(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 22 September 2005 (22.09.2005)

PCT

(10) International Publication Number WO 2005/087239 A1

(51) International Patent Classification⁷: C12N 5/00, A61P 43/00

A61K 35/12,

(21) International Application Number:

PCT/NL2005/000207

(22) International Filing Date: 18 March 2005 (18.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

04075885.6 18 March 2004 (18.03.2004) EP

(71) Applicant (for all designated States except US): UNIVER-SITEIT TWENTE [NL/NL]; Drienerlolaan 5, NL-7522 NB Enschede (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HENDRIKS, Jeanine, Anna, Alphonse [NL/NL]; Koenestraat 13, NL-3958 XD Amerongen (NL). DE BRUIJN, Mark, Ewart [NL/NL]; Otterstraat 85, NL-3513 CK Utrecht (NL). RIESLE, Jens, Uwe [DE/NL]; Gerard Doustraat 192, NL-1073 XA Amsterdam (NL).

(74) Agent: WINCKELS, J.H.F.; Johan de Wittlaan 7, NL-2517 JR Den Haag (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TISSUE REPAIR WITH MULTIPOTENT CELLS

(57) Abstract: The invention relates to the field of medical science, in particular to technology directed at repairing defects in living, preferably human, tissue. The present invention provides a method for inducing differentiation of multipotent cells to a desired cell type, as well as a method for repairing a tissue defect in a human or animal patient using the concept of said method for inducing differentiation of multipotent cells. The invention further relates to a kit for carrying out the method for repairing a tissue defect.

WO 2005/087239 PCT/NL2005/000207

Title: Tissue Repair

5

10

15

20

25

The invention relates to the field of medical science, in particular to technology directed at repairing defects in living, preferably human, tissue.

Primary cells are highly specialized cells present in the various specific types of tissue in an organism. They are involved in maintaining, repairing and supporting the function of said tissue.

In most situations where a defect occurs in living tissue, some intrinsic or extrinsic reaction is triggered. The primary cells that are present in the damaged tissue may produce specific growth and other factors which will be secreted to the surroundings of the defect. This is aimed at triggering proliferation of the still viable cells whereby the defect may become filled. Next, if necessary, the cells may differentiate into the required cell type to produce and maintain fully functional specialized tissue.

In many cases, however, the repair reaction of the body is not or not fully leading to a functional tissue. This may be due to a variety of reasons, such as the size of the defect, the poor availability of primary cells at the site of the defect to support the repair function, or the lack of influx from multipotent cells, which may differentiate to the required cell type, e.g. via the blood stream.

Articular cartilage covers the ends of long bones of synovial joints and consists of approximately 30% of extracellular matrix proteins and approximately 70% water. Chondrocytes are the only cell type found in normal articular cartilage but contribute less then 2% of the wet weight in human healthy adult tissue. The extracellular matrix consists predominantly of cartilage specific proteoglycon molecules with highly negatively charged sulfated glycosaminoglycan (GAG side chains, as well as type II collagen fibrils. The GAG side chains are able to bind water molecules, thereby sequestering water and generating an internal swelling pressure within the cartilage matrix. These hydrogel-like properties are essential for the

interstitial fluid flow patterns observed inside the matrix during functional loading of cartilage, at which point water is forced out of the tissue to an amount that allows the negatively charged GAG chains to repel each other. Upon release of the compressive load, water is imbibed back into the tissue matrix. The collagenous network, together with water bound GAG, enables articular cartilage to withstand large compressive loads which gives the tissue its unique function in synovial joints: smooth and pain-free articulation, spreading of the applied load onto the subchondral bone and absorbing mechanical shocks.

5

10

15

20

25

30

Mature articular cartilage matrix is neither vascularized nor innervated, containing chondrocytes at low numbers which do not divide after skeletal maturity. It is partly for this reason that articular cartilage does not repair spontaneously or only to a very limited extent. Current approaches for cartilage repair rely on removal of tissue debris, access to the wound healing system of bone by penetrating the subchondral bone plate, and tissue transplantation and cell based therapies. Current clinical therapies are limited to autologous cell based therapies, such as autologous chondrocytes implantation (ACI) and mosaicplasty (also known as autologous osteochondral grafts). Due to severe drawbacks, both therapies can currently only address a limited share of the cartilage repair market.

For mosaicplasty, a major disadvantage is the limitation to small defects due to limited availability of donor tissue for transplantation. For ACI, drawbacks include the necessity to perform two surgical operations, high costs due to the required culturing of cells *in vitro*, and loss of phenotype of cartilage cells. Cartilage cells de-differentiate upon cell expansion, which is part of the ACI process. Hence, they require several months after surgery before they regain their original phenotype. Only then true cartilage repair can commence.

Recently, a second generation ACI has been developed involving autologous chondrocytes in a biomaterial matrix. This technique solves some of the problems of ACI, particularly the long and open surgical procedure that

was required in ACI. However, three important drawbacks remain: two surgical procedures have to be carried out, high costs and long rehabilitation.

Accordingly, there is a need for further improvements in the field of repair of tissue defects, in particular for defects which are not, or not sufficiently repaired in a spontaneous fashion.

5

10

15

20

25

In accordance with the invention it has been found that differentiation of multipotent cells may be induced by exposing them to primary cells. This effect has been observed even when primary cells are diluted with multipotent cells to considerable extent. Even at a very low number of primary cells relative to the number of multipotent cells differentiation of the multipotent cells into a specific lineage still takes place. In fact, it has been found that tissue repair proceeds faster when a population of primary and multipotent cells comprising 75 vol.% multipotent cells is used, than when a population of only primary cells is used.

Based on this finding, a method has been developed for repairing tissue defects which is highly cost-effective and does not suffer from the disadvantages outlined above for the prior art methods. The method according to the invention is defined in the appended claims.

In particular, a method for repairing a tissue defect according to the invention preferably no longer requires multiple surgical procedures. In one procedure, both primary and multipotent cells can be harvested and they can be applied to the tissue defect during the same procedure. Consequently, the treatment of one patient requires fewer resources in terms of time in operating facilities and in terms of medical staff. This will make it possible to treat a greater number of patients per year with the same medical staff and operating facilities then before. Also, the fact that only one surgical procedure suffices will significantly reduce the pain and suffering encountered by patients, as well as the risk of infections and other complications during surgery, and at the same time accelerate the procedure of recovery and rehabilitation.

WO 2005/087239 PCT/NL2005/000207

It is to be noted that, in principle, it is known to use multipotent cells, such as mesenchymal stem cells, for tissue repair. Reference may be made in this regard to Mary Murphy et al., Arthritis & Rheumatism, 48(12), December 2003, pp. 3464-3474, and Körbling et al., N. Engl. J. Med., 349(6), August 2003, pp. 570-582. The studies disclosed in these papers explore the role that imlanted stem cells may play in tissue repair or regeneration by delivery of a preparation of stem cells to a defect. In these studies, however, the stem cells were implanted by themselves, i.e. without primary cells.

