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determined using the model and provided for display . User 
feedback regarding the expected wait time may be 
requested , and used to refresh the model as new wait times 
and other information are collected . 
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WAIT TIME PREDICTION 

BACKGROUND 
[ 0001 ] In making everyday decisions , it is often helpful to 
know how busy a business or public service establishment is 
before planning a visit . For example , the DMV website 
shows wait time information at each of their offices . Certain 
hospitals and emergency rooms also publish their wait time 
information . Most establishments , however , do not collect or 
publish wait time information . 
0002 ] Currently , some websites can indicate how busy 
any of a variety of businesses or public establishments 
typically is at various times of the week or in real - time . 
However , this only provides measurements of a number of 
people at the establishments at a given time . 

[ 0007 ] The disclosure further provides a system , compris 
ing a memory and one or more processors in communication 
with the memory . The one or more processors are configured 
to receive data related to a business , the data including at 
least historical wait time information , generate a model 
using one or more computing devices based on at least the 
historical wait time information for the business , determine 
an expected wait time for service at the business for at least 
one particular time period on a particular day of a week 
using the model , receive a request for information about a 
business , and provide for display , in response to the request , 
the expected wait time . 
[ 0008 ] The disclosure yet further provides a computer 
readable storage medium storing instructions executable by 
one or more processors for performing a method , compris 
ing receiving data related to a business , the data including at 
least historical wait time information , generating a model 
using one or more computing devices based on at least the 
historical wait time information for the business , determin 
ing an expected wait time for service at the business for at 
least one particular time period on a particular day of a week 
using the model , receiving a request for information about a 
business , and providing for display , in response to the 
request , the expected wait time . 

BRIEF SUMMARY 
[ 0003 ] The present disclosure provides for receiving data 
related to a business , the data including at least historical 
wait time information , generating a model using one or more 
computing devices based on at least the historical wait time 
information for the business , determining an expected wait 
time for service at the business for at least one particular 
time period on a particular day of a week using the model , 
receiving a request for information about a business , and 
providing for display , in response to the request , the 
expected wait time . The present disclosure may further 
include requesting user feedback regarding the expected 
wait time , and refreshing the model as new wait times and 
other information are received . 
[ 0004 ] Generating the model may include using other 
types of data in addition to historical wait times , such as 
place attributes , i . e . , particular attributes about a business . 
Generating the model may also include using historical 
temporal signals , collected over a look - back window , that 
fluctuate throughout a day and throughout a week . The 
historical temporal signals may be further analyzed to derive 
useful statistics that can also be used in generating the 
model . The model generated may be a regression model or 
a classification model , and may further be a linear model , a 
boosting tree model , a random forest model , or a neural net 
model . 
[ 0005 ] Determining the expected wait time may include 
determining an upper bound expected wait time . Determin 
ing the expected wait time may further include determining 
whether the expected wait time is less than a predetermined 
significant - wait threshold . Determining the expected wait 
time may further include computing a maximum expected 
wait time for the particular day of the week , and determining 
at least one peak interval for the particular day of the week 
having the maximum expected wait time . Determining the 
expected wait time may also include smoothing the expected 
wait time data by taking weighted averages with expected 
wait times of the neighboring time periods . 
[ 0006 ] Providing for display may further include display 
ing the time period as a no - wait time period if the expected 
wait time is less than the significant threshold . Providing for 
display may also include displaying the maximum expected 
wait time of the particular day of the week and the corre 
sponding peak interval . Providing for display may yet 
include displaying in association with other business infor 
mation indicating busyness level . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0009 ] FIG . 1 illustrates an example of how expected wait 
time information may be displayed according to aspects of 
the disclosure . 
[ 0010 ] FIG . 2 is a block diagram illustrating an example 
system for predicting wait times according to aspects of the 
disclosure . 
[ 0011 ] FIG . 3 is a flow diagram illustrating an example 
method of generating a wait time prediction model , deter 
mining expected wait times using the model , and providing 
the expected wait times for display in accordance with 
aspects of the disclosure . 
[ 0012 ] . FIG . 4 is a flow diagram illustrating an example 
method of generating a wait time prediction model by 
training computing devices to learn a pattern from various 
training data in accordance with aspects of the disclosure . 
[ 0013 ] FIG . 5 is another flow diagram illustrating an 
example of optimizing the predicted wait time for display 
according to aspects of the disclosure . 
[ 0014 ] FIG . 6 is another flow diagram illustrating an 
example method for determining a maximum expected wait 
time providing the maximum expected wait time for display 
according to aspects of the disclosure . 
[ 0015 ] FIG . 7 illustrates example displays of expected 
wait time information according to aspects of the disclosure . 

