifying One Or More
Characteristics Of Each Of The Plurality Of Network Flows

512~

Based On The One Or More Characteristics Of Each
Of The Plurality Of Network Flows And Based On
The One Or More Rules, Assigning One Or More Of
The Plurality Of Network Flows To At Least One Of
The One Or More Physical Queues

Figure 5

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

