Australia

Patents Act 1990

NOTICE OF ENTITLEMENT

I, John Gordon Hinde, of Spruson \& Ferguson, St Martins Tower, 31 Market Street, Sydney, New South Wales 2000, Australia, being the patent attorney for the Applicant(s)/Nominated Person(s) in respect of Application No 22397/95 state the following:-

The Applicant(s)/Nominated Person(s) has/have entitlement from the actual inventor(s) as follows:-

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the actual inventor(s).

The Applicant(s)/Nominated Person(s) is/are entitled to rely on the application(s) listed in the Declaration under Article 8 of ihe PCT as follows:

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the basic applicant(s).

The basic application(s) listed on the Declaration under Article 8 of the PCT is/are the first application(s) made in a Convention country in respect of the invention.

DATED this TWENTY-SECOND
day of OCTOBER
1996

John Gordon Hinde

IRN: 354810

(12) PATENT ABRIDGMENT (11) Document No. AU-B-22397/95 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 695314

(54) Title

GRAPHICAL DISPLAY OF COMPUTATIONAL RESULTS
International Patent Classification(s)
(51) ${ }^{6}$ G06T 011/60
(21) Application No. : 22397/95
(22) Application Date : 03.04.95
(87) PCT Publication, Number : W095/27262
(30) Priority Data
(31) Number
(32) Date
(33) Country US UNITED STATES OF AMERICA
(43) Publication Date : $\mathbf{2 3 . 1 0 . 9 5}$
(44) Publication Date of Accepted Application: 13.08.98
(71) Applicant(s) ALIVE, INC.
(72) Inventor(s) SUPRATIK BOSE
(74) Attorney or Agent

SPRUSON \& FERGUSON , GPO Box 3898, SYDNEY NSW 2001
(56) Prior Art Documents US 4847785 LOTUS ORGANIZER 1.1 USERS GUIDE, 1993, PP 25-32, 94-97
(57) Claim

1. A method for operating a digital computer to provide a display for inputting values needed in a computation in a cash flow comprtation and for displaying the results of said computation, said method comprising the steps of:
displaying a graphical element comprising a symbol having a linear dimension representing the magnitude of one said input values, said magnitude being changeable by using a pointing device to manipulate a specified region on said graphical element thereby changing said linear dimension, said graphical element being displayed on a display screen connected to said digital computer, said input value determining a cash flow in at least one of a plurality of time periods;
repetitively monitoring said graphical element to detect a change in said graphical element; and
displaying said results of said computation in a first graphical display on said display screen in response to said detected change in said input value represented by said graphical element, said results of said computation comprising a graph of a set of points, one of said points corresponding to each of said time periods wherein one coordinate of each of said points is determined by said computed result for that point, that computed result depending on that point and said input values, said coordinate representing a balance in an account.

L

AU9522397

| (51) International Patent Classification 6 :
 G06T 11/60 | A1 | (11) International Publication Number:
 (43) International Publication Date: | WO 95/27262 October 1995 (12.10.95) |
| :--- | :--- | :--- | :--- | :--- |

(21) International Application Number:
(22) International Filing Date:
(30) Priority Data:

08/222,544
4 April 1994 (04.04.94)
(81) Designated States: AU, CA, JP, US, European patent (AT, BE, $\mathrm{CH}, \mathrm{DE}, \mathrm{DK}, \mathrm{ES}, \mathrm{FR}, \mathrm{GB}, \mathrm{GR}, \mathrm{IE}, \mathrm{IT}, \mathrm{LU}, \mathrm{MC}, \mathrm{NL}, \mathrm{PT}$, SE).

Published

With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(71) Applicant (for all designated States except US): ALIVE, INC. [US/US]; 17 Lee Street, Suite 6, Cambridge, MA 02139 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): BOSE, Supratik [US/US]; 17 Lee Street, Suite 6, Cambridge, MA 02139 (US).
(74) Agent: WARD, Calvin, B.; Law Offices of Calvin B. Ward, 18 Crow Canyon Court, Suite 305, San Ramon, CA 94583 (US).

