This invention relates to sorting apparatus, and more particularly to photo-electric inspection and sorting machines.

It is a principal object of this invention to provide an improved form of conveyor type photo-electric sorting apparatus having means to photo-electrically inspect and sort conveyed objects as they may be seen from both above and below the conveyor surface.

The conveyor types of photo-electric inspection and sorting apparatus known prior to this invention have not provided for the photo-electric inspection of conveyed objects as seen from both above and below the conveyor belt. This is particularly disadvantageous when photo-electrically inspecting and sorting conveyed objects of a size and shape such as to present their largest surface areas in planes generally parallel to the plane of the conveyor surface. For example, blanched cashew nuts could not be adequately inspected and sorted to cull the unblanched nuts with the known types of photo-electric sorting apparatus prior to this invention since their size and shape are such as to cause them to be positioned on the conveyor with relatively large surface areas, which might be unblanched, in contact with the conveyor surface and thus unseen by the photo-electric inspection station.

The present invention proposes to overcome the above disadvantages by providing a transparent conveyor surface together with suitable photo-electric inspection stations for photo-electrically examining the conveyed objects from both above the conveyor and below the conveyor as seen through the transparent conveyor surface. The invention, in a preferred embodiment, further provides for light sources to illuminate the objects to be inspected and these light sources may be arranged in such manner as to facilitate the inspection of the objects as conveyed on the relatively shiny surface of the transparent conveyor.

The apparatus of this invention also provides for an adjustment of the background lighting in the sensitive inspection area.

The present invention in yet another embodiment provides for the positioning of the objects to be inspected and sorted in a spaced single file relationship and to guide such file of objects through the sensitive inspection area of the photo-electric inspection station.

Further objects and advantages of the invention will be apparent with reference to the following specification and drawings in which,

Figure 1 is a diagrammatic side elevation of the photo-electric sorting apparatus of this invention;

Figure 2 is a diagrammatic plan view of the apparatus of Figure 1 as seen from above;

Figure 3 is a schematic wiring diagram of a preferred form of photo-electric cell amplifier and relay for use with the invention;

Figure 4 is a wiring diagram of the voltage source to a set of lamps for illuminating the objects to be photo-electrically sorted;

Figure 5 is a diagrammatic side elevation of a modified form of photo-electric sorting apparatus of this invention, and

Figure 6 is a diagrammatic plan view of the apparatus of Figure 5 as seen from above to show the arrangement of guide members for aligning in spaced single file the objects to be sorted.

Referring to Figures 1 and 2 of the drawings, the photo-electric sorting apparatus of this invention is diagrammatically shown with the details of the machine supporting framework omitted in order to simplify the drawings and clarify the invention. It will be understood that any suitable framework and supporting members may be used to support and position the various elements of the invention in the desired relative positions as shown. The objects to be photo-electrically examined and sorted according to their light reflective properties as seen from both above and below their positions on the conveyor are fed to the transparent conveyor 10 from a suitable form of chute 11 which may be adapted to arrange the objects in spaced single file position on the conveyor for passage through the sensitive areas of the photo-electric inspection stations 12 and 14. In connection with the modified form of the invention as shown in Figures 5 and 6, the details of one form of apparatus for aligning in spaced single file positions the objects to be sorted as they pass the photo-electric inspection stations will be described.

The endless conveyor 10 is formed of any suitable transparent material which may, for example, be cellulose acetate sheeting. In order to facilitate the proper operation of the invention, the conveyor 10 must be clearly transparent and free from surface scratches and therefore any apparatus parts coming in contact with the conveyor surface should preferably be provided with felt or other soft substances on the contacting surfaces. The conveyor rollers 15 and 16 which are supported on suitable journals (not shown) are driven by any suitable mechanism (also not shown) to cause the conveyor 10 to move in the direction of the arrows, that is with the conveying run of the belt moving from left to right. The conveyor rollers 15 and 16 may be provided with soft rubber surfaces 17 and 18.
for driving contact with the transparent conveyor belt 10.

