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SYSTEMS AND METHODS INVOLVING
FEATURES OF HARDWARE
VIRTUALIZATION, HYPERVISOR, APIS OF
INTEREST, AND/OR OTHER FEATURES

CROSS-REFERENCE TO RELATED
APPLICATION INFORMATION

This application is a continuation of U.S. application Ser.
No. 14/970,455, filed Dec. 15, 2015, which claims priority
to U.S. application Ser. No. 14/714,233, filed May 15, 2015,
now U.S. Pat. No. 9,213,840, that claims benefit/priority to
the provisional patent application No. 61/993,291, filed May
15, 2014, all of which being incorporated herein by refer-
ence in entirety. This application is also a continuation-in-
part of application Ser. No. 15/207,252, filed Jul. 11, 2016,
published as 2017/0068560 A1, which is a continuation of
application Ser. No. 14/714,125, filed May 15, 2015, now
U.S. Pat. No. 9,390,267, which claims benefit/priority to the
provisional patent application No. 61/993,290, filed May 15,
2014; application Ser. No. 15/207,252 is also a continuation-
in-part of application Ser. No. 14/955,018, filed Nov. 30,
2015, now U.S. Pat. No. 9,648,045, which is a continuation
of application Ser. No. 14/714,241, filed May 15, 2015, now
U.S. Pat. No. 9,203,855, which claims benefit/priority to the
provisional patent application No. 61/993,296, filed May 15,
2014; all of which being incorporated herein by reference in
entirety.

BACKGROUND

Field

Innovations herein pertain to computer software and
hardware, computer virtualization, computer security and/or
data isolation, and/or the use of a separation kernel hyper-
visor (and/or hypervisor), such as to detect and/or process
information, including notification(s) and other processing
regarding code execution by guest software and which may
include or involve guest operating system(s).

Description of Related Information

In computer systems with hypervisors supporting a guest
operating system, there exist some means to monitor the
guest operating system for malicious or errant activity.

In a virtualized environment, running under control of a
hypervisor, a suitably authorized guest may be allowed to
monitor the activities of another guest. Among the reasons
for such monitoring are debugging and security. However,
previous approaches may include various drawbacks, such
as allowing guests to poll the memory and other information
within the monitored guest.

However, due to the constantly evolving nature of mali-
cious code, such systems face numerous limitations in their
ability to detect and defeat malicious code. One major
limitation is the inability of a hypervisor to defend itself
against malicious code; e.g., the particular hypervisor may
be subverted by malicious code and/or may allow malicious
code in a guest operating system to proliferate between a
plurality of guest operating systems in the system.

To solve that issue, the motivation and use of a Separation
Kernel Hypervisor is introduced in environments with mali-
cious code. The Separation Kernel Hypervisor, unlike a
hypervisor, does not merely support a plurality of Virtual
Machines (VMs), but supports more secure, more isolated
mechanisms, including systems and mechanisms to monitor
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and defeat malicious code, where such mechanisms are
isolated from the malicious code but are also have high
temporal and spatial locality to the malicious code. For
example, they are proximate to the malicious code, but
incorruptible and unaffected by the malicious code.

Furthermore the Separation Kernel Hypervisor is
designed and constructed from the ground-up, with security
and isolation in mind, in order to provide security and
certain isolation between a plurality of software entities (and
their associated/assigned resources, e.g., devices, memory,
etc.); by mechanisms which may include Guest Operating
System Virtual Machine Protection Domains (secure entities
established and maintained by a Separation Kernel Hyper-
visor to provide isolation in time and space between such
entities, and subsets therein, which may include guest oper-
ating systems, virtualization assistance layers, and detection
mechanisms); where such software entities (and their asso-
ciated assigned resources, e.g., devices, memory, etc., are
themselves isolated and protected from each other by the
Separation Kernel Hypervisor, and/or its use of hardware
platform virtualization mechanisms.

Additionally, where some hypervisors may provide
mechanisms to communicate between the hypervisor and
antivirus software, or monitoring agent, executing within a
guest operating system, the hypervisor is not able to prevent
corruption of the monitoring agent where the agent is within
the same guest operating system; or the guest operating
system (or any subset thereof, possibly including the anti-
virus software, and/or monitoring agent) may be corrupted
and/or subverted.

Finally, while some known systems and methods include
implementations involving virtualized assistance layers and
separation kernel hypervisors to handle various malicious
code intrusions, however the present disclosure is directed to
innovations for handling and/or intercepting various certain
specified attacks, such as those related to APIs of interest.

Overview of Some Aspects

Systems, methods, computer readable media and articles
of manufacture consistent with innovations herein are
directed to computer virtualization, computer security and/
or data isolation, and/or the use of a Separation Kernel
Hypervisor (and/or hypervisor), such as to detect, process
information and/or provide notification regarding code
execution associated with specified interfaces or memory
locations, such as Application Program Interfaces (APIs) of
interest, by guest software and which may include or involve
guest operating system(s). Information may further be
obtained regarding the context of such code execution. Here,
for example, certain implementations may include a suitably
authorized guest running under control of a hypervisor and
involving features of being immediately notified of another
guest executing code at specified physical memory
location(s) or involving specified interfaces. Upon access,
the monitoring guest may be provided with execution con-
text information from the monitored guest.

According to some illustrative implementations, innova-
tions herein may utilize and/or involve a separation kernel
hypervisor which may include the use of a guest operating
system virtual machine protection domain, a virtualization
assistance layer, and/or a code execution detection mecha-
nism (which may be proximate in temporal and/or spatial
locality to subject code, but isolated from it). Such imple-
mentations may be utilized, inter alia, for detection and/or
notification of code execution by guest software involving
specified memory locations or interfaces, such as APIs of
interest. In some implementations, for example, a suitably
authorized guest may obtain immediate notification if
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another guest it is monitoring executes code calling, involv-
ing or otherwise associated with the specified locations or
interfaces. Upon such access, the monitoring guest may be
provided with execution context information from the moni-
tored guest.

Further, the monitored guest may be paused until the
monitoring guest provides a new execution context to the
monitored guest, whereupon the monitored guest resumes
execution with the new context.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
inventions, as described. Further features and/or variations
may be provided in addition to those set forth herein. For
example, the present inventions may be directed to various
combinations and subcombinations of the disclosed features
and/or combinations and subcombinations of several further
features disclosed below in the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which constitute a part of
this specification, illustrate various implementations and
features of the present innovations and, together with the
description, explain aspects of the inventions herein. In the
drawings:

FIG. 1 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 2A is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 2B is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 2C is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 2D is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 3 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 4 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 5 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIGS. 6A-6B are representative sequence/flow diagrams
illustrating exemplary systems, methods and separation ker-
nel hypervisor architecture consistent with certain aspects
related to the innovations herein.

FIGS. 7A-7B are representative sequence/flow diagrams
illustrating exemplary systems, methods and separation ker-
nel hypervisor architecture consistent with certain aspects
related to the innovations herein.

FIG. 8 is a representative sequence diagram illustrating
exemplary systems, methods, and separation kernel hyper-
visor architecture consistent with certain aspects related to
the innovations herein.

FIG. 9 is a representative flow diagram illustrating exem-
plary methodology and separation kernel hypervisor pro-
cessing consistent with certain aspects related to the inno-
vations herein.
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FIG. 10 is an exemplary state diagram illustrating aspects
of memory management unit processing in conjunction with
the hypervisor and VAL, consistent with certain aspects
related to the innovations herein.

DETAILED DESCRIPTION OF ILLUSTRATIVE
IMPLEMENTATIONS

Reference will now be made in detail to the inventions
herein, examples of which are illustrated in the accompa-
nying drawings. The implementations set forth in the fol-
lowing description do not represent all implementations
consistent with the inventions herein. Instead, they are
merely some examples consistent with certain aspects
related to the present innovations. Wherever possible, the
same reference numbers are used throughout the drawings to
refer to the same or like parts.

To solve one or more of the drawbacks mentioned above
and/or other issues, implementations herein may relate to
various detection, monitoring, notification(s), interception
and/or prevention techniques, systems, and mechanisms, as
may be used with a separation kernel hypervisor. Among
other things, such systems and methods may include and/or
involve the use of the monitoring of the entirety, or suitably
configured subset thereof of guest operating system
resources including virtualized resources, and/or “physical”
or “pass-through” resources. Examples include monitoring
of the virtual CPUs, its memory access attempts to execute
code at specified memory or involving specified interfaces,
such as monitoring APIs of interest.

With regard to certain implementations, in order to per-
form such advanced monitoring in a manner that maintains
suitable performance characteristics in a system that may
include a separation kernel hypervisor and a guest operating
system, mechanisms such as a separation kernel hypervisor,
a guest operating system virtual machine protection domain,
virtual machine assistance layer, and/or code execution
detection mechanisms, may be used to monitor a monitored
guest on a corresponding guest operating system.

Systems and methods are disclosed for detecting and/or
notifying executed code by guest software and which may
include or involve guest operating system(s). According to
some implementations, for example, a suitably authorized
guest running under control of a hypervisor may request that
it be notified of another guest executing code at a specified
physical memory location. Features of real-time notification
of, and action(s) regarding obtaining an execution context
are provided to the monitoring guest upon access by the
monitored guest to executed code at specific physical
memory locations.

Here, monitoring may also be performed in a timely and
expeditious fashion, including by virtue of the monitoring
context being proximate (in time and space) to the moni-
tored context. Additionally, isolation may be maintained
between the monitor and monitored context. Further, such
monitoring may be performed by mechanisms providing a
wide and comprehensive set of monitoring techniques and
resources under monitoring, inter alia, so as to monitor
against threats which are multi-lateral and/or multi-dimen-
sional in nature.

