
US010789105B2

(12) United States Patent
Mooring et al .

(10) Patent No .: US 10,789,105 B2
(45) Date of Patent : * Sep . 29 , 2020

(54) SYSTEMS AND METHODS INVOLVING
FEATURES OF HARDWARE
VIRTUALIZATION , HYPERVISOR , APIS OF
INTEREST , AND / OR OTHER FEATURES

(58) Field of Classification Search
CPC GO6F 9/5077 ; G06F 21/53 ; G06F 21/554 ;

GO6F 9/45533 ; GO6F 21/567 ;
(Continued)

(71) Applicant : Lynx Software Technologies , Inc. , San
Jose , CA (US)

(56) References Cited

U.S. PATENT DOCUMENTS
(72) Inventors : Edward T. Mooring , Santa Clara , CA

(US) ; Phillip Yankovsky , Campbell ,
CA (US) ; Craig Howard , Belmont , CA
(US)

6,049,316 A
7,053,963 B2

4/2000 Nolan et al .
5/2006 Neiger et al .

(Continued)
FOREIGN PATENT DOCUMENTS (73) Assignee : Lynx Software Technologies , Inc. , San

Jose , CA (US) JP
JP

2010-049627 3/2010
2010-049627 6/2010

(Continued) (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

OTHER PUBLICATIONS

Crespo et al .; “ Partitioned Embedded Architecture based on Hypervi
sor : the XtratuM approach ” , 2010 , IEEE , pp . 67-72 . (Year : 2010) . *

(Continued) (21) Appl . No .: 15 / 948,875
(22) Filed : Apr. 9 , 2018

(65) Prior Publication Data
US 2018/0336070 A1 Nov. 22 , 2018

Related U.S. Application Data
(63) Continuation of application No. 14 / 970,455 , filed on

Dec. 15 , 2015 , now Pat . No. 9,940,174 , which is a
(Continued)

Primary Examiner — Matthew Smithers
(74) Attorney , Agent , or Firm — Greenberg Traurig , LLP
(57) ABSTRACT
Systems , methods , computer readable media and articles of
manufacture consistent with innovations herein are directed
to computer virtualization , computer security and / or
memory access . According to some illustrative implemen
tations , innovations herein may utilize and / or involve a
separation kernel hypervisor which may include the use of
a guest operating system virtual machine protection domain ,
a virtualization assistance layer , and / or a detection mecha
nism (which may be proximate in temporal and / or spatial
locality to malicious code , but isolated from it) , inter alia , for
detection and / or notification of , and action by a monitoring
guest upon access by a monitored guest to predetermined
physical memory locations .

(51) Int . Cl .
G06F 9/50
GO6F 21/56

(2006.01)
(2013.01)

(Continued)
(52) U.S. CI .

CPC G06F 9/5077 (2013.01) ; G06F 9/455
(2013.01) ; G06F 9/4555 (2013.01) ;
(Continued) 28 Claims , 15 Drawing Sheets

760
Entry into the Separation Kemel Hypervisor (SKH)

765
SKH Securely transitions execution to the Virtualization Assistance Layer , isolated from the Guest Operating System 705

770
The VAL transitions execution to the Datection

Mechanisms

775
Analyses Guest Operating System behavior , including the

type of memory access , determining whether to act
on this access

776
Detection mechanism (s) transfer control to the MMU

control mechanism , to execute the instruction and re - map
the page as non - executable

778
MMU control unit mechanismis) transitions execution to the

detection mechanism (s)
780

The transitions Execution back to the VAL

7852
The VAL Wansitions execution back to the SKH or the SKH

initiates transilion back the SKH

790
The SKH RDM policy decision or acts independently though taking the policy decision under advisereni

795
The SKH transitions execution back to the Guest Operating Systern to conlinus monitoring of a suspicious and / or malicious sequence pattern

of instructions .

US 10,789,105 B2
Page 2

Related U.S. Application Data
continuation of application No. 14 / 714,233 , filed on
May 15 , 2015 , now Pat . No. 9,213,840 , which is a
continuation - in - part of application No. 15 / 207,252 ,
filed on Jul . 11 , 2016 , now Pat . No. 10,095,538 ,
which is a continuation of application No. 14/714 ,
125 , filed on May 15 , 2015 , now Pat . No. 9,390,267 ,
and a continuation - in - part of application No. 14/955 ,
018 , filed on Nov. 30 , 2015 , now Pat . No. 9,648,045 ,
which is a continuation of application No. 14/714 ,
241 , filed on May 15 , 2015 , now Pat . No. 9,203,855 .

(60) Provisional application No. 61 / 993,291 , filed on May
15 , 2014 , provisional application No. 61 / 993,290 ,
filed on May 15 , 2014 , provisional application No.
61 / 993,296 , filed on May 15 , 2014 .

(51) Int . Ci .
G06F 21/62 (2013.01)
GO6F 9/455 (2018.01)
H04L 29/00 (2006.01)
G06F 21/53 (2013.01)
G06F 21/55 (2013.01)

(52) U.S. CI .
CPC G06F 9/45533 (2013.01) ; G06F 9/45558

(2013.01) ; G06F 21/53 (2013.01) ; G06F
21/554 (2013.01) ; G06F 21/567 (2013.01) ;

G06F 21/6281 (2013.01) ; H04L 29/00
(2013.01) ; GO6F 2009/45587 (2013.01) ; G06F

2221/032 (2013.01)
(58) Field of Classification Search

CPC G06F 21/6281 ; GO6F 9/4555 ; G06F
9/45558 ; G06F 9/455 ; G06F 2221/032 ;

G06F 2009/45587 ; H04L 29/00
See application file for complete search history .

2005/0039180 A1 2/2005 Fultheim et al .
2005/0105608 A1 5/2005 Coleman et al .
2005/0210158 Al 9/2005 Cowperthwaite et al .
2005/02 16759 Al 9/2005 Rothman et al .
2005/0223238 Al 10/2005 Schmid et al .
2006/0184937 A1 8/2006 Abels et al .
2007/0050764 Al 3/2007 Traut
2007/0057957 Al 3/2007 Wooten
2007/0089111 A1 4/2007 Robinson et al .
2007/0136506 Al 6/2007 Traut et al .
2008/0016570 A1 1/2008 Capalik
2008/0126820 Al 5/2008 Fraser et al .
2008/0127336 A1 5/2008 Sun et al .
2008/0148048 A1 6/2008 Govil et al .
2008/0215770 A1 9/2008 Liu et al .
2008/0263659 Al 10/2008 Alme
2008/0282117 Al 11/2008 Partiani et al .
2008/0320594 Al 12/2008 Jiang
2009/0099988 A1 4/2009 Stokes et al .
2009/0158432 A1 6/2009 Zheng et al .
2009/0204964 Al 8/2009 Foley et al .
2009/0254990 A1 * 10/2009 McGee G06F 21/51

726/22
2009/0288167 A1 11/2009 Freericks et al .
2009/0328225 A1 12/2009 Chambers et al .
2010/0027552 Al 2/2010 Hill
2010/0031325 A1 2/2010 Maigne et al .
2010/0077487 Al 3/2010 Polyakov et al .
2010/0146267 Al 6/2010 Konetski et al .
2010/0328064 Al 12/2010 Rogel
2011/0047543 Al 2/2011 Mohinder
2011/0126139 Al 5/2011 Jeong et al .
2011/0141124 Al 6/2011 Halls et al .
2011/0145886 A1 6/2011 McKenzie et al .
2011/0145916 A1 6/2011 McKenzie et al .
2011/0161482 A1 6/2011 Bono la et al .
2011/0167422 A1 7/2011 Eom et al .
2011/0185063 A1 7/2011 Head et al .
2011/0225458 Al 9/2011 Zuo et al .
2011/0225655 A1 9/2011 Niemela et al .
2011/0307888 Al 12/2011 Raj et al .
2012/0035681 A1 2/2012 Maximilien
2012/0066680 A1 3/2012 Amano et al .
2012/0185913 Al 7/2012 Martinez et al .
2013/0024940 A1 1/2013 Hutchins et al .
2013/0097356 Al 4/2013 Dang et al .
2013/0312099 Al 11/2013 Edwards et al .
2013/0347131 A1 12/2013 Mooring et al .
2014/0059680 A1 2/2014 Kurien et al .
2014/0173600 A1 6/2014 Ramakrishnan Nair
2014/0380425 A1 12/2014 Lockett et al .
2017/0068560 Al 3/2017 Mooring et al .

(56) References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

7,845,009 B2 11/2010 Grobman
7,992,144 B1 8/2011 Hendel et al .
8,056,076 B1 11/2011 Hutchins et al .
8,073,990 B1 12/2011 Baron et al .
8,141,163 B2 3/2012 Pike
8,200,796 B1 6/2012 Margulis
8,352,941 B1 1/2013 Protopopov et al .
8,370,838 B1 2/2013 Omelyanchuk et al .
8,458,697 B2 6/2013 Amano et al .
8,490,086 B1 7/2013 Cook et al .
8,539,584 B2 9/2013 Ramalingam
8,549,643 B1 10/2013 Shou
8,584,211 B1 11/2013 Vetter et al .
8,745,745 B2 * 6/2014 Mooring GO6F 9/45558

726/24
8,977,848 B1 3/2015 Tomlinson et al .
9,021,559 B1 4/2015 Vetter et al .
9,203,855 B1 * 12/2015 Mooring GO6F 9/45558
9,213,840 B2 * 12/2015 Mooring G06F 21/567
9,218,489 B2 * 12/2015 Mooring G06F 9/45558
9,390,267 B2 * 7/2016 Mooring G06F 9/45545
9,607,151 B2 * 3/2017 Mooring GO6F 9/45558
9,648,045 B2 * 5/2017 Mooring G06F 9/45558
9,940,174 B2 * 4/2018 Mooring G06F 21/567
10,051,008 B2 * 8/2018 Mooring G06F 9/45558
10,095,538 B2 * 10/2018 Mooring GO6F 9/45545

2002/0166059 Al 11/2002 Rickey et al .
2003/0093682 A1 5/2003 Carmona et al .
2004/0174352 A1 9/2004 Wang
2004/0177264 A1 9/2004 Anson et al .
2004/0221009 A1 11/2004 Cook et al .

RU
RU
WO
WO
WO
W
WO
WO
WO
WO

2259582
2259582

2008091452
WO 2008/091452

2010021631
WO 2010/02163

2012177464
WO 2012/177464
WO 2016/004263

2016004263

2/2005
8/2005
12/2007
7/2008
1/2010
2/2 10
12/2012
12/2012
1/2016
7/2016

OTHER PUBLICATIONS

Delong et al . “ Separation Kernel for a Secure Real - time Operating
System , ” Jun . 2010 , 5 pgs . http://web.archive.org/web/20100630223040/
http://lynuxworks.com/products/whitepapers/separation-kenel.php .
Embedded computing design , “ Advances in Virtualization Aid
Information Assurance , ” Jan. 2008 , pp . 1-8 , http : // embedded
computing.com/article-id/?2571 .
Extended European Search Report of EP 17194400 , dated Jul . 24 ,
2018 , 9 pgs .

US 10,789,105 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Hoffman et al . , “ User Mode Versus Privileged Mode Processor
Usage , Sep. 2010 , pp . 1-2 , http://blogs.technet.com/b/perfguide/
archive / 2010 / 09 / 28 / user - mode - versus - privileged - mode - processor
usage - aspx .
Iqbal et al . , " An Overview of Microkernel , Hypervisor and Microvi
sor Virtualization Approaches for Embedded Systems , ” Dec. 2010 ,
15 pgs . , http://proj.eit.lth.se/fileadmin/eit/project/142/virtApproaches .
pdf .
International Preliminary Report on Patentability for PCT / US2011 /
036553 , dated Nov. 19 , 2013 (1 pg) , including Written Opinion
dated Dec. 26 , 2011 (9 pgs) , 10 pages total .
International Search Report and Written Opinion for PCT / US15 /
31257 dated Aug. 17 , 2015 , 9 pgs .
Prosecution of U.S. Appl . No. 14 / 714,125 , including application
papers filed May 15 , 2015 61 pgs .
Day , Robert , “ Hardware Virtualization Puts on a New Spin on
Secure Systems ” , COTS Journal , http://www.lynuxworks.com/
virtualization - hardware.php , Oct. 2010 , 6 pgs . * .
Dam et al . , “ Formal Verification of Information Flow Security for
a Simple ARM - based Separation Kernel , ” ACM , Nov. 2013 , pp .
223-234 .
Day et al . , “ Secure Virtualization combines Traditional Desktop Oss
and Embedded RTOSs in Military Embedded Systems ” , Military
Embedded Systems , May 2010 , 10 pgs . http://www.lynx.com/
whitepaper / secure - virtualization - combines - traditional - desktop - ossand
embedded - rtoss - in - military - embedded - systems / .
Day et al . , “ Virtualization : Keeping Embedded software Safe and
Secure in an Unsafe World Secure Virtualization for Real - time ,
Linux and Windows Systems , ” EE Times , Jun . 2010 , pp . 1-3
http://www.lynuxworks.com/virtualization/keeping-embed
dedsoftware- secure . php .
Day , Robert “ Hardware Virtualization Puts on a New Spin on
Secure Systems ” , COTS Journal , http://www.lynuxworks.com/
virtualization / virtualization - hardware.php , Oct. 2010 , 6 pgs .
Delong et al . “ Separation Kernel for a Secure Real - time Operating
System , ” Jun . 2010 , 5 pgs . http://web.archive.org/web/20100630223040/
http://lynuxworks.com/products/whitepapers/separation-kemel .
php
Wlad , Joe et al . , Embedded computing design , “ Advances in
Virtualization Aid Information Assurance , " Jan. 2008 , pp . 1-8 ,
http://embedded-computing.com/article-id/?2571 .
Hoffman et al . , “ User Mode Versus Privileged Mode Processor
Usage , ” Sep. 2010 , pp . 1-2 , http://blogs.technet.com/o/perfguide/
archive / 2010 / 09 12 8 / user - mode - versus - privileged - mode
processorusage - aspx .
Information from PCT patent application No. PCT / US2015 / 038918 ,
filed Jul . 1 , 2015 ; 52 pgs .