DETAILED DESCRIPTION 

Overview 
[ 0016 ] The technology relates generally to predicting and 
displaying wait times likely to be experienced by users 
visiting a business or a public service establishment . The 
technology assists users in making everyday decisions , for 
example , which grocery store to stop by in the next 30 min ; 
which restaurants nearby have a short wait time for dinner 
around 7 pm tomorrow ; when would be the best time to try 
that very popular restaurant in town to avoid a very long 
wait ? 
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[ 0017 ] The expected wait time information may be pro - 
vided for display . For example , map information related to 
the business is provided , along with other information 
corresponding to the business . Examples of such other 
information include a phone number , directions , website , 
operating hours , etc . Example of other related information 
may include a graph showing how popular the business is at 
various times of a day on various days of a week , relative to 
the typical peak popularity for the business for the week 
( popular times ” ) . The current expected wait time may be 
provided for display . In addition , the expected wait time for 
each time period may be overlaid with the popular times 
graph . The maximum expected wait time for a particular day 
may be provided for display , along with peak intervals that 
correspond to the maximum wait time . 
10018 ] . The wait time prediction technology described 
herein builds a model based on historical wait times col 
lected from users . As more new wait times are collected , the 
model may be refined or refreshed . This allows the model to 
be fine - tuned over time . For example , as more data points 
are collected , the impact of outliers will be reduced . As 
another example , new data points can also show certain 
changes in the wait time patterns for a business ( e . g . , maybe 
a place is gaining popularity ) . 
[ 0019 ] The wait time prediction technology may addition 
ally use other types of data in building and refining the 
model , such as place attributes , i . e . , particular attributes 
about a business . For example , wait time patterns are likely 
very different for a restaurant as compared to a hospital on 
a weekend , for a grocery store as compared to a department 
store on a weekday , or for a fine dining restaurant as 
compared to a fast food restaurant during lunch hours . 
Therefore , place category may be play an important role in 
the wait time pattern . Another important place attribute is 
whether the business accepts or recommends making a 
reservation . Yet another place attribute that may play a role 
in the wait time pattern is the popularity of the business , for 
example , as reflected by user ratings and comments . Other 
place attributes , such as online search and visit statistics , 
may also play a role in the wait time patterns and therefore 
used in building the prediction model . 

[ 0020 ] In addition to the general attributes about the place 
exemplified above , the wait time prediction technology may 
further use historical temporal signals that fluctuate through 
out a day and throughout a week to build and refine the 
prediction model . For example , visit data such as the number 
of arrivals , the number of departures , the occupancy level , 
and the duration of visits at a particular time period and a 
particular day of the week can be collected for a predeter 
mined look - back window and used to predict patterns . Other 
examples include online visits and searches that fluctuate 
depending on the time of the day and the day of the week . 
[ 0021 ] The historical temporal signals described above 
may be further analyzed over a part of or the entire look 
back window to derive useful statistics that can further help 
predicting wait times at a business , such derived temporal 
signals may also be used to build and refine the wait time 
prediction model . For example , a maximum , a minimum , a 
mean , and a sum of the number of arrivals at a particular 
time period on a particular day of a week for a business may 
be computed over half of the look - back window . As another 
example , aggregated data such as the 90th percentile visit 