According to some implementations, for example, a
hypervisor is configured to allow a guest (monitoring guest)
to request notifications of code execution by another guest
(monitored guest). The monitoring guest requests that a set
of physical memory locations be monitored for code execu-
tion, and the execution context data be returned on such
access. The Virtualization Assistance Layer (VAL) in the
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Monitored Guest maps (e.g., remaps, unmaps) those physi-
cal APIs containing those locations as non-executable. This
is distinct from the Monitored Guest’s notion of API map-
pings. When software in the Monitored Guest attempts to
execute code in such an API, control transitions to the VAL.
The VAL determines that the address being executed is part
of the set to be monitored. The VAL notifies the monitoring
guest of the access and provides the monitoring guest with
the execution context data as configured for that access. The
Monitored Guest is allowed to continue operation as though
the API has always been mapped executable.

According to some implementations, for example, a Sepa-
ration Kernel Hypervisor (SKH) ensures the isolation of
multiple guest Operating Systems each in its own Virtual
Machine (VM). The SKH may implement a mechanism
whereby a suitably authorized Monitoring Guest sends a list
of memory locations to be monitored for another guest.
Furthermore, each of the physical memory locations may be
associated with a specification for the execution context
information to be obtained upon access to the memory
location(s). The SKH may send to the other guests the
specification for the execution context information associ-
ated with the list of memory locations. A Virtualization
Assistance Layer of software runs within the same protec-
tion domain as the guest Virtual Machine but is not directly
accessible by the guest. A Virtualization Assistance Layer
implements a virtual motherboard containing a virtual CPU
and memory. The VAL and mechanism may process excep-
tions caused by non-executable API execution attempts by
its associated guest virtual machine. The VAL may deter-
mine whether the memory address accessed is one of those
specified in the list of physical memory locations sent to
another guest. The VAL may send a notification of the
memory access and associated context information to the
requesting guest.

Systems and methods are disclosed for providing secure
information monitoring. According to some implementa-
tions, for example, such information monitoring may be
provided from a context not able to be bypassed, tampered
with or by the context under monitoring. Here, monitoring
may also be performed in a timely and expeditious fashion,
including by virtue of the monitoring context being proxi-
mate (in time and space) to the monitored context. Addi-
tionally, isolation may be maintained between the monitor
and monitored context. Further, such monitoring may be
performed by mechanisms providing a wide and compre-
hensive set of monitoring techniques and resources under
monitoring, inter alia, so as to monitor against threats which
are multi-lateral and/or multi-dimensional in nature.

In one exemplary implementation, there is provided a
method of secure domain isolation, whereby an execution
context within a virtual machine may monitor another
execution context within that virtual machine or another
virtual machine, in a manner maintaining security and
isolation between such contexts. Innovations herein also
relate to provision of these contexts such that neither/none
can necessarily corrupt, affect, and/or detect the other.

Moreover, systems and methods herein may include and/
or involve a virtual machine which is augmented to form a
more secure virtual representation of the native hardware
platform for a particular execution context. And such imple-
mentations may also include a virtual representation which
is augmented with a wide and deep variety of built-in
detection, notification(s) and monitoring mechanisms,
wherein secure isolation between the domains or virtual
machines is maintained.
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In general, aspects of the present innovations may
include, relate to, and/or involve one or more of the follow-
ing aspects, features and/or functionality. Systems and meth-
ods herein may include or involve a separation kernel
hypervisor. According to some implementations, a software
entity in hypervisor context that partitions the native hard-
ware platform resources, in time and space, in an isolated
and secure fashion may be utilized. Here, for example,
embodiments may be configured for partitioning/isolation as
between a plurality of guest operating system virtual
machine protection domains (e.g., entities in a hypervisor
guest context).

The separation kernel hypervisor may host a plurality of
guest operating system virtual machine protection domains
and may host a plurality of mechanisms including detection
mechanisms which may execute within such guest operating
system virtual machine protection domains. The detection
mechanisms may execute in an environment where guest
operating systems cannot tamper with, bypass, or corrupt the
detection mechanisms. The detection mechanisms may also
execute to increase temporal and spatial locality of the guest
operating system’s resources. Further, in some implemen-
tations, the detection mechanisms may execute in a manner
that is not interfered with, nor able to be interfered with, nor
corrupted by other guest operating system virtual machine
protection domains including their corresponding guest
operating systems. The detection mechanisms include, but
are not limited to, performing one or more of the following
actions on guest operating systems related to guest code
execution at specified memory location(s), such as access to
APIs of interest including sensitive memory regions, and/or
actions in response thereto.

Where monitoring may include, but is not limited to,
actions pertaining to observation, detection, mitigation, pre-
vention, tracking, modification, reporting upon, of memory
access within and/or by a guest operating system and/or by
entities configured to perform such monitoring for purposes
which may be used to ascertain, and assist in ascertaining,
when suspect code, and/or code under general monitoring or
instrumented execution/debugging, unit test, regression test,
or similar scrutiny, is or may be operating at specified
memory location(s); or, therein, hiding and/or concealed,
halted, stalled, infinitely looping, making no progress
beyond its intended execution, stored and/or present (either
operating or not), once-active (e.g., extinct/not present, but
having performed suspect and/or malicious action), and
otherwise having been or being in a position to adversely
and/or maliciously affect the hypervisor guest, or resource
under control of the hypervisor guest.

The term “map” or “mapped” shall broadly mean: setting
a memory page with any of the following properties applied
to it (as set and enforced by the hardware MMU via the
SKH): mapped (present), executable, readable, writeable.

The term “unmap” or “unmapped” shall broadly mean:
setting a memory page with any of the following properties
applied to it (as set and enforced by the hardware MMU via
the SKH): unmapped (non-present), non-executable, non-
readable, non-writeable.

FIG. 1 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 1 also shows a separation kernel hypervisor execut-
ing on native hardware platform resources, e.g., where the
separation kernel hypervisor may support the execution,
isolated and partitioned in time and space, between a plu-
rality of guest operating system protection domains. Here, a
guest operating system domain may be an entity that is
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established and maintained by the separation kernel hyper-
visor in order to provide a secure and isolated execution
environment for software. Referring to FIG. 1, a separation
kernel hypervisor 100 is shown executing on top of the
native hardware platform resources 600. Further, the sepa-
ration kernel hypervisor 100 supports the execution of a
guest operating system virtual machine protection domain
200.

The separation kernel hypervisor 100 may also support
the execution of a plurality of guest operating system virtual
machine protection domains, e.g., 200 to 299 in FIG. 1.

In some implementations, the separation kernel hypervi-
sor may provide time and space partitioning in a secure and
isolated manner for a plurality of guest operating system
virtual machine protection domains, e.g., 200 to 299 in FIG.
1. Such features may include rigid guarantees on scheduling
resources, execution time, latency requirements, and/or
resource access quotas for such domains.

According to some implementations, in terms of the
sequence of establishment, after the native hardware plat-
form resources 600 boot the system, execution is transi-
tioned to the separation kernel hypervisor 100. The separa-
tion kernel hypervisor 100 then creates and executes a guest
operating system virtual machine protection domain 200, or
a plurality of guest operating system virtual machine pro-
tection domains, e.g., 200 to 299 in FIG. 1. Some imple-
mentations of doing so consonant with aspects related to
implementations herein are set forth in PCT Application No.
PCT/2012/042330, filed 13 Jun. 2012, published as
WO02012/177464A1, and U.S. patent application Ser. No.
13/576,155, filed Dec. 12, 2013, published as US2014/
0208442 Al, which are incorporated herein by reference in
entirety.

Consistent with aspects of the present implementations, it
is within a guest operating system virtual machine protection
domain that a guest operating system may execute. Further,
it is within a guest operating system virtual machine pro-
tection domain that code execution detection mechanisms
may also execute, e.g., in a fashion isolated from any guest
operating system which may also execute within that same
guest operating system virtual machine protection domain,
or in other guest operating system virtual machine protection
domains.

FIG. 2A is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
FIG. 2A also shows a separation kernel hypervisor executing
on native hardware platform resources (where the native
platform resources may include a plurality of CPUs, buses
and interconnects, main memory, Network Interface Cards
(NIC), Hard Disk Drives (HDD), Solid State Drives (SSD),
Graphics Adaptors, Audio Devices, Mouse/Keyboard/Point-
ing Devices, Serial I/O, USB, and/or Raid Controllers, etc.),
where the separation kernel hypervisor may support the
execution, isolated and/or partitioning in time and space,
between a plurality of guest operating system protection
domains. Here, some implementations may involve a guest
operating system protection domains which may contain a
guest operating system, and/or a virtualization assistance
layer (which itself may contain code execution detection
mechanisms).

FIG. 2A shows both a guest operating system 300, and a
virtualization assistance layer 400 executing within the same
guest operating system virtual machine protection domain
200. In some implementations, the virtualization assistance
layer 400 may provide the execution environment for the
code execution detection mechanism(s) 500.
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Further, the virtualization assistance layer 400 may assist
the separation kernel hypervisor in virtualizing portions of
the platform resources exported to a given guest operating
system (e.g., Virtual CPU/ABI, Virtual chipset ABI, set of
virtual devices, set of physical devices, and/or firmware,
etc., assigned to a given guest operating system 300 and/or
guest virtual machine protection domain 200). Some sys-
tems and methods herein utilizing such virtualization assis-
tance layer may include or involve (but are not strictly
limited to) a self-assisted virtualization component, e.g.,
with an illustrative implementation shown in FIG. 2D.