Iqbal et al . , “ An Overview of Microkemel , Hypervisor and Microvi
sor Virtualization Approaches for Embedded Systems , ” Dec. 2010 ,
15 pgs . , http://proj.eit.Ith.se/fileadmin/eit/project/142/virtApproaches .
pdf .
International Preliminary Report on Patentability dated Dec. 31 ,
2014 (1 pg) and International Search Report and Written Opinion
dated Feb. 27 , 2014 (15 pgs) in related PCT application No.
PCT / US2013 / 048014 , Invitation to Pay Additional Fees in related
PCT / US2013 / 48014 , dated Jan. 3 , 2014 , (2 pgs .) 18 pgs . total .
International Search Report and Written Opinion for PCT / US15 /
31236 dated Aug. 14 , 2015 , 9 pgs .
Lynuxworks , “ Secure Client Virtualization Based on Military - grade
Technology , ” May 2011 , pp . 1-8 , http://web.archive.org/web/
20110310051907 / http : //lynuxworks.com/virtualization/secure-client
virtualization.php
Prosecution of EPO appln No. EP13809599.7 , including Interna
tional Preliminary Report on Patentability and Search Report , dated
Dec. 1 , 2015 (16 pgs) , Communication dated Feb. 13 , 2015 (3 pgs)
and Amendment dated Aug. 24 , 2015 (29 pgs) ; 48 pgs . total .
Yoon et al . , “ An Intelligence Virtualization Rule Based on Multilayer
to Support social - Media Cloud Service ” , 2011 , First ACIS / JNU
International conference on computers , Networks , Systems , and
Industrial Engineering , pp . 210-215 .
Extended European Search Report ofEP 13809599.7 , dated Jun . 22 ,
2016 , 10 pgs .
International Search Report for PCT / US2011 / 036553 dated Dec.
26 , 2011 , 4 pgs .
International Preliminary Report on Patentability for PCT / US2011 /
036553 , dated Nov. 19 , 2013 (Ipg) , including Written Opinion dated
Dec. 26 , 2011 (9 pgs) , 10 pages total .
International Search Report and Written Opinion for PCT / US2012 /
177464 dated Dec. 27 , 2012 , 47 pages .
International Search Report and Written Opinion for PCT / US2015 /
031259 , dated Oct. 7 , 2015 , 9 pgs .
International Preliminary Report on Patentability for PCT / US15 /
031257 , dated Nov. 15 , 2016 , 6 pgs .
International Preliminary Report on Patentability for PCT / US15 /
031259 , dated Nov. 15 , 2016 , 7 pgs .
International Preliminary Report on Patentability for PCT / US2015 /
031236 dated Nov. 15 , 2016 , 6 pgs .
International Preliminary Report on Patentability for PCT / US2015 /
038918 dated Jul . 1 , 2015 , 11 pgs .
Prosecution of European counterpart application No. 12802824.8
(EP2718785) , including IPRP dated Dec. 17 , 2013 (8pgs .) , Response
to Rule 161/162 Communication dated Sep. 3 , 2014 (14 ogs .) ,
Supplementary Search report and opinion dated Nov. 27 , 2014 (10
pgs .) , Response to Supplementary Search Report / Opinion dated
Jun . 26 , 2015 (23 pgs .) , 2nd Supplemental Office Action dated Oct.
8 , 2015 (6 pgs .) , and Response to the 2nd Supplemental Office
Action dated Apr. 12 , 2016 (11 pgs .) ; 72 pages total .

* cited by examiner

U.S. Patent Sep. 29 , 2020 Sheet 1 of 15 US 10,789,105 B2

200 201 289
Guest Operating
System Virtual

Machine
Protection
Domain

Guest Operating
System Virtual

Machine
Protection
Domain

Guest Operating
System Virtual

Machine
Protection
Domain

100
Separation Kemel Hypervisor

600
Hardware Platform Resources

FIG . 1

U.S. Patent Sep. 29 , 2020 Sheet 2 of 15 US 10,789,105 B2

200 299

Guest Operating System Virtual
Machine Protection Domain

Guest Operating System Virtual
Machine Protection Domain

300 Guest Operating System xxxxxxxx Booooooooooo
399 Guest Operating

System

400 Virtualization
Assistance Layer

2000000000 00000000000 499 Virtualization
Assistance Layer

500 599 Detection
Mechanism

Separation Kernel Hypervisor

600
Hardware Platform Resources

701 702 731

CPU CPU CPU CPU

900
Buses and Interconnects Main Memory

800
1000 1002

NIC HDD SSD

1003
Graphics
Adapter
1006

1004
Audio
Device

1005
Mouse !
Keyboard
1008
RAID

Controller

1007
Serial 10 USB

FIG . 2A

U.S. Patent Sep. 29 , 2020 Sheet 3 of 15 US 10,789,105 B2

200 298

Guest Operating System Virtual
Machine Protection Domain

Guest Operating System Virtual
Machine Protection Domain

300 Guest Operating System xxxxxxxx XXXXXoooooo
398 Guest Operating

System

400 Virtualization
Assistance Layer

2000000000 00000000000 498 Virtualization
Assistance Layer

599 2004,4,4,4,4,6

Separation Kernel Hypervisor

600
Hardware Platform Resources

701 702 731

CPU CPU CPU CPU

900
Buses and Interconnects Main Memory

800
1000 1002

NIC HDD SSD

1003
Graphics
Adapter
1006

1004
Audio
Device

1005
Mouse !
Keyboard
1008
RAID

Controller

1007
Serial 10 USB

FIG . 2B

U.S. Patent Sep. 29 , 2020 Sheet 4 of 15 US 10,789,105 B2

200 297

Guest Operating System Virtual
Machine Protection Domain

Guest Operating System Virtual
Machine Protection Domain

397
300 Guest Operating System xxxxxxxx

400 Virtualization
Assistance Layer

Minimal Runtime
Environment 2000000000

Separation Kernel Hypervisor

600
Hardware Platform Resources

700 701 702 731

CPU CPU CPU CPU

900
Buses and Interconnects Main Memory

800
1000 1002

NIC HDD SSD

1003
Graphics
Adapter
1006

1004
Audio
Device

1005
Mouse !
Keyboard
1008
RAID

Controller

1007
Serial 10 USB

FIG . 2C

U.S. Patent Sep. 29 , 2020 Sheet 5 of 15 US 10,789,105 B2

200 299

Guest Operating System Virtual
Machine Protection Domain

Guest Operating System Virtual
Machine Protection Domain

300 Guest Operating System xxxxxxxx Booooooooooo
399 Guest Operating

System

00000000000 499 Virtualization
Assistance Layer Self- Assisted Virtualization

(" SAV ")
599 2004,4,4,4,4,6

Separation Kernel Hypervisor

600
Hardware Platform Resources

701 702 731

CPU CPU CPU CPU

900
Buses and Interconnects Main Memory

800
1000 1002

NIC HDD SSD

1003
Graphics
Adapter
1006

1004
Audio
Device

1005
Mouse !
Keyboard
1008
RAID

Controller

1007
Serial 10 USB

FIG . 2D

U.S. Patent Sep. 29 , 2020 Sheet 6 of 15 US 10,789,105 B2

200
Guest Operating System Virtual
Machine Protection Domain

299
Guest Operating Systern Virtual

Machine Protection Domain
399

300 Guest Operating System
.

Guest Operating
System Anti Virus Integrity

2001 2002 2003 2006
Corrupted Anti Virus Rootkit Software Checker Software

2005 2000 2004 2007
Polymorp Malicious Corrupted " Return

' Code Integrity | Oriented
virus Checker Rootkit

400 Virtualization Assistance Layer Virtualization
Assistance Layer

599

100
Separation Kernel Hypervisor

600
Hardware Platform Resources

702 731

CPL CPU

900
Buses and Interconnects Main Memory

800
1000 1001 1002

NIC SSD

1003
Graphics
Adapter
1006

Audio
Device

1005
Mouse
Keyboard
1008
RAID

Controller Serial 10 USB

FIG . 3

U.S. Patent Sep. 29 , 2020 Sheet 7 of 15 US 10,789,105 B2

200
Guest Operating System Virtual
Machine Protection Domain

299
Guest Operating System Virtual

Machine Protection Domain

399
300 Guest Operating System
2010 2011 2012
User Space Kernel Space Shared

code code code
and data and data and data
2013 2014 2015

Signal Tasks , Processes , Threads Handlers ,
Tasks IPC , User /

Threads Interrupt Kernel Handlers

Guest Operating
System

Virtualization Assistance Layer
Virtualization

Assistance Layer
XX

Detection
Mechanisms

APIs of
Interest DAR ?????

100
Separation Kernel Hypervisor

600
Hardware Platform Resources
700 701 702 731 602

Hardware CPU Virtualization
Protection Mechanisms en CPU CPU

HardWare CPU Virtualization
DMA Protection Mechanisms Buses and Interconnects

1001 1002

HDD SSD

900
Main Memory

901
Memory Accessible
by A Guest OS via

CPU
902
Memory Accessible
by A Guest OS via

Device DMA
903
Memory Accessible
by A Guest OS via
Both Device DMA

and CPU

1003
Graphics
Adapter
1006

1004
Audio
Device

1005
Mouse)

Keyboard

Serial I / O USB RAID
Controller

FIG . 4

U.S. Patent Sep. 29 , 2020 Sheet 8 of 15 US 10,789,105 B2

200
Guest Operating System Virtual
Machine Protection Domain

298
Guest Operating System Virtual

Machine Protection Domain

300 Guest Operating System 399 wwwwww

400 Virtualization Assistance Layer W ry

Guest Operating
System

509
Export APT

wowo
wwwwwwwww

499
Virtualization Assistance Layer

599a
Import

599
w

100
Separation Kernel Hypervisor

600
Hardware Platform Resources
700 701 702 731 602

Hardware CPU Virtualization
Protection Mechanisms ? ?? CPU CPU CPU 900

Main Memory
9012 HardWare CPU Virtualization

DMA Protection Mechanisms Buses and Interconnects Memory Accessible
by A Guest OS via

1000 1001 1002
601 HDD SSD

1003
Graphics
Adapter

1004
Audio
Device

1005
Mouse)

Keyboard

902
Memory Accessible
by A Guest OS via

Device DMA
903
Memory Accessible
by A Guest OS via
Both Device DMA

and CPU Serial lo USB RAID
Controller

FIG . 5

U.S. Patent Sep. 29 , 2020 Sheet 9 of 15 US 10,789,105 B2

600

Memory
Management
Unit Control

(ii) (iv)
655

500 635
630

605
Instruction

Execution Detection
Mechanism

400 Guest
Operating
System Virtualization

Assistance
Layer

620 640

645 APIs of interest

Separation
Kemel

Hypervisor
Mechanism for
detecting access

to specified
memory locations

650

FIG . 6A

U.S. Patent Sep. 29 , 2020 Sheet 10 of 15 US 10,789,105 B2

660
Entry into the Separation Kemel Hypervisor (SKH)

665
SKH Securely Transitions execution to the Virtualization Assistance

Layer , isolated from the Guest Operating System 605

670
The VAL transitions execution to the Detection

Mechanisms

675
Analyses the behavior of the Guest Operating System

and its resources , including sensitive memory regions , and
reports information

676
Detection mechanism (s) transfer control to the MMU

control mechanism , to execute the instruction and re - map
the page as non - executable

678
MMU control unit mechanism (s) transitions execution to the

detection mechanism (s)

680
Transitions execution back to the VAL

685
The VAL transitions execution back to the SKH or the SKH

initiates transition back the SKH

FIG . 6B

U.S. Patent Sep. 29 , 2020 Sheet 11 of 15 US 10,789,105 B2

700

Memory
Management
Unit Control 755

725
705

300
Instruction

Execution Detection
Mechanism

Guest
Operating
System Virtualization

Assistance
Layer

745 730

Separation
Kernel

Hypervisor

U.S. Patent Sep. 29 , 2020 Sheet 12 of 15 US 10,789,105 B2

760
Entry into the Separation Kemel Hypervisor (SKH)

765
SKH Securely transitions execution to the Virtualization Assistance

Layer , isolated from the Guest Operating System 705

770
The VAL transitions execution to the Detection

Mechanisms

775
Analyses Guest Operating System behavior , including the

type of memory access , determining whether to act
on this access

????????

776
Detection mechanism (s) transfer control to the MMU

control mechanism , to execute the instruction and re - map
the page as non - executable

9999999

778
MMU control unit mechanism (s) transitions execution to the

detection mechanism (s)
2222

780
The transitions Execution back to the VAL

785
The VAL transitions execution back to the SKH or the SKH

nitiates transition back the SKH

790
??????????????????????????????? . ???? ???? ?????? ????????????????