Suitably positioned at spaced intervals along the conveyor run are the photo-electric inspection stations 12 and 14 for inspecting the articles to be sorted as seen from above and below the conveyor, respectively. The photo-electric inspection station 12 is comprised of the photo-electric cell 28 contained in the light tight box 21 and having an aperture and lens 23, 24, 25 and 26 for determining in a known manner the active photo-electric field of inspection on the conveyor. Surrounding the box 21, and suitably supported in a manner not shown in detail are a plurality of reflective light sources, which as shown in the preferred embodiment may be four in number and each comprised of a lamp and reflector generally indicated by reference numerals 23, 24, 25 and 26. Suitably positioned beneath the transparent conveyor 10 at a point opposite the sensitive inspection field of the photo-electric cell 28 is a background light source 21, whose light is directed through the light diffusers comprised of the ground glass plates 28 and 29 to the sensitive inspection field 30 of the transparent conveyor. Although not shown on the drawing, the bottom surface of the conveying run of the conveyor belt may be supported on a felt covered board having circular cut-out positions to additionally define the inspection fields 30 and 31.

A pipe line 35 containing air under pressure is connected through a solenoid controlled valve 33 to a nozzle pipe 31 whose nozzle end is positioned at one side of the inspection field 30 in a manner to blow an object to be sorted out of the normal line of its travel when the valve 33 is actuated to its open position. The solenoid valve 33 is actuated and controlled by the photo-electric cell 28 connected to a suitable amplifying relay apparatus such as that to be described in connection with Figure 2 of the drawings and the adjustments may be such as to cause, selectively as desired, either a dark object of a light object to be moved out of its normal line of travel as it passes the nozzle 31.

The background light source 21 is of considerable importance to the invention since it provides a diffused light background within the sensitive inspection area. It will be remembered that the conveyor 10 is formed of transparent sheet material which necessarily has a shiny surface and in view of the obvious flexible nature of the endless conveyor, such shiny surface would cause varying points of intense light reflections from the reflective light sources 23, 24, 25 and 26 to strike the photo-electric cell 28. Thus a comparatively white background of steady diffused light in the sensitive inspection area as provided by the light source 21 and ground or frosted glass light diffusing plates 28 and 29 is desirable in order to enable a more sensitive adjustment of the photo-electric cell responses and eliminate spurious responses of the photo-cell from undesired conveyor reflections.

In order that the valve of the background lighting may be adjustable a voltage source such as that shown in Figure 4 of the drawings may be employed. The reflective light 23, 24, 25 and 26 are connected in series with a suitable voltage dropping resistor 40 and the background light 27 to the terminals 41 and 42 of the voltage source V. A variable resistor 43 is connected in parallel with the background light 27 in such manner that adjustments of the valve of resistor 43 are effective to vary the amount of light provided by the background light 27.

Referring again to Figures 1 and 2, the photo-electric inspection station 14 is identical with the inspection station 12 as described above, except that the photo-cell unit 50 and associated reflective light sources is placed beneath the sensitive inspection area 31 of the transparent conveyor for inspection of the underside of objects on the conveyor run. Similarly, the background light source 51 is placed above the conveyor 10 and opposite the sensitive inspection area 31. No further description of the inspection station 14 will be made, it being understood that all of the elements are similar to those described for the inspection station 12.

While any suitable form of photo-electric cell amplifying and relay apparatus may be employed for each of the inspection stations 12 and 14, a preferred amplifier circuit arrangement is shown in Figure 3. The photo-cell 23 is contained in an electrically grounded and light tight shield box 60. The photo-cell cathode 61 is grounded as shown and the anode 62 is connected to the control grid 63 of a cathode follower impedance matching tube 64. The output at the junction of cathode load resistance 65 and bias resistance 68 is connected to the input grid 69 of a conventional two-stage resistance coupled voltage amplifier including the triode tubes 69 and 70. The output of the voltage amplifier is connected through a coupling condenser 71 to the control grid 63 of the cathode follower impedance matching output tube 73 whose output signal at the juncture of the cathode load resistance 74 and bias resistance 75 is directly connected to the control grid 76 of the relay tube 71. A current sensitive relay 78 is connected in the plate circuit of relay tube 71 and the bias of the relay tube is obtained by the connection of its cathode 79 to the tap 80 on the voltage divider comprised of potentiometer 81 and resistor 82 connected from ground to the positive voltage terminal 83. A conventional full wave rectifier power supply 84 including filter condensers 85, 86, 87, 88 and 89, isolating resistors 90, 91, 92, 93 and 94 and voltage regulator tubes 95 and 96 is employed to supply operating potentials to the amplifier and relay tube circuits. Filament voltages may be supplied through a conventional filament wiring circuit (not shown) from the filament winding 100 on the power transformer 101. The voltage amplifier tubes 69 and 70 are provided with plate load resistors 102 and 103 respectively and their grids are returned to ground through potentiometer type gain controls 104 and 105. By adjustment of the gain controls 104, 105 and the relay tube bias control 81, the relay 78 may be caused to close the relay switch contacts 110 upon a given condition of lighting on the photo-cell 20 so as to connect the voltage source terminals 111 and 112 to the solenoid air valve 35 and thus open the valve. Alternatively, the solenoid valve may be normally open and closed upon actuation of the plate relay 78 for certain conditions of operation.

