wo 2012/018666 A1 I 0K 0 O 0 O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization @T‘?‘S\

tellectual Property /,:‘.) T OO A0 A 0
. L. ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
9 February 2012 (09.02.2012) WO 2012/018666 A1

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/45 (2006.01) HO04R 25/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS ? CBRB’ CBI(J}, g;l’ DB]IE{ ? DBI\(V ’];313[{ ’]];é’
PCT/US2011/045672 Dz, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
28 July 2011 (28.07.2011) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/848,523 2 August 2010 (02.08.2010) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): AD- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
VANCED BIONICS AG [CH/CH]; Laubisruetistrasse ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

28, CH-8712 Staefa (CH). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(72) Inventor; and
(75) Inventor/Applicant (for US only): CHAPA, Fernando
[MX/US]; 36440 Firenze Drive, Harold, California 93550

(US).

(74) Agent: LAIRD, Travis K., AdvantEdge Law Group, »uplished:
LLC, 922 W. Baxter Drive, Suite 100, South Jordan, Utah — with international search report (Art. 21(3))
84095 (US).

(54) Title: METHODS AND SYSTEMS FOR AUTOMATIC GENERATION OF MULTITHREAD-SAFE SOFTWARE CODE

300 (57) Abstract: An exemplary method of automatic genera-

\ tion of multithread-sate software code includes a multi-
thread-sate code generator subsystem analyzing data repre-

sentative of non-multithread-safe software code and auto-

matically generating data representative of multithread-

safe software code based on the analyzing of the data rep-
resentative of the non-multithread-safe software code. Cor-

Analyze non-multithread-safe software code responding methods and systems are also described.
302

!

Generate multithread-safe software code based on the analysis
304

!

Implement the multithread-safe software code
306

10

15

20

25

30

35

WO 2012/018666 PCT/US2011/045672

METHODS AND SYSTEMS FOR AUTOMATIC GENERATION OF
MULTITHREAD-SAFE SOFTWARE CODE

RELATED APPLICATIONS

[0001] The present application claims priority to U.S. Patent Application No.
12/848,523 by Fernando Chapa, filed on August 2, 2010, and entitled “Methods and
Systems for Automatic Generation of Multithread-Safe Software Code” the contents of

which are hereby incorporated by reference in their entirety.

BACKGROUND INFORMATION

[0002] The natural sense of hearing in human beings involves the use of hair cells in
the cochlea that convert or transduce acoustic signals into auditory nerve impulses.
Hearing loss, which may be due to many different causes, is generally of two types:
conductive and sensorineural. Conductive hearing loss occurs when the normal
mechanical pathways for sound to reach the hair cells in the cochlea are impeded.
These sound pathways may be impeded, for example, by damage to the auditory
ossicles. Conductive hearing loss may often be overcome through the use of
conventional hearing aids that amplify sound so that acoustic signals can reach the hair
cells within the cochlea. Some types of conductive hearing loss may also be treated by
surgical procedures.

[0003] Sensorineural hearing loss, on the other hand, is caused by the absence or
destruction of the hair cells in the cochlea which are needed to transduce acoustic
signals into auditory nerve impulses. People who suffer from sensorineural hearing
loss may be unable to derive significant benefit from conventional hearing aid systems,
no matter how loud the acoustic stimulus. This is because the mechanism for
transducing sound energy into auditory nerve impulses has been damaged. Thus, in
the absence of properly functioning hair cells, auditory nerve impulses cannot be
generated directly from sounds.

[0004] To overcome sensorineural hearing loss, numerous cochlear implant
systems—or cochlear prostheses—have been developed. Cochlear implant systems
bypass the hair cells in the cochlea by presenting electrical stimulation directly to the
auditory nerve fibers by way of one or more channels formed by an array of electrodes

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

implanted in the cochlea. Direct stimulation of the auditory nerve fibers leads to the
perception of sound in the brain and at least partial restoration of hearing function.
[0005] When a cochlear implant of a cochlear implant system is initially implanted in
a patient, and during follow-up tests and checkups thereafter, it is usually necessary to
fit the cochlear implant system to the patient. Fitting of a cochlear implant system to a
patient is typically performed by an audiologist or the like who utilizes a fitting system to
present various stimuli to the patient and relies on subjective feedback from the patient
as to how such stimuli are perceived.

[0006] A fitting system typically includes fitting software (e.g., a fitting software
application) that executes on at least one computing device that is communicatively
coupled to a cochlear implant system. The fitting software may direct the computing
device and/or the communicatively coupled cochlear implant system to perform one or
more fitting procedures designed to fit the cochlear implant system to the patient. For a
patient who has a separate cochlear implant system for each ear (i.e., a “bilateral
patient”), the computing device may be communicatively coupled to both of the
cochlear implant systems, and the fitting software may direct the computing device
and/or the communicatively coupled cochlear implant systems to perform one or more
fitting procedures.

[0007] The operations of the fitting software may utilize and/or require access to
multiple resources, including one or more processors of the computing device, memory
of the computing device (e.g., a database maintained in memory of the computing
device), any communicatively coupled cochlear implant systems, user interface
resources, and any hardware used to communicatively couple the computing device to
one or more cochlear implant systems. However, servicing the needs of such
resources may be time consuming and may undesirably affect execution of the fitting
software. For example, servicing the hardware of any communicatively coupled
cochlear implant systems and/or a database associated with the fitting software may
cause a user interface of the fitting software to become non-responsive while the
hardware and/or database are being serviced.

[0008] To avoid such problems, multithreading may be employed by the fitting
software in order to enhance the capability of the fitting system to concurrently perform
multiple operations and/or service multiple resources. Multithreading generally involves
organizing operations to be performed by the fitting system into logical groups referred

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

to as threads that may be executed concurrently and independently by one or more
processors.

[0009] While multithreading allows multiple threads to be executed concurrently and
independently, multithreading also introduces inherent reliability risks. As an example,
if not created properly, multithreading software code can introduce what are commonly
known as race conditions that occur when multiple threads of execution attempt to
concurrently execute the same task in a way that produces unpredictable results, such
as when the order in which steps of the threads are executed is dependent on timing
and/or device characteristics. As another example, if not created properly,
multithreading software code can introduce what are commonly known as deadlocks
that occur when multiple threads of execution attempt to access the same resources
but end up waiting indefinitely for the resources to become available.

[0010] Because of these and other potential problems associated with
multithreading, the development of reliable multithreading software code is significantly
more complex than the development of non-multithreading software code. For
example, computer programmers who are experienced in writing non-multithreading
software code often lack experience and/or skills for writing reliable multithreading
software code. In addition, opportunities for computer programmers to introduce
problems into software code increase significantly when the computer programmers are
creating multithreading software code. The testing of hand-generated multithreading
software code is also more complex, difficult, and time consuming than the testing of
non-multithreading software code. Accordingly, the use of multithreading software code
typically increases the costs and time required to develop and test the software code,
as well as the risk of the software code having problems with reliability.