The SKH RDM policy decision or acts independently
though taking the policy decision under advisement

? ??????????? ??? :

795
The SKH transitions execution back to the Guest Operating System to
continue monitoring of a suspicious and / or malicious sequence / pattem

of instructions ,

U.S. Patent Sep. 29 , 2020 Sheet 13 of 15 US 10,789,105 B2

800

Memory
Management
Unit Control

500

840 Instruction
Execution Memory
Access Detection

Mechanisms 300

Monitored
Guest

Operating
System

Virtualization
Assistance

Layer
(vi) (vii) 820 845

850

825
815

Separation
Kernel

Hypervisor
Monitoring
Guest

Operating
System

835
100

U.S. Patent Sep. 29 , 2020 Sheet 14 of 15 US 10,789,105 B2

9052
The monitoring guest requests notification
of code execution by monitored guest

9102
The monitoring guest requests a set of

physical memory locations to be monitored
for code execution , and execution context

data upon such access

912 ,
Detection mechanism (s) transfer control to the MMU

control mechanism , to execute the instruction
and re - map the page as non - executable

MMU control unit mechanismnis) transitions
execution to the detection mechanism (s)

915
The virtualization assistance Layer

(VAL) of the monitored guest maps the
APIs as nonexecutable

920
The VAL takes control when the monitored
guest attempts to execute code involving

the locations / APIS

925
The VAL determines that the address
being executed is part of monitored set

930
The VAL notifies the monitoring guest of the
access and provides execution context data

945
The monitored guest continues operation

.

U.S. Patent Sep. 29 , 2020 Sheet 15 of 15 US 10,789,105 B2

1010 Remap
Page X ? 1060 Page X

1015

1020

Memory
Management
Control Unit

1005
Yes , Map Page X

655 Fig 6A , as Non
or 755 Fig 7A , Executable
or 851 Fig 8 1086

Guest OS Execute
after Remap ?

1084

Map Page X as
Non - Executable Detection

Mechanisms
1065 1055

Yes , Request
Remap of
Page X

Yes , Guest
OS Execute
after Remap Post

Execution
Event

Remap
Ok

1030
1035 1082

655 Fig 6A ,
or 755 Fig 7A ,
or 851 Fig 8 1080

1050
Yes ,
Remap

1070
Remap

Request for Guest OS
Page X Executive after

Remap
Remap Post

Execution
Event

SKH

1078
Trigger Entry into

Hypervisor after Guest
OS Executives

1074
Yes ,

Proceed
With

Execution

1072
Ok to Proceed
With Guest OS
Execution after

Remap ?

Guest OS

1076

Guest OS Executes
After Remap

US 10,789,105 B2
1 2

SYSTEMS AND METHODS INVOLVING and defeat malicious code , where such mechanisms are
FEATURES OF HARDWARE isolated from the malicious code but are also have high

VIRTUALIZATION , HYPERVISOR , APIS OF temporal and spatial locality to the malicious code . For
INTEREST , AND / OR OTHER FEATURES example , they are proximate to the malicious code , but

5 incorruptible and unaffected by the malicious code .
CROSS - REFERENCE TO RELATED Furthermore the Separation Kernel Hypervisor is
APPLICATION INFORMATION designed and constructed from the ground - up , with security

and isolation in mind , in order to provide security and
This application is a continuation of U.S. application Ser . certain isolation between a plurality of software entities (and

No. 14 / 970,455 , filed Dec. 15 , 2015 , which claims priority 10 their associated / assigned resources , e.g. , devices , memory ,
to U.S. application Ser . No. 14 / 714,233 , filed May 15 , 2015 , etc.) ; by mechanisms which may include Guest Operating
now U.S. Pat . No. 9,213,840 , that claims benefit / priority to System Virtual Machine Protection Domains (secure entities
the provisional patent application No. 61 / 993,291 , filed May established and maintained by a Separation Kernel Hyper
15 , 2014 , all of which being incorporated herein by refer visor to provide isolation in time and space between such
ence in entirety . This application is also a continuation - in- 15 entities , and subsets therein , which may include guest oper
part of application Ser . No. 15 / 207,252 , filed Jul . 11 , 2016 , ating systems , virtualization assistance layers , and detection
published as 2017/0068560 A1 , which is a continuation of mechanisms) ; where such software entities (and their asso
application Ser . No. 14 / 714,125 , filed May 15 , 2015 , now ciated assigned resources , e.g. , devices , memory , etc. , are
U.S. Pat . No. 9,390,267 , which claims benefit / priority to the themselves isolated and protected from each other by the
provisional patent application No. 61 / 993,290 , filed May 15 , 20 Separation Kernel Hypervisor , and / or its use of hardware
2014 ; application Ser . No. 15 / 207,252 is also a continuation platform virtualization mechanisms .
in - part of application Ser . No. 14 / 955,018 , filed Nov. 30 , Additionally , where some hypervisors may provide
2015 , now U.S. Pat . No. 9,648,045 , which is a continuation mechanisms to communicate between the hypervisor and
of application Ser . No. 14 / 714,241 , filed May 15 , 2015 , now antivirus software , or monitoring agent , executing within a
U.S. Pat . No. 9,203,855 , which claims benefit / priority to the 25 guest operating system , the hypervisor is not able to prevent
provisional patent application No. 61 / 993,296 , filed May 15 , corruption of the monitoring agent where the agent is within
2014 ; all of which being incorporated herein by reference in the same guest operating system ; or the guest operating
entirety system (or any subset thereof , possibly including the anti

virus software , and / or monitoring agent) may be corrupted
BACKGROUND 30 and / or subverted .

Finally , while some known systems and methods include
Field implementations involving virtualized assistance layers and

separation kernel hypervisors handle various malicious
Innovations herein pertain to computer software and code intrusions , however the present disclosure is directed to

hardware , computer virtualization , computer security and / or 35 innovations for handling and / or intercepting various certain
data isolation , and / or the use of a separation kernel hyper specified attacks , such as those related to APIs of interest .
visor (and / or hypervisor) , such as to detect and / or process Overview of Some Aspects
information , including notification (s) and other processing Systems , methods , computer readable media and articles
regarding code execution by guest software and which may of manufacture consistent with innovations herein are
include or involve guest operating system (s) . 40 directed to computer virtualization , computer security and /

or data isolation , and / or the use of a Separation Kernel
Description of Related Information Hypervisor (and / or hypervisor) , such as to detect , process

information and / or provide notification regarding code
In computer systems with hypervisors supporting a guest execution associated with specified interfaces or memory

operating system , there exist some means to monitor the 45 locations , such as Application Program Interfaces (APIs) of
guest operating system for malicious or errant activity . interest , by guest software and which may include or involve

In a virtualized environment , running under control of a guest operating system (s) . Information may further be
hypervisor , a suitably authorized guest may be allowed to obtained regarding the context of such code execution . Here ,
monitor the activities of another guest . Among the reasons for example , certain implementations may include a suitably
for such monitoring are debugging and security . However , 50 authorized guest running under control of a hypervisor and
previous approaches may include various drawbacks , such involving features of being immediately notified of another
as allowing guests to poll the memory and other information guest executing code at specified physical memory
within the monitored guest . location (s) or involving specified interfaces . Upon access ,

However , due to the constantly evolving nature of mali the monitoring guest may be provided with execution con
cious code , such systems face numerous limitations in their 55 text information from the monitored guest .
ability to detect and defeat malicious code . One major According to some illustrative implementations , innova
limitation is the inability of a hypervisor to defend itself tions herein may utilize and / or involve a separation kernel
against malicious code ; e.g. , the particular hypervisor may hypervisor which may include the use of a guest operating
be subverted by malicious code and / or may allow malicious system virtual machine protection domain , a virtualization
code in a guest operating system to proliferate between a 60 assistance layer , and / or a code execution detection mecha
plurality of guest operating systems in the system . nism (which may be proximate in temporal and / or spatial

To solve that issue , the motivation and use of a Separation locality to subject code , but isolated from it) . Such imple
Kernel Hypervisor is introduced in environments with mali mentations may be utilized , inter alia , for detection and / or
cious code . The Separation Kernel Hypervisor , unlike a notification of code execution by guest software involving
hypervisor , does not merely support a plurality of Virtual 65 specified memory locations or interfaces , such as APIs of
Machines (VMs) , but supports more secure , more isolated interest . In some implementations , for example , a suitably
mechanisms , including systems and mechanisms to monitor authorized guest may obtain immediate notification if

5

US 10,789,105 B2
3 4

another guest it is monitoring executes code calling , involv FIG . 10 is an exemplary state diagram illustrating aspects
ing or otherwise associated with the specified locations or of memory management unit processing in conjunction with
interfaces . Upon such access , the monitoring guest may be the hypervisor and VAL , consistent with certain aspects
provided with execution context information from the moni related to the innovations herein .
tored guest .

Further , the monitored guest may be paused until the DETAILED DESCRIPTION OF ILLUSTRATIVE
IMPLEMENTATIONS monitoring guest provides a new execution context to the

monitored guest , whereupon the monitored guest resumes Reference will now be made in detail to the inventions execution with the new context .
It is to be understood that both the foregoing general 10 herein , examples of which are illustrated in the accompa

description and the following detailed description are exem nying drawings . The implementations set forth in the fol
lowing description do not represent all implementations plary and explanatory only and are not restrictive of the consistent with the inventions herein . Instead , they are inventions , as described . Further features and / or variations merely some examples consistent with certain aspects may be provided in addition to those set forth herein . For 15 related to the present innovations . Wherever possible , the example , the present inventions may be directed to various same reference numbers are used throughout the drawings to

combinations and subcombinations of the disclosed features refer to the same or like parts .
and / or combinations and subcombinations of several further To solve one or more of the drawbacks mentioned above
features disclosed below in the detailed description . and / or other issues , implementations herein may relate to

20 various detection , monitoring , notification (s) , interception BRIEF DESCRIPTION OF THE DRAWINGS and / or prevention techniques , systems , and mechanisms , as
may be used with a separation kernel hypervisor . Among

The accompanying drawings , which constitute a part of other things , such systems and methods may include and / or
this specification , illustrate various implementations and involve the use of the monitoring of the entirety , or suitably
features of the present innovations and , together with the 25 configured subset thereof of guest operating system
description , explain aspects of the inventions herein . In the resources including virtualized resources , and / or “ physical ”
drawings : or “ pass - through ” resources . Examples include monitoring
FIG . 1 is a block diagram illustrating an exemplary of the virtual CPUs , its memory access attempts to execute

system and separation kernel hypervisor architecture con code at specified memory or involving specified interfaces ,
sistent with certain aspects related to the innovations herein . 30 such as monitoring APIs of interest .
FIG . 2A is a block diagram illustrating an exemplary With regard to certain implementations , in order to per

system and separation kernel hypervisor architecture con form such advanced monitoring in a manner that maintains
sistent with certain aspects related the innovations herein . suitable performance characteristics in a system that may

FIG . 2B is a block diagram illustrating an exemplary include a separation kernel hypervisor and a guest operating
system and separation kernel hypervisor architecture con- 35 system , mechanisms such as a separation kernel hypervisor ,
sistent with certain aspects related to the innovations herein . a guest operating system virtual machine protection domain ,
FIG . 2C is a block diagram illustrating an exemplary virtual machine assistance layer , and / or code execution

system and separation kernel hypervisor architecture con detection mechanisms , may be used to monitor a monitored
sistent with certain aspects related to the innovations herein . guest on a corresponding guest operating system .
FIG . 2D is a block diagram illustrating an exemplary 40 Systems and methods are disclosed for detecting and / or

system and separation kernel hypervisor architecture con notifying executed code by guest software and which may
sistent with certain aspects related to the innovations herein . include or involve guest operating system (s) . According to
FIG . 3 is a block diagram illustrating an exemplary some implementations , for example , a suitably authorized

system and separation kernel hypervisor architecture con guest running under control of a hypervisor may request that
sistent with certain aspects related to the innovations herein . 45 it be notified of another guest executing code at a specified
FIG . 4 is a block diagram illustrating an exemplary physical memory location . Features of real - time notification

system and separation kernel hypervisor architecture con of , and action (s) regarding obtaining an execution context
sistent with certain aspects related to the innovations herein . are provided to the monitoring guest upon access by the
FIG . 5 is a block diagram illustrating an exemplary monitored guest to executed code at specific physical

system and separation kernel hypervisor architecture con- 50 memory locations .
sistent with certain aspects related to the innovations herein . Here , monitoring may also be performed in a timely and
FIGS . 6A - 6B are representative sequence / flow diagrams expeditious fashion , including by virtue of the monitoring

illustrating exemplary systems , methods and separation ker context being proximate (in time and space) to the moni
nel hypervisor architecture consistent with certain aspects tored context . Additionally , isolation may be maintained
related to the innovations herein . 55 between the monitor and monitored context . Further , such

FIGS . 7A - 7B are representative sequence / flow diagrams monitoring may be performed by mechanisms providing a
illustrating exemplary systems , methods and separation ker wide and comprehensive set of monitoring techniques and
nel hypervisor architecture consistent with certain aspects resources under monitoring , inter alia , so as to monitor
related to the innovations herein . against threats which are multi - lateral and / or multi - dimen
FIG . 8 is a representative sequence diagram illustrating 60 sional in nature .

exemplary systems , methods , and separation kernel hyper According to some implementations , for example , a
visor architecture consistent with certain aspects related to hypervisor is configured to allow a guest (monitoring guest)
the innovations herein . to request notifications of code execution by another guest
FIG . 9 is a representative flow diagram illustrating exem (monitored guest) . The monitoring guest requests that a set

plary methodology and separation kernel hypervisor pro- 65 of physical memory locations be monitored for code execu
cessing consistent with certain aspects related to the inno tion , and the execution context data be returned on such
vations herein . access . The Virtualization Assistance Layer (VAL) in the