5

10

15

20

25

30

The international patent application WO 03/078609 discloses a method for inducing differentiation of stem cells into a specific cell lineage..

Unlike the present invention, the disclosed method always requires a culturing step of stem cells in the presence of a tissue sample in a suitable medium. In the method disclosed in said international patent application, the stem cells are differentiated into a cell lineage preferably chosen from the group of respiratory, prostatic, pancreatic, mammary, renal, intestinal, neural, skeletal, vascular, hepatic, haematopoietic, muscle or cardiac cell lineages.

Differentiation of stem cells into chondrocytes to form cartilage tissue is not disclosed. Furthermore, nothing is disclosed about suitable ratios between stem cells and cells in the tissue sample.

In accordance with the invention, the term "multipotent cells" is intended to refer to cells that may still differentiate into various specialized types of tissue elements. Examples of multipotent cells are stem cells, including embryonic stem cells, progenitor cells, mesenchymal stem cells, bone marrow cells, or satellite cells. In accordance with the invention, fibroblasts are also considered to be encompassed by the term multipotent cells, as they have a capability to differentiate into other cell types. Bone marrow cells are preferably used.

In accordance with the invention, the term "primary cells" is intended to refer to cells which are specialized cells and which have lost the capability of further differentiation into (another) cell type. There are WO 2005/087239 PCT/NL2005/000207 5

numerous examples of different types of primary cells in the human or animal body. According to the invention it is preferred to use are chondrocytes, nerve cells, osteoblasts, osteoclasts, hepatocytes, cardiomyocytes, myocytes, Schwann cells or urothelial cells as primary cells. In a highly preferred embodiment, the invention is directed to a method of cartilage repair and the primary cells are chondrocytes.

5

10

15

20

25

30

A method according to the invention involves the harvesting of a sample of multipotent cells and of a sample of primary cells. Typically, these samples will be obtained in a procedure referred to as a biopsy. This procedure is known per se and can be adapted to the specific type of tissue from which the sample of cells is to be taken. By way of example, a cartilage tissue biopsy, containing chondrocytes, of at least 100 mg (involving 5 to 6 biopsies with a 4 mm diameter) may be taken from a, preferably uninvolved low-load bearing, area of an injured knee during arthroscopy and collected in a tube containing a suitable medium, or directly subjected to a peroperative cell isolation protocol. Bone marrow autopsies can be obtained from either the pelvic bone (iliac crest) or either the proximal or distal part of the femur. All biopsies preferably are taken from an area where, or close to where, the intended surgery is to take place. When openings in the bone are created as part of the procedure, a 8 gauge biopsy needle may be inserted and 2-50 cc of bone marrow may be aspirated. Preferably, the needle and syringe used are flushed beforehand using a 1% heparin solution to prevent the marrow from clotting. In case whole bone marrow is used, this is preferably aspirated without heparin. After aspiration, the bone marrow may be injected under sterile conditions into a heparinized tube, e.g. for every 10 ml of bone marrow.

In an alternative embodiment, a biopsy, particularly a biopsy of multipotent cells, involves making available multipotent cells during surgery at the site of the defect. In accordance with this embodiment, multipotent cells are used which are present at or close to the tissue defect. Advantageously, this embodiment does not require isolating the multipotent cells from the

patient's body; they are merely made available to the primary cells at the site of the defect. This may be done, for instance, by recruiting multipotent cells *in situ* by subchondral bone plate penetration, or by applying chemo attractants to attract multipotent cells from synovial origin to the defect.

The type and source of the primary cells will be chosen dependent on the type of tissue that is intended to be repaired. Preferably, the primary cells are of a cell type that naturally occurs in the tissue that will be repaired. In a highly preferred embodiment, chondrocytes are harvested for repair of cartilage defects. The type and source of multipotent cells is preferably also chosen dependent on the type of tissue that is intended to be repaired.

The following overview gives examples of how cell types of primary and multipotent cells may be selected with a view to repair of a specific tissue type.

Repair tissue	Primary cell source	Multipotent cell source		
Bone	osteoblasts from trabecular bone in long bone, pelvic bone, clavicula, compact, subchondral bone			
Cartilage	Chondrocytes derived from nose, knee or hip joint, elbow, ear, ankle or trachea cartilage, isolated chondron	Bone marrow, mesenchymal stem cells, stem cells from i.e.		
Liver	Hepatocytes from liver	fat, skeletal muscle,		
Heart, Heart valves	Cardiomyocytes from hart muscle, vascular myofibroblasts form vascular tissue in the hart	progenitor cells, umbilical cord cells, fibroblasts, human bone marrow stromal cells, vascular derived cells,		
Muscle	Myocytes from smooth muscle	synovial cells, dermal		
Nerve	Schwann cells, neural cells from epineurial tubes	fibroblast and hair follicle stem cells, and cells from		
Bladder	Urothelial cells from urological tract	periosteum or perichondrium		
Intestine	Cells from jejunum, duodenum			
Ligaments and Tendons	Cells from cruciate ligaments or tendon			
Hair	Cells from hair follicle, such as dermal papilla cells, outer root sheath or matrix epithelial cells			

5

10

In a preferred embodiment, the harvested cells are isolated from the samples obtained in the biopsy. This may be done for cells in a fluid by magnetic flow sorting, fluorescence activated cell sorting (FACS), column filtration, centrifugation, percoll separation, or attachment to tissue culture plastic. For cells in tissue this may be done by triturating, i.e. dispersing of cells through mild pumping action, followed by dissection and enzymatic digestion of tissue, and isolation via column filtration, centrifugation. membrane separation, or gel separation. Suitable examples of enzymes to be used in this respect include, but are not limited to collagenase, dispase, trypsin, elastase, hyaluronidase, and papain.

5

10

15

20

25

It is also possible to use harvested cells without isolating them. For instance, fractions of bone marrow or whole bone marrow may be used directly to provide multipotent cells. Also, minced or chopped tissue (tissue chips) may be used without further cell isolation as primary cell component.

In accordance with the invention, the obtained populations of multipotent and primary cells are combined in vitro, in vivo or in situ in order to induce differentiation of the multipotent cells. Both the multipotent and the primary cells may be combined with one another with or without components of tissue which would be surrounding them in their natural environment. Examples of such components include bone marrow and blood.

Advantageously, the multipotent cells will differentiate into the cell type of the primary cells. Surprisingly, it has been found that only a small number of primary cells, relative to the number of multipotent cells, are necessary to achieve the desired effect of induction. The ratio of the number of cells in the population of multipotent cells, which two populations are to be combined, is preferably from 1:200 to 2:3, more preferably from 1:100 to 1:3, even more preferably from 1:50 to 1:5.