SUMMARY

[0011] An exemplary method of automatic generation of multithread-safe software
code includes a multithread-safe code generator subsystem 1) analyzing data
representative of non-multithread-safe software code and 2) automatically generating
data representative of multithread-safe software code based on the analyzing of the
data representative of the non-multithread-safe software code.

[0012] Another exemplary method of automatic generation of multithread-safe

software code includes a multithread-safe code generator subsystem 1) detecting a

3

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

class that is included in software code and that is to be made multithread safe, 2)
analyzing the class, 3) automatically generating, based on the analyzing of the class, a
proxy class that derives from the class, wherein the proxy class includes multithread
protection code that is configured to make the proxy class a multithread-safe version of
the class, and 4) implementing the proxy class in the software code.

[0013] An exemplary system for automatic generation of multithread-safe software
code includes 1) a code analysis facility configured to analyze software code
representative of a non-multithread-safe version of a cochlear implant fitting software
application and 2) a code generation facility communicatively coupled to the code
analysis facility and configured to automatically generate, based on the analysis, data
representative of a multithread-safe version of the cochlear implant fitting software
application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The accompanying drawings illustrate various embodiments and are a part of
the specification. The illustrated embodiments are merely examples and do not limit
the scope of the disclosure. Throughout the drawings, identical or similar reference
numbers designate identical or similar elements.

[0015] FIG. 1 illustrates an exemplary system for automatic generation of
multithread-safe software code according to principles described herein.

[0016] FIG. 2 illustrates exemplary components of an exemplary multithread-safe
code generator subsystem according to principles described herein.

[0017] FIG. 3 illustrates an exemplary method for automatic generation of
multithread-safe software code according to principles described herein.

[0018] FIG. 4 illustrates another exemplary method for automatic generation of
multithread-safe software code according to principles described herein.

[0019] FIG. 5 illustrates another exemplary method for automatic generation of
multithread-safe software code according to principles described herein.

[0020] FIG. 6 illustrates exemplary pseudocode representing an exemplary element
of non-multithread-safe software code.

[0021] FIG. 7 illustrates exemplary pseudocode representing an exemplary
multithread-safe version of the element of non-multithread-safe software code shown in
FIG. 6.

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

[0022] FIG. 8 illustrates an exemplary cochlear implant fitting system according to
principles described herein.

[0023] FIG. 9illustrates an exemplary implementation of the cochlear implant fitting
system of FIG. 8 according to principles described herein.

[0024] FIG. 10 illustrates an exemplary computing device according to principles
described herein.

DETAILED DESCRIPTION

[0025] Methods and systems for automatic generation of multithread-safe software
code are described herein. As described in more detail below, a multithread-safe code
generator subsystem may be configured to analyze data representative of non-
multithread-safe software code and automatically generate data representative of
multithread-safe software code based on the analysis of the data representative of the
non-multithread-safe software code.

[0026] As used herein, the term “multithread-safe software code” (or simply
“multithread-safe code”) refers to software code that is capable of multithreading and
that includes multithread protection code configured to protect against one or more
problems (e.g., software bugs) that may otherwise be introduced by multithreading
absent the multithread protection code. The term “non-multithread-safe software code”
(or simply “non-multithread-safe code”) refers to software code that is not multithread-
safe software code. For example, non-multithread-safe software code may include
software code that is not configured for multithreading or that does not include
multithread protection code configured to protect against one or more problems that
may be introduced by multithreading absent the multithread protection code.

[0027] Numerous advantages may be associated with the methods and systems
described herein. For example, non-multithread-safe software code may be developed
in accordance with standard software development practices. The non-multithread-safe
software code may then be subjected to processing by a multithread-safe code
generator subsystem, which may analyze the non-multithread-safe software code and,
based on the analysis, automatically generate multithread-safe software code that
includes multithread protection code configured to protect against one or more
problems that may have otherwise been introduced by multithreading absent the
multithread protection code. Such a process for automatic generation of multithread-

5

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

safe software code may avoid the costs, time requirements, complicated testing, and/or
reliability risks associated with hand-generation of multithreading software code.

[0028] To facilitate an understanding of the methods and systems described herein,
an exemplary system 100 configured for automatic generation of multithread-safe
software code will be described in connection with FIG. 1. As shown in FIG. 1, system
100 may include a multithread-safe code generator subsystem 102 (or simply
“subsystem 102”) configured to interact with software code 104. As described in more
detail herein, subsystem 102 may analyze software code 104 and automatically
generate, based on the analysis of software code 104, multithread-safe software code.
[0029] Software code 104 may include data representative of any form or type of
software code, including, without limitation, a software application, a section of a
software application, source code, compiled code (e.g., compiled binary operation
codes (“opcodes”)), intermediate level code, machine language code, assembly code,
and any element, combination, and/or sub-combination thereof. In certain
implementations described further below, software code 104 may include data
representative of a cochlear implant fitting software application.

[0030] Software code 104 may include non-multithread-safe code. In certain
examples, software code 104 may additionally or alternatively include multithread-safe
code generated by subsystem 102. For example, subsystem 102 may analyze
software code 104 that is non-multithread safe and automatically generate multithread-
safe code by adding multithread-safe code to software code 104 (e.g., by inserting
multithread protection code into software code 104) and/or by otherwise modifying
software code 104 to become multithread safe (e.g., by replacing non-multithread-safe
code in software code 104 with multithread-safe code). In this or a similar manner,
software code 104 may be converted from being non-multithread safe to being
multithread safe in some examples. In alternative examples, subsystem 102 may
generate multithread-safe software code that is separate from software code 104 based
on analysis of software code 104.

[0031] Software code 104 may include one or more elements, including any
elements that are typically part of software code. For example, software code 104 may
include one or more classes, objects, methods, parameters, calls, statements, data
structures, etc. The particular element included in software code 104 may depend on a
number of factors, including, without limitation, a programming language, a software

development environment, a software execution environment, and a purpose of

6

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

software code 104. Elements of software code 104 used in exemplary implementations
will be described in detail further below. However, the exemplary implementations are
illustrative. The exemplary methods and systems may be applied to other
implementations, including implementations in which software code 104 includes
alternative and/or additional elements.

[0032] Asshownin FIG. 1, data representative of software code 104 may be stored
on a computer-readable medium 106 (also referred to as a processor-readable
medium), which may include any non-transitory medium that participates in providing
data (e.g., instructions) that may be read by a computer (e.g., by a processor of a
computer). Such a non-transitory medium may take many forms, including, but not
limited to, non-volatile media and/or volatile media. Non-volatile media may include, for
example, optical or magnetic disks and other persistent memory. Volatile media may
include, for example, dynamic random access memory (“DRAM”), which typically
constitutes a main memory. Common forms of non-transitory computer-readable media
include, for example, a floppy disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, a CD-ROM, DVD, any other optical medium, a RAM, a PROM, an
EPROM, a FLASH-EEPROM, any other memory chip or cartridge, or any other non-
transitory medium from which a computer can read.