US 10,789,105 B2
5 6

Monitored Guest maps (e.g. , remaps , unmaps) those physi In general , aspects of the present innovations may
cal APIs containing those locations as non - executable . This include , relate to , and / or involve one or more of the follow
is distinct from the Monitored Guest's notion of API map ing aspects , features and / or functionality . Systems and meth
pings . When software in the Monitored Guest attempts to ods herein may include or involve a separation kernel
execute code in such an API , control transitions to the VAL . 5 hypervisor . According to some implementations , a software
The VAL determines that the address being executed is part entity in hypervisor context that partitions the native hard
of the set to be monitored . The VAL notifies the monitoring ware platform resources , in time and space , in an isolated
guest of the access and provides the monitoring guest with and secure fashion may be utilized . Here , for example ,
the execution context data as configured for that access . The embodiments may be configured for partitioning / isolation as
Monitored Guest is allowed to continue operation as though 10 between a plurality of guest operating system virtual

machine protection domains (e.g. , entities in a hypervisor the API has always been mapped executable . guest context) . According to some implementations , for example , a Sepa The separation kernel hypervisor may host a plurality of ration Kernel Hypervisor (SKH) ensures the isolation of
multiple guest Operating Systems each in its own Virtual 15 and may host a plurality of mechanisms including detection guest operating system virtual machine protection domains
Machine (VM) . The SKH may implement a mechanism mechanisms which may execute within such guest operating
whereby a suitably authorized Monitoring Guest sends a list system virtual machine protection domains . The detection
of memory locations to be monitored for another guest . mechanisms may execute in an environment where guest
Furthermore , each of the physical memory locations may be operating systems cannot tamper with , bypass , or corrupt the
associated with a specification for the execution context 20 detection mechanisms . The detection mechanisms may also
information to be obtained upon access to the memory execute to increase temporal and spatial locality of the guest
location (s) . The SKH may send to the other guests the operating system's resources . Further , in some implemen
specification for the execution context information associ tations , the detection mechanisms may execute in a manner
ated with the list of memory locations . A Virtualization that is not interfered with , nor able to be interfered with , nor
Assistance Layer of software runs within the same protec- 25 corrupted by other guest operating system virtual machine
tion domain as the guest Virtual Machine but is not directly protection domains including their corresponding guest
accessible by the guest . A Virtualization Assistance Layer operating systems . The detection mechanisms include , but
implements a virtual motherboard containing a virtual CPU are not limited to , performing one or more of the following
and memory . The VAL and mechanism may process excep actions on guest operating systems related to guest code
tions caused by non - executable API execution attempts by 30 execution at specified memory location (s) , such as access to
its associated guest virtual machine . The VAL may deter APIs of interest including sensitive memory regions , and / or
mine whether the memory address accessed is one of those actions in response thereto .
specified in the list of physical memory locations sent to Where monitoring may lude , but is not limited to ,
another guest . The VAL may send a notification of the actions pertaining to observation , detection , mitigation , pre
memory access and associated context information to the 35 vention , tracking , modification , reporting upon , of memory
requesting guest . access within and / or by a guest operating system and / or by

Systems and methods are disclosed for providing secure entities configured to perform such monitoring for purposes
information monitoring . According to some implementa which may be used to ascertain , and assist in ascertaining ,
tions , for example , such information monitoring may be when suspect code , and / or code under general monitoring or
provided from a context not able to be bypassed , tampered 40 instrumented execution / debugging , unit test , regression test ,
with or by the context under monitoring . Here , monitoring or similar scrutiny , is or may be operating at specified
may also be performed in a timely and expeditious fashion , memory location (s) ; or , therein , hiding and / or concealed ,
including by virtue of the monitoring context being proxi halted , stalled , infinitely looping , making no progress
mate (in time and space) to the monitored context . Addi beyond its intended execution , stored and / or present (either
tionally , isolation may be maintained between the monitor 45 operating or not) , once - active (e.g. , extinct / not present , but
and monitored context . Further , such monitoring may be having performed suspect and / or malicious action) , and
performed by mechanisms providing a wide and compre otherwise having been or being in a position to adversely
hensive set of monitoring techniques and resources under and / or maliciously affect the hypervisor guest , or resource
monitoring , inter alia , so as to monitor against threats which under control of the hypervisor guest .
are multi - lateral and / or multi - dimensional in nature . The term “ map ” or “ mapped ” shall broadly mean : setting

In one exemplary implementation , there is provided a a memory page with any of the following properties applied
method of secure domain isolation , whereby an execution to it (as set and enforced by the hardware MMU via the
context within a virtual machine may monitor another SKH) : mapped (present) , executable , readable , writeable .
execution context within that virtual machine or another The term “ unmap ” or “ unmapped ” shall broadly mean :
virtual machine , in a manner maintaining security and 55 setting a memory page with any of the following properties
isolation between such contexts . Innovations herein also applied to it (as set and enforced by the hardware MMU via
relate to provision of these contexts such that neither / none the SKH) : unmapped (non - present) , non - executable , non
can necessarily corrupt , affect , and / or detect the other . readable , non - writeable .

Moreover , systems and methods herein may include and / FIG . 1 is a block diagram illustrating an exemplary
or involve a virtual machine which is augmented to form a 60 system and separation kernel hypervisor architecture con
more secure virtual representation of the native hardware sistent with certain aspects related to the innovations herein .
platform for a particular execution context . And such imple FIG . 1 also shows a separation kernel hypervisor execut
mentations may also include a virtual representation which ing on native hardware platform resources , e.g. , where the
is augmented with a wide and deep variety of built - in separation kernel hypervisor may support the execution ,
detection , notification (s) and monitoring mechanisms , 65 isolated and partitioned in time and space , between a plu
wherein secure isolation between the domains or virtual rality of guest operating system protection domains . Here , a
machines is maintained . guest operating system domain may be an entity that is

50

US 10,789,105 B2
7 8

established and maintained by the separation kernel hyper Further , the virtualization assistance layer 400 may assist
visor in order to provide a secure and isolated execution the separation kernel hypervisor in virtualizing portions of
environment for software . Referring to FIG . 1 , a separation the platform resources exported to a given guest operating
kernel hypervisor 100 is shown executing on top of the system (e.g. , Virtual CPU / ABI , Virtual chipset ABI , set of
native hardware platform resources 600. Further , the sepa- 5 virtual devices , set of physical devices , and / or firmware ,
ration kernel hypervisor 100 supports the execution of a etc. , assigned to a given guest operating system 300 and / or
guest operating system virtual machine protection domain guest virtual machine protection domain 200) . Some sys
200 . tems and methods herein utilizing such virtualization assis

The separation kernel hypervisor 100 may also support tance layer may include or involve (but are not strictly
the execution of a plurality of guest operating system virtual 10 limited to) a self - assisted virtualization component , e.g. ,
machine protection domains , e.g. , 200 to 299 in FIG . 1 . with an illustrative implementation shown in FIG . 2D .

In some implementations , the separation kernel hypervi The guest operating system 300 and the virtualization
sor may provide time and space partitioning in a secure and assistance layer 400 (which may include code execution
isolated manner for a plurality of guest operating system detection mechanism (s) 500) are isolated from each other by
virtual machine protection domains , e.g. , 200 to 299 in FIG . 15 the separation kernel hypervisor 100. In implementations
1. Such features may include rigid guarantees on scheduling herein , the guest operating system 300 cannot tamper with ,
resources , execution time , latency requirements , and / or bypass , or corrupt the virtualization assistance layer 400 , nor
resource access quotas for such domains . can it tamper with , bypass or corrupt the code execution

According to some implementations , in terms of the detection mechanisms 500. Since the code execution detec
sequence of establishment , after the native hardware plat- 20 tion mechanisms 500 are isolated from the guest operating
form resources 600 boot the system , execution is transi system 300 , the code execution detection mechanisms 500
tioned to the separation kernel hypervisor 100. The separa are able to act on a portion of (or the entirety , depending on
tion kernel hypervisor 100 then creates and executes a guest policy and configuration) of the guest operating system 300
operating system virtual machine protection domain 200 , or and its assigned resources in a manner that is (a) is trans
a plurality of guest operating system virtual machine pro- 25 parent to the guest operating system 300 and (b) not able to
tection domains , e.g. , 200 to 299 in FIG . 1. Some imple be tampered with by the guest operating system 300 or its
mentations of doing so consonant with aspects related to assigned resources (e.g. , errant and / or malicious device
implementations herein are set forth in PCT Application No. DMA originated by devices assigned to the guest operating
PCT / 2012 / 042330 , filed 13 Jun . 2012 , published as system 300) , and (c) not able to be bypassed by the guest
WO2012 / 177464A1 , and U.S. patent application Ser . No. 30 operating system 300. For example , the code execution
13 / 576,155 , filed Dec. 12 , 2013 , published as US2014 / detection mechanisms 500 , within the given virtualization
0208442 A1 , which are incorporated herein by reference in assistance layer 400 , may read and / or modify portions of the
entirety . guest operating system 300 and resources to which the Guest

Consistent with aspects of the present implementations , it Operating System 300 has been granted access (by the
is within a guest operating system virtual machine protection 35 Separation Kernel Hypervisor 100) , while none of the Guest
domain that a guest operating system may execute . Further , Operating System 300 nor the resources to which has access
it is within a guest operating system virtual machine pro may modify any portion of the code execution detection
tection domain that code execution detection mechanisms mechanisms 500 and / or virtualization assistance layer 400 .
may also execute , e.g. , in a fashion isolated from any guest By having a given virtualization assistance layer 400 and
operating system which may also execute within that same 40 a given Guest Operating System 300 within the within the
guest operating system virtual machine protection domain , same Guest Virtual Machine Protection Domain 200 , iso
or in other guest operating system virtual machine protection lated from each other by the Separation Kernel Hypervisor
domains . 100 , various benefits , non - penalties , or mitigation of penal

FIG . 2A is a block diagram illustrating an exemplary ties , such as the following , may be conferred to the system
system and separation kernel hypervisor architecture con- 45 at large and to the code execution detection mechanisms
sistent with certain aspects related to the innovations herein . 500 :
FIG . 2A also shows a separation kernel hypervisor executing Increased Spatial and Temporal Locality of Data
on native hardware platform resources (where the native By being contained within the same Guest Virtual
platform resources may include a plurality of CPUs , buses Machine Protection Domain 300 , the virtualization assis
and interconnects , main memory , Network Interface Cards 50 tance layer 200 , and / or corresponding private (local) code
(NIC) , Hard Disk Drives (HDD) , Solid State Drives (SSD) , execution detection mechanisms 500 existing in that same
Graphics Adaptors , Audio Devices , Mouse / Keyboard / Point Guest Virtual Machine Protection Domain 300 , have greater
ing Devices , Serial I / O , USB , and / or Raid Controllers , etc.) , access , such as in time and space , to the resources of the
where the separation kernel hypervisor may support the Guest Operating System 300 than would entities in other
execution , isolated and / or partitioning in time and space , 55 guest virtual machine protection domains or other Guest
between a plurality of guest operating system protection Operating Systems ; e.g. , the subject guest virtual machine
domains . Here , some implementations may involve a guest protection domain has faster responsiveness and / or has
operating system protection domains which may contain a lower latency than if processed in another guest virtual
guest operating system , and / or a virtualization assistance machine protection domain . Though such resources are still
layer (which itself may contain code execution detection 60 accessed in a manner that is ultimately constrained by the
mechanisms) . Separation Kernel Hypervisor 100 , there is less indirection
FIG . 2A shows both a guest operating system 300 , and a and time / latency consumed in accessing the resources :

virtualization assistance layer 400 executing within the same In one illustrative case , the code execution detection
guest operating system virtual machine protection domain mechanisms 500 private (local) to a given Guest virtualiza
200. In some implementations , the virtualization assistance 65 tion assistance layer 200 and its associated Guest Operating
layer 400 may provide the execution environment for the System 300 can react faster to code execution physical
code execution detection mechanism (s) 500 . memory access issues , and not need to wait on actions from

US 10,789,105 B2
9 10

another entity in another guest virtual machine protection do not corrupt either the virtualization assistance layer 400
domain 200 or guest operating system 300 (which may or the code execution detection mechanisms 500 .
themselves have high latency , be corrupted , unavailable , FIG . 2B is a block diagram illustrating an exemplary
poorly scheduled , or subject to a lack of determinism and / or system and separation kernel hypervisor architecture con
resource constraint , or improper policy configuration , etc.) . 5 sistent with certain aspects related to the innovations herein .