In J. Thorac. Cardiovasc. Surg., June 2003, 125(6), pp. 1470-1480, and J. Thorac. Cardiovasc. Surg., August 2002, 50(8), pp. 321-324, Fukuhara et al. have described that bone marrow stromal cells may go into cardiac lineage in vitro when co-cultured together with cardiomyocytes in a ratio of 1:1 for seven days. Surprisingly, in accordance with the invention it has been found that far smaller numbers of primary cells relative to the number of multipotent cells suffice in order to induce differentiation of the multipotent cells. Also, in accordance with the invention, co-culturing in vitro of the combined cell populations is not necessary. In fact, it is preferred that the combined cell populations are applied to a tissue defect without culturing in vitro, be it before or after combining the two populations of cells.

5

10

15

20

25

30

Conventional approaches to tissue engineering starting from multipotent cells relied on chemical factors, such as growth factors, in order to stimulate and achieve differentiation of the multipotent cells. In these approaches, the multipotent cells are subjected to the action of the chemical factors in vitro to be implanted only after differentiation. As already mentioned, in accordance no in vitro culturing is necessary. Instead the harvested multipotent cells may be applied to a tissue defect in undifferentiated state. Also, in accordance with the invention the use of chemical factors in order to achieve differentiation of multipotent cells is not necessary. Nonetheless, differentiation may be further enhanced by making use of such factors, which is also encompassed by the invention. Some examples of chemical factors that can be used include cell adhesion factors such as vitronectin, tenascin, RGD peptides, hyaluronan, laminin, pronectin, or fibronectin or fragments thereof, e.g. arginine-glycine-aspartate, and cytokines or other releasable cell stimulating factors such as basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF-beta), nerve growth factor (NGF), insulin-like growth factor-1 (IGF-1), growth hormone (GH), multiplication stimulating activity (MSA), cartilage derived factor (CDF), bone morphogenic proteins (BMPs), growth differentiation factor-5

(GDF-5), dexamethasone (dex), or other osteogenic factors, anti-angiogenesis factors (angiostatin), and platelet derived growth factor (PDGF).

5

10

15

20

25

30

For induction of differentiation of multipotent cells into chondrocytes, the use of fibronectin has been found to be particularly advantageous. Fibronectin is generally known to inhibit chondrogenesis (West, C.M., R. Lanza, J. Rosenbloom, M. Lowe, H. Holtzer, and N. Avdalovic, Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts. Cell, 1979. 17(3): p. 491-501, Pennypacker, J.P., J.R. Hassell, K.M. Yamada, and R.M. Pratt, The influence of an adhesive cell surface protein on chondrogenic expression in vitro. Exp Cell Res, 1979. 121(2): p. 411-5). In contrast and surprisingly, it has now been found that fibronectin enhances cartilage formation (Figure 4) in a method according to the invention. Without wishing to be bound by theory, it is postulated that one of the causes for this enhancement of cartilage formation may be that fibronectin allows chondrocytes to maintain their rounded morphology.

Before or after combining the populations of primary and multipotent cells, they may be seeded onto a biocompatible scaffold. Preferably, the populations are combined in a manner suitable to secure a homogeneous distribution of the two cell types over the combined cell population. In this regard, it is preferred that the populations are combined before they are seeded onto the scaffold. On the other hand, it is also feasible, and under certain conditions advantageous, to distribute the two cell types in a compartmental fashion over the scaffold, such that distinct compartments comprising predominantly, or even exclusively cells of one cell type.

Whether or not it is desirable to use a biocompatible scaffold in a certain situation can be readily determined by the person skilled in the art depending on the type of tissue that is in need of repair and the size of the defect. Particularly for repair of larger defects in tissues, such as bone or cartilage, which have a mechanical, e.g. load bearing, function, the use of a scaffold is beneficial. The choice for material for the scaffold will also depend

on the type of tissue involved. Suitable examples of materials include metals and metal alloys, ceramics, (bio)glasses and polymeric materials. It is of course important that the material is biocompatible, which means that the material may be incorporated into a human or animal body substantially without unacceptable responses of the human or animal.

5

10

15

20

25

30

Preferred materials used in the manufacture of a scaffold are biocompatible, bioresorbable over periods of weeks or longer, and generally encourage cell attachment. The term "bioresorbable" is used herein to mean that the material degrades into components which may be resorbed by the body and which may be further biodegradable. Biodegradable materials are capable of being degraded by active biological processes such as enzymatic cleavage. Other properties desirable for materials to be used in the manufacture of the devices described herein include solubility in a biologically acceptable solvent that can be removed to generally accepted safe levels, and elasticity and compressive and tensile strength.

Natural polymers which are suitable include polysaccharides such as cellulose, dextrans, chitin, chitosan, glycosaminoglycans; hyaluronic acid or esters, chondroitin sulfate, and heparin; and natural or synthetic proteins or proteinoids such as elastin, collagen, agarose, calcium alginate, fibronectin, fibrin, laminin, gelatin, albumin, casein, silk protein, proteoglycans, Prolastin, Pronectin, or BetaSilk. Mixtures of any combination of polymers, as well as chemically modified derivatives of the mentioned polymers may also be used.

Synthetic polymers which have been found to be particularly suited for making a scaffold include copolymers of polyalkylene glycol and aromatic esters and poly(alpha)esters, such as: poly(lactic acid) (PLA) and poly(DL-lactic-co-glycolic acid) (PLGA). Other suitable materials include: thermoreversible or photocurable gels, such as pluronic or block copolymers of poly(D-lactide) and a poly(L-lactide) grafted dextran, preferably comprising a polyester or a poly-α-amino acid backbone, and/or heparin, poly(epsilon.-caprolactone) (PCL), polyanhydrides, polyarylates, and polyphosphazene.

Preferred synthetic polymers include: poly(hydroxy alkanoates), polydioxanone, polyamino acids, poly(gamma-glutamic acid), poly(vinyl acetates), poly(vinyl alcohols), poly(ethylene-imines), poly(orthoesters), polypohosphoesters, poly(tyrosine-carbonates), poly(ethylene glycols), poly(trimethlene carbonate), polyiminocarbonates, poly(oxyethylene-polyoxypropylene), poly(alpha-hydroxy-carboxylic acid/polyoxyalkylene), polyacetals, poly(propylene fumarates), and carboxymethylcellulose.