The guest operating system 300 and the virtualization
assistance layer 400 (which may include code execution
detection mechanism(s) 500) are isolated from each other by
the separation kernel hypervisor 100. In implementations
herein, the guest operating system 300 cannot tamper with,
bypass, or corrupt the virtualization assistance layer 400, nor
can it tamper with, bypass or corrupt the code execution
detection mechanisms 500. Since the code execution detec-
tion mechanisms 500 are isolated from the guest operating
system 300, the code execution detection mechanisms 500
are able to act on a portion of (or the entirety, depending on
policy and configuration) of the guest operating system 300
and its assigned resources in a manner that is (a) is trans-
parent to the guest operating system 300 and (b) not able to
be tampered with by the guest operating system 300 or its
assigned resources (e.g., errant and/or malicious device
DMA originated by devices assigned to the guest operating
system 300), and (c) not able to be bypassed by the guest
operating system 300. For example, the code execution
detection mechanisms 500, within the given virtualization
assistance layer 400, may read and/or modity portions of the
guest operating system 300 and resources to which the Guest
Operating System 300 has been granted access (by the
Separation Kernel Hypervisor 100), while none of the Guest
Operating System 300 nor the resources to which has access
may modify any portion of the code execution detection
mechanisms 500 and/or virtualization assistance layer 400.

By having a given virtualization assistance layer 400 and
a given Guest Operating System 300 within the within the
same Guest Virtual Machine Protection Domain 200, iso-
lated from each other by the Separation Kernel Hypervisor
100, various benefits, non-penalties, or mitigation of penal-
ties, such as the following, may be conferred to the system
at large and to the code execution detection mechanisms
500:

Increased Spatial and Temporal Locality of Data

By being contained within the same Guest Virtual
Machine Protection Domain 300, the virtualization assis-
tance layer 200, and/or corresponding private (local) code
execution detection mechanisms 500 existing in that same
Guest Virtual Machine Protection Domain 300, have greater
access, such as in time and space, to the resources of the
Guest Operating System 300 than would entities in other
guest virtual machine protection domains or other Guest
Operating Systems; e.g., the subject guest virtual machine
protection domain has faster responsiveness and/or has
lower latency than if processed in another guest virtual
machine protection domain. Though such resources are still
accessed in a manner that is ultimately constrained by the
Separation Kernel Hypervisor 100, there is less indirection
and time/latency consumed in accessing the resources:

In one illustrative case, the code execution detection
mechanisms 500 private (local) to a given Guest virtualiza-
tion assistance layer 200 and its associated Guest Operating
System 300 can react faster to code execution physical
memory access issues, and not need to wait on actions from
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another entity in another guest virtual machine protection
domain 200 or guest operating system 300 (which may
themselves have high latency, be corrupted, unavailable,
poorly scheduled, or subject to a lack of determinism and/or
resource constraint, or improper policy configuration, etc.).

Here, for example, if a Guest Operating System 300 was
to monitor a Guest Operating System 399 located within
another Guest Virtual Machine Protection Domain 107, it
would encounter penalties in time and space for accessing
that Guest Operating System and its resources; furthermore,
there is increased code, data, scheduling, and/or security
policy complexity to establish and maintain such a more
complex system; such increases in complexity and resources
allow for more bugs in the implementation, configuration,
and/or security policy establishment and maintenance.

Scalability and Parallelism

Each Guest Operating System 300 may have a virtual-
ization assistance layer 200, and code execution detection
mechanisms 500, that are private (local) to the Guest Virtual
Machine Protection Domain 200 that contains both that
Guest Operating System 300, the virtualization assistance
layer 400, and the code execution detection mechanisms.

Fault Isolation, Low Level of Privilege, Defense in Depth,
Locality of Security Policy, and Constraint of Resource
Access

Here, for example, relative to the extremely high level of
privilege of the separation kernel hypervisor 100, the virtu-
alization assistance layer 400, the code execution detection
mechanism 500, and the Guest Operating System 300 within
the same Guest Virtual Machine Protection Domain 200 are
only able to act on portions of that Guest Virtual Machine
Protection Domain 200 (subject to the Separation Kernel
Hypervisor 100) and not portions of other Guest Virtual
Machine Protection Domains (nor their contained or
assigned resources).

Subject to the isolation guarantees provided by the Sepa-
ration Kernel Hypervisor 100, the virtualization assistance
layer 400 accesses only the resources of the Guest Operating
System 300 within the same Guest Virtual Machine Protec-
tion Domain 200 and that virtualization assistance layer 400
is not able to access the resources of other Guest Operating
Systems.

As such, if there is corruption (bugs, programmatic errors,
malicious code, code and/or data corruption, or other faults,
etc.) within a given Guest Virtual Machine Protection
Domain 200 they are isolated to that Guest Virtual Machine
Protection Domain 200.

They do not affect other Guest Virtual Machine Protection
Domains 299 nor do they affect the Separation Kernel
Hypervisor 100. This allows the Separation Kernel Hyper-
visor to act upon (e.g., instantiate, maintain, monitor, create/
destroy, suspend, restart, refresh, backup/restore, patch/fix,
import/export etc.) a plurality of Guest Virtual Machine
Protection Domains 200 and their corresponding virtualiza-
tion assistance layer 400 and code execution detection
mechanisms 500 (or even Guest Operating Systems 300)
without corruption of the most privileged execution context
of the system, the Separation Kernel Hypervisor 100.

Similarly, the faults that may occur within a virtualization
assistance layer 400 or the code execution detection mecha-
nisms 500 (e.g., by corruption of software during delivery)
are contained to the Guest Virtual Machine Protection
Domain 200 and do not corrupt any other Guest Virtual
Machine Protection Domain; nor do they corrupt the Sepa-
ration Kernel Hypervisor 100.

Furthermore, the faults within a Guest Operating System
300 are contained to that Guest Operating System 300, and

10

15

20

25

30

35

40

45

50

55

60

65

10

do not corrupt either the virtualization assistance layer 400
or the code execution detection mechanisms 500.

FIG. 2B is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.

FIG. 2B illustrates a variation of FIG. 2A where a minimal
runtime environment 398 executes in place of a (larger/more
complex) guest operating system. Here, a minimal runtime
environment may be an environment such as a VDS (virtual
device server), and/or a LSA (LynxSecure application), etc.
The minimal runtime environment 398 can be used for
policy enforcement related to activities reported by a virtu-
alization assistance layer and/or code execution detection
mechanisms; such an environment is also monitored by a
virtualization assistance layer and/or code execution detec-
tion mechanisms private to the guest operating system
virtual machine protection domain containing the minimal
runtime environment.

FIG. 2C is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
FIG. 2C illustrates a variation of FIG. 2A and FIG. 2B where
a minimal runtime environment executes in place of a
(larger/more complex) guest operating system but without a
virtualization assistance layer or code execution detection
mechanisms.

FIG. 2D is a block diagram illustrating an exemplary
system and Separation Kernel Hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
FIG. 2D illustrates a variation of FIG. 2 where a Self-
Assisted Virtualization (SAV) mechanism is used to imple-
ment the virtualization assistance layer.

FIG. 3 is a block diagram illustrating an exemplary
system and separation kernel Hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
FIG. 3 also shows certain detailed aspects with respect to
FIGS. 2A/B, where the guest operating system may attempt
to access APIs of interest at specified memory locations that
may include a plurality of code and/or data which may
constitute execution contexts which may include the follow-
ing types of software including any/all of which malicious
code may attempt to corrupt or utilize: malicious code,
anti-virus software, corrupted anti-virus software, integrity
checkers, corrupted integrity checkers, rootkits, return ori-
ented rootkits, etc. The inventions herein are not limited to
memory access attempts to malicious code and is discussed
below as illustrative examples.

For example, in FIG. 3, if antivirus software 2001
executes within a given guest operating system 300, and
such anti-virus software 2001 is itself corrupted, and itself
executes malicious code 2002 or fails to prevent the execu-
tion of malicious code 2002, the corruption is constrained to
the given guest operating system 300, and the corruption
may be acted upon (e.g., detected, notified, prevented,
mitigated, reported, tracked, modified/patched, suspended,
halted, restarted, eradicated, etc.) by the code execution
detection mechanisms 500 that monitors/acts on code execu-
tion in specified memory location(s) such as APIs of interest,
and is provided within the same guest virtual machine
protection domain 200 as the guest operating system 300.

With regard to other exemplary implementations, as may
be appreciated in connection with FIG. 3, if an integrity
checker 2003 (e.g., a “security” component or driver within
a guest operating system 300) executes within a given guest
operating system 300, and such integrity checker 2003 is
itself corrupted into a corrupted integrity checker 2004 (and
executes malicious code, or fails to prevent the execution of
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malicious code), the corruption is constrained to the given
guest operating system 300, and the corruption may be acted
upon (e.g., detected, notified, prevented, mitigated, reported,
tracked, modified/patched, suspended, halted, restarted,
eradicated, etc.) by the code execution detection mecha-
nisms 500 that monitors/acts on code executed at the speci-
fied memory location(s), and is provided within the same
guest virtual machine protection domain 200 as the guest
operating system 300.

With regard to another illustration, again with reference to
FIG. 3, if a rootkit 2006 executes within the guest operating
system 300 (e.g., by having fooled the Integrity Checker
2003 by the nature of the root kit being a return oriented
rootkit 2007, which are designed specifically to defeat
integrity checkers) the corruption is constrained to the given
guest operating system 300, and the corruption may be acted
upon (e.g., detected, notified, prevented, mitigated, reported,
tracked, modified/patched, suspended, halted, restarted,
eradicated, etc.) by the code execution detection mecha-
nisms 500 that monitors/acts on code execution in specified
memory location(s), and is provided within the same guest
virtual machine protection domain 200 as the guest operat-
ing system 300.