Here , for example , if a Guest Operating System 300 was FIG . 2B illustrates a variation of FIG . 2A where a minimal
to monitor a Guest Operating System 399 located within runtime environment 398 executes in place of a (larger / more
another Guest Virtual Machine Protection Domain 107 , it complex) guest operating system . Here , a minimal runtime
would encounter penalties in time and space for accessing environment may be an environment such as a VDS (virtual
that Guest Operating System and its resources ; furthermore , 10 device server) , and / or a LSA (LynxSecure application) , etc.
there is increased code , data , scheduling , and / or security The minimal runtime environment 398 can be used for
policy complexity to establish and maintain such a more policy enforcement related to activities reported by a virtu
complex system ; such increases in complexity and resources alization assistance layer and / or code execution detection
allow for more bugs in the implementation , configuration , mechanisms ; such an environment is also monitored by a
and / or security policy establishment and maintenance . 15 virtualization assistance layer and / or code execution detec

Scalability and Parallelism tion mechanisms private to the guest operating system
Each Guest Operating System 300 may have a virtual virtual machine protection domain containing the minimal

ization assistance layer 200 , and code execution detection runtime environment .
mechanisms 500 , that are private (local) to the Guest Virtual FIG . 2C is a block diagram illustrating an exemplary
Machine Protection Domain 200 that contains both that 20 system and separation kernel hypervisor architecture con
Guest Operating System 300 , the virtualization assistance sistent with certain aspects related to the innovations herein .
layer 400 , and the code execution detection mechanisms . FIG . 2C illustrates a variation of FIG . 2A and FIG . 2B where

Fault Isolation , Low Level of Privilege , Defense in Depth , a minimal runtime environment executes in place of a
Locality of Security Policy , and Constraint of Resource (larger / more complex) guest operating system but without a
Access 25 virtualization assistance layer or code execution detection

Here , for example , relative to the extremely high level of mechanisms .
privilege of the separation kernel hypervisor 100 , the virtu FIG . 2D is a block diagram illustrating an exemplary
alization assistance layer 400 , the code execution detection system and Separation Kernel Hypervisor architecture con
mechanism 500 , and the Guest Operating System 300 within sistent with certain aspects related to the innovations herein .
the same Guest Virtual Machine Protection Domain 200 are 30 FIG . 2D illustrates a variation of FIG . 2 where a Self
only able to act on portions of that Guest Virtual Machine Assisted Virtualization (SAV) mechanism is used to imple
Protection Domain 200 (subject to the Separation Kernel ment the virtualization assistance layer .
Hypervisor 100) and not portions of other Guest Virtual FIG . 3 is a block diagram illustrating an exemplary
Machine Protection Domains (nor their contained or system and separation kernel Hypervisor architecture con
assigned resources) . 35 sistent with certain aspects related to the innovations herein .

Subject to the isolation guarantees provided by the Sepa FIG . 3 also shows certain detailed aspects with respect to
ration Kernel Hypervisor 100 , the virtualization assistance FIGS . 2A / B , where the guest operating system may attempt
layer 400 accesses only the resources of the Guest Operating to access APIs of interest at specified memory locations that
System 300 within the same Guest Virtual Machine Protec may include a plurality of code and / or data which may
tion Domain 200 and that virtualization assistance layer 400 40 constitute execution contexts which may include the follow
is not able to access the resources of other Guest Operating ing types of software including any / all of which malicious
Systems . code may attempt to corrupt or utilize : malicious code ,
As such , if there is corruption (bugs , programmatic errors , anti - virus software , corrupted anti - virus software , integrity

malicious code , code and / or data corruption , or other faults , checkers , corrupted integrity checkers , rootkits , return ori
etc.) within a given Guest Virtual Machine Protection 45 ented rootkits , etc. The inventions herein are not limited to
Domain 200 they are isolated to that Guest Virtual Machine memory access attempts to malicious code and is discussed
Protection Domain 200 . below as illustrative examples .
They do not affect other Guest Virtual Machine Protection For example , in FIG . 3 , if antivirus software 2001

Domains 299 nor do they affect the Separation Kernel executes within a given guest operating system 300 , and
Hypervisor 100. This allows the Separation Kernel Hyper- 50 such anti - virus software 2001 is itself corrupted , and itself
visor to act upon (e.g. , instantiate , maintain , monitor , create / executes malicious code 2002 or fails to prevent the execu
destroy , suspend , restart , refresh , backup / restore , patch / fix , tion of malicious code 2002 , the corruption is constrained to
import / export etc.) a plurality of Guest Virtual Machine the given guest operating system 300 , and the corruption
Protection Domains 200 and their corresponding virtualiza may be acted upon (e.g. , detected , notified , prevented ,
tion assistance layer 400 and code execution detection 55 mitigated , reported , tracked , modified / patched , suspended ,
mechanisms 500 (or even Guest Operating Systems 300) halted , restarted , eradicated , etc.) by the code execution
without corruption of the most privileged execution context detection mechanisms 500 that monitors / acts on code execu
of the system , the Separation Kernel Hypervisor 100 . tion in specified memory location (s) such as APIs of interest ,

Similarly , the faults that may occur within a virtualization and is provided within the same guest virtual machine
assistance layer 400 or the code execution detection mecha- 60 protection domain 200 as the guest operating system 300 .
nisms 500 (e.g. , by corruption of software during delivery) With regard to other exemplary implementations , as may
are contained to the Guest Virtual Machine Protection be appreciated in connection with FIG . 3 , if an integrity
Domain 200 and do not corrupt any other Guest Virtual checker 2003 (e.g. , a “ security ” component or driver within
Machine Protection Domain ; nor do they corrupt the Sepa a guest operating system 300) executes within a given guest
ration Kernel Hypervisor 100 . 65 operating system 300 , and such integrity checker 2003 is

Furthermore , the faults within a Guest Operating System itself corrupted into a corrupted integrity checker 2004 (and
300 are contained to that Guest Operating System 300 , and executes malicious code , or fails to prevent the execution of

10

US 10,789,105 B2
11 12

malicious code) , the corruption is constrained to the given operating system 300 the resources assigned to the guest
guest operating system 300 , and the corruption may be acted operating system 300 , and the systems behavior generated
upon (e.g. , detected , notified , prevented , mitigated , reported , thereto and / or thereby .
tracked , modified / patched , suspended , halted , restarted , FIG . 4 is a block diagram illustrating an exemplary
eradicated , etc.) by the code execution detection mecha- 5 system and separation kernel hypervisor architecture con
nisms 500 that monitors / acts on code executed at the speci sistent with certain aspects related to the innovations herein .
fied memory location (s) , and is provided within the same For example , FIG . 4 illustrates resources that may be
guest virtual machine protection domain 200 as the guest assigned to a Guest Operating System 300 consistent with
operating system 300 . certain aspects related to the innovations herein .

FIG . 4 shows an illustrative extension of either FIG . 2 , With regard to another illustration , again with reference to
FIG . 3 , if a rootkit 2006 executes within the guest operating andr P.3 , where the guest operating system may have

a plurality of code and / or data which may constitute execu system 300 (e.g. , by having fooled the Integrity Checker tion contexts which may include the following types of 2003 by the nature of the root kit being a return oriented software mechanisms and / or constructs user space code and rootkit 2007 , which are designed specifically to defeat 15 data that may be associated with an unprivileged mode of integrity checkers) the corruption is constrained to the given CPU code execution (as used herein ‘ user space ' being an guest operating system 300 , and the corruption may be acted execution environment of low privilege , versus an execution upon (e.g. , detected , notified , prevented , mitigated , reported , environment of high privilege , such as kernel space) , which tracked , modified / patched , suspended , halted , restarted , may contain processes , tasks , and / or threads , etc .; kernel
eradicated , etc.) by the code execution detection mecha- 20 space code and data , that may be associated with a privi
nisms 500 that monitors / acts on code execution in specified leged mode of CPU execution , which may contain tasks ,
memory location (s) , and is provided within the same guest threads , interrupt handlers , drivers , etc. , shared code and
virtual machine protection domain 200 as the guest operat data , that may be associated with either privileged andor
ing system 300 . unprivileged modes of CP execution , and which may

In another example , again with respect to FIG . 3 , if a 25 include signal handlers , Inter Process Communication
polymorphic virus 2005 (an entity designed to defeat integ Mechanisms (IPC) , and / or user / kernel mode APIs . It also
rity checkers , among other things) executes within the guest may include main memory that may be accessed by the
operating system 300 (e.g. , by having fooled the integrity CPU , by DMA from devices , or both . It also shows protec
checker 2003 , or by having the a corrupted integrity checker tion mechanisms including hardware CPU virtualization
2003) the corruption is constrained to the given guest 30 protection mechanisms , and hardware virtualization DMA
operating system 300 , and the corruption may be acted upon protection mechanism . Code execution detection mecha
(e.g. , detected , notified , prevented , mitigated , reported , nisms 500 , 599 such as APIs of interest mechanisms may
tracked , modified / patched , suspended , halted , restarted , reside within corresponding Virtualization Assistance Lay
eradicated , etc.) by the code execution detection mecha ers 400 , 499
nisms 500 that monitors / acts on code execution in specified 35 Such resources , explained here by way of example , not
memory location (s) , and is provided within the same guest limitation , may include a subset of (a) hardware platform
virtual machine protection domain 200 as the guest operat resources 600 , virtualized hardware platform resources
ing system 300 . (hardware platform resources 600 subject to further con

In general , referring to FIG . 3 , if a malicious code 2000 straint by the separation kernel hypervisor 100 , the hardware
executes within the guest operating system 300 (e.g. , by 40 CPU virtualization protection mechanisms 602 , and / or the
means including , but not limited strictly to bugs , defects , bad hardware virtualization DMA protection mechanisms 601) ,
patches , code and / or data corruption , failed integrity check and execution time on a CPU 700 (or a plurality of CPUs ,
ers , poor security policy , root kits , viruses , trojans , poly e.g. , 700 to 731) (scheduling time provided by the separation
morphic viruses , and / or other attack vectors and / or sources kernel hypervisor 100) , and space (memory 900 provided by
of instability within the guest operating system 300 etc.) , the 45 the separation kernel hypervisor) within which the guest
corruption is constrained to the given guest operating system operating system 300 may instantiate and utilize constructs
300 , and the corruption may be acted upon (e.g. , detected , of the particular guest operating system 300 , such as a
notified , prevented , mitigated , reported , tracked , modified / privileged (“ kernel ” space) modes of execution , non - privi
patched , suspended , halted , restarted , eradicated , etc.) by the leged (“ user ” space) modes of execution , code and data for
code execution detection mechanisms 500 that monitors / acts 50 each such mode of execution (e.g. , processes , tasks , threads ,
on code execution in specified memory location (s) , and is interrupt handlers , drivers , signal handlers , inter process
provided within the same guest virtual machine protection communication mechanisms , shared memory , shared APIs
domain 200 as the guest operating system 300 . between such entities / contexts / modes , etc.

Furthermore , in the examples above and other cases , such FIG . 5 is a block diagram illustrating an exemplary
corruption of the guest operating system 300 , and the 55 system and separation kernel hypervisor architecture con
resources to which it has access , do not corrupt the code sistent with certain aspects related to the innovations herein .
execution detection mechanisms 500 , the virtualization FIG . 5 shows an illustrative implementation as may be
assistance layer 400 , the guest virtual machine protection associated with G2F6.3 , adorFG.4 , where the
domain 200 , or plurality of other such resources in the code execution detection mechans , that may be within
system (e.g. , other guest virtual machine protection domains 60 the virtualization assistance layer , may include the following
299) , or the separation kernel hypervisor 100 . monitoring systems and mechanisms : memory monitor , an

In some implementations , the code execution detection instruction monitor , etc. FIG . 5 also illustrates import / export
mechanisms 500 , in conjunction with the virtualization mechanism that may be used by a virtualization assistance
assistance layer 400 , and the separation kernel hypervisor layer and / or code execution detection mechanisms to com
100 , may utilize various methods and mechanisms such as 65 municate between themselves and other virtualization assis
the following , given by way of illustration and example but tance layer and / or code execution detection mechanisms in
not limitation , to act with and upon its associated guest other guest operating system virtual machine protection

15

US 10,789,105 B2
13 14

domains (subject to the security policies established , main The virtualization assistance layer 400 , code execution
tained , and enforced by the separation kernel hypervisor) , in detection mechanisms 500 , and / or the separation kernel
an isolated , secure , and even monitored fashion . hypervisor 100 may use feedback mechanisms between
FIG . 5 illustrates mechanism and resources that may be themselves to recognize and monitor patterns of guest

used by the code execution detection mechanisms 500 to 5 operating system 300 memory access ; not strictly one - off
monitor a guest operating system 300. Such mechanisms memory access attempts .
and resources may include a memory monitor 501 , and an The monitoring of guest operating system 300 memory
instruction monitor 502 . access includes , but is not limited to , constructs in guest

The virtualization assistance layer 400 and / or the code perating system 300 memory including the resources in
execution detection mechanisms 500 may also use an export 10 the guest operating system 300 in FIGS . 3 and 4) which may

have semantics specific to a particular guest operating API 509 and / or an import API 599 (as may be configured system 300 or a set of applications hosted by the guest and governed by the separation kernel hypervisor 100) , in operating system 300 (possibly including antivirus soft order to provide secure communication between a plurality ware) . of virtualization assistance layers (e.g. , virtualization assis The virtualization assistance layer 400 , code execution tance layers 400 to 499) and / or a plurality of code execution detection mechanisms 500 , and / or the Separation Kernel
detection mechanisms (e.g. , code execution detection Hypervisor 100 may use feedback mechanisms between
mechanisms 500 to 599) . themselves to recognize and monitor patterns of Guest