duration at a particular time period on a particular day of a 
week for a business can be computed over the entire 
look - back window . 
[ 0022 ] As yet another example , lag variables of each of the 
historical temporal signals and derived temporal signals 
described above can be determined . The lag variable may be 
backward - looking or forward - looking . For example , one 
interesting backward - looking lag variable may be the num 
ber of arrivals in the time period preceding the time period 
for which an expected wait time is to be predicted , since 
these recent arrivals are likely to remain for more than one 
time period . As another example , one interesting forward 
looking lag variable may be the occupancy level in the 
upcoming time period following the time period for which 
an expected wait time is to be predicted . For instance , if the 
following hour corresponds to the end of lunch break for 
many employees in the area , a large number of departures 
may be expected in the upcoming hour , and therefore the 
business will soon be able to absorb more customers in the 
upcoming hour . 
[ 0023 ] Various types of models may be generated . The 
model may be , for example , a regression model or a clas 
sification model . The model may be a linear model , a 
boosting tree model , a random forest model , or a neural net 
model . In one example , a quantile regression model is used 
to determine an upper bound wait time for the given time 
period . For example , the 90th percentile expected wait time . 
A deep neural network with a custom loss function may be 
used to implement the quantile regression model . 
[ 0024 ] The expected wait time may be determined and 
expressed as an upper bound wait time . For example , " up to 
30 min wait " is displayed to the user . The expected wait time 
may be rounded to a predetermined granularity for display , 
e . g . , instead of “ 14 min wait ” and “ 36 min wait , ” the users 
will see “ 15 min wait ” and “ 30 min wait . ” In one example , 
before the expected wait time is displayed to the user , the 
wait time is smoothed by taking a weighted average of the 
expected wait time and at least one other expected wait time 
from a neighboring time period . 
[ 0025 ] In many cases , a certain threshold of wait time is 
almost always expected for a category of businesses . For 
example , a person walking into almost any sit - down restau 
rant could expect at least a trivial wait to be seated , say , 10 
min . Thus , it would not be interesting for a user to see such 
trivial wait times . Therefore , in one example , if for a given 
time period , the expected wait time is less than a predeter 
mined significant - wait threshold , then “ usually no wait ” 
may be displayed for the given time period . 
[ 0026 ] In another example , the wait time prediction tech 
nology determines and displays a maximum expected wait 
time for the day . In addition , the peak interval including all 
the time periods that correspond to the maximum expected 
wait time may be displayed . For example , " longest wait time 
today•60 min•12 : 30 pm - 2 pm , 5 : 00 pm - 7 : 30 pm . ” If the 
expected wait time is less than the predetermined signifi 
cant - wait threshold for all time periods of a day , then 
" usually no wait ” may be displayed instead of the maximum 
expected wait time . 
[ 0027 ] In another example , feedback is requested from the 
same user who requested the wait time information . The user 
can , for example , provide feedback about the accuracy of the 
expected wait time , input a new wait time actually experi 

e nced by the user , or provide additional information about 
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the business or about the user ' s visit . Such information may 
be used to refine and refresh the wait time prediction 
technology . 
[ 0028 ] The wait time prediction technology described 
herein is advantageous in a number of ways . For example , 
because a larger amount of historical data can be collected 
as compared to requesting users currently visiting a business 
for real - time data , the predicted wait times will be less 
affected by outliers and more indicative of a trend . Further , 
because the wait time prediction model can be refined and 
refreshed with newly collected data , the wait time prediction 
technology can be updated to reflect a recent change in 
trend . The data used to build the wait time prediction model 
may be large in volume , but the users are presented with 
useful information that is simple to understand . Therefore , 
after a quick glance , users will be aided in their decision 
making . 

