NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

Weltorganisation für geistiges Eigentum
Internationales Büro

Internationales Veröffentlichungsdatum

Internationale Veröffentlichungsnummer
WO 2005/012896 A1

Internationale Patentklassifikation?: G01N 27/414
Internationales Aktenzeichen: PCT/EP2004/008309

Internationales Anmeldedatum:

Einreichungssprache: Deutsch
Veröffentlichungssprache: Deutsch

Angaben zur Priorität:

Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MICRONAS GMBH [DE/DE];

Erfinder: RÜHE, Jürgen [DE/DE]; Im Längental 15, 79656 Eichstetten (DE); SAMUEL, J.D., Jeyaprakash, S. [IN/US]; 4500 Woods Drive, Apt. No. 1238, San Jose, CA, 95136 (US); FRERICHS, Heinz-Peter [DE/DE]; Peter thumb Weg 14, 79271 St.Peter (DE); LEHMANN, Mirko [DE/DE]; Sudetenstrasse 4, 79117 Freiburg (DE).

Erfinder/Anmelder (nur für US): HUWER, Andreas; Grünwälderstrasse 10-14, Postfach 1305, 79013 Freiburg i.Br. (DE).

Anwalt: HUWER, Andreas; Grünwälderstrasse 10-14, Postfach 1305, 79013 Freiburg i.Br. (DE).

(54) Title: GAS SENSOR

(54) Bezeichnung: GASSENSOR

Abstract: The invention relates to a gas sensor (1) comprising a substrate (2) of a first charge carrier type in which a drain (3) and a source (4) of a second charge carrier type are arranged. A channel area (8) is formed between the drain (3) and the source (4). The gas sensor (1) also comprises a gas sensitive layer (10) comprising poles (11, 12) between which a gas induced voltage is produced according to the concentration of a gas which is in contact with the layer (10). In order to measure said voltage, a pole (12) of the gas sensitive layer (10) is capacitatively coupled to the channel area (8) by means of an air gap (14) and the other pole (11) is connected to a counter-electrode (13) having a reference potential. A hydrophobic layer (19) is arranged on the surface of the gas sensor (1) between the gas sensitive layer (10) and the channel area (8) and/or on a sensor electrode which is connected to a gate electrode arranged on the channel area (8).

Zusammenfassung: Ein Gassensor (1) weist ein Substrat (2) eines ersten Ladungsträgerleits auf, auf dem eine Drain (3) und eine Source (4) eines zweiten Ladungsträgerleits angeordnet sind. Zwischen Drain (3) und Source (4) ist ein Kanalbereich (8) gebildet. Ferner hat der Gassensor (1) eine gassensitive Schicht (10), die Pole (11, 12).

Erklärungen gemäß Regel 4.17:
— Erfüllungserklärung (Regel 4.17 Ziffer iv) nur für US
— Erfüllungserklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:
— mit internationalen Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Gassensor

Aus DE 101 18 367 C2 ist auch bereits ein verbesserter Gassensor bekannt, bei dem zwischen dem Guardring und dem Kanalbereich eine Oberflächenprofilierung

Es besteht deshalb die Aufgabe, einen Gassensor der eingangs genannten Art zu schaffen, der bei einem einfachen und kompakten Aufbau eine hohe Messgenauigkeit ermöglicht. Dabei soll die Messgenauigkeit weitgehend unabhängig von FeuchteEinflüssen sein.

Diese Aufgabe wird dadurch gelöst, dass an der Oberfläche des Gassensors zwischen der gassensitiven Schicht und dem Kanalbereich und/oder einer Sensor-Elektrode, die mit einer an dem Kanalbereich angeordneten Gateelektrode elektrisch verbundenen ist, eine hydrophobe Schicht angeordnet ist.

In vorteilhafter Weise wird durch diese überraschend einfache Lösung die Adsorpti-
on von Feuchtigkeit an der Oberfläche des Gassensors erschwert oder sogar

Bei einer zweckmäßigen Ausgestaltung der Erfindung erstreckt sich die hydrophobe Schicht durchgängig über den Kanalbereich und/oder die Sensorelektrode. Der Gassensor ist dann besonders einfach und kostengünstig herstellbar, da die hydrophobe Schicht ganzflächig auf die Oberfläche des Gassensors aufgebracht und somit ein Maskierungsprozess eingespart werden kann.