Innovations set forth herein , as also described in addi Operating System 300 DMA access to memory ; not strictly
tional detail elsewhere herein via notation to the reference 20 one - off access attempts .
numerals in the description below , reside around various Illustrative aspects , here , are shown in FIGS . 6A - 6B .
interrelated functionality of the following features or 2. Monitoring of specific Guest Operating System 300
aspects : (i) a separation kernel hypervisor that ensures the instruction execution attempts , and / or specific instruction
isolation of multiple guest operating systems each in its own sequence execution attempts .
virtual machine (VM) ; (ii) a separation kernel hypervisor as 25 For all such attempts by the Guest Operating System 300 ,
in (i) that implements a mechanism whereby a suitably the Separation Kernel Hypervisor 100 (when configured to
authorized guest is configured to send a list of physical do so , or via feedback receive from the virtualization assis
memory locations to be watched to another guest ; (iii) a tance layer 400 and / or the code execution detection mecha
separation kernel hypervisor as in (i) that implements a nisms 500) may trap such access attempts , then pass asso
mechanism whereby each of the physical memory locations 30 ciated data of that trap to the virtualization assistance layer
in (ii) is associated with a specification for what execution 400 and / or code execution detection mechanisms 500 .
context information is to be obtained on access to that The virtualization assistance layer 400 and / or the code
location ; (iv) a separation kernel hypervisor as in (i) that execution detection mechanisms 500 can respond to such
implements a mechanism whereby the specifications asso instruction sequences ; including , but not limited to , recog
ciated with the list of memory locations in (ii) can be sent to 35 nition of a significant fraction of a given sequence , then
the other guest as in (ii) ; (v) a virtualization assistance layer preventblock the final instruction of the malicious
(VAL) of software that runs within the same protection sequence from execution .
domain as the guest Virtual Machine but is not directly Illustrative aspects , here , are shown in FIGS . 7A - 7B .
accessible by the guest ; (vi) a virtualization assistance layer FIGS . 6A - 6B are representative sequence / flow diagrams
as in (vi) that implements a virtual motherboard containing 40 illustrating exemplary systems , methods and Separation
a virtual CPU and memory ; (vii) a VAL as in (vi) that Kernel Hypervisor architecture consistent with certain
implements a mechanism to map physical memory pages as aspects related to the innovations herein . FIGS . 6A - 6B
non - executable ; (viii) a VAL as in (vi) that processes excep relate , inter alia , to behavior relating to the handlingofguest
tions caused by non - executable page execution attempts by operating system attempts to access main memory .
its associated guest virtual machine ; (ix) a VAL as in (vi) that 45 Turning to the illustrative implementations / aspects of
implements a mechanism to determine whether the address FIG . 6A , at step 605 a Guest Operating System receives a
accessed is one of those specified in (ii) ; (x) a VAL as in (vi) command for memory access to a specified memory loca
that can send a notification of the memory access and tion . Then , at step 610 , the Guest Operating System attempts
associated context information as in (iii) to the requesting to execute code in the memory location (s) . The memory
guest ; (xi) a VAL as in (vi) that can pause the execution of 50 usage attempt triggers entry into the Separation Kernel
its virtual machine ; and / or (xii) a VAL as in (vi) that can Hypervisor . Then , at step 620 , the Separation Kernel Hyper
resume the execution of its virtual machine . visor securely transitions execution to the virtualization

Systems and mechanisms , and example embodiments , of assistance layer ; in a manner isolated from the Guest Oper
the code execution detection mechanisms 500 may include : ating System . Next , in step 630 the virtualization assistance

1. Monitoring of CPU (and CPU cache based) guest OS 55 layer transitions execution to the code execution detection
memory access (originated from a plurality of resources mechanisms . Step 630 may encompass steps (ii) and (iv) ,
available to the guest operating system 300 (in FIGS . 3 and above , including step) where the separation kere
4) , including CPUs and / or caches assigned and / or associated Hypervisor implements a mechanism whereby a suitably
with such) , as directed by execution and resources (shown in authorized guest and a list of memory locations to be
FIG . 3) within the guest OS 300. For memory assigned to the 60 watched to another guest . A virtualization assistance layer
guest OS 300 , such as a subset of the main memory 900 (in (VAL) of software that runs within the same protection
FIGS . 2 , 3 , 4 , and 5) the separation kernel hypervisor 100 domain as the guest virtual machine but is not directly
may trap access to that memory , and then pass associated accessible by the guest (step iv) . The VAL that processes
data of that trap to the virtualization assistance layer 400 . unmapped memory exceptions taken by its associated guest
The virtualization assistance layer 400 may then pass the 65 virtual machine (step vii) .
associated data of that trap to the code execution detection Then , at step 635 the code execution detection mecha
mechanisms 500 . nisms analyze the behavior of the Guest Operating System

US 10,789,105 B2
15 16

and its resources and makes a policy decision ; in this execution detection mechanisms (in this example it denies
example , it has been configured to understand the memory processing with respect to the APIs of interest , although it
locations which are sensitive (contain APIs of interest) , thus may also allow or pause the memory access) , or the Sepa
decides to disallow , pause or continue the code execution . ration Kernel Hypervisor acts independently of the policy
The code execution detection mechanism detects process- 5 decision , but in a manner that takes the policy decision under
ing / access to specified memory locations , for example . advisement (depending on configuration) . Further , the SKH
Then , at step 655 , the instruction execution detection mecha may receive , analyze , and / or act upon policy decisions from
nism 500 transfers control to a memory management unit multiple sources , which may include multiple mechanisms ;
(MMU) control mechanism 600. This mechanism 600 per inducing cases where multiple mechanisms monitor a given
forms the memory management unit control operations need 10 Guest OS .
to execute the instruction and map the appropriate page as FIGS . 7A - 7B are representative sequence / flow diagrams
non - executable . Additional details of the MMU functional illustrating exemplary systems , methods and Separation
ity , here , are set forth further below in connection with FIG . Kernel Hypervisor architecture consistent with certain
10. Then , at step 660 , the MMU control mechanisms tran aspects related to the innovations herein . FIGS . 7A - 7B
sition execution to the instruction execution detection 15 relate , inter alia , to behavior relating to an attempt to access
mechanism . Next , at step 640 the code execution detection specified APIs of interest such as by the handling of guest
mechanisms transition execution to the virtualization assis operating system instruction sequences (e.g. , execution
tance layer , passing it the policy decision . Then , at step 645 attempts of a repeated pattern / series of MOV , RET , or MOV
the virtualization assistance layer transitions execution back IRET instruction on an Intel IA32e architecture ; such pat
to the Separation Kernel Hypervisor , or the Separation 20 terns of which may constitute code of " return oriented ”
Kernel Hypervisor transitions execution from the virtualiza attacks / rootkits) . Here , in such illustrative cases , memory
tion assistance layer back to the Separation Kernel Hyper access within the guest operating system will attempt to
visor . Next , at step 650 the Separation Kernel Hypervisor corrupt and / or subvert antivirus software and / or software
acts on the policy decision generated by the code execution integrity checkers within the guest operating system via a
detection mechanisms (in this example it disallows the 25 “ return oriented ” attack (attacks constructed to evade integ
attempt to access the API of interest) , or the Separation rity checkers) ; and the code execution detection mechanisms
Kernel Hypervisor acts independently of the policy decision , detects / prevents the attack .
but in a manner that takes the policy decision under advise Turning to the illustrative implementations / aspects of
ment (depending on configuration) . The SKH may receive , FIG . 7A , at step 705 , a Guest Operating System receives a
analyze , ador act upon policy decisions from multiple 30 command for memory access to a specified memoryoca
sources , which may include multiple detection / notification tion . Then at step 710 an attempt to access the APIs of
mechanisms ; including cases where multiple mechanisms interest such as a specific sequence and / or pattern of CPU
monitor a given Guest OS . instructions is performed , that either triggers transition into
As explained above in connection with FIG . 6A , the the SKH for (2a) every instruction in the sequence and / or

Guest Operating System accesses a specified memory loca- 35 pattern (a single stepping behavior) , or (2b) for a number of
tion . The memory access may be monitored and identified as instructions of size greater than one of the sequence and / or
including API (s) of interest by the code execution detection pattern (multiple stepping) . The (2a) or (2b) behavior is
mechanism to generate a policy decision . The memory based on system configuration . Next , at step 715 the Sepa
access attempt triggers entry into the Separation Kernel ration Kernel Hypervisor securely transitions execution to
Hypervisor . 40 the virtualization assistance layer ; in a manner isolated from

Turning to FIG . 6B , such system or process may initiate the Guest Operating System . Then , at step 720 the virtual
upon entry into the SKH , at 660. Then , at 665 , the Separa ization assistance layer transitions execution to the code
tion Kernel Hypervisor securely transitions execution to the execution detection mechanisms . Next , at step 725 the code
Visualization Assistance Layer ; in a manner isolated from execution detection mechanisms analyzes the behavior of
the Guest Operating System . Next , at 670 , the Visualization 45 the Guest Operating System and its resources and makes a
Assistance Layer transitions execution to the code execution policy decision . Then , at step 750 , the instruction execution
detection mechanisms . The code execution detection mecha detection mechanism 500 transfers control to a memory
nisms may then analyze , at 675 , the behavior of the Guest management unit control mechanism 700. This mechanism
perating System and its resurces and makes policy 700 performs the memory management unit (MMU) control
decision , for example , it may be configured to understand 50perations need to execute the instruction and map the
the memory locations which are sensitive.gcontain the appropriate page as non - executable . Additional details of the
APIs of interest) , thus decides to deny , pause or continue the MMU functionality , here , are set forth further below in
memory processing / access attempt . At 676 , the detection connection with FIG . 10. Then , at step 755 , the MMU
mechanism (s) may transfer control to a memory manage control mechanisms transition execution to the instruction
ment unit (MMU) control mechanism , to execute the 55 execution detection mechanism . Then , in step 730 the code
instruction and map the appropriate page as inaccessible . execution detection mechanisms transition execution to the
Additional details of the MMU functionality , here , are set virtualization assistance layer , passing it the policy decision .
forth further below in connection with FIG . 10. Once the Next , in step 735 the virtualization assistance layer transi
policy decision (s) have been made , the code execution tions execution back to the Separation Kernel Hypervisor , or
detection mechanisms transition execution to the virtualiza- 60 the Separation Kernel Hypervisor transitions execution from
tion assistance layer , at 680 , passing it the policy decision . the virtualization assistance layer back to the Separation
Then , at 685 , the virtualization assistance layer transitions Kernel Hypervisor . Then , in step 740 the Separation Kernel
execution back to the Separation Kernel Hypervisor , or the Hypervisor acts on the policy decision generated by the code
Separation Kernel Hypervisor transitions execution from the execution detection mechanisms (in this example it suspends
virtualization assistance layer back to the Separation Kernel 65 the Guest OS , preventing the Guest OS from accessing the
Hypervisor . Finally , at 690 , the Separation Kernel Hypervi memory and executing the “ Return Oriented ” attack ; a type
sor acts on the policy decision generated by the code of attack that thwarts code integrity checkers in the Guest

US 10,789,105 B2
17 18

OS) , or the Separation Kernel Hypervisor acts indepen tion about the context of such execution , and may determine
dently of the policy decision , but in a manner that takes the an action in response to the detected execution .
policy decision under advisement (depending on configura Turning to the illustrative implementations / aspects of
tion) . The SKH may receive , analyze , and / or act upon policy FIG . 8 , at step 805 , a Monitored Guest Operating System
decisions from multiple sources , which may include mul- 5 300 attempts to execute code at a specified memory location .
tiple mechanisms ; including cases where multiple mecha Then , at step 815 , the attempt is sent to the SKH . The
nisms monitor a given Guest OS . Finally , in step 745 , in Separation Kernel Hypervisor 100 ensures the isolation of
order to continue to recognize sequences and / or patterns of multiple guest Operating Systems each in its own Virtual
instructions , execution may cycle a multiple times between Machine (VM) (aspects i .) . Another Monitored Guest Oper
steps 705 through 740 . 10 ating System 600 allows a suitably authorized Monitoring
As explained above in connection with FIG . 7A , the guest Guest 600 to send , at 830 , a list of memory locations to be

operating system attempts specific memory access of an API monitored for another guest 300 (aspects ii . and iv .) . Fur
of interest . Here , for example , the API of interest is a thermore , a suitably authorized guest 600 may send a
specified memory location . The attempt triggers entry into message to another guest 300 (aspect iii .) . A response from
the Separation Kernel Hypervisor . 15 the SKH 100 is provided to the Monitored Guest Operating