3 April 1995 (03.04.95)
(54) Title: GRAPHICAL DISPLAY OF COMPUTATIONAL RESULTS

(57) Abstract

A method for operising a digital computer to provide a display for inputting values needed in a computation and displaying the results of the computation (150). The method starts by displaying a graphical element on a computer screen (103), said graphical element being capable of representing the magnitude of one of the input values. The magnitude is changed by using a pointing device (115) to manipulate a specified region on the graphical element (105). The computer monitors the graphical element for any change therein (104). Upon detecting such a change, the computer displays the results of the computation in a first graphical display (107,108) in response to the detected change in the input value represented by the graphical element. The computer then returns to monitoring the graphical element for another change. In one embodiment of the present invention, the graphical elements are arranged to form a second graphical display (106).

Graphical Display of Computational Results

Field of the Invention

The present invention relates to data processing systems, and more particularly, to an improved user graphical interface.

Background of the Invention

Computer programs that graphically display the results of a computation are well known to the prior art. For example, spread sheets will graph the results of a computation if the results are part of a spread sheet that stores ihe results in a column or row of a table. In this case, the user typically provides at least two columns or rows, one having the "x-values" or the graph and one having the " y -values" of the graph.

In general, the underlying computation has both dependent and independent variables, the former being generated from the latter and code specifying one or more computations. If the user is interested in the results of the computation for a single set of independent variable values, the spread sheet methodology is quite satisfactory. However, if the user wishes to explore the results for a number of different independent variable values, the spread sheet methodology is found to be less than optimal.

Consider the problem of providing a cash flow analysis and projection for a business on a monthly basis. The independent variables are typically the interest paid on funds in bank accounts, the amount of money coming into, or flowing out of, the business each month. The dependent variable in this case is the cash in the bank at the end of each month. The problem may be setup on a spread sheet with one column entry for each of the variables and a formula for computing the cash balance in the bank at the end of each month. The results for each month would be stored in one column of the spread sheet and would be automatically graphed each time a new independent variable value was inputted by the user. To explore the sensitivity of the cash flow to various assumptions about the independent variable, the user must type in a new value for one of the variables, print out the graph, type a second value for the
variable, print out the graph, and so on. The graphs would then be compared with one another manually. This method of exploring the data is slow and error prone.

Broadly, it is the object of the present invention to provide an improved user interface for graphically exploring the results of a computation in an interactive manner.

Summary of the Invention

In accordance with one aspect of the present invention there is provided a method for operating a digital computer to provide a display i, r inputting values needed in a computation in a cash flow computation and for displaying the results of said computation, said method comprising the steps of:
displaying a graphical element comprising a symbol having a linear dimension representing the magnitude of one said input values, said magnitude being changeable by using a pointing devise to manipulate a specified region on said graphical element thereby changing said linear dimension, said graphical element being displayed on a display screen connected to said digital computer, said input value determining a cash flow in at least one of a plurality of time periods;
repetitively monitoring said graphical element to detect a change in said graphical element; and
displaying said results of said computation in a first graphical display on said display screen in response to said detected change in said input value represented by said graphical element, said results of said computation comprising a graph of a set of points, one of said points corresponding to each of said time periods wherein one coordinate of each of said points is determined by said computed result for that point, that computed result depending on that point and said input values, said coordinate representing a balance in an account.

Brief Description of the Drawing

Figure 1 is an example of a graphical display generated by a method, being an embodiment of the present invention.

-3-

Detailed Description of the Invention

The present invention differs from conventional spread sheets in that the independent variables are represented graphically by symbols that contain an element that is capable of representing the magnitude of a quantity in some graphical manner and that may be changed by using a mouse or similar pointing device. For example, the magnitude of a variable may be represented by the length of an arrow. In this case the value would be changed by dragging the head of the arrow with the mouse so as to increase or decrease the length of the arrow. "Sliders" perform similar functions. A slider is typically constructed from a linear scale with an object on the scale that may be moved using the mouse. The distance from one end of the scale to the slider represents the value of the variable. A bar in a bar graph may also be used in this manner by dragging the top of the bar so as to extend or contract the length of the bar. Any arrangement of graphed points may also be used by allowing the points to be moved to new locations by dragging individual points with a pointing device. Such graphical aids will be referred to as widgets in the following discussion.