Bei einer bevorzugten Ausführungsform der Erfindung beträgt der mit Wasser gemessene, auf ein plane Oberfläche bezogene statische Kontaktwinkel der hydrophoben Schicht mindestens 70°, ggf. mindestens 90°, insbesondere mindestens 105° und bevorzugt mindestens 120° beträgt. Vor allem bei einem Kontaktwinkel von mindestens 120° kann eine besonders hohe und weitgehend vom Feuchtigkeitsgehalt des Gases unabhängige Messgenauigkeit des Gassensors erreicht werden. Der Kontaktwinkel kann mit bekannten Standardmessverfahren bei Raumtemperatur bestimmt werden.

Bei einer zweckmäßigen Ausgestaltung der Erfindung sind Moleküle der hydrophoben Schicht kovalent an die Oberfläche einer daran angrenzenden, vorzugsweise halbleitenden oder elektrisch isolierenden Schicht des Gassensors gebunden. Dadurch ist es möglich, bei der Fertigung des Gassensors die hydrophobe Schicht direkt an der daran angrenzenden Schicht des Gassensors zu befestigen.

Vorteilhaft ist, wenn die hydrophobe Schicht mindestens ein Polymer enthält. Die hydrophobe Schicht kann dann bei der Fertigung des Gassensors bei Raumtemperatur auf die Oberfläche des Gassensors aufgebracht werden, wodurch die bereits auf dem Substrat befindlichen Implantierungsbereich und Strukturen thermisch geschont werden.

Besonders vorteilhaft ist, wenn das Polymer ein fluoriertes und bevorzugt ein perfluoriertes Polymer ist. Durch die in diesen Polymeren enthalten stark elektronegativen CF-Gruppen kann auch bei einem hohen Feuchteanteil in dem zu messenden Gas, beispielsweise bei einer relativen Feuchte von 90%, noch eine hohe Messgenauigkeit bei der Messung der Gaskonzentration erreicht werden.
Bei einer anderen vorteilhaften Ausführungsform der Erfindung ist das Polymer über eine vorzugsweise als Monolage ausgebildete Zwischenschicht mit einer benachbarten, vorzugsweise halbleitenden oder elektrisch isolierenden Schicht des Gassensors verbunden, wobei die Zwischenschicht mindestens eine an der benachbarten Schicht verankerte reaktive Gruppe aufweist, und wobei das Polymer vorzugsweise über eine kovalente Bindung an die Zwischenschicht gekoppelt ist. Dabei ist es sogar möglich, das hydrophobe Polymer bei der Herstellung des Gassensors zunächst ganzflächig auf die Zwischenschicht aufzubringen und dann unter Einwirkung von mittels einer Schattenmaske auf die Oberfläche des Gassensors projizierter optischer Strahlung nur in bestimmten Teilbereichen der Oberfläche des Gassensors photochemisch an die Zwischenschicht zu binden. In den übrigen Teilbereichen kann das hydrophobe Polymer danach beispielsweise durch Abwaschen von der Oberfläche des Gassensors entfernt werden. Insgesamt ergibt sich somit ein Gassensor mit einer strukturierten, nur an bestimmten Stellen seiner Oberfläche angeordneten hydrophoben Schicht.

Vorteilhaft ist, wenn die hydrophobe Schicht eine Oberflächenprofilierung mit Vorsprüngen und Vertiefungen aufweist. Dadurch kann eine noch größere Messgenauigkeit erreicht werden.

Die Vertiefungen sind bevorzugt als Gräben oder Nuten ausgebildet, die rahmen- oder ringförmig um den Kanalbereich und/oder die Sensorelektrode umlaufen.