Turning to FIG . 7B , such illustrative system or process System 600 at step 810. Next , at step 820 the Separation
may initiates upon entry into the SKH , at 760. Then , at 765 , Kernel Hypervisor securely transitions execution to the
the Separation Kernel Hypervisor securely transitions virtualization assistance layer 400 in a manner isolated from
execution to the Visualization Assistance Layer ; in a manner the Guest Operating System (aspect v .) . The Virtualization
isolated from the Guest Operating System . Next , at 770 , the 20 Assistance Layer (VAL 400) is software that runs within the
Visualization Assistance Layer transitions execution to the same protection domain as the guest Virtual Machine but is
code execution detection mechanisms . The code execution not directly accessible by the guest (aspect vi .) . The Virtu
detection mechanisms may then analyze , at 775 , the behav alization Assistance Layer 400 implements a virtual moth
ior of the Guest Operating System and its resources and erboard containing a virtual CPU and memory (aspect vii .) .
makes a policy decision ; in this example it recognizes the 25 The VAL 400 also implements a mechanism to unmap
Guest Operating System instruction sequence and / or pattern specified APIs on demand from another guest (aspect viii .) .
as an attempt to access an API of interest , and the policy Then , at step 840 , the virtualization assistance layer transi
decision is to made to deny further (and / or future) execution tions execution to the code execution Detection Mechanisms
of the sequence and / or pattern , preventing the Guest Oper 500 , which perform processing of portions or all of aspects
ating System from providing the API of interest to the 30 vii . , viii . , ix . , xi . , xii . Next , the code execution detection
monitored guest . At 776 , the detection mechanism (s) may mechanisms analyze the behavior of the Guest Operating
transfer control to a memory management unit (MMU) System and its resources and may make a policy decision .
control mech to execute the instruction and map the The VAL 400 and mechanism 500 processes unmapped API
appropriate page as inaccessible . Additional details of the exceptions taken by its associated guest virtual machine . The
MMU functionality , here , are set forth further below in 35 policy decisions of the VAL 400 and mechanism 500 include
connection with FIG . 10. Then , at 778 , the MMU control pausing the execution of its associated guest virtual
mechanism (s) may transition execution to the detection machine , injecting an API - not - found exception into its asso
mechanism . Once the policy decision (s) have been made , ciated guest virtual machine , or allowing the access to the
the code execution detection mechanisms transition execu API to continue . At step 851 , the instruction execution
tion to the virtualization assistance layer , at 780 , passing it 40 detection mechanism 500 may transfer control to a memory
the policy decision . Then , at 785 , the virtualization assis management unit control mechanism 800. This mechanism
tance layer transitions execution back to the Separation 800 performs the memory management unit (MMU) control
Kernel Hypervisor , or the Separation Kernel Hypervisor operations need to execute the instruction and re - map the
transitions execution from the virtualization assistance layer appropriate page as non - executable . Additional details of the
back to the Separation Kernel Hypervisor . Optionally , at step 45 MMU functionality , here , are set forth further below in
790 , the Separation Kernel Hypervisor acts on the policy connection with FIG . 10. After this , at step 855 , the MMU
decision generated by the code execution detection mecha control mechanisms transition execution to the instruction
nisms (in this example it denies access to the API of execution detection mechanism . Then , at step 845 the code
interest) , or the Separation Kernel Hypervisor acts indepen execution detection mechanisms transition execution to the
dently of the policy decision , but in a manner that takes the 50 virtualization assistance layer , passing to it the policy deci
policy decision under advisement (depending on configura sion . Next , at step 825 the virtualization assistance layer
tion) . Further , the SKH may receive , analyze , and / or act transitions execution back to the Separation Kernel Hyper
upon policy decisions from multiple sources , visor , or the Separation Kernel Hypervisor transitions execu
include multiple mechanisms ; inducing cases where mul tion from the virtualization assistance layer back to the
tiple mechanisms monitor a given Guest OS . In a final step 55 Separation Kernel Hypervisor . At step 810 , the SKH 100
795 , in order to recognize sequences and / or patterns of transitions execution to the Monitored Guest Operating
instructions (and / or further monitor an existing monitored System 300 based on the policy decision . At step 825 , the
sequence and / or pattern of instructions) , execution may Separation Kernel Hypervisor acts on the policy decision
cycle a multiple times between steps 760 through 790 . generated by the code execution detection mechanisms , or

FIG . 8 is a representative sequence / flow diagram illus- 60 the Separation Kernel Hypervisor acts independently of the
trating exemplary systems , methods , and Separation Kernel policy decision , but in a manner that takes the policy
Hypervisor processing / architecture consistent with certain decision under advisement (depending on configuration) .
aspects related to the innovations herein . FIGS . 8 and 9 The SKH may receive , analyze , and / or act upon policy
relate , inter alia , to the guest operating system executing decisions from multiple sources , which may include mul
code at specified memory location (s) where the code execu- 65 tiple mechanisms ; including cases where multiple mecha
tion detection mechanisms monitors , detects , and notifies nisms monitor a given Guest OS . At step 850 , the mecha
code execution in specified locations , may obtain informa nism 400 sends a notification of the code execution and

which may

US 10,789,105 B2
19 20

associated context information to the requesting guest OS exemplary embodiment , the SKH allows the request to map
600 (aspect x .) . Then , in order to continue to recognize the memory page as accessible to the GuestOS .
sequences and / or patterns of code execution , such process The SKH may transition execution back to the VAL at
ing may cycle multiple times between steps 805 through step 1050 with a message that the memory page that the
850 . 5 GuestOS had attempted to access has been remapped
As explained above in connection with FIG . 8 , the Guest (mapped asaccessible) to the GuestOS . The VAL transitions

Operating System may attempt to execute code in specified execution back to the detection mechanisms 1020 at step
memory location (s) . The attempt triggers entry into the 1055 with a message that the memory page that the GuestOS
Separation Kernel Hypervisor for monitoring , detection had attempted to access has been remapped (mapped as
and / or notification . 10 accessible) to the GuestOS .

Turning to FIG . 9 , such illustrative system or process At step 1060 , the detection mechanisms 1020 execute a
policy decision to either allow or deny the GuestOS to begins where a hypervisor is configured to allow a guest complete the execution of the command / instruction that the (Monitoring Guest) to request notifications of code execu GuestOS had attempted which had triggered the GuestOS tion by another guest (Monitored Guest) . For example , the 15 access attempt to the memory page . Monitoring Guest may request that code execution at speci At step 1065 , the detection mechanisms 1020 determine

fied locations be monitored (e.g. , a set of APIs be moni to allow the GuestOS to complete execution of the com
tored) , and the action (e.g. , pause , disallow , or continue) to mand / instruction that the GuestOS had attempted which had
be taken on such request , at step 905. The VAL in the triggered the GuestOS access attempt to the memory page .
Monitored Guest maps those locations / APIs as inaccessible , 20 The detection mechanisms then transition execution to the
at step 910. This is distinct from the Monitored Guests VAL 1035 .
notion of API mappings . At 912 , the detection mechanism (s) At step 1070 , the VAL 1035 then transitions execution to
may transfer control to a me ory management unit (MMU) the SKH with a request to allow the GuestOS to complete
control mechanism , to execute the instruction and map the execution command / instruction that the GuestOS had
appropriate page as non - executable . Additional details of the 25 attempted which had triggered the GuestOS access attempt
MMU functionality , here , are set forth further below in to the memory page . The SKH executes a policy decision at
connection with FIG . 10. Then , at 914 , the MMU control step 1072 to allow or deny the GuestOS to complete
mechanism (s) may transition execution to the detection execution of the command / instruction that the GuestOS had
mechanism . At step 920 , when software in the Monitored attempted which had triggered the GuestOS access attempt
Guest attempts to execute code in a specified location (e.g. , 30 to the memory page . In this example , the SKH allows the
attempts to access an unmapped API) , control transitions to GuestOS to complete the execution of that command / in
the VAL . The VAL determines , for example , that the struction . At step 1074 , the SKH securely transition execu
unmapped API is part of the set to be monitored , at step 925 . tion to the GuestOS . At step 1076 , the GuestOS completes
The VAL notifies the monitoring guest of the attempt , at step execution of the command / instruction that the GuestOS had
930. The action is determined at step 935 based on the action 35 attempted which triggered the GuestOS access attempt to the
set by the Monitoring Guest . If the action is pause at step memory page . At step 1078 , the protection mechanisms
940 , the Monitored Guest is paused . If the action is disallow provided by the SKH trigger a transition back to the SKH
at step 945 , the Monitored Guest is injected with an excep immediately after completion of the GuestOS command /
tion , as though the API did not exist . If the action is continue instruction .
at step 950 , the Monitored Guest is allowed to continue 40 At step 1080 , the SKH transitions execution back to the
operation as though the API had always been mapped in . VAL 1035 , with a message that the GuestOS has completed
FIG . 10 is an exemplary state diagram illustrating aspects execution of the command / instruction that the GuestOS had

of memory management unit processing in conjunction with attempted which had triggered the GuestOS access attempt
the hypervisor and VAL , consistent with certain aspects to the memory page . At step 1082 , the VAL 1035 transitions
related to the innovations herein . In FIG . 10 , control is 45 execution to the detection mechanisms 1020 with a message
passed to the Memory Management Unit (MMU) Control that the GuestOS has completed execution of the command /
1019 via any of the following control paths 1005 including instruction that the GuestOS had attempted which had
step 655 (from FIG . 6A) , step 755 (from FIG . 7A) , and step triggered the GuestOS access attempt to the memory page .
851 (from FIG . 8) . Step 1015 transitions control from the At step 1084 , the detection mechanisms 1020 determine
Memory Management Control Unit 1010 to the detection 50 whether to map the memory page as nonexecutable again . At
mechanisms 1020 to make a policy decision regarding the step 1086 , the detection mechanisms 1020 make a transition
page of memory the GuestOS had attempted to access . The back to the VAL via any of the control paths including step
detection mechanisms 1020 execute a policy decision to 600 (from FIG . 6A) , step 750 (from FIG . 7A) , and step 855
either deny or allow the GuestOS to access the memory . In (from FIG . 8) .
step 1025 , the detection mechanisms 1020 execute the 55 At a high level , as may apply to the above examples , the
decision to allow the GuestOS access to the memory . Actions taken on monitored activity may include policy

The detection mechanisms may transition execution to the based actions taken by , and / or coordinated between , the
VAL 1035 with a request that the page of memory the Separation Kernel Hypervisor 100 , virtualization assistance
GuestOS had attempted to access be remapped (mapped as layer 400 , and / or code execution detection mechanisms 500
accessible) to the GuestOS at step 1030 . 60 Such actions may include , but are not limited to any of the

The VAL may then transition execution to the SKH with following : (1) preventing the monitored activity ; (2) allow
a request that the page of memory the GuestOS had ing the monitored activity ; (3) allowing the monitored
attempted to access be remapped (mapped as accessible) to activity , with instrumentation , and / or partial blocking . It
the GuestOS at step 1040. The SKH executes a policy may be that certain sub - sets of the activity are permissible
decision at step 1045 to allow or deny the request that the 65 (by configuration policy) , and that a portion of the activity
page of memory the GuestOS had attempted to access be may be allowed and a portion blocked and / or substituted
remapped (mapped as accessible) to the GuestOS . In an with a harmless surrogate ; such as insertion of no - ops in

US 10,789,105 B2
21 22

malicious code to render malicious code inert . This may ments , and / or configurations that may be suitable for use
include run - time patching of CPU state of a guest operating with the innovations herein may include , but are not limited
system 300 , and / or any resources of the guest operating to : software or other components within or embodied on
system 300 ; (4) reporting on the monitored activity , possibly personal computers , appliances , servers or server computing
exporting reports to other software in the system , or on 5 devices such as routing / connectivity components , hand - held
remote systems ; and / or (5) performing replay of the moni or laptop devices , multiprocessor systems , microprocessor
tored activity . based systems , set top boxes , consumer electronic devices ,

With regard to (5) , performing replay of the monitored network PCs , other existing computer platforms , distributed
activity , in Separation Kernel Hypervisor 100 configurations computing environments that include one or more of the
supporting rewind of guest operating system 300 state , the 10 above systems or devices , etc.
state of the guest operating system 300 can be rewound and In some instances , aspects of the innovations herein may
the monitored activity can be replayed and re - monitored (to be achieved via logic and / or logic instructions including
a degree) ; e.g. , if the code execution detection mechanisms program modules , executed in association with such com
500 requires more systems resources , and / or to map more ponents or circuitry , for example . In general , program mod
context of the guest operating system 300 , the code execu- 15 ules may include routines , programs , objects , components ,
tion detection mechanisms 500 may request a rewind , data structures , etc. that perform particular tasks or imple
request more resources , then request the replay of the ment particular instructions herein . The inventions may also
monitored activity ; so that the code execution detection be practiced in the context of distributed circuit settings
mechanisms 500 may perform analysis of the monitored where circuitry is connected via communication buses ,
activity with the advantage of more resources . Systems and 20 circuitry or links . In distributed settings , control / instructions
methods of monitoring activity , as may be utilized by the may occur from both local and remote computer storage
Separation Kernel Hypervisor 100 , virtualization assistance media including memory storage devices .
layer 400 , and / or code execution detection mechanisms 500 ; Innovative software , circuitry and components herein
for activities which may include guest operating system 300 may also include and / or utilize one or more type of computer
activities , and / or Separation Kernel Hypervisor 100 , virtu- 25 readable media . Computer readable media can be any avail
alization assistance layer 400 , and / or code execution detec able media that is resident on , associable with , or can be
tion mechanisms 500 activities (such as feedback between accessed by such circuits and / or computing components . By
such components) , including those activities which may way of example , and not limitation , computer readable
cause transition to the Separation Kernel Hypervisor 100 , media may comprise computer storage media and other
virtualization assistance layer 400 , and / or code execution 30 non - transitory media . Computer storage media includes
detection mechanisms 500 include (but are not limited to) : volatile and nonvolatile , removable and non - removable
Synchronous , bound to a specific instruction stream and / or media implemented in any method or technology for storage
sequence within a processor , CPU , or platform device and / or of information such as computer readable instructions , data
ABI , certain elements of which can be used to trap and / or structures , program modules or other data . Computer storage
transition to / from the hypervisor . For example , instructions 35 media includes , but is not limited to , RAM , ROM ,
which induce trapping . Such events may be generated by the EEPROM , flash memory or other memory technology , CD
Separation Kernel Hypervisor 100 , virtualization assistance ROM , digital versatile disks (DVD) or other optical storage ,
layer 400 , and / or code execution detection mechanisms 500 . magnetic tape , magnetic disk storage or other magnetic

The innovations and mechanisms herein may also provide storage devices , or any other medium which can be used to
or enable means by which software and / or guest operating 40 store the desired information and can accessed by computing
system vulnerabilities , including improper use of CPU inter component . Other non - transitory media may comprise com
faces , specifications , and / or ABIs may be detected and / or puter readable instructions , data structures , program mod
prevented ; including cases where software vendors have ules or other data embodying the functionality herein , in
implemented emulation and / or virtualization mechanisms various non - transitory formats . Combinations of the any of
improperly . 45 the above are also included within the scope of computer

Implementations and Other Nuances readable media .
The innovations herein may be implemented via one or In the present description , the terms component , module ,

more components , systems , servers , appliances , other sub device , etc. may refer to any type of logical or functional
components , or distributed between such elements . When circuits , blocks and / or processes that may be implemented in
implemented as a system , such system may comprise , inter 50 a variety of ways . For example , the functions of various
alia , components such as software modules , general - purpose circuits and / or blocks can be combined with one another into
CPU , RAM , etc. found in general - purpose computers , and / any other number of modules . Each module may even be
or FPGAs and / or ASICs found in more specialized comput implemented as a software program stored on a tangible
ing devices . In implementations where the innovations memory (e.g. , random access memory , read only memory ,
reside on a server , such a server may comprise components 55 CD - ROM memory , hard disk drive , etc.) to be read by a
such as CPU , RAM , etc. found in general - purpose comput central processing unit to implement the functions of the

innovations herein . Or , the modules can comprise program
Additionally , the innovations herein may be achieved via ming instructions transmitted to a general purpose computer ,

implementations with disparate or entirely different soft to processing graphics hardware , and the like . Also , the
ware , hardware and / or firmware components , beyond that 60 modules can be implemented as hardware logic circuitry
set forth above . With regard to such other components (e.g. , implementing the functions encompassed by the innovations
software , processing components , etc.) and / or computer herein . Finally , the modules can be implemented using
readable media associated with or embodying the present special purpose instructions (SIMD instructions) , field pro
inventions , for example , aspects of the innovations herein grammable logic arrays or any mix thereof which provides
may be implemented consistent with numerous general 65 the desired level performance and cost .
purpose or special purpose computing systems or configu As disclosed herein , features consistent with the present
rations . Various exemplary computing systems , environ inventions may be implemented via computer hardware ,

ers .