5

10

15

20

25

In a highly preferred embodiment, the scaffold is formed of a specific class of polymeric materials having hydrogel properties. This is the class of copolymers of a polyalkylene glycol and an aromatic polyester. Preferably, these copolymers comprise 40-80 wt.%, more preferably 50-70 wt.% of the polyalkylene glycol, and 60-20 wt.%, more preferably 50-30 wt.% of the aromatic polyester. A preferred type of copolymers according to the invention is formed by the group of block copolymers. Preferred polyalkylene glycols are chosen from the group of polyethylene glycol, polypropylene glycol, and polybutylene glycol and copolymers thereof, such as poloxamers. A highly preferred polyalkylene glycol is polyethylene glycol. Preferred polyesters are chosen from the group of polyethylene terephtalate, polypropylene terephtalate, and polybutylene terephtalate. A highly preferred polyester is polybutylene terephtalate.

Preferably, the polyalkylene glycol has a weight average molecular weight of from 150 to 10,000, more preferably of 200 to 1500. The aromatic polyester preferably has a weight average molecular weight of from 200 to 5000, more preferably of from 250 to 4000. The weight average molecular weight of the copolymer preferably lies between 20,000 and 200,000, more preferably between 50,000 and 120,000. The weight average molecular weight may suitably be determined by gel permeation chromatography (GPC). This technique, which is known per se, may for instance be performed using tetrahydrofuran as a solvent and polystyrene as external standard.

The scaffold will be constructed to achieve a favourable mechanical stability and proliferation and differentiation (both *in vivo*). Of course, the scaffold should also be of a size and shape to fit into the defect that is to be repaired. It is envisaged that a standard size and shape, or a combination of standard sizes and shapes are supplied to a surgeon who can mould or adapt the shape and size to the requirements of the defect to be treated. It is also possible that the scaffold does not have a particular shape but enables the combined populations of multipotent and primary cells to be injected, e.g. in the form of an injectable gel. Variables that can be manipulated to achieve a desired effect are *inter alia* macrostructure, chemical composition, microstructure including porosity, pore size (diameter), surface modifications such as surfactants and cell attachment peptides, incorporation of bioactive agents, flow properties (e.g. channels that direct and control fluid flow through and within the scaffold), and structural elements on or in the scaffold.

5

10

15

20

25

Often, the scaffold will have a porous or fibrous structure in order to facilitate transport of nutrients to the cells seeded onto it, and of waste materials from the cells seeded onto and/or into it. A porous structure of a polymeric material may be obtained by any known method, such as salt leaching or sintering. In principle, any combination of techniques, such as phase inversion, freeze drying and salt leaching may be used. It is also possible to employ a scaffold which is manufactured in a free form, rapid prototyping or 3D-printing process.

In a preferred embodiment, the outer surface of the scaffold is partly or completely provided with a ceramic coating. Preferably, the ceramic coating is a calcium phosphate coating, e.g. a coating comprising octacalcium phosphate, an apatite, such as hydroxyapatite or carbonate apatite, a whitlockite, such as α -tricalcium phosphate, β -tricalcium phosphate, sodium calcium phosphate, or a combination thereof. It is also possible to use a scaffold which is a biphasic composite structure of a ceramic material and a polymeric

WO 2005/087239 PCT/NL2005/000207

material. It has been found that the presence of ceramic material is highly beneficial as it can be used to mimic the properties of bone.

The seeding of the cell populations may be carried out in any known manner, for instance by using a seeding vehicle, static, dynamic or perfusion seeding, or a combination thereof.

5

10

15

20

25

30

After combining the populations of primary and multipotent cells, they are applied to the defect. It is one of the advantages of the invention that no expansion via culturing of the cells *in vitro* is involved. The primary and multipotent cells will be made available to the defect site to induce and support the natural repair reaction of the body. Without wishing to be bound by theory, it is believed that the primary cells produce and secrete specific factors as a response to their natural surroundings, which factors will enhance or induce differentiation of the multipotent cells into a tissue specific lineage. Thus, by applying primary cells, the multipotent cell population is provided with a 'factory' that establishes a natural cascade of growth and other factors involved in tissue repair.

As already indicated above, it is preferred that the two populations of cells are substantially homogeneously distributed throughout each other before application to the defect. This may be achieved by resuspension of the mixture of the two populations of cells through rotation or decanting, preferably just prior to application. In case the combined populations of cells are to be applied to the defect together with a scaffold, they are preferably combined first and then seeded onto the scaffold. The scaffold comprising the combined cell populations may then be applied to the defect.

The manner in which the combined populations of cells will be applied to the defect will depend on the type of tissue in which the defect exists and on whether or not a scaffold is used. Suitable manners of applying the cells include neat (i.e. cells only), direct in-gel or tissue-glue for application at sites requiring no immediate mechanical stability, or in-gel or tissue-glue seeding onto a scaffold for application at sites that do. Seeding of cells onto a

WO 2005/087239 PCT/NL2005/000207

scaffold, or their application to the site of tissue repair, may be assisted by using an aggregation factor, such as fibronectin or vitronectin. The cells can also be applied under periosteum sutured over the tissue defect and closed with fibrin glue. Factors such as hyaluronan, glycosaminoglycans, or inhibitors of cell apoptosis may be added to enhance cell survival after implantation, when deemed useful.

5

10

15

20

25

30

The invention further encompasses a kit for carrying out a method as described above. The kit preferably provides the medical staff all the materials and equipment necessary to carry out the present procedure for tissue repair. Thus, a kit according to the invention comprises means for taking a biopsy of a population of primary cells, means for taking a biopsy of a population of multipotent cells, and means for applying a combination of both populations to a tissue defect. In a preferred embodiment, the kit further comprises a biocompatible scaffold, as described above, and means for seeding the combined populations of multipotent and primary cells onto the scaffold. It is further preferred that the kit comprises means for isolating the cells from a biopsy.

Examples of devices or equipment for taking a biopsy of a population of multipotent cells include aspirate needles and syringes, preferably including a 8 gauge biopsy needle for bone marrow biopsies.

Examples of devices or equipment for taking a biopsy of a population of primary cells include, depending on the type of primary cells, a small diameter ring curette (preferably at most 6 mm), or a Notchplasty gouge.

Suitable means or instruments for isolating cells, i.e. multipotent and primary cells, from a biopsy are *inter alia* enzymes, such as collagenase, hyaluronidase, elastase, papain, trypsin, or dispase.

The kit preferably also comprises means for combining and mixing the populations of multipotent and primary cells. To this end, instruments such as a cell strainer, plasticware for cell processing, a cell filter system and one or more pipettes may be present. Suitable means for seeding cells onto a scaffold that may be present in a kit according to the invention include simple seeding devices such as a confined or unconfined chamber, or perfusion system.

Examples of means for applying the combined populations of multipotent and primary cells, or the scaffold with the combined populations of multipotent and primary cells seeded thereon to a tissue defect, that may be present in a kit according to the invention include tissue glue, gels, cell aggregation factors and one or more syringes.

5

10

15

20

25

30

The invention will now be further elucidated by the following, non-restrictive examples.