Nachfolgend sind Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es zeigt zum Teil stärker schematisiert:

Fig. 1 einen Längsschnitt durch einen Gassensor, der unter einer strichliniert dargestellten gasempfindlichen Schicht einen ISFET aufweist,

Fig. 2 einen Querschnitt durch den in Fig. 1 gezeigten Gassensor entlang der in Fig. 1 mit II bezeichneten Schnittlinie,

Fig. 3 einen Längsschnitt durch einen Gassensor, der unter einer strichliniert dargestellten gasempfindlichen Schicht einen CCFET aufweist,
Fig. 4 einen Querschnitt durch den in Fig. 3 gezeigten Gassensor entlang der in Fig. 3 mit IV bezeichneten Schnittlinie,

5 Fig. 5 eine schematische Darstellung der photochemischen Bindung eines hydrophoben Polymers an eine auf einer elektrischen Isolationsschicht immobilisierten Schicht mit Linker-Molekülen.

Zwischen Drain 3 und Source 4 ist in dem Substrat 2 ein Kanalbereich 8 gebildet, auf dem bei dem Ausführungsbeispiel nach Fig. 1 und 2 eine elektrisch isolierende Dünnoxidschicht 9 angeordnet ist, die als Gatedielektrikum dient. Die Dünnoxidschicht 9 hat etwa eine Schichtdicke von 3-150 nm.

Wie in Fig. 2 besonders gut erkennbar ist, weist der Gassensor 1 ferner eine gassensitive Schicht 10 auf, die an ihren einander abgewandten Flachseiten Pole 11, 12 hat, zwischen denen in Abhängigkeit von der Konzentration eines mit der Schicht 10 in Kontakt befindlichen Gases eine gasinduzierte elektrische Spannung auftritt. Zur Detektion der Spannung ist die gassensitive Schicht 10 mit ihrem einen Pol 12 über einen Luftspalt 14 kapazitiv an den Kanalbereich 8 gekoppelt. Der andere Pol 11 ist mit einer Gegenelektrode 13 verbunden, an der ein elektrisches Bezugspotential anliegt. Der Luftspalt 14 weist einen Zugang zu dem zu detektierenden Gas auf und ist zwischen deponierten Schichten 7, auf denen die gassensitive Schicht 10 abgestützt ist.
Bei dem Ausführungsbeispiel nach Fig. 1 und 2 ist der Kanalbereich 8 offen ausgebildet (ISFET) und über das Dünnschichtoxid und den Luftpalt 14 direkt an die gassensitive Schicht 10 kapazitiv gekoppelt. Deutlich ist erkennbar, dass der Kanalbereich 8 an der der gassensitiven Schicht 10 gegenüberliegenden Seite des Luftpals 14 angeordnet ist.

Bei dem Ausführungsbeispiel nach Fig. 3 und 4 ist der Kanalbereich 8 seitlich neben der gassensitiven Schicht 10 in dem Substrat 2 angeordnet und mit einer Gateelektrode 22 abgedeckt. Zur kapazitiven Ankopplung des Kanalbereichs 8 an die gassensitive Schicht 10 ist die Gateelektrode 22 über eine Leiterbahn 15 mit einer Sensorelektrode 16 verbunden, die an der dem Pol 12 der gassensitiven Schicht 10 gegenüberliegenden Seite des Luftpals 14 auf einer auf dem Substrat 2 befindlichen Isolationsschicht 17 angeordnet ist. Die Isolationsschicht 17 kann beispielsweise eine SiO₂-Schicht sein.

Der Gassensor 1 weist an seiner Oberfläche außerdem einen elektrisch leitfähigen Guardring 18 auf, der bei dem Ausführungsbeispiel nach Fig. 1 und 2 den Kanalbereich 8 und bei dem Ausführungsbeispiel nach Fig. 3 und 4 die zu dem zu dem Kanalbereich 8 führende Sensorelektrode 16 umgrenzt. Dabei ist bei dem Ausführungsbeispiel nach Fig. 1 und 2 zwischen dem Guardring 18 und dem Kanalbereich 8 und bei dem Ausführungsbeispiel nach Fig. 3 und 4 zwischen dem Guardring 18 und der Sensorelektrode 16 jeweils ein Abstand vorgesehen. Um den Kanalbereich 8 gegen außerhalb des von dem Guardring 18 umgrenzten Oberflächenbereichs des Gassensors 2 befindliche elektrische Potentiale abzuschirmen, liegt der Guardring 18 auf einem definierten elektrischen Potential.