US 10,789,105 B2
23 24

software and / or firmware . For example , the systems and “ above , ” “ below , " and words of similar import refer to this
methods disclosed herein may be embodied in various forms application as a whole and not to any particular portions of
including , for example , a data processor , such as a computer this application . When the word “ or ” is used in reference to
that also includes a database , digital electronic circuitry , a list of two or more items , that word covers all of the
firmware , software , or in combinations of them . Further , 5 following interpretations of the word : any of the items in the
while some of the disclosed implementations describe spe list , all of the items in the list and any combination of the
cific hardware components , systems and methods consistent items in the list .
with the innovations herein may be implemented with any Although certain presently preferred implementations of
combination of hardware , software and / or firmware . More the inventions have been specifically described herein , it
over , the above - noted features and other aspects and prin- 10 will be apparent to those skilled in the art to which the
ciples of the innovations herein may be implemented in inventions pertain that variations and modifications of the
various environments . Such environments and related appli various implementations shown and described herein may
cations may be specially constructed for performing the be made without departing from the spirit and scope of the
various routines , processes and / or operations according to inventions . Accordingly , it is intended that the inventions be
the invention or they may include a general - purpose com- 15 limited only to the extent required by the applicable rules of
puter or computing platform selectively activated or recon law .
figured by code to provide the necessary functionality . The
processes disclosed herein are not inherently related to any The invention claimed is :
particular computer , network , architecture , environment , or 1. A method for processing information securely , the
other apparatus , and may be implemented by a suitable 20 method comprising :
combination of hardware , software , and / or firmware . For partitioning hardware platform resources via a separation
example , various general - purpose machines may be used kernel hypervisor into a plurality of guest operating
with programs written in accordance with teachings of the system virtual machine protection domains each
invention , or it may be more convenient to construct a including a virtual machine ; and
specialized apparatus or system to perform the required 25 isolating the domains in time and / or space from each
methods and techniques . other ;

Aspects of the method and system described herein , such hosting a mechanism to unmap specified pages on
as the logic , may also be implemented as functionality demand from another guest ;
programmed into any of a variety of circuitry , including processing an unmapped page exception taken by the
programmable logic devices (“ PLDs ”) , such as field pro- 30 virtual machine ;
grammable gate arrays (“ FPGAs ”) , programmable array mapping an unmapped page previously processed by the
logic (“ PAL ") devices , electrically programmable logic and virtual machine ;
memory devices and standard cell - based devices , as well as sending a notification of memory access and associated
application specific integrated circuits . Some other possi context information to a requesting guest , wherein the
bilities for implementing aspects include : memory devices , 35 virtual machine comprises a virtual motherboard
microcontrollers with memory (such as EEPROM) , embed including a virtual CPU and memory by a virtualized
ded microprocessors , firmware , software , etc. Furthermore , assistance layer (VAL) ;
aspects may be embodied in microprocessors having soft allowing the virtual machine to execute a single instruc
ware - based circuit emulation , discrete logic (sequential and tion ;
combinatorial) , custom devices , fuzzy (neural) logic , quan- 40 returning control to the VAL ;
tum devices , and hybrids of any of the above device types . mapping the unmapped page as inaccessible again ; and
The underlying device technologies may be provided in a returning control to the virtual machine .
variety of component types , e.g. , metal - oxide semiconductor 2. The method of claim 1 , further comprising :
field - effect transistor (“ MOSFET ”) technologies like sending a notification of memory access and a specifica
complementary metal - oxide semiconductor (“ CMOS ”) , 45 tion to a requesting guest .
bipolar technologies like emitter - coupled logic (“ ECL ”) , 3. The method of claim 2 , further comprising :
polymer technologies (e.g. , Silicon - conjugated polymer and configuring a memory management unit such that soft
metal - conjugated polymer - metal structures) , mixed analog ware in the virtual machine cannot undo the mapping .
and digital , and so on . 4. The method of claim 2 , wherein :

It should also be noted that the various logic and / or 50 the plurality of guest operating system virtual machine
functions disclosed herein may be enabled using any number protection domains includes corresponding guest oper
of combinations of hardware , firmware , and / or as data ating systems ; and
and / or instructions embodied in various machine - readable wherein isolating the loss of security in one of the guest
or computer - readable media , in terms of their behavioral , operating system virtual machine protection domains to
register transfer , logic component , and / or other characteris- 55 the one lost security domain such that security is not
tics . Computer - readable media in which such formatted data broken in all the domains .
and / or instructions may be embodied include , but are not 5. The method of claim 2 , further comprising one or more
limited to , non - volatile storage media in various forms (e.g. , of :
optical , magnetic or semiconductor storage media) , though implementing at least one routine and / or component to
do not include transitory media such as carrier waves . prohibit the guest operating systems from tampering

Unless the context clearly requires otherwise , throughout with , corrupting , and / or bypassing the mechanism ; and
the description , the words “ comprise , " " comprising , ” and executing the mechanism while preventing interference
the like are to be construed in an inclusive sense as opposed and / or bypass , corruption , and / or tampering by the
to an exclusive or exhaustive sense ; that is to say , in a sense plurality of guest operating systems .
of “ including , but not limited to . ” Words using the singular 65 6. The method of claim 2 , further comprising :
or plural number also include the plural or singular number detecting in each of the domains their own malicious code
respectively . Additionally , the words “ herein , ” “ hereunder , " as a function of the isolated domains ; or wherein

60

10

15

20

25

US 10,789,105 B2
25 26

viewing the virtual hardware platform within each partitioning hardware platform resources via a separation
domain as separate hardware by a guest such that kernel hypervisor into a plurality of guest operating
bypass is prevented . system virtual machine protection domains each

7. The method of claim 2 , further comprising : including a virtual machine ;
moving virtualization processing to the virtual hardware 5 isolating the domains in time and / or space from each

platforms within each guest operating system protec other ;
tion domain so that substantially all analysis and secu sharing a list of memory locations of an authorized guest

to another guest ; rity testing is performed within each guest operating
system protection domain such that the separation hosting a mechanism to control access to specified loca
kernel hypervisor is of reduced size and / or complexity . tions and / or pages on demand from the another guest ;

and 8. The method of claim 2 , further comprising :
detecting in each of the domains their own malicious code processing an attempt to gain access to at least one of the

specified locations and / or pages . as a function of the isolated domains ; or wherein 19. The method of claim 18 , further comprising : viewing the virtual hardware platform within each providing a virtualization assistance layer (VAL) includ domain as separate hardware by a guest such that ing a virtual representation of the hardware platform in bypass is prevented . each of the guest operating system virtual machine
9. The method of claim 2 , wherein the mechanism protection domains such that the VAL is not directly

includes subcomponents and / or subroutines configured for accessible by the authorized guest .
monitoring of guest operating system memory access . 20. The method of claim 18 , further comprising :

10. The method of claim 2 , wherein the mechanism performing processing including sending a notification of
includes subcomponents and / or subroutines configured for attempted access and associated context information
monitoring actions of the guest operating system including related to the attempt .
observation , detection , and / or tracking of code , data , execu 21. The method of claim 18 , further comprising :
tion flow , and / or resource utilization at runtime . providing a list of memory locations of the authorized

11. The method of claim 2 , further comprising : guest to the another guest ;
monitoring , via the mechanism , for suspect code ; providing a message of the authorized guest to the another
ascertaining where code is at least one of operating , guest ;

hiding , halted , stalled , infinitely looping , making no hosting a mechanism to unmap specified pages on
progress beyond intended execution , stored , once - ac- 30 demand from another guest ;
tive , extinct / not present but having performed suspect processing an unmapped page exception taken by the
and / or malicious action , in a position to maliciously virtual machine ;
affect a resource under control of a hypervisor guest . mapping an unmapped page of the exception that was

12. The method of claim 2 , further comprising : processed by the virtual machine ; and
executing the mechanism while preventing interference , 35 sending a notification of memory access and associated

corruption , tampering and / or bypassing by the plurality context information to a requesting guest ;
of guest operating system virtual machine protection wherein the virtual machine comprises a virtual mother
domains . board including a virtual CPU and memory .

13. The method of claim 2 , wherein the mechanism 22. The method of claim 18 further comprising :
includes subcomponents and / or subroutines configured for 40 triggering entry into the separation kernel hypervisor
monitoring actions of the guest operating system including upon execution of code involving an access attempt to
mitigation , prevention , and / or modification of code , data , an application programming interface (API) in a sus
execution flow , and / or resource utilization at runtime , as pect guest operating system ;
detected by the mechanism . transitioning execution of the access attempt from the

14. The method of claim 2 , wherein the mechanism 45 separation kernel hypervisor to the dedicated Virtual
includes subcomponents and / or subroutines configured for ization assistance layer in a manner isolated from the
monitoring actions of the guest operating system including suspect guest operating system ;
reporting upon of suspect code , data , execution flow , and / or transitioning execution of the access attempt from the
resource utilization at runtime , as detected by the mecha dedicated Virtualization assistance layer to a detection
nism . mechanism ;

15. The method of claim 2 , further comprising : analyzing by the detection mechanism behavior of the
enforcing policy for activities monitored by the mecha suspect guest operating system and determining a

nism within the guest operating system virtual machine policy decision ;
protection domain . passing the policy decision and transitioning execution of

16. The method of claim 2 , wherein the virtualization 55 the access attempt from the detection mechanism to the
assistance layer virtualizes portions of the hardware plat dedicated Virtualization assistance layer ; and
form resources including a virtual CPU / ABI , a virtual chip passing the policy decision and transitioning execution of
set ABI , a set of virtual devices , a set of physical devices , the access attempt from the dedicated Virtualization
and firmware exported to the corresponding guest operating assistance layer to the separation kernel hypervisor .
system . wherein the separation kernel hypervisor performs

17. The method of claim 2 , further comprising : enforcement or executes an action based on the policy
trapping access to memory assigned to a guest operating decision .

system ; and 23. The method of claim 18 , further comprising : allowing
passing the trapped memory access to the mechanism via the Virtual machine to execute a single instruction ; and

the virtualization assistance layer . 65 returning control to a Virtualization assistance layer (VAL)
18. A method for processing information securely , the within a protection domain associated with the Virtual

method comprising : machine .

50

60

US 10,789,105 B2
27 28

24. The method of claim 18 , further comprising : suspect and / or malicious action , and / or in a position to
detecting in each of the domains their own malicious code maliciously affect a resource under control of a hyper

as a function of isolated domains ; and visor guest .
enabling viewing the virtual hardware platform within 27. The method of claim 18 , further comprising :

each domain as separate hardware by a guest such that 5 trapping access to memory assigned to a guest operating
bypass is prevented . system ; and

25. The method of claim 18 , further comprising : passing the trapped memory access to the detection executing one or more detection mechanisms that include mechanism via a virtualization assistance layer . subcomponents and / or subroutines configured for 28. The method of claim 18 , further comprising : monitoring actions of the guest operating system 10 hosting one or more detection mechanisms , each which including observation , detection , and / or tracking of
code , data , execution flow , and / or resource utilization may be different from each other , that execute Within

one or more of the plurality of guest operating system at runtime .
26. The method of claim 25 , further comprising : Virtual machine protection domains via the separation
monitoring for suspect code via the one or more detection 15 kernel hypervisor , wherein the separation kernel hyper

mechanisms ; and visor is configured to host the one or more detection
mechanisms isolated from malicious code though hav ascertaining where code is at least one of operating ,

hiding , halted , stalled , infinitely looping , making no ing high temporal and spatial locality to the malicious
code . progress beyond intended execution , stored , once - ac

tive , extinct and / or not present but having performed