In the modified form of the invention shown in Figures 5 and 6 a novel arrangement for guiding and sorting the objects to be sorted on the transparent conveyor belt is disclosed and in order to clarify the invention the photoelectric apparatus which is identical to that disclosed in Figures 1 and 2 has been omitted from these figures of the drawings. However, the sensitive
areas of the inspection stations are shown as 130
and 131, respectively, for inspection of the
objects from both above and below the conveyor.
The transparent conveyor belt 132 is carried by
the conveyor rollers 133 and 134 and moves in
the direction of the arrows. Closely spaced above
the upper surface of the conveying run of the
conveyor are a plurality of guide members which
may be formed of any suitable material such as
plastic strips or the like and supported from
the machine framework by any suitable means
(not shown). The guide members include a plura-
ality of strips 135, 136, 137 and 138 positioned
at the entering end of the conveyor 132. It will
be noted that strip 135 is positioned at an angle
deviated in the direction of conveyor travel but
very close to a right angle with the direction of
travel of the conveyor while the strips 136, 137
and 138 are positioned at angles progressively
closer to the direction of travel of the conveyor.
The guide strips 135, 136, 137 and 138 are posi-
tioned successively in reversed angle or zig-zag
manner with the discharge end of each strip
overlapped by the entering end of each successive
strip. Thus, objects deposited haphazardly on
the entering end of the conveyor are caused to
move against the guide strips 135, 136, 137 and
138 and are gradually accelerated in movement
to the speed of movement of the conveyor while
at the same time being separated from each
other and aligned in single file for passage through
the sensitive inspection areas 130
and 131.

To assure the correct alignment of the single
file of objects with respect to the inspection
stations 130 and 131, the channel guide strips
140 and 141 may be provided. At each inspection
station 130 and 131, an air nozzle 142 and 143
is provided to cooperate with the solenoid oper-
ated air valves 144 and 145 to be effective to
move the objects to be sorted in a direction transverse to the travel of the conveyor when
the respective valve is operated. The guide wall
141 is provided with openings 146 and 147 op-
posite the air nozzles 142 and 143, respectively,
which communicate with a recess 150 defined by
the guide strips 140 and 141. Objects remaining
in the channel defined by the guide strips 140
and 141 are deposited in the container 151 while
objects which have been sorted into channel 150 are deposited in the container 152. In
the event that the objects to be sorted are
fragile, inserts 153 and 154 of cushion material
may be applied to the inner wall of guide strip
140 at the positions opposite the air nozzle 142
and 143.

In considering the operation of the photo-elec-
tric sorting apparatus of this invention, it will be
understood that the response of the photo-
cells and associated relay amplifiers may be ad-
justed to cause the solenoid valves to be selec-
tively operated when an object having a surface
darker than a predetermined light value passes
the inspection station. Thus, when using the
guide channel as shown in Figures 5 and 6 of
the drawings, dark cashew nut shells which are
completely free of the white nut meat may be
sorted into one of the channels and deposited in
the associated container. The apparatus of this
invention enables a cashew nut shell to be ana-
dained from above and below its position on
the transparent conveyor and thus any shells
containing nut-meat on their inner underside
surfaces will be sorted from those which are free
of nut meats on their underside. It is particu-
larly desirable to obtain cashew nut shells that
are completely free of nut meats when the shells
are to be processed to produce oils.

On the other hand, the sorting apparatus of
this invention may be adjusted to sort blanched
nuts or the like from incompletely blanched nuts
on which some dark nut skins are still adher-
ing. The cashew nut, for example, is of such
shape and size that it arranges itself on a con-
veyor with the maximum amount of its surface
area exposed in planes generally parallel to the
conveyor surface plane and, therefore, to ac-
curately sort the completely blanched cashew nuts
from partially blanched cashew nuts it is neces-
sary to photo-electrically inspect the nuts from
positions both above and below the conveyor as
provided for by this invention.