Bei dem Ausführungsbeispiel nach Fig. 1 und 2 ist zwischen dem Guardring 18 und dem Kanalbereich 8 an der Oberfläche des Gassensors 1 eine hydrophobe Schicht 19 angeordnet. Diese befindet sich auf einer elektrischen Isolationsschicht 17, die auf der Drain 3, der Source 4 und außerhalb des Kanalbereichs 8 befindlichen Bereichen des Substrat 2 angeordnet ist. In Fig. 1 ist erkennbar, dass die hydrophobe Schicht 19 den Kanalbereich 8 rahmenförmig umgrenzt und mit Abstand zu dem Kanalbereich 8 und dem Guardring 18 endet. Durch die hydrophobe Schicht 19 wird in dem zwischen dem Guardring 18 und dem Kanalbereich 8 befindlichen Teil der Oberfläche des Gassensors die Adsorption von in dem Gas
befindlichem Wasser erheblich erschwert. Dadurch werden ein hoher elektrischer Widerstand an der Oberfläche und ein hohe Messgenauigkeit des Gassensors ermöglicht.

Bei dem Ausführungsbeispiel nach Fig. 3 und 4 ist die hydrophobe Schicht 19 zwischen dem Guardring 18 und der Sensorelektrode 16 auf der Isolationsschicht 17 angeordnet. In Fig. 4 ist erkennbar, dass die hydrophobe Schicht 19 die Sensorelektrode 16 rahmenförmig umgrenzt und mit Abstand zu der Sensorelektrode 16 und dem Guardring 18 endet. Durch die hydrophobe Schicht 19 wird in dem zwischen dem Guardring 18 und der Sensorelektrode 16 befindlichen Teil der Oberfläche des Gassensors 1 die Adsorption von in dem Gas befindlichem Wasser erschwert.

Die hydrophobe Schicht besteht aus einem Polymer, vorzugsweise aus Poly(heptadecatfluorocrylat). Bei der Fertigung des Gassensors 1 wird die hydrophobe Schicht 19 über eine Zwischenschicht 20 an der Isolationsschicht 17 befestigt. Dazu wird zunächst die Zwischenschicht 20 in Form einer Monolage eines benzophenon-funktionalisierten Monochlorosilans auf der Isolationsschicht 17 aufgebracht. In Fig. 5 ist erkennbar, dass in der Zwischenschicht 20 während der UV-Belichtung freie Radikale entstehen, die beim Kontaktieren der Isolationsschicht 17 an diese anbinden und dadurch die Zwischenschicht 20 an der Isolationsschicht 17 befestigen.

Danach wird eine dünne Lage Poly(heptadecatfluorocrylat) ganzflächig auf der Zwischenschicht 20 deponiert. Nun werden mit Hilfe einer Schattenmaske die Stellen, an denen später die hydrophobe Schicht 19 sein soll, mit UV-Strahlung bestrahlt. In Fig. 5 ist erkennbar, dass die Zwischenschicht 20 eine photoreaktive Benzophenon-Gruppe 21 aufweist, die bei Bestrahlung mit UV-Licht an ein benachbartes Polymer der späteren hydrophoben Schicht 19 bindet. Dabei übernimmt die Benzophenon-Gruppe 21 von dem benachbarten Polymer ein Wasserstoffatom, derart, dass zwischen der Benzophenon-Gruppe 21 und dem benachbarten Polymer eine kovalente Verknüpfung gebildet wird (vgl. Prucker, O., Rühe, J. et al., Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivates, J. Am. Chem. Soc. (1999), 121, Seite 8766-8770). Nachdem das Polymer der hydrophoben Schicht 19 auf diese Weise in bestimmten Berei-
chen an der Oberfläche der Isolationsschicht 17 gebunden wurde, werden die unbünden, an den nicht belichteten Stellen der Oberfläche befindlichen Polymere zur Bildung der strukturierten hydrophoben Schicht 19 entfernt, beispielsweise indem sie mit einem Lösungsmittel abgewaschen werden.