[0033] As mentioned, subsystem 102 may be configured to analyze software code
104 and automatically generate, based on the analysis of software code 104,
multithread-safe software code. To help facilitate and understanding of subsystem 102,
FIG. 2 illustrates exemplary components of subsystem 102. As shown in FIG. 2,
subsystem 102 may include a software interface facility 202, a user interface facility
204, a code analysis facility 206, a code generation facility 208, and a storage facility
210, which may be communicatively coupled to one another using any suitable
communication technologies. Each of these facilities will now be described in more
detail.

[0034] Software interface facility 202 may be configured to facilitate interaction of
subsystem 102 with software code 104. To this end, software interface facility 202 may
include any interface technologies (e.g., one or more application program interfaces)
suitable for enabling subsystem 102 to interact with software code 104 such that
subsystem 102 is able to analyze and/or modify software code 104 in any of the ways
described herein. Software interface facility 202 may also include any technologies

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

suitable for enabling subsystem 102 to communicate with computer-readable medium
106 and/or any computing devices in order to access software code 104.

[0035] User interface facility 204 may be configured to provide one or more user
interfaces configured to facilitate user interaction with subsystem 102. For example,
user interface facility 204 may provide a graphical user interface (“GUI”) through which
one or more functions, options, and/or features associated with one or more operations
of subsystem 102 described herein may be provided to a user and through which user
input may be received. In certain embodiments, user interface facility 204 may be
configured to provide the GUI to a display device (e.g., a computer monitor) for display.
[0036] Code analysis facility 206 may be configured to perform one or more code
analysis operations to analyze software code 104 in any of the ways described herein.
As an example, code analysis facility 206 may be configured to detect one or more
elements (e.g., classes, calls configured to instantiate instances of elements, etc.) in
software code 104 that are to be made multithread safe. An element in software code
104 that is to be made multithread safe may be detected by code analysis facility 206 in
any suitable way. In certain implementations, for example, software code 104 may
include one or more markers indicating one or more elements that are to be made
multithread safe. The markers may be in any form that can be detected by code
analysis facility 206. For instance, an element may include a class defined in software
code 104, and the class may be tagged with a marker (e.g., by tagging the class with
an attribute, naming the class a particular way, defining the class to be a particular type
of class, or any other suitable way). Subsystem 102 may be configured to detect the
marker in any suitable way, such as by performing code introspection on software code
104.

[0037] Code analysis facility 206 may be further configured to analyze the detected
elements that are to be made multithread safe. The detected element may be analyzed
by content analysis facility 206 in any suitable way. For instance, code analysis facility
206 may analyze one or more properties, fields, methods, parameters, structures,
and/or any other content included in or otherwise associated with the detected
elements. As described further below, analysis of a detected element may be used by
code generation facility 208 to automatically generate a multithread-safe version of the
element.

[0038] Code analysis facility 206 may be further configured to detect one or more
calls that are included in software code 104 and that are configured to instantiate one or

8

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

more instances of the detected elements that are to be made multithread safe. For
example, where an element to be made multithread safe includes a class, a call
configured to instantiate an object of the class may be detected by code analysis facility
206. The detection may be made in any suitable way. As described further below, the
detection of a call configured to instantiate an instance of an element to be made
multithread safe may be utilized by code generation facility 208 to generate multithread-
safe code.

[0039] Code analysis facility 206 may be further configured to store any data
generated from the analysis of software code 104 in storage facility 210 as code
analysis data 212. Code analysis data 212 may include any data representative of or
otherwise associated with an analysis of software code 104 by code analysis facility
206. For example, code analysis data 212 may include data representative of one or
more detected elements that are to be made multithread safe, data representative of
analysis of the detected elements, and/or data representative of detected calls
configured to instantiate one or more instances of the detected elements.

[0040] Code generation facility 208 may be configured to perform one or more code
generation operations described herein to automatically generate multithread-safe
software code. Code generation facility 208 may be configured to automatically
generate the multithread-safe software code in any suitable way. For example, code
generation facility 208 may generate new software code that is multithread safe based
on an analysis of non-multithread-safe software code performed by code analysis
facility 206. Additionally or alternatively, code generation facility 208 may be configured
to modify the analyzed non-multithread-safe software code to make the code
multithread safe. The modification may be performed in any suitable way, including, for
example, by generating and adding multithread protection code to the non-multithread-
safe code analyzed by code analysis facility 206.

[0041] The automatic generation of multithread-safe software code may include
code generation facility 208 automatically generating one or more multithread-safe
versions of elements that have been identified by code analysis facility 206 as elements
that are to be made multithread safe. In certain examples, a multithread-safe version of
an element may be derived from the element such that the multithread-safe version
inherits one or more properties of the element. In addition, the multithread-safe version
of the element may include multithread protection code configured to protect against
one or more multithreading problems that may otherwise occur absent the multithread

9

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

protection code. Code generation facility 208 may be configured to generate such
multithread protection code based on an analysis of the element performed by code
analysis facility 206 and to insert data representative of the multithread protection code
into the multithread-safe version of the element. Examples of multithread protection
code will be described further below.

[0042] In certain implementations, a multithread-safe version of an element may
include a proxy version of the element. For example, where the element includes a
class, code generation facility 208 may generate a multithread safe version of the class
in the form of a new proxy class that derives from the class. The proxy class may be
generated to include multithread protection code configured to protect against one or
more multithreading problems that may otherwise occur absent the multithread
protection code.

[0043] In certain implementations, the automatic generation of multithread-safe code
may including code generation facility 208 replacing any calls in software code 104 that
are configured to instantiate one or more instances of the elements identified by code
analysis facility 206 as elements that are to be made multithread safe with one or more
new calls that are configured to instantiate multithread-safe versions of the instances of
the elements. For example, a call to instantiate an object of a class may be replaced by
a new call to instantiate an object of a multithread-safe version of the class (e.g., a
proxy class).

[0044] Code generation facility 208 may be configured to generate and store data
representative of generated multithread-safe code and/or data used to generate
multithread-safe code in storage facility 210 as code generation data 214. Code
generation data 214 may include any data representative of or otherwise associated
with automatic generation of multithread-safe code by code generation facility 208.
[0045] Storage facility 210 may be configured to maintain code analysis data 212,
code generation data 214, and multithread protection heuristic data 216. Multithread
protection heuristic data 216 (or simply “heuristic data 216”), which may be defined in
advance of subsystem 102 analyzing software code 104 and automatically generating
multithread-safe code, may represent one or more templates that may be used for
automatic generation of multithread protection code based on analysis of software code
104. For example, heuristic data 216 may be utilized by code generation facility 208 to
select a particular protection strategy (from a group of multiple protection strategies)
and/or a particular form, type, or template of multithread protection code to implement

10

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

in multithread-safe code based on the analysis performed by code analysis facility 206.
Storage facility 210 may be configured to maintain additional or alternative data as may
serve a particular implementation.

[0046] FIG. 3illustrates an exemplary method 300 for automatic generation of
multithread-safe software code. While FIG. 3 illustrates exemplary steps according to
one embodiment, other embodiments may omit, add to, reorder, combine, and/or
modify any of the steps shown in FIG. 3. One or more of the steps shown in FIG. 3
may be performed by any component or combination of components of subsystem 102.
[0047] In step 302, non-multithread-safe software code may be analyzed. For
example, subsystem 102 may analyze non-multithread-safe software code in any of the
ways described herein. The analysis may be performed by subsystem 102
automatically without human intervention.