This user interface may be more easily understood with reference to an exemplary computer display for use in displaying the results of a cash flow analysis or model. In the model, a company's bank account is incremented or decremented at the end of each accounting period. The amount of increment or decrement, referred to as the "cash flow", may be input separately for each accounting period. The balance in the bank account at the beginning of the accounting period earns interest at a predetermined rate that may be inputted to the model. The balance in the bank account at the end of the accounting period is displayed as a bar graph, one bar per accounting period. Such a display is shown in Figure 1 at 150. Each accounting period is characterized by a bank balance which is shown in the form of a bar graph, an exemplary bar being shown at 104. The bank balance is also shown above each bar in digital form such as shown at 103. The cash flow is shown in the form of an array of arrows, one arrow per accounting period, an exemplary arrow is shown at 105. Similarly, the amount of the cash flow is shown digitally below each accounting period, an exemplary digital display being shown at 106. The cash flow variables represent transactions between a company and a bank from the pint of view of the company. The downward arrows are negative, representing money taken out of the company and deposited in the bank and the upward arrows are positive, representing
money received by the company after a withdrawal from the bank. It is assumed that for each accounting period the money in the bank earns interest at the rate shown in the interest slider 108. In this simple example, the interest rate is assumed fixed for the entire set of accounting periods; however, it will be apparent to those skilled in the art that a separate interest rate widget could be provided for each accounting period in a manner analogous to the arrows used for indicating cash flow. In this case, there would be two sets of independent variables, each represented by graphically arranged widgets.

The user sets up the initial values of the independent variables either by dragging the corresponding arrow or by selecting the cash flow digital display and then typing in a value. The latter form of data entry is analogous to entering data in a data entry field of a data base application. The preferred method of changing a value is by dragging the head of the corresponding arrow. Such "drag" operations are typically performed by positioning the cursor 115 over the head of the arrow and then depressing a button on the pointing device while causing the cursor to move by moving the pointing device. Each time a new value is entered, the program automatically computes the bank balance at the end of each accounting period and displays the result. Hence, the user can drag any of the arrows and view the impact on the entire cash flow model. Similarly, the user can drag the interest slider and view the result of the cash flow model which will change continuously with the position of the interest slider.

In the cash flow analysis, the interest rate and the cash flow in each accounting period constitute the independent variables. Once these are specified, the bank balance at the end of each accounting period, the dependent variables, may be calculated and displayed. It will be apparent to those skilled in the art that the method of the present invention may be applied advantageously to a large number of modeling problems. In each case, the independent variables are displayed as graphical widgets. The dependent variable or variables may be displayed in one or more graphical representations.

The present invention is most easily implemented on an object oriented graphical user interface system. In such systems, the operating system provides an interrupt each time the mouse or similar pointing device is "clicked" or moved. The present invention initially displays a user screen showing the independent variables in the form of widgets and the dependent variable or variables in graphical
representation using the startup values of the independent variables. The program then waits for an interrupt generated by the pointing device. When an interrupt is detected, the program determines which independent variable has been changed and the new value for that variable. The program then recalculates the dependent variables and displays the graphical representation thereof. If, after redisplaying the dependent variable graphical representation, an independent variable has been changed again, the process is repeated. Hence, the present invention continuously tracks the independent variable and provides a continually updated display of the dependent variable or variables.

While spread sheet programs allow a user to graphically view the result of a computation, these programs do not provide a means for continuously varying an independent variable and watching the graphical display change in a continuous manner. In the case of a spread sheet, the user must select the spread sheet cell containing the independent variable that is to be changed and then type a new value for the independent variable in question. The program will then re-display the dependent variable graph. To view the results for a number of different values of the dependent variable, the user must repeat this process. In the present invention, the user need only drag the widget corresponding to the intependent variable and watch the graph continuously update as the widget passes through each value.