Example Systems 
[ 0029 ] FIG . 1 illustrates an example of how the expected 
wait time information may be displayed . In this example , 
graphic 100 includes a map section 110 , an informational 
section 120 , and a popular times section 130 . The graphic 
100 may be displayed , for example on a client device , in 
response to a request for information related to Business A . 
The request for information may include , for example , an 
address , business name , general geographical area , type of 
business , etc . 
[ 0030 ] The map section 110 may include a depiction of 
geographical objects at a particular geographic location . For 
example , the geographic objects may include roads , build 
ings , landmarks , statues , street signs , etc . The objects may 
be depicted in , for example , a roadgraph , aerial imagery , 
street level imagery , or the like . The map section 110 may 
also depict a marker 112 corresponding to a requested 
location , such as Business A . The marker identifies where 
the requested location is located with respect to other objects 
depicted in the map section . The marker may be depicted in 
any of a variety of shapes and forms . Further , a label 114 
may identify that the marker 112 corresponds to Business A . 
Though not shown , in some examples the marker or map 
near the marker may be depicted so as to indicate a current 
expected wait time at Business A . For example , a size , 
shape , shading , or other aspect of the marker or map may 
change if the current expected time is short or long . As 
another example , additional icons may be positioned on the 
map near the marker to indicate current expected wait time . 
It should be understood that these are merely examples , and 
any of a number of indicators may be used . 
10031 ] Informational section 120 provides further infor 
mation related to Business A . Such information may include 
user input controls 122 , 124 , 126 , enabling the user to take 
a predetermined action . The predetermined action may be , 
for example , calling a phone number for Business A , 
requesting navigational information to Business A , or vis 
iting another website such as a site for Business A . The 
informational section 120 may also include text 128 , such as 
a listing of the operating hours of Business A . 
10032 ] The popular times section 130 includes a graphic 
representation of how popular the requested location is 
throughout the day and the week . In this example , a popular 
times histogram 131 for the current day is shown , the user 
may select another day 132 to view histograms for other 
days . In this example , typical levels of busyness are indi 