In another example, again with respect to FIG. 3, if a
polymorphic virus 2005 (an entity designed to defeat integ-
rity checkers, among other things) executes within the guest
operating system 300 (e.g., by having fooled the integrity
checker 2003, or by having the a corrupted integrity checker
2003) the corruption is constrained to the given guest
operating system 300, and the corruption may be acted upon
(e.g., detected, notified, prevented, mitigated, reported,
tracked, modified/patched, suspended, halted, restarted,
eradicated, etc.) by the code execution detection mecha-
nisms 500 that monitors/acts on code execution in specified
memory location(s), and is provided within the same guest
virtual machine protection domain 200 as the guest operat-
ing system 300.

In general, referring to FIG. 3, if a malicious code 2000
executes within the guest operating system 300 (e.g., by
means including, but not limited strictly to bugs, defects, bad
patches, code and/or data corruption, failed integrity check-
ers, poor security policy, root kits, viruses, trojans, poly-
morphic viruses, and/or other attack vectors and/or sources
of instability within the guest operating system 300 etc.), the
corruption is constrained to the given guest operating system
300, and the corruption may be acted upon (e.g., detected,
notified, prevented, mitigated, reported, tracked, modified/
patched, suspended, halted, restarted, eradicated, etc.) by the
code execution detection mechanisms 500 that monitors/acts
on code execution in specified memory location(s), and is
provided within the same guest virtual machine protection
domain 200 as the guest operating system 300.

Furthermore, in the examples above and other cases, such
corruption of the guest operating system 300, and the
resources to which it has access, do not corrupt the code
execution detection mechanisms 500, the virtualization
assistance layer 400, the guest virtual machine protection
domain 200, or plurality of other such resources in the
system (e.g., other guest virtual machine protection domains
299), or the separation kernel hypervisor 100.

In some implementations, the code execution detection
mechanisms 500, in conjunction with the virtualization
assistance layer 400, and the separation kernel hypervisor
100, may utilize various methods and mechanisms such as
the following, given by way of illustration and example but
not limitation, to act with and upon its associated guest
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operating system 300 the resources assigned to the guest
operating system 300, and the systems behavior generated
thereto and/or thereby.

FIG. 4 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
For example, FIG. 4 illustrates resources that may be
assigned to a Guest Operating System 300 consistent with
certain aspects related to the innovations herein.

FIG. 4 shows an illustrative extension of either FIG. 2,
and/or FIG. 3, where the guest operating system may have
a plurality of code and/or data which may constitute execu-
tion contexts which may include the following types of
software mechanisms and/or constructs user space code and
data that may be associated with an unprivileged mode of
CPU code execution (as used herein ‘user space’ being an
execution environment of low privilege, versus an execution
environment of high privilege, such as kernel space), which
may contain processes, tasks, and/or threads, etc.; kernel
space code and data, that may be associated with a privi-
leged mode of CPU execution, which may contain tasks,
threads, interrupt handlers, drivers, etc.; shared code and
data, that may be associated with either privileged and/or
unprivileged modes of CPU execution, and which may
include signal handlers, Inter Process Communication
Mechanisms (IPC), and/or user/kernel mode APIs. It also
may include main memory that may be accessed by the
CPU, by DMA from devices, or both. It also shows protec-
tion mechanisms including hardware CPU virtualization
protection mechanisms, and hardware virtualization DMA
protection mechanisms. Code execution detection mecha-
nisms 500, 599 such as APIs of interest mechanisms may
reside within corresponding Virtualization Assistance Lay-
ers 400, 499

Such resources, explained here by way of example, not
limitation, may include a subset of (a) hardware platform
resources 600, virtualized hardware platform resources
(hardware platform resources 600 subject to further con-
straint by the separation kernel hypervisor 100, the hardware
CPU virtualization protection mechanisms 602, and/or the
hardware virtualization DMA protection mechanisms 601),
and execution time on a CPU 700 (or a plurality of CPUs,
e.g., 700 to 731) (scheduling time provided by the separation
kernel hypervisor 100), and space (memory 900 provided by
the separation kernel hypervisor) within which the guest
operating system 300 may instantiate and utilize constructs
of the particular guest operating system 300, such as a
privileged (“kernel” space) modes of execution, non-privi-
leged (“user” space) modes of execution, code and data for
each such mode of execution (e.g., processes, tasks, threads,
interrupt handlers, drivers, signal handlers, inter process
communication mechanisms, shared memory, shared APIs
between such entities/contexts/modes, etc.

FIG. 5 is a block diagram illustrating an exemplary
system and separation kernel hypervisor architecture con-
sistent with certain aspects related to the innovations herein.
FIG. 5 shows an illustrative implementation as may be
associated with FIG. 2, FIG. 3, and/or FIG. 4, where the
code execution detection mechanisms, that may be within
the virtualization assistance layer, may include the following
monitoring systems and mechanisms: memory monitor, an
instruction monitor, etc. FIG. 5 also illustrates import/export
mechanism that may be used by a virtualization assistance
layer and/or code execution detection mechanisms to com-
municate between themselves and other virtualization assis-
tance layer and/or code execution detection mechanisms in
other guest operating system virtual machine protection
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domains (subject to the security policies established, main-
tained, and enforced by the separation kernel hypervisor), in
an isolated, secure, and even monitored fashion.

FIG. 5 illustrates mechanism and resources that may be
used by the code execution detection mechanisms 500 to
monitor a guest operating system 300. Such mechanisms
and resources may include a memory monitor 501, and an
instruction monitor 502.

The virtualization assistance layer 400 and/or the code
execution detection mechanisms 500 may also use an export
API 509 and/or an import API 599 (as may be configured
and governed by the separation kernel hypervisor 100), in
order to provide secure communication between a plurality
of virtualization assistance layers (e.g., virtualization assis-
tance layers 400 to 499) and/or a plurality of code execution
detection mechanisms (e.g., code execution detection
mechanisms 500 to 599).

Innovations set forth herein, as also described in addi-
tional detail elsewhere herein via notation to the reference
numerals in the description below, reside around various
interrelated functionality of the following features or
aspects: (i) a separation kernel hypervisor that ensures the
isolation of multiple guest operating systems each in its own
virtual machine (VM); (ii) a separation kernel hypervisor as
in (i) that implements a mechanism whereby a suitably
authorized guest is configured to send a list of physical
memory locations to be watched to another guest; (iii) a
separation kernel hypervisor as in (i) that implements a
mechanism whereby each of the physical memory locations
in (ii) is associated with a specification for what execution
context information is to be obtained on access to that
location; (iv) a separation kernel hypervisor as in (i) that
implements a mechanism whereby the specifications asso-
ciated with the list of memory locations in (ii) can be sent to
the other guest as in (ii); (v) a virtualization assistance layer
(VAL) of software that runs within the same protection
domain as the guest Virtual Machine but is not directly
accessible by the guest; (vi) a virtualization assistance layer
as in (vi) that implements a virtual motherboard containing
a virtual CPU and memory; (vii) a VAL as in (vi) that
implements a mechanism to map physical memory pages as
non-executable; (viii) a VAL as in (vi) that processes excep-
tions caused by non-executable page execution attempts by
its associated guest virtual machine; (ix) a VAL as in (vi) that
implements a mechanism to determine whether the address
accessed is one of those specified in (ii); (x) a VAL as in (vi)
that can send a notification of the memory access and
associated context information as in (iii) to the requesting
guest; (xi) a VAL as in (vi) that can pause the execution of
its virtual machine; and/or (xii) a VAL as in (vi) that can
resume the execution of its virtual machine.

Systems and mechanisms, and example embodiments, of
the code execution detection mechanisms 500 may include:

1. Monitoring of CPU (and CPU cache based) guest OS
memory access (originated from a plurality of resources
available to the guest operating system 300 (in FIGS. 3 and
4), including CPUs and/or caches assigned and/or associated
with such), as directed by execution and resources (shown in
FIG. 3) within the guest OS 300. For memory assigned to the
guest OS 300, such as a subset of the main memory 900 (in
FIGS. 2, 3, 4, and 5) the separation kernel hypervisor 100
may trap access to that memory, and then pass associated
data of that trap to the virtualization assistance layer 400.
The virtualization assistance layer 400 may then pass the
associated data of that trap to the code execution detection
mechanisms 500.
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The virtualization assistance layer 400, code execution
detection mechanisms 500, and/or the separation kernel
hypervisor 100 may use feedback mechanisms between
themselves to recognize and monitor patterns of guest
operating system 300 memory access; not strictly one-off
memory access attempts.

The monitoring of guest operating system 300 memory
access includes, but is not limited to, constructs in guest
operating system 300 memory (including the resources in
the guest operating system 300 in FIGS. 3 and 4) which may
have semantics specific to a particular guest operating
system 300 or a set of applications hosted by the guest
operating system 300 (possibly including antivirus soft-
ware).

The virtualization assistance layer 400, code execution
detection mechanisms 500, and/or the Separation Kernel
Hypervisor 100 may use feedback mechanisms between
themselves to recognize and monitor patterns of Guest
Operating System 300 DMA access to memory; not strictly
one-off access attempts.

Iustrative aspects, here, are shown in FIGS. 6A-6B.

2. Monitoring of specific Guest Operating System 300
instruction execution attempts, and/or specific instruction
sequence execution attempts.