While I have specifically described preferred
embodiments of the invention, it will be under-
stood that certain variations in the disposition of
the photo-cells and lighting arrangements may
be made without departing from the spirit and
scope of the invention as defined by the appended
claims. For example, the number of reflective
light sources may be greater or less than that
specifically described and the photo-cells may be
arranged without a lens and aperture system, if
so desired.

What I claim is:
1. A sorting machine for sorting out off-colored
objects comprising a transparent horizontally
disposed conveyor belt adapted to convey
objects to be sorted in a horizontal direction,
means to position objects to be sorted on said
conveyor, a first photo-electric inspection station
means positioned above said conveyor at a point
along the conveyor run, in a manner to photo-
electrically inspect said objects from above the
conveyor, a first light source positioned above
said conveyor in a manner to reflect light from
the conveyor and objects to said first photo-electric
means, a second photo-electric inspection station
means positioned beneath said conveyor in a
manner to photo-electrically inspect said objects
from beneath the conveyor, a second light Source positioned beneath said conveyor, a first light source positioned below said conveyor in a manner to reflect light from the conveyor and objects to said first photo-electric
means, relay means for each of said inspection
stations and actuated in accordance with a given
condition of response of the respective photo-
electric means, and object sorting means for each
of said inspection stations and controlled by the
respective relay means.
2. The invention as defined in claim 1 wherein
each of said object sorting means is comprised of
a fluid pressure nozzle positioned adjacent the
conveyor run in the vicinity of the respective
photo-electric means in a manner to move said
objects transversely of the conveyor when sup-
plied with fluid pressure, a source of fluid pres-
sure for said nozzle, and a solenoid valve
controlled by the respective relay means for con-
necting said fluid pressure to said nozzle.
3. A sorting machine for sorting out off-colored
objects comprising a transparent horizontally
disposed conveyor belt adapted to convey objects
to be sorted, means to position objects to be sorted
on said conveyor, a first photo-electric inspection
station means positioned above said conveyor at
a point along the conveyor run, in a manner to
photo-electrically inspect said objects from above
the conveyor, a first light source positioned above
said conveyor in a manner to reflect light from
the conveyor and objects to said first photo-elec-
tronic means, a first background light source positioned beneath said conveyor and opposite said first photo-electric means, a second photo-electric inspection station means positioned beneath said conveyor in a manner to reflect light from the conveyor and underside of said objects to said second photo-electric means, a second background light source positioned above said conveyor and opposite said second photo-electric means, relay means for each of said inspection stations and actuated in accordance with a given condition of response of the respective photo-electric means, and object sorting means for each of said inspection stations and controlled by the respective relay means.

4. A sorting machine for sorting out off-colored objects comprising a transparent horizontally disposed conveyor belt adapted to convey objects to be sorted in a horizontal direction, means to position objects to be sorted with the conveyor, said objects being positioned beneath the conveyor, a first photo-electric inspection station means positioned above said conveyor at a point along the conveyor run, in a manner to photo-electrically inspect said objects from above the conveyor, a first light source positioned above said conveyor in a manner to reflect light from the conveyor and objects to said first photo-electric means, a first background light source positioned beneath said conveyor and opposite said first photo-electric means, a second photo-electric inspection station means positioned beneath said conveyor in a manner to reflect light from the conveyor and underside of said objects to said second photo-electric means, each of said first and second background light sources having light diffusing elements interposed before the conveyor, relay means for each of said inspection stations and actuated in accordance with a given condition of response of the respective photo-electric means, and object sorting means for each of said inspection stations and controlled by the respective relay means.

5. The invention as defined in claim 4 wherein each of said object sorting means is comprised of a fluid pressure nozzle positioned adjacent the conveyor run in the vicinity of the respective photo-electric means in a manner to move said objects transversely of the conveyor when supplied with fluid pressure, a source of fluid pressure for said nozzle, and a solenoid valve controlled by the respective relay means for connecting said fluid pressure to said nozzle.