[0048] In step 304, multithread-safe software code may be generated based on the
analysis performed in step 302. For example, subsystem 102 may generate
multithread-safe software code based on the analysis in step 302 in any of the ways
described herein. The generation of the multithread-safe software code may be
performed by subsystem 102 automatically without human intervention.

[0049] In step 306, the multithread-safe code generated in step 304 may be
implemented. For example, subsystem 102 may modify data representative of non-
multithread-safe software code to include the multithread-safe code such that the
software code is made multithread safe. The modification may be performed in any
suitable way, such as by subsystem 102 inserting multithread-safe code into the non-
multithread-safe software code and/or replacing parts of the non-multithread-safe
software code with multithread-safe code. Alternatively, subsystem 102 may generate
data representative of new software code (e.g., a new software application) that
includes the multithread-safe code.

[0050] To further illustrate method 300, exemplary implementations will now be
described. The exemplary implementations are illustrative only. Method 300 and/or
subsystem 102 may be implemented differently as may suit another implementation.
[0051] FIG. 4 illustrates another exemplary method 400 for automatic generation of
multithread-safe software code. While FIG. 4 illustrates exemplary steps according to
one embodiment, other embodiments may omit, add to, reorder, combine, and/or
modify any of the steps shown in FIG. 4. One or more of the steps shown in FIG. 4

may be performed by any component or combination of components of subsystem 102.

11

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

[0052] In step 402, an element that is included in software code (e.g., software code
104) and that is to be made multithread safe may be detected. For example,
subsystem 102 may search the software code for any elements in software code 104
that are to be made multithread safe. From the search, subsystem 102 may detect an
element that is to be made multithread safe. The element may be detected by
subsystem 102 in any suitable way, including in any of the ways described herein. For
example, the element may be marked in the software code as an element that is to be
made multithread safe.

[0053] In step 404, the element may be analyzed. For example, subsystem 102
may analyze the content of the element. The analysis may be performed in any way
suitable to identify one or more attributes of the element that may be used to
automatically generate a multithread-safe version of the element. In certain
implementations, the analysis of the element in step 404 may include identifying any
entry points into the element. For example, one or more components of the element
may be accessible to calls that originate external to the element. Such externally
accessible components may be identified as entry points. One or more attributes of
each entry point (e.g., any passed and/or return parameters of an externally accessible
method in the element) may be further analyzed by subsystem 102 for use in
generating multithread protection code that may be applied to the entry point to
generate a multithread-safe version of the element.

[0054] Toillustrate, where the element includes a class defined in the software
code, entry points to the class may include any methods in the class that are defined as
“public” methods. One or more attributes of each public method (e.g., any passed
and/or return parameters of the method) may be further analyzed for use in generating
multithread protection code for each public method in order to generate a multithread-
safe proxy class that derives from the class. An example of a multithread-safe proxy
class that include multithread protection code will be described in detail further below.
[0055] In step 406, a multithread-safe version of the element may be automatically
generated based on the analysis in step 404. For example, subsystem 102 may
automatically generate, based on the analysis, a multithread-safe version of the
element. The multithread-safe version of the element may inherit one or more
attributes of the element. In addition, the multithread-safe version of the element may

include multithread protection code configured to protect against one or more

12

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

multithreading problems that may otherwise occur during execution of the software
code absent the multithread protection code.

[0056] In step 408, the multithread-safe version of the element may be implemented.
For example, subsystem 102 may modify data representative of non-multithread-safe
software code to include data representative of the multithread-safe version of the
element. The modification may be performed in any suitable way, such as by
subsystem 102 inserting data representative of the multithread-safe version of the
element into the non-multithread-safe software code and/or replacing parts of the non-
multithread-safe software code. In certain implementations, subsystem 102 may
generate and insert a module including data representative of the multithread-safe
version of the element into the software code. The module may be in any suitable form.
For example, the module may include a dynamic linked library (“DLL”) that includes
compiled code configured to be dynamically loaded as needed during execution of the
software code.

[0057] Typically, the multithread-safe version of the element and the non-
multithread-safe version of the element may coexist and cooperate in the software code
to make the software code multithread safe. For example, the multithread-safe version
of the element may override and/or leverage one or more attributes of the non-
multithread-safe version of the element. In certain examples, the software code may
include a module having data representative of the element and may be modified to
include another module having data representative of the multithread-safe version of
the element.

[0058] In step 410, a call that is included in the software code and that is configured
to instantiate an instance of the element may be detected. For example, subsystem
102 may search the software code for any calls configured to instantiate the element
detected in step 402 and from the search may detect the call. The call may be detected
by subsystem 102 in any suitable way.

[0059] In step 412, the call detected in step 410 may be replaced, in the software
code, with a new call that is configured to instantiate an instance of the multithread-safe
version of the element generated in step 406. Accordingly, when the software code is
executed, an instance of the multithread-safe version of the element will be instantiated
instead of an instance of the non-multithread-safe version of the element. In certain
implementations, the instantiation of the multithread-safe version of the element instead
of an instance of the non-multithread-safe version of the element may be transparent to

13

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

one or more other elements of the software code and/or to a computing device
executing the software code.

[0060] One or more steps in method 400 may be repeated for each element in
software code that is to be made multithread safe. Execution of method 400 by
subsystem 102 for each element that is to be made multithread safe automatically
generates multithread-safe software code based on an analysis of non-multithread-safe
software code.

[0061] An exemplary implementation of method 400 in which a detected element in
the software code includes a class will now be described in connection with FIG. 5.
FIG. 5 illustrates another exemplary method 500 for automatic generation of
multithread-safe software code. While FIG. 5 illustrates exemplary steps according to
one embodiment, other embodiments may omit, add to, reorder, combine, and/or
modify any of the steps shown in FIG. 5. One or more of the steps shown in FIG. 5
may be performed by any component or combination of components of subsystem 102.
[0062] In step 502, a class that is included in software code (e.g., software code
104) and that is to be made multithread safe may be detected. For example,
subsystem 102 may search the software code for any elements that are to be made
multithread safe. From the search, subsystem 102 may detect a class that is to be
made multithread safe. The class may be detected by subsystem 102 in any suitable
way, including in any of the ways described herein. For example, the class may be
tagged with metadata indicating that the class is to be made multithread safe.

[0063] In step 504, the class may be analyzed. For example, subsystem 102 may
analyze the content of the class. The analysis may be performed in any way suitable to
identify one or more attributes of the class that may be used to automatically generate a
proxy class that derives from the class. For example, subsystem 102 may analyze
content of the class, such as any variables, fields, methods, and/or other attributes
defined by the class. As mentioned, the analysis may include identifying and analyzing
any entry points into the class (e.g., any “public” methods included in the class).