For all such attempts by the Guest Operating System 300,
the Separation Kernel Hypervisor 100 (when configured to
do so, or via feedback receive from the virtualization assis-
tance layer 400 and/or the code execution detection mecha-
nisms 500) may trap such access attempts, then pass asso-
ciated data of that trap to the virtualization assistance layer
400 and/or code execution detection mechanisms 500.

The virtualization assistance layer 400 and/or the code
execution detection mechanisms 500 can respond to such
instruction sequences; including, but not limited to, recog-
nition of a significant fraction of a given sequence, then
prevent/block the final instructions of the malicious
sequence from execution.

Iustrative aspects, here, are shown in FIGS. 7A-7B.

FIGS. 6A-6B are representative sequence/flow diagrams
illustrating exemplary systems, methods and Separation
Kernel Hypervisor architecture consistent with certain
aspects related to the innovations herein. FIGS. 6A-6B
relate, inter alia, to behavior relating to the handling of guest
operating system attempts to access main memory.

Turning to the illustrative implementations/aspects of
FIG. 6A, at step 605 a Guest Operating System receives a
command for memory access to a specified memory loca-
tion. Then, at step 610, the Guest Operating System attempts
to execute code in the memory location(s). The memory
usage attempt triggers entry into the Separation Kernel
Hypervisor. Then, at step 620, the Separation Kernel Hyper-
visor securely transitions execution to the virtualization
assistance layer; in a manner isolated from the Guest Oper-
ating System. Next, in step 630 the virtualization assistance
layer transitions execution to the code execution detection
mechanisms. Step 630 may encompass steps (ii) and (iv),
above, including step (ii) where the Separation Kernel
Hypervisor implements a mechanism whereby a suitably
authorized guest can send a list of memory locations to be
watched to another guest. A virtualization assistance layer
(VAL) of software that runs within the same protection
domain as the guest virtual machine but is not directly
accessible by the guest (step iv). The VAL that processes
unmapped memory exceptions taken by its associated guest
virtual machine (step vii).

Then, at step 635 the code execution detection mecha-
nisms analyze the behavior of the Guest Operating System
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and its resources and makes a policy decision; in this
example, it has been configured to understand the memory
locations which are sensitive (contain APIs of interest), thus
decides to disallow, pause or continue the code execution.
The code execution detection mechanism detects process-
ing/access to specified memory locations, for example.
Then, at step 655, the instruction execution detection mecha-
nism 500 transfers control to a memory management unit
(MMU) control mechanism 600. This mechanism 600 per-
forms the memory management unit control operations need
to execute the instruction and map the appropriate page as
non-executable. Additional details of the MMU functional-
ity, here, are set forth further below in connection with FIG.
10. Then, at step 660, the MMU control mechanisms tran-
sition execution to the instruction execution detection
mechanism. Next, at step 640 the code execution detection
mechanisms transition execution to the virtualization assis-
tance layer, passing it the policy decision. Then, at step 645
the virtualization assistance layer transitions execution back
to the Separation Kernel Hypervisor, or the Separation
Kernel Hypervisor transitions execution from the virtualiza-
tion assistance layer back to the Separation Kernel Hyper-
visor. Next, at step 650 the Separation Kernel Hypervisor
acts on the policy decision generated by the code execution
detection mechanisms (in this example it disallows the
attempt to access the API of interest), or the Separation
Kernel Hypervisor acts independently of the policy decision,
but in a manner that takes the policy decision under advise-
ment (depending on configuration). The SKH may receive,
analyze, and/or act upon policy decisions from multiple
sources, which may include multiple detection/notification
mechanisms; including cases where multiple mechanisms
monitor a given Guest OS.

As explained above in connection with FIG. 6A, the
Guest Operating System accesses a specified memory loca-
tion. The memory access may be monitored and identified as
including API(s) of interest by the code execution detection
mechanism to generate a policy decision. The memory
access attempt triggers entry into the Separation Kernel
Hypervisor.

Turning to FIG. 6B, such system or process may initiate
upon entry into the SKH, at 660. Then, at 665, the Separa-
tion Kernel Hypervisor securely transitions execution to the
Visualization Assistance Layer; in a manner isolated from
the Guest Operating System. Next, at 670, the Visualization
Assistance Layer transitions execution to the code execution
detection mechanisms. The code execution detection mecha-
nisms may then analyze, at 675, the behavior of the Guest
Operating System and its resources and makes a policy
decision; for example, it may be configured to understand
the memory locations which are sensitive (e.g. contain the
APIs of interest), thus decides to deny, pause or continue the
memory processing/access attempt. At 676, the detection
mechanism(s) may transfer control to a memory manage-
ment unit (MMU) control mechanism, to execute the
instruction and map the appropriate page as inaccessible.
Additional details of the MMU functionality, here, are set
forth further below in connection with FIG. 10. Once the
policy decision(s) have been made, the code execution
detection mechanisms transition execution to the virtualiza-
tion assistance layer, at 680, passing it the policy decision.
Then, at 685, the virtualization assistance layer transitions
execution back to the Separation Kernel Hypervisor, or the
Separation Kernel Hypervisor transitions execution from the
virtualization assistance layer back to the Separation Kernel
Hypervisor. Finally, at 690, the Separation Kernel Hypervi-
sor acts on the policy decision generated by the code

10

20

25

30

35

40

45

55

60

65

16

execution detection mechanisms (in this example it denies
processing with respect to the APIs of interest, although it
may also allow or pause the memory access), or the Sepa-
ration Kernel Hypervisor acts independently of the policy
decision, but in a manner that takes the policy decision under
advisement (depending on configuration). Further, the SKH
may receive, analyze, and/or act upon policy decisions from
multiple sources, which may include multiple mechanisms;
inducing cases where multiple mechanisms monitor a given
Guest OS.

FIGS. 7A-7B are representative sequence/flow diagrams
illustrating exemplary systems, methods and Separation
Kernel Hypervisor architecture consistent with certain
aspects related to the innovations herein. FIGS. 7A-7B
relate, inter alia, to behavior relating to an attempt to access
specified APIs of interest such as by the handling of guest
operating system instruction sequences (e.g., execution
attempts of a repeated pattern/series of MOV, RET, or MOV
IRET instruction on an Intel 1A32e architecture; such pat-
terns of which may constitute code of “return oriented”
attacks/rootkits). Here, in such illustrative cases, memory
access within the guest operating system will attempt to
corrupt and/or subvert antivirus software and/or software
integrity checkers within the guest operating system via a
“return oriented” attack (attacks constructed to evade integ-
rity checkers); and the code execution detection mechanisms
detects/prevents the attack.

Turning to the illustrative implementations/aspects of
FIG. 7A, at step 705, a Guest Operating System receives a
command for memory access to a specified memory loca-
tion. Then at step 710 an attempt to access the APIs of
interest such as a specific sequence and/or pattern of CPU
instructions is performed, that either triggers transition into
the SKH for (2a) every instruction in the sequence and/or
pattern (a single stepping behavior), or (2b) for a number of
instructions of size greater than one of the sequence and/or
pattern (multiple stepping). The (2a) or (2b) behavior is
based on system configuration. Next, at step 715 the Sepa-
ration Kernel Hypervisor securely transitions execution to
the virtualization assistance layer; in a manner isolated from
the Guest Operating System. Then, at step 720 the virtual-
ization assistance layer transitions execution to the code
execution detection mechanisms. Next, at step 725 the code
execution detection mechanisms analyzes the behavior of
the Guest Operating System and its resources and makes a
policy decision. Then, at step 750, the instruction execution
detection mechanism 500 transfers control to a memory
management unit control mechanism 700. This mechanism
700 performs the memory management unit (MMU) control
operations need to execute the instruction and map the
appropriate page as non-executable. Additional details of the
MMU functionality, here, are set forth further below in
connection with FIG. 10. Then, at step 755, the MMU
control mechanisms transition execution to the instruction
execution detection mechanism. Then, in step 730 the code
execution detection mechanisms transition execution to the
virtualization assistance layer, passing it the policy decision.
Next, in step 735 the virtualization assistance layer transi-
tions execution back to the Separation Kernel Hypervisor, or
the Separation Kernel Hypervisor transitions execution from
the virtualization assistance layer back to the Separation
Kernel Hypervisor. Then, in step 740 the Separation Kernel
Hypervisor acts on the policy decision generated by the code
execution detection mechanisms (in this example it suspends
the Guest OS, preventing the Guest OS from accessing the
memory and executing the “Return Oriented” attack; a type
of attack that thwarts code integrity checkers in the Guest
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OS), or the Separation Kernel Hypervisor acts indepen-
dently of the policy decision, but in a manner that takes the
policy decision under advisement (depending on configura-
tion). The SKH may receive, analyze, and/or act upon policy
decisions from multiple sources, which may include mul-
tiple mechanisms; including cases where multiple mecha-
nisms monitor a given Guest OS. Finally, in step 745, in
order to continue to recognize sequences and/or patterns of
instructions, execution may cycle a multiple times between
steps 705 through 740.

As explained above in connection with FIG. 7A, the guest
operating system attempts specific memory access of an API
of interest. Here, for example, the API of interest is a
specified memory location. The attempt triggers entry into
the Separation Kernel Hypervisor.