Example 1 Inducing differentiation by mixing primary and expanded chondrocytes in pellet culture assay under different conditions.

Chondrocytes were isolated from adult bovine cartilage from the tibia by means of collagenasetype II (Worthington) digestion. Isolated cells were seeded at a density of 3500 cells/cm² and subcultured for 3 passages in medium containing DMEM, 10 mM HEPES, 1x Non Essential amino acids, 0.2 mM AsAP, 100 U penicillin, 100 µg/ml streptomycin, 0.4 mM proline and 10% FBS at 37°C/5% CO₂. Primary and expanded cells were cultured in pellet assay under following conditions; expanded cell pellets shared medium with primary cell pellets (A) expanded cell pellet cultured in conditioned medium by primary cell pellet (B). Pellets of a 50/50 mixture of primary and expanded cells(C). + Control; primary cell pellet (D) -control; expanded cell pellet (E). After 2 wks in culture, pellets were fixated with 1.5 % glutaric aldehyde in cacodylate buffer (0,14M/pH 7.2-7.4) for safraninO staining, embeddd and frozen in OCT compound (Tissue-Tek) for immunostaining or frozen at -80°C for quantitative GAG and DNA assay. Sulphated Glycosaminoglycans (GAG) were stained with safraninO and counterstained with haemtoxylin and fast green respectively for nuclei and cytoplasm. Cryosections were fixated with aceton and stained for Collagen type II (1:100, DSHB II-II6B3) or Collagen

type I (1:1000, Ab-1, Calbiochem). Blocking was done with 10% human serum and as a secondary goat anti-mouse antibody (1:100, DAKO) was used. Staining was visualized with DAB-solution (DAKO) for 10 minutes.

5

10

15

25

30

SafraninO and collagen type II results show that cells in group C and D produce cartilage specific GAG throughout the pellet whereas pellets of group A, B and E do not produce GAG at all. Immunochemical results also show that only cells in the outer ring of a pellet from group C and D express Collagen type I, confirming differentiation of cells in mixed cell pellet (C) to be at comparable levels as in pellet of primary cells only. Whereas collagen type I staining of pellets in group A,B and E is found throughout the pellets, no specific collagen type II can be found in pellet of these groups. Thus it is concluded that expanded chondrocytes are not stimulated to differentiate, hence produce cartilage specific extracellular matrix, by culturing in either shared medium with primary cells or primary cell conditioned medium. However when in cell-cell contact with primary cells these results show that differentiation is stimulated and GAG's are produced at comparable levels in pellets of mixed primary and expanded cells to primary cells only. With these results it is shown that cell-cell contact induces differentiation.

20 Example 2 Differentiation in pellets consisting of a primary and expanded cell mixture at several ratio's

Experiment was designed to examine the differentiation capacity of different primary/expanded ratios in pellet assay.

Chondrocytes were isolated from adult bovine cartilage from the tibia by means of collagenasetype II (Worthington) digestion. Isolated cells were seeded at a density of 3500 cells/cm² and subcultured for 3 passages in medium containing DMEM, 10 mM HEPES, 1x Non Essential amino acids, 0.2 mM AsAP, 100U penicillin, 100 µg/ml streptomycin, 0.4 mM proline and 10% FBS at 37°C/5% CO₂. Pellets of a 50/50 mixture of primary and expanded cells were cultured in medium described above. After 2 wks in culture, pellets were

fixated with 1.5 % glutaaraldehyde in cacodylate buffer (0.14M / pH 7.2-7.4) for safraninO staining, embedded and frozen in OCT compound (Tissue-Tek) for immunostaining or frozen at -80°C for quantitative GAG and DNA assay. Sulphated Glycosaminoglycans (GAG) were stained pink with safraninO and counterstained with haemtoxylin and fast green respectively for nuclei (brown) and cytoplasm (blue). Cryosections were fixated with aceton and stained for Collagen type II (1:100, DSHB II-II6B3) or Collagen type I (1:1000, Ab-1, Calbiochem). Blocking was done with 10% human serum and as a secondary goat anti-mouse antibody (1:100, DAKO) was used. Staining was visualized with DAB-solution (DAKO) for 10 minutes. Samples for quantitative GAG and DNA assay were digested with 50mg/ml proteinase K (SIGMA) for >16 hrs at 56°C. GAG content was spectrophotometrically determined with 9-dimethylmethylene blue chloride (DMMB) staining in PBE buffer (14.2 g/l Na₂HPO₄ and 3.72 g/l Na₂EDTA, pH 6.5) and DNA assay was done with CyQuant DNA assay according to the manufacturer description.

5

10

15

20

25

With reference to Figure 2 primary/ expanded cells were mixed at indicated ratios and cultured in pellet assay (500.000 cells/pellet) for 2 wks. Qualitative GAG and Collagen type II results show that only in pellets with 0/100 primary/expanded cells no GAG or collagen type II can be found while only in pellets with 100/0 primary/expanded cells collagentype I is shown to be present. With these results that with decreasing amounts of primary cells the level of differentiation is maintained throughout the pellets (A). Moreover, quantitative GAG/DNA results (B) show that when amount of primary cells is decreased to 10 %, differentiation is still at comparable levels as with primary cells only in pellet culture assay. Moreover, when number of primary cells is further decreased to 2% the amount of GAG/DNA is approximately 25 x higher then expected from the same amount of primary cells only. Surprisingly, cell number results show that only when the amount of primary cells in the pellet is rising above 25%, proliferation occurred.

With these results it is shown that in a cell mixture of primary/expanded chondrocytes differentiation is stimulated even when the amount of primary cells is decreased to 2% of the total cell population. Quantitative GAG/DNA results actually show that amount of GAG in pellets containing 2% primary cells is approximately 25 x higher then can be expected from the same amount of primary cells alone. With these data it is shown that differentiation is strongly enhanced by a small amount of primary cells in the presence of a large amount of dedifferentiated cells such as cultured chondrocytes.

10

15

20

25

30

5

Example 3. Differentiation of respectively fibroblast / primary chondrocyte and bone marrow cells / primary chondrocytes in pellet assay.