Erwähnt werden soll noch, dass auch andere Ausführungsbeispiele möglich sind, bei denen sich die hydrophobe Schicht 19 unterbrechungsfrei über den Kanalbereich 8, die Sensorelektrode 16 und/oder den Guardring 18 erstrecken kann. Bei der Herstellung eines solchen Gassensors kann die hydrophobe Schicht 19 auch direkt auf der Isolationsschicht 17 deponiert werden. Dies kann in der Weise geschehen, dass das hydrophobe Trichloro(1H,1H,2H,2H-perfluorooctyl)silan (TPFS) aus der gasförmigen Phase bei einer Temperatur von etwa 100°C auf der Isolationsschicht 17 abgeschieden werden. Das Abscheiden des TPFS erfolgt vorzugsweise unter Abwesenheit von Feuchtigkeit, damit Querverbindungen und Inhomogenitäten in dem auf der Oberfläche abgeschiedenen TPFS-Film vermieden werden. Außerdem ist darauf zu achten, dass während des Abscheidungsprozesses keine Staubpartikel an der Oberfläche anhaften.
Patentansprüche

Gassensor (1) mit einem Substrat (2) eines ersten Ladungsträger typs, auf dem eine Drain (3) und eine Source (4) eines zweiten Ladungsträger typs angeordnet sind, wobei zwischen Drain (3) und Source (4) ein Kanalbereich (8) gebildet ist, und mit einer gassensitiven Schicht (10), die Pole (11, 12) hat, zwischen denen in Abhängigkeit von der Konzentration eines mit der Schicht (10) in Kontakt befindlichen Gases eine gasinduzierte Spannung auftritt, wobei die gassensitive Schicht (10) zur Messung der Spannung mit ihrem einen Pol (12) über einen Luftspalt (14) kapazitiv an den Kanalbereich (8) gekoppelt ist und mit ihrem anderen Pol (11) mit einer ein Bezugspotential aufweisenden Gegenlektrode (13) verbunden ist, dadurch gekennzeichnet, dass an der Oberfläche des Gassensors (1) zwischen der gassensitiven Schicht (10) und dem Kanalbereich (8) und/oder einer Sensorelektrode (16), die mit einer an dem Kanalbereich (8) angeordneten Gateelektrode (22) elektrisch verbundenen ist, eine hydrophobe Schicht (19) angeordnet ist.

Gassensor (1) nach Anspruch 1, dadurch gekennzeichnet, dass er an seiner Oberfläche einen elektrisch leitfähigen Guardring (18) aufweist, der den Kanalbereich (8) und/oder die zu dem zu dem Kanalbereich (8) führende Sensorelektrode (16) mit Abstand zu dem Kanalbereich (8) und/oder der Sensorelektrode (16) umgrenzt, und dass die hydrophobe Schicht (19) zumindest in einem zwischen dem Guardring (18) und dem Kanalbereich (8) und/oder der Sensorelektrode (16) befindlichen Bereich der Oberfläche des Gassensors (1) angeordnet ist.

Gassensor (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich die hydrophobe Schicht (19) durchgängig über den Kanalbereich (8) und/oder die Sensorelektrode (16) erstreckt.

Gassensor (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hydrophobe Schicht (19) von dem Kanalbereich (8) und/oder der Sensorelektrode (8) beansprucht ist und den Kanalbereich (8) und/oder die Sensorelektrode (16) vorzugsweise ring- oder rahmenförmig umgrenzt.
Gassensor (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der mit Wasser gemessene, auf ein plane Oberfläche bezogene statische Kontaktwinkel der hydrophoben Schicht (19) mindestens 70°, ggf. mindestens 90°, insbesondere mindestens 105° und bevorzugt mindestens 120° beträgt.

10 Gassensor (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Moleküle der hydrophoben Schicht (19) kovalent an die Oberfläche einer daran angrenzenden, vorzugsweise halbleitenden oder elektrisch isolierenden Schicht des Gassensors (1) gebunden.

Gassensor (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die hydrophobe Schicht (19) mindestens ein Polymer enthält.

15 Gassensor (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Polymer ein fluoriertes und bevorzugt ein perfluoriertes Polymer ist.

Gassensor (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Polymer über eine vorzugsweise als Monolage ausgebildete Zwischenschicht (20) mit einer benachbarten, vorzugsweise halbleitenden oder elektrisch isolierenden Schicht des Gassensors (1) verbunden ist, dass die Zwischenschicht (20) mindestens eine an der benachbarten Schicht verankerte reaktive Gruppe aufweist, und dass das Polymer vorzugsweise über eine kovalente Bindung an die Zwischenschicht (20) gekoppelt ist.