[0064] In step 506, a proxy class that derives from the class may be automatically
generated based on the analysis in step 504. For example, subsystem 102 may
automatically generate, based on the analysis, a proxy class that derives from the
class. Accordingly, the proxy class may inherit one or more attributes of the class. In
addition, as part of step 506, subsystem 102 may automatically generate and insert
multithread protection code (e.g., a multithread-safe method) in the proxy class such

14

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

that the proxy class is multithread safe. Examples of such multithread protection code
will be described further below.

[0065] In step 508, the proxy class may be implemented. For example, subsystem
102 may modify data representative of non-multithread-safe software code to include
data representative of the proxy class. The modification may be performed in any
suitable way, such as by subsystem 102 inserting data representative of the proxy class
into the non-multithread-safe software code and/or replacing parts of the non-
multithread-safe software code. In certain implementations, subsystem 102 may
generate and insert a module including data representative of the proxy class into the
software code. The module may be in any suitable form. For example, the module
may include a DLL that includes compiled code configured to be dynamically loaded as
needed during execution of the software code.

[0066] Typically, the proxy class and the class from which the proxy class derives
may coexist and cooperate in the software code to make the software code multithread
safe. For example, the proxy class may be configured to override and/or leverage one
or more attributes of the class from which it derives. In certain examples, the software
code may include a DLL having data representative of the class and may be modified to
include another DLL having data representative of the proxy class.

[0067] In step 510, a call that is included in the software code and that is configured
to instantiate an instance of the class may be detected. For example, subsystem 102
may search the software code for any calls configured to instantiate the class detected
in step 502 and from the search may detect the call. The call may be detected by
subsystem 102 in any suitable way.

[0068] In step 512, the call detected in step 510 may be replaced, in the software
code, with a new call that is configured to instantiate an instance of the proxy class
generated in step 506. Accordingly, when the software code is executed, an instance
of the proxy class will be instantiated instead of an instance of the class from which the
proxy class derives. In certain implementations, the instantiation of the proxy class
instead of an instance of the class from which the proxy class derives may be
transparent to one or more other elements of the software code and/or to a computing
device executing the software code.

[0069] FIGS. 6-7 illustrate pseudocode defining exemplary classes that may be
included in software code. To facilitate explanation of automatic generation of
multithread-safe software code in connection with the classes, the classes represented

15

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

in FIGS. 6-7 may be simplified and/or partial versions of classes included in software
code. The classes may make calls to appropriate libraries as may suit a particular
implementation. FIG. 6 illustrates pseudocode 600 defining a class 602 that is non-
multithread safe and is tagged with a marker 604 indicating that the class is to be made
multithread safe. FIG. 7 illustrates pseudocode 700 defining a proxy class 702 that
derives from class 602, is multi-thread safe, and may be automatically generated by
subsystem 102 as described herein. Each of the classes 602 and 702 will now be
described in detail.

[0070] As shown in FIG. 6, class 602 may be named “Person” and may be tagged
with marker 604 (e.g., a metadata marker) named “[ThreadSafeProxy]” and indicating
that class 602 is to be made multithread safe by way of a multithread-safe proxy of
class 602. Class 602 may define one or more methods, including a public constructor
606 named “Person” that is configured to be called to instantiate an instance of class
602 and a public virtual method 608 named “SetName” that is configured to be called to
set values of variables named “_firstName” and “_lastName” to values indicated by
parameters named “newFirstName” and “newlLastName” that are passed to method
608.

[0071] As shownin FIG. 7, class 702 may be named “PersonProxy” and may be a
proxy class that derives from class 602. Accordingly, class 702 may inherit attributes of
class 602. Class 702 may define methods that correspond to (e.g., have the same or
similar name as and/or are otherwise associated with) the methods of claim 602. For
example, class 702 may define a public constructor 704 named “PersonProxy” that is
configured to be called to instantiate an instance of class 702 and a public override
method 706 named “SetName” that is configured to be call the corresponding
“SetName” method of claim 602 to set values of variables named “_firstName” and

“ lastName” to values indicated by parameters named “newFirstName” and
‘newlLastName” that are passed to method 706.

[0072] Method 706 in class 702 may be configured to override method 608 in class
602. Accordingly, anytime a call is made to method 608 during execution of software
code containing classes 602 and 702, method 706 may be given first opportunity to
execute. In the example illustrated in FIGS. 6 and 7, the overriding is accomplished by
defining method 608 as a “virtual” method and method 706 as an “override” method of
the same name. This is illustrative only. The overriding effect may be accomplished in
any other suitable way in other implementations.

16

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

[0073] Class 702, as generated by subsystem 102, may include multithread
protection code configured to protect against multithreading problems that may
otherwise occur during execution of software code including classes 602 and 702
absent the multithread protection code. To illustrate, class 702 shown in FIG. 7
includes multithread protection code 708 and 710. Multithread protection code 708
may be part of method 706 and configured to be executed when method 706 is called
(either directly or indirectly by way of overriding method 608) such that method 706 is a
multithread-safe method.

[0074] In the illustrated example, multithread protection code 708 is configured to
marshal execution of method 608 onto a particular thread of execution associated with
class 702. To this end, multithread protection code 710 may be configured to define a
field in class 702 that represents a thread named “PersonClassThread” that is
associated with class 702. As shown in FIG. 7, multithread protection code is part of
proxy constructor 704. Accordingly, when the constructor is called to instantiate an
instance of class 702, multithread protection code will create and start a thread that is
specific to class 702 and that may be referred to as a “proxy thread.” Multithread
protection code 708 may implement a thread marshaling interface that is configured to
marshal execution of method 608 onto the proxy thread created by multithread
protection code 710. For example, when executed, multithread protection code 708
may determine whether the execution of method 706 is executing on a thread other
than the proxy thread created by multithread protection code 710. If the execution is on
a different thread, multithread protection code 708 will marshal the execution onto the
proxy thread created by multithread protection code 710 (e.g., through the use of the
“personClassThread.Invoke” statement shown in FIG. 7. If the execution of method
706 is determined to be on the proxy thread already, multithread protection code 708
may call method 608 with having to first marshal the execution of method 608 from a
different thread onto the proxy thread.

[0075] The above-described marshaling may be accomplished in any suitable way.
In certain implementations, for example, a queue may be used. To illustrate, an
execution of method 608 may be marshaled to the proxy thread by adding data
representative of the execution to a queue. The proxy thread may be configured to pull
executions off of the queue in order for execution on the thread.

[0076] The above-described marshaling of execution of method 608 onto a
particular thread illustrates an example of constraining execution of a method to a

17

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

thread associated with a class based on the class and/or a relationship to the class.
Such constraint to a particular thread may be configured to ensure an order of
execution of one or more methods and/or operations, which may protect against one or
more multithreading problems (e.g., race conditions) that may otherwise occur absent
the multithread protection code 708 and 710.

[0077] The above-described marshaling of execution of method 608 onto a
particular thread illustrates just one example of multithread protection code that may be
generated by subsystem 102. Other implementations of multithread protection code
may be generated and implemented in other examples to protect against multithreading
problems. Any suitable multithread protection strategy and/or variation thereof may be
employed by the multithread protection code, including, without limitation, marshaling
execution to particular threads, gating access to resources, and controlling the timing of
executions.