Experiment was designed to examine the differentiation capacity of different multipotent cell types mixed with primary chondrocytes in pellet assay. Fibroblast were from a 3T3 fibroblasts cell line and cultured in DMEM (BioWhitakker #BE12-604F) 100 U/ml penicillin, 100 μg/ml streptomycin and 5% FBS and bone marrow cells were isolated from human bone marrow biopsy and cultured in αMEM (Gibco #22571-020) containing 10% FBS, 100U/ml penicillin, 100 µg/ml streptomycin and 10 mM AsAP and 1 ng/ml bFGF. Chondrocytes were isolated from a biopsy of human articular cartilage from the knee. After mixing pellets were cultured at 37°C/5% CO₂ in medium containing DMEM (Gibco #41965-039), 10 mM HEPES, 1x Non Essential amino acids, 0.2 mM AsAP, 100 U penicillin, 100 µg/ml streptomycin, 0.4 mM proline and 10% FBS. With reference to Figure 3 cell mixtures of 50% primary cells and 50% of respectively fibroblasts or bone marrow cells were centrifuged to form pellets and cultured for 3 wks. Sections of pellets were stained for Sulphated Glycosaminoglycans (GAG's) with safraninO (pink). Results show production of GAG's throughout the pellets when chondrocytes were mixed with either 3T3-fibroblast or bone marrow cells but not in pellets of fibroblasts or bone marrow cells only. Indicating stimulation of differentiation into a

cartilage lineage with either fibroblasts or bone marrow cells (multipotent cells) when mixed with primary chondrocytes.

Examples 4 & 5. Differentiation of primary/expanded cell mix on PEGT/PBT 300/55/45 scaffolds in vivo.

5

10

15

20

25

30

Experiment was designed to examine the differentiation capacity of different primary/expanded cell mixtures on a porous scaffold in vivo either or not in the presence of a factor involved in aggregation of cells (fibronectin).

Chondrocytes were isolated from a biopsy of human articular cartilage from the knee by means of collagenase type II (Worthington) digestion. Isolated cells were seeded at a density of 3500 cells/cm² and subcultured for 3 passages in medium containing DMEM, 10 mM HEPES, 1x Non Essential amino acids, 0.2 mM AsAP, 100 U penicillin, 100 μg/ml streptomycin, 0.4 mM proline and 10% FBS at 37°C/5% CO₂. Primary cells were isolated from mature bovine cartilage and combined with expanded cells at the following ratios: 0/100, 100/0, and 2/98, 20/80 and 50/50. Cell mixtures were incubated for 1 hr with 300ug/ml fibronectin to form aggregates and seeded dynamically onto porous scaffolds for 24 hrs in eppendorf tubes with a gas exchange filter at 37°C/5% CO₂ in culture medium. Porous scaffolds were made of segmented copolymers of poly (ethylene glycol) terepthalate (PEGT) and poly (butylene terephtalate) (PBT) with the composition of 55/45 PEGT/PBT weight ratio and a molecular weight of 300 for PEG. After 7 days static culturing in culture medium described above, seeded scaffolds were implanted subcutaneously in nude mice. For each experimental group 8 scaffolds were implanted and for controls 6. After 4 wks scaffolds were explanted and weight ratio of the whole and ½ of each scaffolds was determined for quantative glycosamino glycan (GAG) and DNA analysis. Half of the scaffold was digested with 50 mg/ml proteinase K (SIGMA) for >16 hrs at 56°C. GAG content was determined with 9-dimethylmethylene blue chloride (DMMB) staining in PBE buffer (14.2 g/l Na₂HPO₄ and 3.72 g/l

5

10

15

20

25

Na₂EDTA, pH 6.5) in a spectrophotometer (540nm) and DNA assay was done with CyQuant DNA assay according to the manufacturer description.

With reference to Figure 4 cell mixtures with 50/50 primary / expanded ratio were seeded onto porous (Mw PEG)/(w/w PEGT/PBT) 300/55/45 scaffolds. Untreated cell mixture was seeded onto untreated scaffold (control), Untreated cell mixture was seeded onto fibronectin (300 μg/ml) coated scaffold (FN coated scaffold) or fibronectin treated cell mixture (300 μg/ml) were seeded onto untreated scaffolds (FN aggregated cells). Scaffolds were subcutaneously implanted in nude mice and after 4 wks samples were explanted and GAG/scaffold was quantified. Results show that aggregation of cells in the presence of fibronectin increases GAG/DNA production of 50/50 primary/expanded cell mixture.

With reference to Figure 5 cell mixtures with different primary/ expanded ratios were aggregated in the presence of 300 µg/ml fibronectin and seeded onto porous (Mw PEG)/(w/w PEGT/PBT) 300/55/45 scaffolds. Scaffolds were subcutaneously implanted in nude mice and after 4 wks samples were explanted and GAG/scaffold was quantified. Results show that in the presence of 20% primary cells the GAG/scaffold content is equal to scaffolds with 100% primary cells. Moreover when 50% of primary cells are mixed with 50% expanded cells the GAG/scaffold content increased >1.5.

In Figure 5, μ g GAG/scaffold shown is normalized to 0/100 cell ratio by substracting a constant value. Media conditioned by primary cells were shown ineffective in inducing chondrogenesis in multipotent cells.

Fibronectin is generally known to inhibit chondrogenesis. In contrast and surprisingly, it found that fibronectin enhanced cartilage formation (Figure 4) within the said induction system.

To retain cells within the defect site, in particular for an interoperative and autologous procedure, preferentially, specific measures are taken or required, ie using gels or other means to immobilize cells without

relying on cell attachment onto a substrate requiring a substantial time period.

5

10

15

To protect cells from joint loading postsurgery, preferentially, cells will be surrounded by a scaffold or gel or other means which provide some or full mechanical support. For cartilage repair, preferentially, the scaffold used is mechanically functional, i.e. it shows similarities to mechanical properties of cartilage.

From these results it is clear that differentiation capacity of primary/expanded cell mixtures of 20/80 in porous scaffolds *in vivo* is equal to primary cells alone.

In these examples, cells were treated with fibronectin to illustrate differentiation can be supported by aggregation of cells. To aggregate cells other tissue specific factors as vitronectin, laminin, hyaluronan can be used. The scaffold chosen for this study is an example of a scaffold suitable to support mechanical properties of a specific tissue, in this case cartilage, immediately after implantation. In this example the chosen scaffold is also used as a vehicle to apply a cell mixture into the defect.

15

Claims

- 1. A method for inducing differentiation of multipotent cells to a desired cell type by exposing a population of the multipotent cells to a population of primary cells of the desired cell type.
- 2. A method for repairing a tissue defect in a human or animal patient comprising
 - taking a biopsy comprising a population of multipotent cells;
 - taking a biopsy comprising a population of primary cells;
 - combining the population of multipotent cells and the population of primary cells; and
- 10 applying the combined populations of multipotent and primary cells to the tissue defect.
 - 3. A method according to claim 2, wherein the primary cells are of a cell type which naturally occurs in the tissue which is need of repair.
 - 4. A method according to claim 2 or 3, wherein the population of multipotent cells and/or the population of primary cells are isolated from the biopsy.
 - 5. A method according to any of the preceding claims, wherein the multipotent cells and the primary cells are human cells.
- 6. A method according to any of the preceding claims, wherein the
 multipotent cells are stem cells, progenitor cells, mesenchymal stem cells, bone
 marrow cells, fibroblasts, or satellite cells.
 - 7. A method according to claim 6, wherein the multipotent cells are bone marrow cells.
- 8. A method according to any of the preceding claims, wherein the primary cells are chondrocytes, nerve cells, osteoblasts, osteoclasts, hepatocytes, cardiomyocytes, myocytes, Schwann cells, or urothelial cells.