cated by unshaded bars 133 , while the current level of 
busyness , in real - time , is indicated by a shaded bar 134 . In 
this example , the day is broken down on an hourly basis . The 
expected wait time 135 for the current hour is displayed as 
a text above the popular times histogram 131 . Below the 
popular times histogram 131 , the maximum expected wait 
time 136 for the current day , along with the corresponding 
peak interval , is shown as a text . The user can click on the 
popular times histogram 131 to see the expected wait time 
for a different hour , and by selecting a different day to view 
on the popular times section 130 , can view the expected wait 
times for a different day . Moreover , the timeline 137 may 
correspond to a range of hours that Business A is in 
operation . 
[ 0033 ] While a number of example sections are described 
above in connection with FIG . 1 , and the expected wait time 
information is shown as a text , it should be understood that 
these are merely examples . The expected wait time infor 
mation may be provided for display in any of a number of 
ways , such as text , pictorial diagrams , charts , graphs , etc . In 
other examples , the expected wait time information may be 
provided to other applications , such as scheduling applica 
tions , ride - service applications , games , or any of a variety of 
other applications . 
[ 0034 ] FIG . 2 illustrates an example system used to 
receive data related to a business , generate a wait time 
prediction model , determine expected wait times using the 
generated model , and provide the expected wait times for 
display upon user request . It should not be considered as 
limiting the scope of the disclosure or usefulness of the 
features described herein . In this example , system 200 can 
include computing devices 210 in communication with one 
or more computing devices 260 , 270 , as well as storage 
system 240 , through network 250 . Each of the computing 
devices 210 contains one or more processors 220 , memory 
230 and other components typically present in general 
purpose computing devices . Memory 230 of each of the 
computing devices 210 can store information accessible by 
the one or more processors 220 , including instructions 234 
that can be executed by the one or more processors 220 . 
[ 0035 ] Memory 230 can also include data 232 that can be 
retrieved , manipulated or stored by the processor . The 
memory can be of any non - transitory type capable of storing 
information accessible by the processor , such as a hard 
drive , memory card , ROM , RAM , DVD , CD - ROM , write 
capable , and read - only memories . 
[ 0036 ] The instructions 234 can be any set of instructions 
to be executed directly , such as machine code , or indirectly , 
such as scripts , by the one or more processors . In that regard , 
the terms “ instructions , " " application , " " steps , ” and “ pro 
grams ” can be used interchangeably herein . The instructions 
can be stored in object code format for direct processing by 
a processor , or in any other computing device language 
including scripts or collections of independent source code 
modules that are interpreted on demand or compiled in 
advance . Functions , methods , and routines of the instruc 
tions are explained in more detail below . 
[ 0037 ] Data 232 may be retrieved , stored , or modified by 
the one or more processors 220 in accordance with the 
instructions 234 . For instance , although the subject matter 
described herein is not limited by any particular data struc 
ture , the data can be stored in computer registers , in a 
relational database as a table having many different fields 
and records , or XML documents . The data can also be 
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formatted in any computing device - readable format such as , 
but not limited to , binary values , ASCII or Unicode . More 
over , the data can comprise any information sufficient to 
identify the relevant information , such as numbers , descrip 
tive text , propriety codes , pointers , references to data stored 
in other memories such as at other network locations , or 
information that is used by a function to calculate the 
relevant data . 
[ 0038 ] The one or more processors 220 can be any con 
ventional processors , such as a commercially available CPU . 
Alternatively , the processors can be dedicated components 
such as an application specific integrated circuit ( “ ASIC ” ) or 
other hardware - based processor . Although not necessary , 
one or more of the computing devices 210 may include 
specialized hardware components to perform specific com 
puting processes , such as decoding video , matching video 
frames with images , distorting videos , encoding distorted 
videos , etc . faster or more efficiently . 
[ 0039 ] Although FIG . 2 functionally illustrates the pro 
cessor , memory , and other elements of computing devices 
210 as being within the same block , the processor , computer , 
computing device , or memory can actually comprise mul 
tiple processors , computers , computing devices , or memo 
ries that may or may not be stored within the same physical 
housing . For example , the memory can be a hard drive or 
other storage media located in housings different from that 
of the computing devices 210 . Accordingly , references to a 
processor , computer , computing device , or memory will be 
understood to include references to a collection of proces 
sors , computers , computing devices , or memories that may 
or may not operate in parallel . For example , the computing 
devices 210 may include server computing devices operat 
ing as a load - balanced server farm , distributed system , etc . 
Yet further , although some functions described below are 
indicated as taking place on a single computing device 
having a single processor , various aspects of the subject 
matter described herein can be implemented by a plurality of 
computing devices , for example , communicating informa 
tion over network 250 . 
[ 0040 ] Each of the computing devices 210 , 260 , 270 can 
be at different nodes of a network 250 and capable of 
directly and indirectly communicating with other nodes of 
network 250 . Although only a few computing devices are 
depicted in FIG . 2 , it should be appreciated that a typical 
system can include a large number of connected computing 
devices , with each different computing device being at a 
different node of the network 250 . The network 250 and 
intervening nodes described herein can be interconnected 
using various protocols and systems , such that the network 
can be part of the Internet , World Wide Web , specific 
intranets , wide area networks , or local networks . The net 
work can utilize standard communication protocols , such as 
Ethernet , WiFi and HTTP , protocols that are proprietary to 
one or more companies , and various combinations of the 
foregoing . Although certain advantages are obtained when 
information is transmitted or received as noted above , other 
aspects of the subject matter described herein are not limited 
to any particular manner of transmission of information . 
10041 ] As an example , each of the computing devices 210 
may include web servers capable of communicating with 
storage system 240 as well as computing devices 260 , 270 
via the network 250 . For example , one or more of server 
computing devices 210 may use network 250 to transmit and 
present information to a user on a display , such as display 

265 of computing device 260 . In this regard , computing 
devices 260 , 270 may be considered client computing 
devices and may perform all or some of the features 
described herein . 
[ 0042 ] Each of the client computing devices 260 , 270 may 
be configured similarly to the server computing devices 210 , 
with one or more processors , memory and instructions as 
described above . Each of the client computing devices 260 , 
270 may be a personal computing device intended for use by 
a user , and have all of the components normally used in 
connection with a personal computing device such as a 
central processing unit ( CPU ) 262 , memory ( e . g . , RAM and 
internal hard drives ) storing data 263 and instructions 264 , 
a display such as display 265 ( e . g . , a monitor having a 
screen , a touch - screen , a projector , a television , or other 
device that is operable to display information ) , and user 
input device 266 ( e . g . , a mouse , keyboard , touch - screen , or 
microphone ) . The client computing device may also include 
a camera 267 for recording video streams and / or capturing 
images , speakers , a network interface device , and all of the 
components used for connecting these elements to one 
another . The client computing device 260 may also include 
a location determination system , such as a GPS 268 . Other 
examples of location determination systems may determine 
location based on wireless access signal strength , images of 
geographic objects such as landmarks , semantic indicators 
such as light or noise level , etc . 