Turning to FIG. 7B, such illustrative system or process
may initiates upon entry into the SKH, at 760. Then, at 765,
the Separation Kernel Hypervisor securely transitions
execution to the Visualization Assistance Layer; in a manner
isolated from the Guest Operating System. Next, at 770, the
Visualization Assistance Layer transitions execution to the
code execution detection mechanisms. The code execution
detection mechanisms may then analyze, at 775, the behav-
ior of the Guest Operating System and its resources and
makes a policy decision; in this example it recognizes the
Guest Operating System instruction sequence and/or pattern
as an attempt to access an API of interest, and the policy
decision is to made to deny further (and/or future) execution
of the sequence and/or pattern, preventing the Guest Oper-
ating System from providing the API of interest to the
monitored guest. At 776, the detection mechanism(s) may
transfer control to a memory management unit (MMU)
control mechanism, to execute the instruction and map the
appropriate page as inaccessible. Additional details of the
MMU functionality, here, are set forth further below in
connection with FIG. 10. Then, at 778, the MMU control
mechanism(s) may transition execution to the detection
mechanism. Once the policy decision(s) have been made,
the code execution detection mechanisms transition execu-
tion to the virtualization assistance layer, at 780, passing it
the policy decision. Then, at 785, the virtualization assis-
tance layer transitions execution back to the Separation
Kernel Hypervisor, or the Separation Kernel Hypervisor
transitions execution from the virtualization assistance layer
back to the Separation Kernel Hypervisor. Optionally, at step
790, the Separation Kernel Hypervisor acts on the policy
decision generated by the code execution detection mecha-
nisms (in this example it denies access to the API of
interest), or the Separation Kernel Hypervisor acts indepen-
dently of the policy decision, but in a manner that takes the
policy decision under advisement (depending on configura-
tion). Further, the SKH may receive, analyze, and/or act
upon policy decisions from multiple sources, which may
include multiple mechanisms; inducing cases where mul-
tiple mechanisms monitor a given Guest OS. In a final step
795, in order to recognize sequences and/or patterns of
instructions (and/or further monitor an existing monitored
sequence and/or pattern of instructions), execution may
cycle a multiple times between steps 760 through 790.

FIG. 8 is a representative sequence/flow diagram illus-
trating exemplary systems, methods, and Separation Kernel
Hypervisor processing/architecture consistent with certain
aspects related to the innovations herein. FIGS. 8 and 9
relate, inter alia, to the guest operating system executing
code at specified memory location(s) where the code execu-
tion detection mechanisms monitors, detects, and notifies
code execution in specified locations, may obtain informa-
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tion about the context of such execution, and may determine
an action in response to the detected execution.

Turning to the illustrative implementations/aspects of
FIG. 8, at step 805, a Monitored Guest Operating System
300 attempts to execute code at a specified memory location.
Then, at step 815, the attempt is sent to the SKH. The
Separation Kernel Hypervisor 100 ensures the isolation of
multiple guest Operating Systems each in its own Virtual
Machine (VM) (aspects i.). Another Monitored Guest Oper-
ating System 600 allows a suitably authorized Monitoring
Guest 600 to send, at 830, a list of memory locations to be
monitored for another guest 300 (aspects ii. and iv.). Fur-
thermore, a suitably authorized guest 600 may send a
message to another guest 300 (aspect iii.). A response from
the SKH 100 is provided to the Monitored Guest Operating
System 600 at step 810. Next, at step 820 the Separation
Kernel Hypervisor securely transitions execution to the
virtualization assistance layer 400 in a manner isolated from
the Guest Operating System (aspect v.). The Virtualization
Assistance Layer (VAL 400) is software that runs within the
same protection domain as the guest Virtual Machine but is
not directly accessible by the guest (aspect vi.). The Virtu-
alization Assistance Layer 400 implements a virtual moth-
erboard containing a virtual CPU and memory (aspect vii.).
The VAL 400 also implements a mechanism to unmap
specified APIs on demand from another guest (aspect viii.).
Then, at step 840, the virtualization assistance layer transi-
tions execution to the code execution Detection Mechanisms
500, which perform processing of portions or all of aspects
vii., viii., iX., Xi., xii. Next, the code execution detection
mechanisms analyze the behavior of the Guest Operating
System and its resources and may make a policy decision.
The VAL 400 and mechanism 500 processes unmapped API
exceptions taken by its associated guest virtual machine. The
policy decisions of the VAL 400 and mechanism 500 include
pausing the execution of its associated guest virtual
machine, injecting an API-not-found exception into its asso-
ciated guest virtual machine, or allowing the access to the
API to continue. At step 851, the instruction execution
detection mechanism 500 may transfer control to a memory
management unit control mechanism 800. This mechanism
800 performs the memory management unit (MMU) control
operations need to execute the instruction and re-map the
appropriate page as non-executable. Additional details of the
MMU functionality, here, are set forth further below in
connection with FIG. 10. After this, at step 855, the MMU
control mechanisms transition execution to the instruction
execution detection mechanism. Then, at step 845 the code
execution detection mechanisms transition execution to the
virtualization assistance layer, passing to it the policy deci-
sion. Next, at step 825 the virtualization assistance layer
transitions execution back to the Separation Kernel Hyper-
visor, or the Separation Kernel Hypervisor transitions execu-
tion from the virtualization assistance layer back to the
Separation Kernel Hypervisor. At step 810, the SKH 100
transitions execution to the Monitored Guest Operating
System 300 based on the policy decision. At step 825, the
Separation Kernel Hypervisor acts on the policy decision
generated by the code execution detection mechanisms, or
the Separation Kernel Hypervisor acts independently of the
policy decision, but in a manner that takes the policy
decision under advisement (depending on configuration).
The SKH may receive, analyze, and/or act upon policy
decisions from multiple sources, which may include mul-
tiple mechanisms; including cases where multiple mecha-
nisms monitor a given Guest OS. At step 850, the mecha-
nism 400 sends a notification of the code execution and
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associated context information to the requesting guest OS
600 (aspect x.). Then, in order to continue to recognize
sequences and/or patterns of code execution, such process-
ing may cycle multiple times between steps 805 through
850.

As explained above in connection with FIG. 8, the Guest
Operating System may attempt to execute code in specified
memory location(s). The attempt triggers entry into the
Separation Kernel Hypervisor for monitoring, detection
and/or notification.

Turning to FIG. 9, such illustrative system or process
begins where a hypervisor is configured to allow a guest
(Monitoring Guest) to request notifications of code execu-
tion by another guest (Monitored Guest). For example, the
Monitoring Guest may request that code execution at speci-
fied locations be monitored (e.g., a set of APIs be moni-
tored), and the action (e.g., pause, disallow, or continue) to
be taken on such request, at step 905. The VAL in the
Monitored Guest maps those locations/APIs as inaccessible,
at step 910. This is distinct from the Monitored Guests
notion of API mappings. At 912, the detection mechanism(s)
may transfer control to a memory management unit (MMU)
control mechanism, to execute the instruction and map the
appropriate page as non-executable. Additional details of the
MMU functionality, here, are set forth further below in
connection with FIG. 10. Then, at 914, the MMU control
mechanism(s) may transition execution to the detection
mechanism. At step 920, when software in the Monitored
Guest attempts to execute code in a specified location (e.g.,
attempts to access an unmapped API), control transitions to
the VAL. The VAL determines, for example, that the
unmapped API is part of the set to be monitored, at step 925.
The VAL notifies the monitoring guest of the attempt, at step
930. The action is determined at step 935 based on the action
set by the Monitoring Guest. If the action is pause at step
940, the Monitored Guest is paused. If the action is disallow
at step 945, the Monitored Guest is injected with an excep-
tion, as though the API did not exist. If the action is continue
at step 950, the Monitored Guest is allowed to continue
operation as though the API had always been mapped in.

FIG. 10 is an exemplary state diagram illustrating aspects
of memory management unit processing in conjunction with
the hypervisor and VAL, consistent with certain aspects
related to the innovations herein. In FIG. 10, control is
passed to the Memory Management Unit (MMU) Control
1019 via any of the following control paths 1005 including
step 655 (from FIG. 6A), step 755 (from FIG. 7A), and step
851 (from FIG. 8). Step 1015 transitions control from the
Memory Management Control Unit 1010 to the detection
mechanisms 1020 to make a policy decision regarding the
page of memory the GuestOS had attempted to access. The
detection mechanisms 1020 execute a policy decision to
either deny or allow the GuestOS to access the memory. In
step 1025, the detection mechanisms 1020 execute the
decision to allow the GuestOS access to the memory.

The detection mechanisms may transition execution to the
VAL 1035 with a request that the page of memory the
GuestOS had attempted to access be remapped (mapped as
accessible) to the GuestOS at step 1030.

The VAL may then transition execution to the SKH with
a request that the page of memory the GuestOS had
attempted to access be remapped (mapped as accessible) to
the GuestOS at step 1040. The SKH executes a policy
decision at step 1045 to allow or deny the request that the
page of memory the GuestOS had attempted to access be
remapped (mapped as accessible) to the GuestOS. In an

10

15

20

25

30

35

40

45

50

55

60

65

20

exemplary embodiment, the SKH allows the request to map
the memory page as accessible to the GuestOS.

The SKH may transition execution back to the VAL at
step 1050 with a message that the memory page that the
GuestOS had attempted to access has been remapped
(mapped asaccessible) to the GuestOS. The VAL transitions
execution back to the detection mechanisms 1020 at step
1055 with a message that the memory page that the GuestOS
had attempted to access has been remapped (mapped as
accessible) to the GuestOS.

At step 1060, the detection mechanisms 1020 execute a
policy decision to either allow or deny the GuestOS to
complete the execution of the command/instruction that the
GuestOS had attempted which had triggered the GuestOS
access attempt to the memory page.