5

15

WO 2005/087239 PCT/NL2005/000207 23

- 9. A method according to claim 8, wherein the primary cells are chondrocytes.
- A method according to any of the preceding claims, wherein the ratio 10. of the number of cells in the population of primary cells to the number of cells in the population of multipotent cells is from 1:200 to 2:3, preferably from 1:50 to 1:5.
- 11. A method according to any of the claims 2-10, wherein the population of multipotent cells and the population of primary cells are combined without having been cultured in vitro.
- 10 12. A method according to any of the claims 2-11, wherein the combined populations of multipotent and primary cells are applied to the tissue defect without having been cultured in vitro.
 - 13. A method according to any of the preceding claims, wherein the population of multipotent cells and the population of primary cells are provided on a biocompatible scaffold.
 - A method according to claim 13, wherein the biocompatible scaffold is manufactured of a material chosen from the group of metals and metal alloys, ceramics, (bio)glasses, natural and synthetic polymeric materials, and combinations thereof.
- 20 15. A method according to claim 14, wherein the biocompatible scaffold is manufactured of a copolymer of a polyethylene glycol and a polybutylene terephthalate.
 - 16. A method according to claim 15, wherein the biocompatible scaffold is partially or completely covered by a calcium phosphate coating.
- 25 17. A method according to any of the claims 13-16, wherein the population of multipotent cells and the population of primary cells are provided on the biocompatible scaffold without having been cultured in vitro.
 - 18. A composition comprising a population of multipotent cells and a population of primary cells.

- 19. The use of a combination of a population of multipotent cells and a population of primary cells for the manufacture of a medicament for tissue repair.
- 20. The use according to claim 19, wherein the combination of the population of multipotent cells and the population of primary cells is applied to the tissue defect without having been cultured *in vitro*.
 - 21. The use according to claim 19 or 20, wherein the medicament further comprises a biocompatible scaffold.
- 22. A kit for carrying out a method according to any of the claims 2-17

 10 comprising means for taking a biopsy of a population of primary cells, means for taking a biopsy of a population of multipotent cells, and means for applying a combination of both populations to a tissue defect.
- 23. A kit according to claim 22 further comprising a biocompatible scaffold and means for seeding the combined populations of multipotent and primary cells onto said scaffold.
 - 24. A kit according to claim 22 or 23 further comprising means for isolating cells from a biopsy.

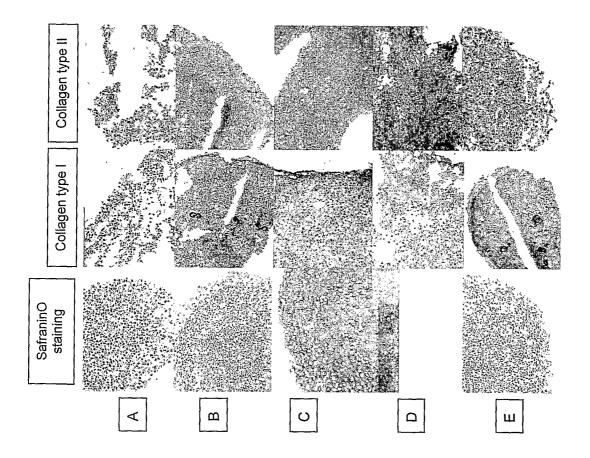
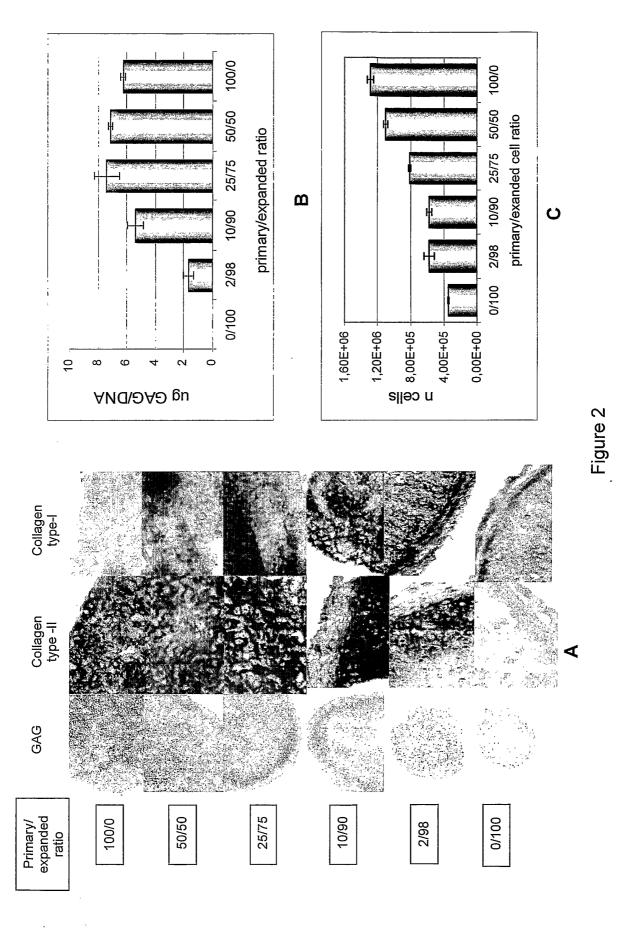



Figure 1.

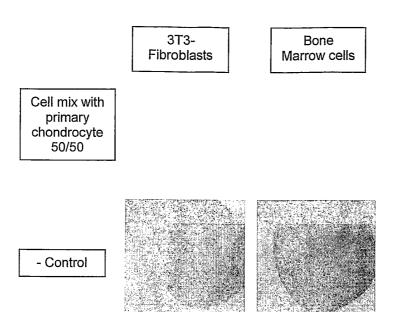


Figure 3

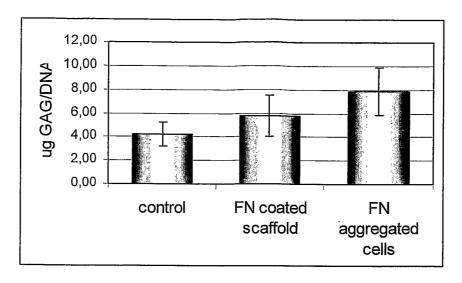


Figure 4

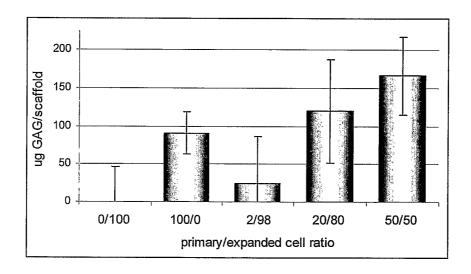


Figure 5

INTERNATIONAL SEARCH REPORT

page 11, line 31 - page 12, line 5;