6. A sorting machine for removing off-colored objects as claimed in claim 4 wherein the means to position objects includes a plurality of stationary guide strips associated with the upper side of the conveying run of said conveyor, said guide strips being closely spaced with the surface of said conveyor to form paths within which the objects to be sorted are confined in their movement with the conveyor, a group of said guide strips being positioned at the entering run of the conveyor and extending generally transversely of the conveyor path, the guide strip of said first group that is nearest to the entering run of the conveyor being positioned at an angle deviating slightly in the direction of conveyor travel from a right angle to the conveyor travel and the successive ones of the strips in said first group being positioned at successive angles closer to the direction of conveyor travel, the successive angles of the strips in said first group being reversed in zigzag relation with the entering end of each succeeding strip, the last guide strip of said first group that is furthest from the entering run of said conveyor being positioned to guide said objects into a first channel defined by a second group of guide strips, said first channel being positioned to pass through the sensitive areas of the photo-electric inspection station means, and a third group of guide strips being positioned in a plane parallel to said second group of guide strips to form a second channel for guiding objects without the sensitive areas of the inspection stations, and additional guide strips forming communicating channels between said first and second channels at the object sorting positions of the inspection stations.

7. A machine for operating out off-colored objects comprising a horizontally disposed transparent horizontally travelling conveyor of transparent material, a first photo-electric sensing means disposed opposite one face of said conveyor to inspect objects carried thereon from one direction, a second photo-electric sensing means positioned opposite the other face of said conveyor to inspect objects carried thereon from the opposite direction, means for positioning said objects to be inspected on said conveyor whereby said objects are carried successively through the inspection ranges of said first and second photo-electric sensing means, and sorting means responsive to actuation by said photo-electric sensing means to separate out off-colored objects.

8. A sorting machine for separating out off-colored objects comprising a substantially horizontally disposed substantially horizontally travelling conveyor of transparent material, a first photo-electric sensing means positioned above said conveyor to inspect objects thereon from above, a second photo-electric sensing means positioned below said conveyor to inspect objects thereon from below, positioning means located at the feed end of the conveyor for aligning the objects to be inspected in a single file on the conveyor whereby they are carried successively through the inspection ranges of first and second photo-electric sensing means without substantial alteration of their position, and an air nozzle located to eject objects from their aligned position on the conveyor responsive to signal from said photo-electric sensing means.

9. A sorting machine for separating out off-colored objects comprising a substantially horizontally travelling conveyor of transparent material, a first photo-electric sensing means positioned above the conveyor to inspect objects thereon from above, light diffusing means positioned below the conveyor opposite said first photo-electric sensing means for adjustment of light intensities, a second photo-electric sensing means positioned below said conveyor at a point further along its travel to inspect objects thereon from below, light diffusing means positioned above said conveyor opposite said second photo-electric sensing means for adjustment of light intensities, positioning means at the feed end of the conveyor to align the objects to be inspected substantially in single file on the conveyor whereby said objects are carried successively through the range of said first and second photo-electric sensing means, an air jet means responsive to
signals from said photo-electric sensing means for moving off-colored objects out of alignment on said conveyor.

CLARENCE T. NEMIR.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>791,243</td>
<td>Carlson</td>
<td>May 30, 1905</td>
</tr>
<tr>
<td>1,094,672</td>
<td>Milentz</td>
<td>Apr. 28, 1914</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,196,442</td>
<td>Eick</td>
<td>Aug. 29, 1916</td>
</tr>
<tr>
<td>1,943,278</td>
<td>Thompson</td>
<td>Jan. 9, 1934</td>
</tr>
<tr>
<td>1,945,939</td>
<td>Cockrell</td>
<td>Jan. 30, 1934</td>
</tr>
<tr>
<td>1,946,980</td>
<td>Loomis</td>
<td>Feb. 13, 1934</td>
</tr>
<tr>
<td>2,007,059</td>
<td>Meharg</td>
<td>July 2, 1935</td>
</tr>
<tr>
<td>2,063,465</td>
<td>Carris</td>
<td>Dec. 8, 1936</td>
</tr>
<tr>
<td>2,131,095</td>
<td>Cox</td>
<td>Sept. 27, 1938</td>
</tr>
<tr>
<td>2,183,884</td>
<td>Hait</td>
<td>Dec. 19, 1939</td>
</tr>
<tr>
<td>2,190,583</td>
<td>Horsfield</td>
<td>Feb. 13, 1940</td>
</tr>
</tbody>
</table>