[0078] Toillustrate, from an analysis of method 608 in class 602, subsystem 102
may be configured to determine whether method 608 is a synchronous or
asynchronous method. The determination may be made in any suitable way. For
example, subsystem 102 may search for particular types of parameters (e.g., callbacks
in the form of function pointers), other attributes that may designate the method as
synchronous or asynchronous, or events defined in class 602 that correlate with a
proxy version of method 608 being generated. Based on the determination as to
whether method 608 is synchronous or asynchronous, subsystem 102 may generate
particular multithread protection code and/or a variation of multithread protection code
for inclusion in method 706. For example, if method 608 is synchronous, method 706
may be generated to be synchronous. Whereas if method 608 is asynchronous,
method 706 may be generated to be asynchronous.

[0079] As mentioned, heuristic data 216 in storage facility 210 may specify one or
more heuristics that may be utilized by subsystem 102 to generate appropriate
multithread protection code and/or multithread-safe software code. The heuristics may
define templates and/or versions of multithread protection code that may be selected by
subsystem 102 based on an analysis of corresponding elements (e.g., class 602) in
software code and used to generate appropriate multithread protection code. The
heuristics may be defined as may suit a particular implementation.

[0080] As mentioned, software code 104 may include or otherwise represent a
cochlear implant fitting software application. Accordingly, subsystem 102 may analyze

18

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

a non-multithread-safe version of the fitting software application and automatically
generate a multithread-safe version of the fitting software application in any of the ways
described herein. The multithread-safe fitting software application may then be
implemented in a fitting system and utilized to perform one or more fitting procedures
configured to fit a cochlear implant system to a patient.

[0081] FIG. 8 illustrates an exemplary cochlear implant fitting system 800 (or simply
“fitting system 800”) that may be used to fit a cochlear implant patient. As shown in
FIG. 8, fitting system 800 may include a fitting subsystem 802 and a cochlear implant
subsystem 804. Fitting subsystem 802 may be configured to be selectively and
communicatively coupled to cochlear implant subsystem 804 by way of a
communication link 806. Fitting subsystem 802 and cochlear implant subsystem 804
may communicate using any suitable communication technologies, devices, networks,
media, and protocols supportive of data communications.

[0082] Cochlear implant subsystem 804 may include one or more components of a
cochlear implant system configured to convert an audio signal to an electrical signal
and to generate one or more stimulation signals based on the electrical signal. When
applied to a patient, the stimulation signals may be configured to stimulate auditory
nerve fibers of the patient to produce a perception of sound in the brain of the patient.
[0083] Fitting subsystem 802 may be configured to perform one or more fitting
procedures and/or direct cochlear implant subsystem 804 to perform one or more fitting
procedures to fit cochlear implant system 804 to the patient. The fitting procedures
may be designed to optimize performance of cochlear implant subsystem 804 for the
patient. Such fitting procedures may include, but are not limited to, adjusting one or
more control parameters by which one or more components of cochlear implant
subsystem 804 operate, measuring one or more electrode impedances, performing one
or more neural response detection operations, and/or performing one or more
diagnostics procedures associated with cochlear implant subsystem 804.

[0084] As shown in FIG. 8, fitting subsystem 802 may include a cochlear implant
fitting software application 808, which may be configured to direct and/or control fitting
operations of fitting subsystem 802. Cochlear implant fitting software application 808
may be implemented by fitting subsystem 802 in any suitable way, such as by storage
as computer-executable instructions in a computer-readable medium and that are
configured to direct at least one computing device and/or processor of fitting subsystem

802 to execute one or more fitting operations.

19

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

[0085] Cochlear implant fitting software application 808 may be automatically
generated by subsystem 102 in any of the ways described herein such that cochlear
implant fitting software application 808 is multithread safe. Accordingly, fitting
subsystem 802 and/or a user of fitting subsystem 802 (e.g., an audiologist or the like)
may benefit from one or more multithreading capabilities of cochlear implant fitting
software application 808. In addition, cochlear implant fitting software application 808
may exhibit multithreading reliability that is derived from the way in which cochlear
implant fitting software application 808 is automatically generated by subsystem 102 as
described herein.

[0086] FIG. 9 illustrates an exemplary implementation 900 of fitting system 800 that
may be used to fit a bilateral cochlear implant patient. In implementation 900, a fitting
station 902 implementing cochlear implant fitting software application 808 may be
selectively and communicatively coupled to first and second sound processor in the
form of behind-the-ear (“BTE”) units 904-1 and 904-2 (collectively referred to herein as
“BTE units 904”) by way of corresponding clinician programming interface (“CPI”)
devices 906-1 and 906-2 (collectively referred to herein as “CPI devices 906”). BTE
unit 904-1 may be associated with a first cochlear implant (e.g., a cochlear implant
associated with a right ear of a patient) and BTE unit 904-2 may be associated with a
second cochlear implant (e.g., a cochlear implant associated with a left ear of the
patient). BTE units 904 are merely exemplary of the many different types of sound
processors that may be employed by a cochlear implant system.

[0087] CPI devices 906 may be configured to facilitate communication between
fitting station 902 and BTE units 904. In some examples, CP| devices 906 may be
selectively and communicatively coupled to fitting station 902 and/or BTE units 904 by
way of one or more ports included within fitting station 902 and BTE units 904.

[0088] Fitting station 902 may include any suitable computing device and/or
combination of computing devices and may be configured to perform one or more of
fitting procedures as directed by cochlear implant fitting software application 808. For
example, fitting station 902 may include a laptop computer, personal computer, or any
other computing device configured to operate in accordance with cochlear implant
fitting software application 808.

[0089] In certain embodiments, one or more of the components and/or processes
described herein may be implemented and/or performed by one or more appropriately
configured computing devices. To this end, one or more of the systems and/or

20

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

components described above may include or be implemented by any computer
hardware and/or computer-implemented instructions (e.g., software) embodied on a
non-transitory computer-readable medium configured to perform one or more of the
processes described herein. In particular, system components (e.g., subsystem 102)
may be implemented on one physical computing device or may be implemented on
more than one physical computing device. Accordingly, system components may
include any number of computing devices, and may employ any of a number of
computer operating systems.

[0090] In certain embodiments, one or more of the processes described herein may
be implemented at least in part as instructions executable by one or more computing
devices. In general, a processor (e.g., a microprocessor) receives instructions, from a
tangible computer-readable medium, (e.g., a memory, etc.), and executes those
instructions, thereby performing one or more processes, including one or more of the
processes described herein. Such instructions may be stored and/or transmitted using
any of a variety of known non-transitory computer-readable media.

[0091] A non-transitory computer-readable medium (also referred to as a processor-
readable medium) includes any non-transitory medium that participates in providing
data (e.g., instructions) that may be read by a computer (e.g., by a processor of a
computer). As mentioned above, such a non-transitory medium may take many forms,
including, but not limited to, non-volatile media and/or volatile media. Non-volatile
media may include, for example, optical or magnetic disks and other persistent
memory. Volatile media may include, for example, dynamic random access memory
(“DRAM”), which typically constitutes a main memory. Common forms of non-transitory
computer-readable media include, for example, a floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical
medium, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or
cartridge, or any other non-transitory medium from which a computer can read.