Inte al Application No PCT7NL2005/000207

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K35/12 C12N C12N5/00 A61P43/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61K C12N A61P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, EMBASE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1 - 9.WO 03/078609 A (TROUNSON ALAN; UNIV χ 11 - 24MONASH (AU); JARRED RENEA A (AU); RISBRIDGER GAIL) 25 September 2003 (2003-09-25) Υ page 3, line 6 - line 10 10 page 4, line 1 - line 2 page 6, line 13 page 7, line 29 - page 8, line 2

claims;	examples	,	,				
MARK J	7999 A (GEN HOSPITAL CORP (US); CYTOMATRIX LLC (US) ay 2000 (2000-05-18)		1-9, 11-24				
1 ,	line 16 - line 22; claim	5	10				
	nui (nui mi am	-/					
Turther documents are listed in the continuation of box C. Patent family members are listed in annex.							
° Special categories of cited do	cuments:	"T" later document published after the inte	ernational filing date				
A document defining the general state of the art which is not considered to be of particular relevance		or priority date and not in conflict with cited to understand the principle or th invention					
E earlier document but published on or after the international filing date *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to							
"L" document which may throw	v doubts on priority claim(s) or	involve an inventive step when the do					

which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) occument of particular relevance; the channed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 29/07/2005 21 July 2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bayrak, S

INTERNATIONAL SEARCH REPORT

Inte 1al Application No
PC17NL2005/000207

	U A DOCUMENTO CONSIDERES CONTRACTOR DE LA CONTRACTOR DE L	PC1/NL2005/00020/					
	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
OateGoly ,	Original of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.					
X Y	WO 02/46401 A (MAX DELBRUECK CENTRUM; BADER MICHAEL (DE); GANTEN DETLEV (DE); FAENDR) 13 June 2002 (2002-06-13) page 6, paragraph 2	1-9, 11-24 10					
Y	MURPHY J MARY ET AL: "Stem cell therapy in a caprine model of osteoarthritis." ARTHRITIS AND RHEUMATISM. DEC 2003, vol. 48, no. 12, December 2003 (2003-12), pages 3464-3474, XP002310438 ISSN: 0004-3591 the whole document	1-24					
Υ	KOERBLING M ET AL: "ADULT STEM CELLS FOR TISSUE REPAIR-A NEW THERAPEUTIC CONCEPT?" NEW ENGLAND JOURNAL OF MEDICINE, THE, MASSACHUSETTS MEDICAL SOCIETY, WALTHAM, MA, US, vol. 349, no. 6, 7 August 2003 (2003-08-07), pages 570-582, XP009030640 ISSN: 0028-4793 the whole document	1-24					
Υ	US 5 851 832 A (WEISS ET AL) 22 December 1998 (1998-12-22) the whole document	1-24					

ational application No. PCT/NL2005/000207

INTERNATIONAL SEARCH REPORT

Box II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)						
This Inter	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
	Claims Nos.: secause they relate to subject matter not required to be searched by this Authority, namely:						
	Although claims 1-17 (as far as in vivo application is concerned) are directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.						
ا ب	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:						
	Claims Nos.:						
	plantis Nos.: Decause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)						
This Inter	national Searching Authority found multiple inventions in this international application, as follows:						
	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.						
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
4. []	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remark d	on Protest The additional search fees were accompanied by the applicant's protest.						
	No protest accompanied the payment of additional search fees.						
	<u> </u>						

INTERNATIONAL SEARCH REPORT

Intel al Application No
PCT/NL2005/000207

				PC1/NL2005/00020/		NE2003/00020/
	atent document d in search report		Publication date		Patent family member(s)	Publication date
WO	03078609	A	25-09-2003	WO WO AU AU CA EP	03078608 A1 03078609 A1 2003209830 A1 2003209831 A1 2479152 A1 1487968 A1	25-09-2003 25-09-2003 29-09-2003 29-09-2003 25-09-2003 22-12-2004
WO	0027999	A	18-05-2000	AU CA CN EP JP WO US	1720400 A 2351889 A1 1326505 A , 1135463 A2 2002529073 T 0027999 A2 2003096404 A1	29-05-2000 18-05-2000 C 12-12-2001 26-09-2001 10-09-2002 18-05-2000 22-05-2003
WO	0246401	A	13-06-2002	DE WO EP JP US	10061334 A1 0246401 A1 1341915 A1 2004519437 T 2004208857 A1	13-06-2002 13-06-2002 10-09-2003 02-07-2004 21-10-2004
US	5851832	A	22-12-1998	UUUUUUUUUUAAACWDDKPPSIPOOTUUAAOEEKFINOOTUUAAOEEKFI	2003082515 A1 2003109008 A1 2003095956 A1 6071889 A 5981165 A 5750376 A 6399369 B1 6294346 B1 5980885 A 6497872 B1 2003049837 A1 240389 T 665012 B2 2242592 A 2113118 A1 9301275 A1 69233061 D1 69233061 T2 594669 T3 1329499 A2 0594669 A1 2198404 T3 935929 A 6509225 T 940056 A 9416718 A1 221117 T 683023 B2 5147493 A 2147162 A1 9409119 A1 69332147 D1 69332147 D1 69332147 T2 664832 T3 0664832 A1 2180547 T3 951677 A	01-05-2003 12-06-2003 22-05-2003 06-06-2000 09-11-1999 12-05-1998 04-06-2002 25-09-2001 09-11-1999 24-12-2002 13-03-2003 15-05-2003 14-12-1995 11-02-1993 21-01-1993 21-01-1993 21-01-1993 18-06-2003 18-03-2004 25-08-2003 23-07-2003 04-05-1994 01-02-2004 02-02-1994 20-10-1994 03-03-1994 04-08-1994 15-08-2002 30-10-1997 09-05-1994 28-04-1994 28-04-1994 29-08-2002 11-11-2002 02-08-1995 16-02-2003 07-04-1995

INTERNATIONAL SEARCH REPORT

Inti 1al Application No
PCT/NL2005/000207

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 5851832	A	JP NO PT AU AU CA WO DE DE DK	8502172 T 951378 A 664832 T 234353 T 703729 B2 4924197 A 5367694 A 2148138 A1 9410292 A1 69332759 D1 69332759 T2 669973 T3	12-03-1996 07-04-1995 31-12-2002 15-03-2003 01-04-1999 12-03-1998 24-05-1994 11-05-1994 11-05-1994 17-04-2003 16-10-2003 14-07-2003