[ 0043 ] Although the client computing devices 260 , 270 
may each comprise a full - sized personal computing device , 
they may alternatively comprise mobile computing devices 
capable of wirelessly exchanging data with a server over a 
network such as the Internet . By way of example only , client 
computing device 260 may be a mobile phone or a device 
such as a wireless - enabled PDA , a tablet PC , a netbook , a 
smart watch , a head - mounted computing system , or any 
other device that is capable of obtaining information via the 
Internet . As an example the user may input information 
using a small keyboard , a keypad , microphone , using visual 
signals with a camera , or a touch screen . 
10044 ] As with memory 230 , storage system 240 can be of 
any type of computerized storage capable of storing infor 
mation accessible by the server computing devices 210 , such 
as a hard - drive , memory card , ROM , RAM , DVD , CD 
ROM , write - capable , and read - only memories . In addition , 
storage system 240 may include a distributed storage system 
where data is stored on a plurality of different storage 
devices which may be physically located at the same or 
different geographic locations . Storage system 240 may be 
connected to the computing devices via the network 250 as 
shown in FIG . 1 and / or may be directly connected to any of 
the computing devices 210 . 
[ 0045 ] Storage system 240 may store data , such as his 
torical wait time information for particular businesses , place 
attributes , historical temporal signals , thresholds , etc . For 
example , the historical wait time information for a popular 
business for a past number of months or years may be stored . 
[ 0046 ] Using the stored data , the computing devices 210 
may generate a wait time prediction model for a business 
and use the model to determine expected wait times at 
various time periods of a day throughout a week for the 
business . The computing devices 210 may also receive 
requests from users ' client computing devices 260 , 270 
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about the business and in response , provide for display on 
the client computing devices 260 , 270 the expected wait 
time at the business . 

Example Methods 
[ 0047 ] Further to example systems described above , 
example methods are now described . Such methods may be 
performed using the systems described above , modifications 
thereof , or any of a variety of systems having different 
configurations . It should be understood that the operations 
involved in the following methods need not be performed in 
the precise order described . Rather , various operations may 
be handled in a different order or simultaneously , and 
operations may be added or omitted . 
[ 0048 ] FIG . 3 illustrates an example method 300 of receiv 
ing data related to a business , generating a wait time 
prediction model , determining expected wait times using the 
model , and providing the expected wait times for display in 
response to a request . 
[ 0049 ] In block 310 , data related to a business is received . 
The data may be collected in a number of ways , for example , 
from databases , from the businesses themselves , from user 
reports , from real - time measurements , etc . Example data 
may include the historical wait times experienced at the 
business at various times of the day , and on different days of 
the week . The data may also include place attributes , i . e . , 
information about the business , such as the category of the 
business , reservation information , whether there is usually a 
wait , online visit statistics , and user ratings and reviews , etc . 
The data may further include historical temporal signals 
such as the number of arrivals , number of departures , 
occupancy level , and duration of visit at different times . The 
data may also include signals that are derived from such 
historical temporal signals , for example , a maximum , a 
minimum , a mean , a sum , a percentile , etc . The data may yet 
further include lag variables of the historical temporal 
signals and derived temporal signals . Examples of the data 
received are described in more detail in FIG . 4 . 
[ 0050 ] In block 320 , a model is generated by training 
computing devices to learn patterns from the received data . 
For example , a deep neural network with a custom loss 
function may be trained with the received data to generate a 
quantile regression model by minimizing the loss function . 
For example , the neural network may have two fully con 
nected hidden layers , each with tens or hundreds of neurons . 
Any of a variety of different types of models may be used , 
for example , the model may be a regression model or a 
classification model . The model may also be a linear model , 
a boosting tree model , a random forest model , or a neural net 
model . One example of generating a model is described in 
more detail in FIG . 4 . 
[ 0051 ] In block 330 , the expected wait time is determined 
using the model generated in block 310 . For example , when 
various place attributes and historical temporal signals about 
a business without known historical wait times are given to 
the generated model , expected wait times may be computed 
for the business using the model . 
[ 0052 ] The determining may also include finding an upper 
bound expected wait time . The determining may further 
include determining whether the expected wait time is below 
a predetermined significant - wait threshold . The determining 
may also include computing the maximum expected wait 
time for the day . The determining may yet further include 
smoothing the expected wait time using weighted averages . 