20 Gassensor (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die hydrophobe Schicht (19) eine Oberflächenprofillierung mit Vorsprüngen und Vertiefungen aufweist.

Gassensor (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Vertiefungen als Gräben oder Nuten ausgebildet sind, die vorzugsweise rahmen- oder ringförmig um den Kanalbereich (8) und/oder die Sensorelektrode (16) umlaufen.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GOIN27/414

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, PAJ, WPI Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "Y" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "X" document member of the same patent family

Date of the actual completion of the international search: 1 December 2004

Date of mailing of the international search report: 05/01/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5418 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3616

Authorized officer: Klein, M-O

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 101 18 367 A (MICRONAS GMBH) 24 October 2002 (2002-10-24) the whole document</td>
<td>1-8,10, 11</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 900 128 A (KRESS REINHARD ET AL) 4 May 1999 (1999-05-04) column 3, line 7 - column 4, line 32; figures 1,3</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>DE 101 61 214 A (ZIMMER MARTIN ; EISELE IGNAZ (DE); VOIGT WOLFGANG M (DE)) 3 July 2003 (2003-07-03) paragraphs ‘0061! – ‘0087!</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs ‘0061! – ‘0087!</td>
<td>2-11</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 947 829 A (SIEMENS AG) 6 October 1999 (1999-10-06) abstract</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 62144062 A</td>
<td>27-06-1987</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 10118367 A</td>
<td>24-10-2002</td>
<td>DE 10118367 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1249699 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002157950 A1</td>
</tr>
<tr>
<td>JP 1083147 A</td>
<td>28-03-1989</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1537171 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59711247 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0810431 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10062383 A</td>
</tr>
<tr>
<td>DE 10161214 A</td>
<td>03-07-2003</td>
<td>DE 10161214 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03050526 A2</td>
</tr>
<tr>
<td>EP 0947829 A</td>
<td>06-10-1999</td>
<td>AT 255723 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59907904 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0947829 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2212407 T3</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 GOIN27/414

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 GOIN

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ, WPI Data, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| A | PATENT ABSTRACTS OF JAPAN
Bd. 0113, Nr. 73 (P-643),
5. Dezember 1987 (1987-12-05)
& JP 62 144062 A (FUJI ELECTRIC CO LTD),
Zusammenfassung --/-- | 1-7, 11, 11 |

Weitere Veröffentlichungen sind in der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* **A** Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelsfrei erscheinen zu lassen, oder durch die des Veröffentlichungsdatums einer anderen im Recherchenbericht genannten Veröffentlichung bezweckt worden soll oder die aus einem anderes besonderen Grund angegeben ist (wie ausgeteilt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

Datum des Abschlusses der internationalen Recherche

1. Dezember 2004

Absendedatum des internationalen Recherchenberichts

05/01/2005

Name und Postanschrift der Internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5616 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Befvollmächtigter Bediensteter

Klein, M-O
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Beffecten kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>das ganze Dokument</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>DE 101 61 214 A (ZIMMER MARTIN ; EISELE IGNAZ (DE); VOIGT WOLFGANG M (DE)) 3. Juli 2003 (2003-07-03)</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Absätze '0061! - '0087!</td>
<td>2-11</td>
</tr>
<tr>
<td>Kategorie</td>
<td>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</td>
<td>Anspruch Nr.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 947 829 A (SIEMENS AG) 6. Oktober 1999 (1999-10-06) Zusammenfassung</td>
<td>1</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>JP 62144062 A</td>
<td>27-06-1987</td>
<td>KEINE</td>
</tr>
<tr>
<td>DE 10118367 A</td>
<td>24-10-2002</td>
<td></td>
</tr>
<tr>
<td>EP 1249699 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2002157950 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 1083147 A</td>
<td>28-03-1989</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1537171 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59711247 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0810431 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10062383 A</td>
</tr>
<tr>
<td>DE 10161214 A</td>
<td>03-07-2003</td>
<td>DE 10161214 A1</td>
</tr>
<tr>
<td>WO 03050526 A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0947829 A</td>
<td>06-10-1999</td>
<td>AT 255723 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59907904 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0947829 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2212407 T3</td>
</tr>
</tbody>
</table>