[0092] FIG. 10 illustrates an exemplary computing device 1000 that may be
configured to perform one or more of the processes described herein. As shown in
FIG. 10, computing device 1000 may include a communication interface 1002, a
processor 1004, a storage device 1006, and an input/output (“1/0”) module 1008
communicatively connected via a communication infrastructure 1010. While an
exemplary computing device 1000 is shown in FIG. 10, the components illustrated in
FIG. 10 are not intended to be limiting. Additional or alternative components may be

21

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

used in other embodiments. Components of computing device 1000 shown in FIG. 10
will now be described in additional detail.

[0093] Communication interface 1002 may be configured to communicate with one
or more computing devices. Examples of communication interface 1002 include,
without limitation, a wired network interface (such as a network interface card), a
wireless network interface (such as a wireless network interface card), a modem, and
any other suitable interface. Communication interface 1002 may additionally or
alternatively provide such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a telephone or cable network,
a satellite data connection, a dedicated URL, or any other suitable connection.
Communication interface 1002 may be configured to interface with any suitable
communication media, protocols, and formats, including any of those mentioned above.
[0094] Processor 1004 generally represents any type or form of processing unit
capable of processing data or interpreting, executing, and/or directing execution of one
or more of the instructions, processes, and/or operations described herein. Processor
1004 may direct execution of operations in accordance with one or more applications
1012 or other computer-executable instructions such as may be stored in storage
device 1006 or another non-transitory computer-readable medium.

[0095] Storage device 1006 may include one or more data storage media, devices,
or configurations and may employ any type, form, and combination of data storage
media and/or device. For example, storage device 1006 may include, but is not limited
to, a hard drive, network drive, flash drive, magnetic disc, optical disc, random access
memory (“RAM”), dynamic RAM (“DRAM"), other non-volatile and/or volatile data
storage units, or a combination or sub-combination thereof. Electronic data, including
data described herein, may be temporarily and/or permanently stored in storage device
1006. For example, data representative of one or more executable applications 1012
(which may include, but are not limited to, one or more of the software applications
described herein) configured to direct processor 1004 to perform any of the operations
described herein may be stored within storage device 1006. In some examples, data
may be arranged in one or more databases residing within storage device 1006.
[0096] 1/O module 1008 may be configured to receive user input and provide user
output and may include any hardware, firmware, software, or combination thereof
supportive of input and output capabilities. For example, 1/O module 1008 may include

hardware and/or software for capturing user input, including, but not limited to, a

22

10

15

20

WO 2012/018666 PCT/US2011/045672

keyboard or keypad, a touch screen component (e.g., touch screen display), a receiver
(e.g., an RF or infrared receiver), and/or one or more input buttons.

[0097] 1/O module 1008 may include one or more devices for presenting output to a
user, including, but not limited to, a graphics engine, a display (e.g., a display screen,
one or more output drivers (e.g., display drivers), one or more audio speakers, and one
or more audio drivers. In certain embodiments, I/O module 1008 is configured to
provide graphical data to a display for presentation to a user. The graphical data may
be representative of one or more graphical user interfaces and/or any other graphical
content as may serve a particular implementation.

[0098] In some examples, any of the facilities described herein may be implemented
by or within one or more components of computing device 1000. For example, one or
more applications 1012 residing within storage device 1006 may be configured to direct
processor 1004 to perform one or more processes or functions associated with
software interface facility 202, user interface facility 204, code analysis facility 206, and
code generation facility 208. Likewise, storage facility 210 may be implemented by or
within storage device 1006.

[0099] In the preceding description, various exemplary embodiments have been
described with reference to the accompanying drawings. It will, however, be evident
that various modifications and changes may be made thereto, and additional
embodiments may be implemented, without departing from the scope of the invention
as set forth in the claims that follow. For example, certain features of one embodiment
described herein may be combined with or substituted for features of another
embodiment described herein. The description and drawings are accordingly to be

regarded in an illustrative rather than a restrictive sense.

23

10

15

20

25

30

35

WO 2012/018666 PCT/US2011/045672
CLAIMS
What is claimed is:

1. A method comprising:

analyzing, by a multithread-safe code generator subsystem, data representative
of non-multithread-safe software code; and

automatically generating, by the multithread-safe code generator subsystem,
data representative of multithread-safe software code based on the analyzing of the
data representative of the non-multithread-safe software code.

2. The method of claim 1, wherein:
the analyzing comprises
detecting an element of the non-multithread-safe software code that is to
be made multithread safe, and
analyzing the element; and
the automatically generating comprises generating a multithread-safe version of
the element based on the analyzing of the element.

3. The method of claim 2, wherein the element comprises a class that is
designated by a marker in the non-multithread-safe software code to be made
multithread safe.

4. The method of claim 3, wherein the multithread-safe version of the

element comprises a proxy class that derives from the class.

5. The method of claim 4, wherein the automatically generating further
comprises inserting at least one multithread-safe method into the proxy class.

6. The method of claim 5, wherein the at least one multithread-safe method
is configured to constrain an execution to a thread associated with the proxy class.

7. The method of claim 6, wherein the at least one multithread-safe method
is configured to constrain the execution to the thread associated with the class by
marshaling the execution from another thread onto the thread associated with the class.

24

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

8. The method of claim 7, wherein the marshaling comprises:

adding the execution to a queue; and

the thread associated with the class pulling the execution from the queue for
execution by the thread associated with the class.

9. The method of claim 6, wherein the automatically generating further
comprises generating a constructor configured to create and start the thread associated
with the class.

10. The method of claim 5, wherein the multithread-safe method is

designated to override a public virtual method included in the class.

11. The method of claim 2, wherein:

the analyzing further comprises detecting a call configured to instantiate an
instance of the element of the non-multithread-safe software code that is to be made
multithread safe; and

the automatically generating further comprises replacing the call with a new call

configured to instantiate an instance of the multithread-safe version of the element.

12. The method of claim 1, wherein:

the non-multithread-safe software code comprises a non-multithread-safe
version of a cochlear implant fitting software application; and

the multithread-safe software code comprises a multithread-safe version of the

cochlear implant fitting software application.

13. The method of claim 1, embodied as computer-executable instructions on

at least one non-transitory computer-readable medium.

14. A method comprising:
detecting, by a multithread-safe code generator subsystem, a class that is
included in software code and that is to be made multithread safe;

analyzing, by the multithread-safe code generator subsystem, the class;

25

10

15

20

25

30

WO 2012/018666 PCT/US2011/045672

automatically generating, by the multithread-safe code generator subsystem
based on the analyzing of the class, a proxy class that derives from the class, wherein
the proxy class includes multithread protection code that is configured to make the
proxy class a multithread-safe version of the class; and

implementing, by the multithread-safe code generator subsystem, the proxy

class in the software code.