One example of determining the expected wait time is 
described in more detail in FIG . 5 and FIG . 6 . 
100531 . In block 340 , a request is received from a user for 
information on the business . For example , an example 
request could be an online search for a particular business , 
a map search for a particular business , a general search for 
a category of businesses nearby , or the like . 
[ 0054 ] In block 350 , the expected wait time is provided for 
display to the requesting user . The providing for display step 
may include , for example , providing for display the wait 
time as an upper bound , providing for display a time period 
as “ no wait " if the expected wait time is below a significant 
wait threshold , providing for display the maximum wait 
time of the day and the corresponding peak intervals , 
providing for display feedback options , and providing for 
display expected wait time information in association with 
other busyness information . The expected wait time infor 
mation may be provided for display in any of a number of 
ways , such as text , pictorial diagrams , charts , graphs , etc . In 
other examples , the expected wait time information may be 
provided to other applications , such as scheduling applica 
tions , ride - service applications , games , or any of a variety of 
other applications . Some example displays are described in 
more detail in FIG . 7 . 
[ 0055 ] In block 360 , feedback is requested from the user 
who requested information on the business . A request for 
feedback may include , for example , confirmation of whether 
the displayed expected wait times are consistent with the 
user ' s experienced wait time . One example of requesting for 
feedback is described in more detail in FIG . 7 . 
[ 0056 ] In block 370 , the model is updated using new 
information received from user feedback . Such new infor 
mation may be newly experienced wait times , new reserva 
tion information , new arrival count at a certain hour , etc . The 
new information may be used to refresh the training data for 
generating the model . One example of updating the model is 
described in more detail in FIG . 4 . 
10057 ] FIG . 4 illustrates in more detail an example method 
400 for generating a wait time prediction model . For 
example , some of the steps in the method 400 may corre 
spond to blocks 310 , 320 , and 370 . 
[ 0058 ] Block 410 , example features for generating the 
model are collected and stored . The data may be collected in 
a number of ways , for example , from databases , from the 
businesses themselves , from user reports , etc . Block 420 
shows that metadata may be an example feature data that is 
collected and stored . For example , the metadata could 
include the time period of the day and the day of the week . 
In this example , a week is divided into 648 equal time 
periods , each 30 minutes in length , e . g . , Monday 8 am - 8 : 30 
am , Monday 8 : 30 am - 9 am , . . . , Sunday 9 : 30 pm - 10 pm , 
etc . Additionally , the metadata may also include the amount 
of time since the first opening hour of the business , and the 
amount of time until the last opening hour of the business . 
[ 0059 ] Block 430 shows that place attributes about the 
business may also be an example feature data that is col 
lected and stored . The data may be collected in a number of 
ways , for example , from databases , from the businesses 
themselves , from user reports , etc . Some example place 
attributes may include the category of the business , number 
of online visits , reservation information , user review infor 
mation , etc . The categories could be general , e . g . , restaurant , 
store , hospital , government , etc . ; or they could be more 
nuanced , e . g . , fine - dining , fast food , bar , coffee shop , gro 
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cery store , department store , clinic , urgent care , post office , 
DMV , etc . The place attributes may also include online visit 
statistics , such as number of times an ad about the business 
is shown as a result of a search , number of online searches 
about the business , number of online visits of the business ' s 
website , number of map searches , etc . The place attributes 
may additionally include reservation information , such as 
whether the place accepts reservations , whether it recom 
mends reservations at certain times . User review and rating 
information may also be place attributes , such as the number 
of reviewers , the number of comments , the average rating , 
the number of ratings , etc . Yet another example place 
attribute is whether the business is known to usually have a 
wait . 
[ 0060 ] Block 440 shows that historical temporal signals 
may be another example feature data that is collected and 
stored . Historical temporal signals are signals that may 
fluctuate throughout a day and throughout a week , therefore , 
they are collected for each ( p , t ) tuple , where p is the 
identifier of the place or the business , and t is the time period 
for which an expected wait time is to be determined . The 
look - back window represents the number of data points 
collected for each ( p , t ) tuple . For example , if the look - back 
window is 24 weeks , then there would be 24 data points for 
each ( p , t ) tuple . In other words , this means that for Business 
A at the 8 pm - 8 : 30 pm time period , there are 24 arrival 
counts recorded over these 24 weeks . The look - back win 
dow can be tailored such that a representative amount of 
historical temporal signals are available , yet not look so far 
back such that there may have been significant changes in 
the wait time pattern for the business . 
[ 0061 ] Example historical temporal signals include an 
arrival count , a departure count , an occupancy level , and 
durations of visits that started in the time period t . The 
duration of visit data may be the mean duration , the 10th 
percentile duration , the 90th percentile duration , or the like . 
Historical temporal signals may also include online behav 
ioral signals , such as the number of times an ad about the 
business is shown as a result of a search , the number of 
online searches about the business , the number of online 
visits of the business ' s website , the number of map searches , 
etc . 
[ 0062 ] Block 442 shows that derived temporal signals may 
be yet another example feature data that is collected and 
stored . For example , a maximum , a minimum , a mean , and 
a sum of the number of arrivals at a particular time period 
on a particular day of a week for a business , i . e . , a ( p , t ) 
tuple , can be computed over the entire look - back window . 
The same set of statistics can be computed for each of the 
historical temporal signals described above in relation to 
block 440 . As another example , aggregated data such as the 
10th percentile and 90th percentile visit durations for a ( p , t ) 
tuple can be computed over the entire look - back window . 
Instead of using the entire look - back window , alternatively 
one may also compute derived temporal signals over only 
part of the look - back window . 
[ 0063 ] Block 444 shows that lag variables , yet another 
example of derived temporal signals , may also be a feature 
data that is collected and stored . Lag variables may be 
determined for each of the historical temporal and derived 
temporal signals shown in blocks 440 and 442 . A lag 
variable may be backward - looking or forward - looking . For 
example , one interesting backward - looking lag variable may 
be the number of arrivals in an earlier time period of the day , 