At step 1065, the detection mechanisms 1020 determine
to allow the GuestOS to complete execution of the com-
mand/instruction that the GuestOS had attempted which had
triggered the GuestOS access attempt to the memory page.
The detection mechanisms then transition execution to the
VAL 1035.

At step 1070, the VAL 1035 then transitions execution to
the SKH with a request to allow the GuestOS to complete
execution command/instruction that the GuestOS had
attempted which had triggered the GuestOS access attempt
to the memory page. The SKH executes a policy decision at
step 1072 to allow or deny the GuestOS to complete
execution of the command/instruction that the GuestOS had
attempted which had triggered the GuestOS access attempt
to the memory page. In this example, the SKH allows the
GuestOS to complete the execution of that command/in-
struction. At step 1074, the SKH securely transition execu-
tion to the GuestOS. At step 1076, the GuestOS completes
execution of the command/instruction that the GuestOS had
attempted which triggered the GuestOS access attempt to the
memory page. At step 1078, the protection mechanisms
provided by the SKH trigger a transition back to the SKH
immediately after completion of the GuestOS command/
instruction.

At step 1080, the SKH transitions execution back to the
VAL 1035, with a message that the GuestOS has completed
execution of the command/instruction that the GuestOS had
attempted which had triggered the GuestOS access attempt
to the memory page. At step 1082, the VAL 1035 transitions
execution to the detection mechanisms 1020 with a message
that the GuestOS has completed execution of the command/
instruction that the GuestOS had attempted which had
triggered the GuestOS access attempt to the memory page.
At step 1084, the detection mechanisms 1020 determine
whether to map the memory page as nonexecutable again. At
step 1086, the detection mechanisms 1020 make a transition
back to the VAL via any of the control paths including step
600 (from FIG. 6A), step 750 (from FIG. 7A), and step 855
(from FIG. 8).

At a high level, as may apply to the above examples, the
Actions taken on monitored activity may include policy
based actions taken by, and/or coordinated between, the
Separation Kernel Hypervisor 100, virtualization assistance
layer 400, and/or code execution detection mechanisms 500
Such actions may include, but are not limited to any of the
following: (1) preventing the monitored activity; (2) allow-
ing the monitored activity; (3) allowing the monitored
activity, with instrumentation, and/or partial blocking. It
may be that certain sub-sets of the activity are permissible
(by configuration policy), and that a portion of the activity
may be allowed and a portion blocked and/or substituted
with a harmless surrogate; such as insertion of no-ops in
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malicious code to render malicious code inert. This may
include run-time patching of CPU state of a guest operating
system 300, and/or any resources of the guest operating
system 300; (4) reporting on the monitored activity, possibly
exporting reports to other software in the system, or on
remote systems; and/or (5) performing replay of the moni-
tored activity.

With regard to (5), performing replay of the monitored
activity, in Separation Kernel Hypervisor 100 configurations
supporting rewind of guest operating system 300 state, the
state of the guest operating system 300 can be rewound and
the monitored activity can be replayed and re-monitored (to
a degree); e.g., if the code execution detection mechanisms
500 requires more systems resources, and/or to map more
context of the guest operating system 300, the code execu-
tion detection mechanisms 500 may request a rewind,
request more resources, then request the replay of the
monitored activity; so that the code execution detection
mechanisms 500 may perform analysis of the monitored
activity with the advantage of more resources. Systems and
methods of monitoring activity, as may be utilized by the
Separation Kernel Hypervisor 100, virtualization assistance
layer 400, and/or code execution detection mechanisms 500;
for activities which may include guest operating system 300
activities, and/or Separation Kernel Hypervisor 100, virtu-
alization assistance layer 400, and/or code execution detec-
tion mechanisms 500 activities (such as feedback between
such components), including those activities which may
cause transition to the Separation Kernel Hypervisor 100,
virtualization assistance layer 400, and/or code execution
detection mechanisms 500 include (but are not limited to):
Synchronous, bound to a specific instruction stream and/or
sequence within a processor, CPU, or platform device and/or
ABI, certain elements of which can be used to trap and/or
transition to/from the hypervisor. For example, instructions
which induce trapping. Such events may be generated by the
Separation Kernel Hypervisor 100, virtualization assistance
layer 400, and/or code execution detection mechanisms 500.

The innovations and mechanisms herein may also provide
or enable means by which software and/or guest operating
system vulnerabilities, including improper use of CPU inter-
faces, specifications, and/or ABIs may be detected and/or
prevented; including cases where software vendors have
implemented emulation and/or virtualization mechanisms
improperly.

Implementations and Other Nuances

The innovations herein may be implemented via one or
more components, systems, servers, appliances, other sub-
components, or distributed between such elements. When
implemented as a system, such system may comprise, inter
alia, components such as software modules, general-purpose
CPU, RAM, etc. found in general-purpose computers, and/
or FPGAs and/or ASICs found in more specialized comput-
ing devices. In implementations where the innovations
reside on a server, such a server may comprise components
such as CPU, RAM, etc. found in general-purpose comput-
ers.

Additionally, the innovations herein may be achieved via
implementations with disparate or entirely different soft-
ware, hardware and/or firmware components, beyond that
set forth above. With regard to such other components (e.g.,
software, processing components, etc.) and/or computer-
readable media associated with or embodying the present
inventions, for example, aspects of the innovations herein
may be implemented consistent with numerous general
purpose or special purpose computing systems or configu-
rations. Various exemplary computing systems, environ-
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ments, and/or configurations that may be suitable for use
with the innovations herein may include, but are not limited
to: software or other components within or embodied on
personal computers, appliances, servers or server computing
devices such as routing/connectivity components, hand-held
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, consumer electronic devices,
network PCs, other existing computer platforms, distributed
computing environments that include one or more of the
above systems or devices, etc.

In some instances, aspects of the innovations herein may
be achieved via logic and/or logic instructions including
program modules, executed in association with such com-
ponents or circuitry, for example. In general, program mod-
ules may include routines, programs, objects, components,
data structures, etc. that perform particular tasks or imple-
ment particular instructions herein. The inventions may also
be practiced in the context of distributed circuit settings
where circuitry is connected via communication buses,
circuitry or links. In distributed settings, control/instructions
may occur from both local and remote computer storage
media including memory storage devices.

Innovative software, circuitry and components herein
may also include and/or utilize one or more type of computer
readable media. Computer readable media can be any avail-
able media that is resident on, associable with, or can be
accessed by such circuits and/or computing components. By
way of example, and not limitation, computer readable
media may comprise computer storage media and other
non-transitory media. Computer storage media includes
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to
store the desired information and can accessed by computing
component. Other non-transitory media may comprise com-
puter readable instructions, data structures, program mod-
ules or other data embodying the functionality herein, in
various non-transitory formats. Combinations of the any of
the above are also included within the scope of computer
readable media.

In the present description, the terms component, module,
device, etc. may refer to any type of logical or functional
circuits, blocks and/or processes that may be implemented in
a variety of ways. For example, the functions of various
circuits and/or blocks can be combined with one another into
any other number of modules. Each module may even be
implemented as a software program stored on a tangible
memory (e.g., random access memory, read only memory,
CD-ROM memory, hard disk drive, etc.) to be read by a
central processing unit to implement the functions of the
innovations herein. Or, the modules can comprise program-
ming instructions transmitted to a general purpose computer,
to processing/graphics hardware, and the like. Also, the
modules can be implemented as hardware logic circuitry
implementing the functions encompassed by the innovations
herein. Finally, the modules can be implemented using
special purpose instructions (SIMD instructions), field pro-
grammable logic arrays or any mix thereof which provides
the desired level performance and cost.

As disclosed herein, features consistent with the present
inventions may be implemented via computer-hardware,
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software and/or firmware. For example, the systems and
methods disclosed herein may be embodied in various forms
including, for example, a data processor, such as a computer
that also includes a database, digital electronic circuitry,
firmware, software, or in combinations of them. Further,
while some of the disclosed implementations describe spe-
cific hardware components, systems and methods consistent
with the innovations herein may be implemented with any
combination of hardware, software and/or firmware. More-
over, the above-noted features and other aspects and prin-
ciples of the innovations herein may be implemented in
various environments. Such environments and related appli-
cations may be specially constructed for performing the
various routines, processes and/or operations according to
the invention or they may include a general-purpose com-
puter or computing platform selectively activated or recon-
figured by code to provide the necessary functionality. The
processes disclosed herein are not inherently related to any
particular computer, network, architecture, environment, or
other apparatus, and may be implemented by a suitable
combination of hardware, software, and/or firmware. For
example, various general-purpose machines may be used
with programs written in accordance with teachings of the
invention, or it may be more convenient to construct a
specialized apparatus or system to perform the required
methods and techniques.

Aspects of the method and system described herein, such
as the logic, may also be implemented as functionality
programmed into any of a variety of circuitry, including
programmable logic devices (“PLDs”), such as field pro-
grammable gate arrays (“FPGAs”), programmable array
logic (“PAL”) devices, electrically programmable logic and
memory devices and standard cell-based devices, as well as
application specific integrated circuits. Some other possi-
bilities for implementing aspects include: memory devices,
microcontrollers with memory (such as EEPROM), embed-
ded microprocessors, firmware, software, etc. Furthermore,
aspects may be embodied in microprocessors having soft-
ware-based circuit emulation, discrete logic (sequential and
combinatorial), custom devices, fuzzy (neural) logic, quan-
tum devices, and hybrids of any of the above device types.
The underlying device technologies may be provided in a
variety of component types, e.g., metal-oxide semiconductor
field-effect transistor (“MOSFET”) technologies like
complementary metal-oxide semiconductor (“CMOS”),
bipolar technologies like emitter-coupled logic (“ECL”),
polymer technologies (e.g., Silicon-conjugated polymer and
metal-conjugated polymer-metal structures), mixed analog
and digital, and so on.