15. The method of claim 14, further comprising:

detecting, by the multithread-safe code generator subsystem, a call that is
included in the software code and that is configured to instantiate an instance of the
class; and

replacing, by the multithread-safe code generator subsystem in the software
code, the call with a new call that is configured to instantiate an instance of the proxy

class.

16. The method of claim 14, wherein:
the class includes a public virtual method; and
the proxy class includes a public override method that is configured to override

the public virtual method to implement the multithread protection code.

17. The method of claim 14, wherein:

the proxy class is generated to include a constructor configured to create and
start a proxy thread associated with the proxy class; and

the multithread protection code is configured to marshal an execution from a
different thread onto the proxy thread associated with the proxy class.

18. The method of claim 14, embodied as computer-executable instructions

on at least one non-transitory computer-readable medium.
19. A system comprising:

a code analysis facility configured to analyze software code representative of a
non-multithread-safe version of a cochlear implant fitting software application; and

26

10

15

20

WO 2012/018666 PCT/US2011/045672

a code generation facility communicatively coupled to the code analysis facility
and configured to automatically generate, based on the analysis, data representative of

a multithread-safe version of the cochlear implant fitting software application.

20. The system of claim 19, wherein:
the code analysis facility is configured to analyze software code representative of
a non-multithread-safe version of a cochlear implant fitting software application by
detecting an element of the non-multithread-safe version of the cochlear
implant fitting software application that is to be made multithread safe,
analyzing the element, and
detecting a call configured to instantiate an instance of the element of the
non-multithread-safe version of the cochlear implant fitting software application that is
to be made multithread safe; and
the code generation facility is configured to automatically generate the data
representative of the multithread-safe version of the cochlear implant fitting software
application by
generating a multithread-safe version of the element based on the
analysis of the element, and
replacing the call with a new call configured to instantiate an instance of
the multithread-safe version of the element.

27

WO 2012/018666 PCT/US2011/045672

1/10

100

\

Multithread-Safe Code Generator Subsystem
102

Y

Software Code
104

Computer-Readable Medium
106

WO 2012/018666 PCT/US2011/045672

2/10

Multithread-Safe Code Generator
Subsystem
102

Software Interface Facility
202

User Interface Facility
204

206

Code Generation Facility

Code Analysis Facility |
208 |

Storage Facility
210

Code Analysis Data
212

Code Generation Data
214

Heuristic Data
216

WO 2012/018666 PCT/US2011/045672

3/10

300

=D
'

Analyze non-multithread-safe software code
302

!

Generate multithread-safe software code based on the analysis
304

:

Implement the multithread-safe software code
306

WO 2012/018666 PCT/US2011/045672

4/10
400

™ (ST)

Detect an element that is included in software code and that is to be made
multithread safe
402

!

Analyze the element
404

!

Automatically generate, based on the analysis, a multithread-safe version of the
element
406

l

Implement the element
408

!

Detect a call that is included in the software code and that is configured to instantiate
an instance of the element
410

'

Replace the call with a new call that is configured to instantiate an instance of the
multithread-safe version of the element
412

'
=

WO 2012/018666 PCT/US2011/045672

5/10
500

™ (ST)

Detect a class that is included in software code and that is to be made multithread
safe
502

!

Analyze the class
504

!

Automatically generate, based on the analysis, a proxy class that derives from the
class
506

l

Implement the proxy class
508

!

Detect a call that is included in the software code and that is configured to instantiate
an instance of the class
510

'

Replace the call with a new call that is configured to instantiate an instance of the
proxy class
512

WO 2012/018666 PCT/US2011/045672
6/10

600

\

using System;
using System.Threading;
using System.ComponentModel;

04 602

[ThreadSafeProxy] class Person

{
int _age;
string _firstName;
string _lastName,;

public Person()/s_606
{

) 08

public virtual void SetName(string newFirstName, string newLastName)

{

_firstName = newFirstName;
_lastName = newLastName;

}

WO 2012/018666 PCT/US2011/045672

710
700
702
[ThreadSafeProxy] class PersonProxy : Person

{

ISynchronizelnvoke personClassThread;

public PersonProxy()/s_704

{
personClassThread = new Thread();
personClassThread.Start(); 710
base.Person();

}

>—706

public override void SetName(string newFirstName, string newLastName)

{
if (personClassThread.lsExecutingOnWrongThread)

{

personClassThread.Invoke(base.SetName, newFirstName, newLastName);

}

else

{
base.SetName(newFirstName, newLastName);
}
}
}

»1708

WO 2012/018666 PCT/US2011/045672

8/10

800

\

Cochlear Implant
Fitting Software 806K
i

Application Cochlear Implant
808 > Subsystem
804

Fitting Subsystem
802

9/10

900

WO 2012/018666

1000

1

0/10

Communication
Interface
1002

Processor
1004

1

1

PCT/US2011/045672

<
10

10

I

Storage Device
1006

Applications |

V4

I/O Module

1012

Fig. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/045672

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6F9/45

HO4R25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HO4R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 481 706 A (PEEK JEFFREY S [US]) 1-20

2 January 1996 (1996-01-02)

column 6 - column 10; figures 2-4
X Bill Venners: "Designing for Thread 1-20

Safety. When and How to Use
Synchronization, Immutable Objects, and
Thread-Safe Wrappers",

18 November 2001 (2001-11-18), pages 1-11,
XP002661751,

Retrieved from the Internet:
URL:http://web.archive.org/web/20011118095
512/http://www.artima.com/designtechniques
/threadsafetyP.html

[retrieved on 2011-10-20]

page 8

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or

"T" later document published after the international filing date

invention

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

"X" document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to

involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

other means

"P" document published prior to the international filing date but
later than the priority date claimed

ments, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

20 October 2011

Date of mailing of the international search report

04/11/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kalejs, Eriks

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/045672

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 2006/029903 Al (SAP AG [DE]; SCHMIDT
OLIVER [DE]) 23 March 2006 (2006-03-23)
paragraph [0027] - paragraph [0063];
figure 2

US 20047221272 Al (WU GANSHA [CN] ET AL)
4 November 2004 (2004-11-04)

paragraph [0031] - paragraph [0044];
figures 2-5,7

US 5 937 192 A (MARTIN PAUL A [GB])

10 August 1999 (1999-08-10)

column 6 - column 10

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/045672
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5481706 A 02-01-1996 NONE
WO 2006029903 Al 23-03-2006 EP 1797501 Al 20-06-2007
US 2006075393 Al 06-04-2006
US 2004221272 Al 04-11-2004 AT 432496 T 15-06-2009
CN 1813243 A 02-08-2006
EP 1618474 A2 25-01-2006
WO 2004099944 A2 18-11-2004
US 5937192 A 10-08-1999 AU 724358 B2 21-09-2000
AU 1393597 A 11-08-1997
CA 2242516 Al 24-07-1997
CN 1208482 A 17-02-1999
DE 69738309 T2 02-10-2008
EP 0875029 Al 04-11-1998
ES 2296305 T3 16-04-2008
JP 2000505217 A 25-04-2000
NO 083266 A 15-09-1998

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report
	Page 41 - wo-search-report