In many cases, the user will wish to enter or change the values of the independent variables in a continuous manner. However, in some cases, the user may wish the values to change in predetermined steps. That is, the independent variables may be continuous or quantized. In the case in which the variables are quantized, the slider preferably moves in a continuous manner but the value does not change until the slider moves into the next step. When the user releases the slider, the slider automatically rounds the value to the closest step. In the preferred embodiment of the present invention, the manner in which each independent variable changes in response to the manipulation of the corresponding widget may be entered by selecting the widget using a different mouse key or menu option. For example, the right mouse button may be used to input the attributes of a widget by pointing to the widget and then clicking the widget using the right mouse button.

The widgets may be arranged so as to provide a graphical representation of the independent variables or placed separately depending on the variables represented by
the widgets. For example, the arrows shown in Figure 1 are arranged as a graph in a manner analogous to a bar graph; while the interest rate slider is a separate widget.

Various modifications to the present invention will become apparent to those skilled in the art from the foregoing description and accompanying drawings.
5 Accordingly, the present invention is to be limited solely by the scope of the following claims.

- 7 -

The claims defining the invention are as follows:

1. A method for operating a digital computer to provide a display for inputtitig values needed in a computation in a cash flow computation and for displaying the results of said computation, said method comprising the steps of:
displaying a graphical element comprising a symbol having a linear dimension representing the magnitude of one said input values, said magnitude being changeable by using a pointing device to manipulate a specified region on said graphical element thereby changing said linear dimension, said graphical element being displayed on a display screen connected to said digital computer, said input value determining a cash flow in at least one of a plurality of time periods;
repetitively monitoring said graphical element to detect a change in said graphical element; and
displaying said results of said computation in a first graphical display on said display screen in response to said detected change in said input value represented by said graphical element, said results of said computation comprising a graph of a set of points, one of said points corresponding to each of said time periods wherein one coordinate of each of said points is determined by said computed result for that point, that computed result depending on that point and said input values, said coordinate representing a balance in an account.
2. The method of claim 1 wherein said step of displaying a graphical element further comprises displaying a plurality of graphical elements, each graphical element having a linear dimension representing one of said input values needed in said computation, said plurality of graphical elements forming a second graphical display.
3. The method of claim 2 wherein said computation generates one result for each of a plurality of periods, said result depending on a plurality of input values, one such input value corresponding to each of said periods, each of said results depending on one of said input values for one of said periods that is different from said period for which that result is computed, and wherein said first graphical display comprises a graph of said results as a function of said periods, and wherein said second graphical display comprises a graph of said input values as a function of said periods, said second graphical display being generated by arranging said graphical elements in an ordered array.

- 8 -

4. A method for operating a digital computer, substantially as described herein with reference to the accompanying drawing.

DATED this Twenty-fifth Day of June 1998
Alive, Inc.
Patent Attorneys for the Applicant
SPRUSON \& FERGUSON

ACCOUNT BALANCE

INTERNATIONAL SEARCH REPCRT

International application No.
PCT/US95/04190
A. CLASSIFICAT $\mathfrak{O N}$ OF SUBJECT MATTER

IPC(6) : GO6T 11/60
US CL : 395/140
Accorting to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/140, 141, 143

Documentation searched other than minimum documentation to the extent that auch documents are included in the fields searchris

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS
Search Terms: Monitoring, Graphl, Second (5W) Display, Input

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of drgument, with indication, where appropriate, of the relevant passagea	Relevant to claim No.
X	US, 4847785 (Stephens) 11 July 1989,	$1-3$

See column 3, lines 30-33; column 5, lines 30-40; Figures 3 \& 5 .

Further documents are listed in the continuation of Box C.

Date of the sectual completion of the international search 10 MAY 1995	Date of raniling of the intemational search report $24 \text { AUG } 19.95$
Name and mailing addreas of the ISANUS Commisionear of Pstenter nod Tridemarta Box PCT Washingtoa, D.C. 20031 Facsimile No. (703) 305-9564	Authorized officer HEATHER \qquad \qquad Telephone No. (703) 305-9701