It should also be noted that the various logic and/or
functions disclosed herein may be enabled using any number
of combinations of hardware, firmware, and/or as data
and/or instructions embodied in various machine-readable
or computer-readable media, in terms of their behavioral,
register transfer, logic component, and/or other characteris-
tics. Computer-readable media in which such formatted data
and/or instructions may be embodied include, but are not
limited to, non-volatile storage media in various forms (e.g.,
optical, magnetic or semiconductor storage media), though
do not include transitory media such as carrier waves.

Unless the context clearly requires otherwise, throughout
the description, the words “comprise,” “comprising,” and
the like are to be construed in an inclusive sense as opposed
to an exclusive or exhaustive sense; that is to say, in a sense
of “including, but not limited to.” Words using the singular
or plural number also include the plural or singular number
respectively. Additionally, the words “herein,” “hereunder,”
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“above,” “below,” and words of similar import refer to this
application as a whole and not to any particular portions of
this application. When the word “or” is used in reference to
a list of two or more items, that word covers all of the
following interpretations of the word: any of the items in the
list, all of the items in the list and any combination of the
items in the list.

Although certain presently preferred implementations of
the inventions have been specifically described herein, it
will be apparent to those skilled in the art to which the
inventions pertain that variations and modifications of the
various implementations shown and described herein may
be made without departing from the spirit and scope of the
inventions. Accordingly, it is intended that the inventions be
limited only to the extent required by the applicable rules of
law.

The invention claimed is:
1. A method for processing information securely, the
method comprising:

partitioning hardware platform resources via a separation
kernel hypervisor into a plurality of guest operating
system virtual machine protection domains each
including a virtual machine; and

isolating the domains in time and/or space from each
other;

hosting a mechanism to unmap specified pages on
demand from another guest;

processing an unmapped page exception taken by the
virtual machine;

mapping an unmapped page previously processed by the
virtual machine;

sending a notification of memory access and associated
context information to a requesting guest, wherein the
virtual machine comprises a virtual motherboard
including a virtual CPU and memory by a virtualized
assistance layer (VAL);

allowing the virtual machine to execute a single instruc-
tion;

returning control to the VAL;

mapping the unmapped page as inaccessible again; and

returning control to the virtual machine.

2. The method of claim 1, further comprising:

sending a notification of memory access and a specifica-
tion to a requesting guest.

3. The method of claim 2, further comprising:

configuring a memory management unit such that soft-
ware in the virtual machine cannot undo the mapping.

4. The method of claim 2, wherein:

the plurality of guest operating system virtual machine
protection domains includes corresponding guest oper-
ating systems; and

wherein isolating the loss of security in one of the guest
operating system virtual machine protection domains to
the one lost security domain such that security is not
broken in all the domains.

5. The method of claim 2, further comprising one or more

of:

implementing at least one routine and/or component to
prohibit the guest operating systems from tampering
with, corrupting, and/or bypassing the mechanism; and

executing the mechanism while preventing interference
and/or bypass, corruption, and/or tampering by the
plurality of guest operating systems.

6. The method of claim 2, further comprising:

detecting in each of the domains their own malicious code
as a function of the isolated domains; or wherein
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viewing the virtual hardware platform within each
domain as separate hardware by a guest such that
bypass is prevented.

7. The method of claim 2, further comprising:

moving virtualization processing to the virtual hardware

platforms within each guest operating system protec-
tion domain so that substantially all analysis and secu-
rity testing is performed within each guest operating
system protection domain such that the separation
kernel hypervisor is of reduced size and/or complexity.

8. The method of claim 2, further comprising:

detecting in each of the domains their own malicious code

as a function of the isolated domains; or wherein
viewing the virtual hardware platform within each
domain as separate hardware by a guest such that
bypass is prevented.

9. The method of claim 2, wherein the mechanism
includes subcomponents and/or subroutines configured for
monitoring of guest operating system memory access.

10. The method of claim 2, wherein the mechanism
includes subcomponents and/or subroutines configured for
monitoring actions of the guest operating system including
observation, detection, and/or tracking of code, data, execu-
tion flow, and/or resource utilization at runtime.

11. The method of claim 2, further comprising:

monitoring, via the mechanism, for suspect code;

ascertaining where code is at least one of operating,
hiding, halted, stalled, infinitely looping, making no
progress beyond intended execution, stored, once-ac-
tive, extinct/not present but having performed suspect
and/or malicious action, in a position to maliciously
affect a resource under control of a hypervisor guest.

12. The method of claim 2, further comprising:

executing the mechanism while preventing interference,

corruption, tampering and/or bypassing by the plurality
of guest operating system virtual machine protection
domains.

13. The method of claim 2, wherein the mechanism
includes subcomponents and/or subroutines configured for
monitoring actions of the guest operating system including
mitigation, prevention, and/or modification of code, data,
execution flow, and/or resource utilization at runtime, as
detected by the mechanism.

14. The method of claim 2, wherein the mechanism
includes subcomponents and/or subroutines configured for
monitoring actions of the guest operating system including
reporting upon of suspect code, data, execution flow, and/or
resource utilization at runtime, as detected by the mecha-
nism.

15. The method of claim 2, further comprising:

enforcing policy for activities monitored by the mecha-

nism within the guest operating system virtual machine
protection domain.

16. The method of claim 2, wherein the virtualization
assistance layer virtualizes portions of the hardware plat-
form resources including a virtual CPU/ABI, a virtual chip-
set ABI, a set of virtual devices, a set of physical devices,
and firmware exported to the corresponding guest operating
system.

17. The method of claim 2, further comprising:

trapping access to memory assigned to a guest operating

system; and

passing the trapped memory access to the mechanism via

the virtualization assistance layer.

18. A method for processing information securely, the
method comprising:
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partitioning hardware platform resources via a separation
kernel hypervisor into a plurality of guest operating
system virtual machine protection domains each
including a virtual machine;

isolating the domains in time and/or space from each

other;

sharing a list of memory locations of an authorized guest

to another guest;

hosting a mechanism to control access to specified loca-

tions and/or pages on demand from the another guest;
and

processing an attempt to gain access to at least one of the

specified locations and/or pages.

19. The method of claim 18, further comprising:

providing a virtualization assistance layer (VAL) includ-

ing a virtual representation of the hardware platform in
each of the guest operating system virtual machine
protection domains such that the VAL is not directly
accessible by the authorized guest.

20. The method of claim 18, further comprising:

performing processing including sending a notification of

attempted access and associated context information
related to the attempt.

21. The method of claim 18, further comprising:

providing a list of memory locations of the authorized

guest to the another guest;

providing a message of the authorized guest to the another

guest;

hosting a mechanism to unmap specified pages on

demand from another guest;

processing an unmapped page exception taken by the

virtual machine;

mapping an unmapped page of the exception that was

processed by the virtual machine; and

sending a notification of memory access and associated

context information to a requesting guest;

wherein the virtual machine comprises a virtual mother-

board including a virtual CPU and memory.

22. The method of claim 18 further comprising:

triggering entry into the separation kernel hypervisor

upon execution of code involving an access attempt to
an application programming interface (API) in a sus-
pect guest operating system;

transitioning execution of the access attempt from the

separation kernel hypervisor to the dedicated Virtual-
ization assistance layer in a manner isolated from the
suspect guest operating system;

transitioning execution of the access attempt from the

dedicated Virtualization assistance layer to a detection
mechanism;

analyzing by the detection mechanism behavior of the

suspect guest operating system and determining a
policy decision;

passing the policy decision and transitioning execution of

the access attempt from the detection mechanism to the
dedicated Virtualization assistance layer; and

passing the policy decision and transitioning execution of

the access attempt from the dedicated Virtualization
assistance layer to the separation kernel hypervisor.
wherein the separation kernel hypervisor performs
enforcement or executes an action based on the policy
decision.

23. The method of claim 18, further comprising: allowing
the Virtual machine to execute a single instruction; and
returning control to a Virtualization assistance layer (VAL)
within a protection domain associated with the Virtual
machine.
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24. The method of claim 18, further comprising:

detecting in each of the domains their own malicious code
as a function of isolated domains; and

enabling viewing the virtual hardware platform within
each domain as separate hardware by a guest such that
bypass is prevented.

25. The method of claim 18, further comprising:

executing one or more detection mechanisms that include
subcomponents and/or subroutines configured for
monitoring actions of the guest operating system
including observation, detection, and/ or tracking of
code, data, execution flow, and/ or resource utilization
at runtime.

26. The method of claim 25, further comprising:

monitoring for suspect code via the one or more detection
mechanisms; and

ascertaining where code is at least one of operating,
hiding, halted, stalled, infinitely looping, making no
progress beyond intended execution, stored, once-ac-
tive, extinct and/or not present but having performed
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suspect and/or malicious action, and/or in a position to
maliciously affect a resource under control of a hyper-
visor guest.

27. The method of claim 18, further comprising:

trapping access to memory assigned to a guest operating
system; and

passing the trapped memory access to the detection
mechanism via a virtualization assistance layer.

28. The method of claim 18, further comprising:

hosting one or more detection mechanisms, each which
may be different from each other, that execute Within
one or more of the plurality of guest operating system
Virtual machine protection domains via the separation
kernel hypervisor, wherein the separation kernel hyper-
visor is configured to host the one or more detection
mechanisms isolated from malicious code though hav-
ing high temporal and spatial locality to the malicious
code.