such as in the time period t - 1 preceding the time period t for 
which an expected wait time is to be predicted , since these 
recent arrivals are likely to remain beyond the time period t . 
As another example , one interesting forward - looking lag 
variable may be the occupancy level in a later time period of 
the day , such as in the upcoming time period t + 1 following 
the time period t for which an expected wait time is to be 
predicted . For instance , if the following hour corresponds to 
the end of lunch break for many employees in the area , a 
large number of departures may be expected in the upcom 
ing hour , and therefore the business will soon be able to 
absorb more customers in the upcoming hour . 
[ 0064 ] In block 450 , example labels for generating the 
model are collected and stored . Block 460 shows that 
historical wait time data may be an example label data that 
is collected and stored . The historical wait time data may be 
collected from consumer surveys . For example , the survey 
may ask a user to input the actual wait time experienced , or 
it may ask a user to choose from a list of estimates , e . g . , O 
min , 5 min , 10 min , . . . , 30 min , 60 min , more than 60 min , 
etc . The survey may also ask the user at what time and day 
the wait time was experienced . The survey may additionally 
ask the user whether service was eventually received at the 
business . Additionally , the survey may ask more nuanced 
questions such as whether a reservation was made , was it 
dine in or take out , etc . To ensure that the received wait time 
data are accurate , the surveys are preferably sent to the user 
soon after the visit . The method is not limited to using 
surveys , for example , the actual wait time data may be 
collected from another database , from the businesses , or 
from real - time measurements , etc . 

[ 0065 ] The historical wait time data collected are sorted 
and stored for each ( p , t ) tuple . For example , if a wait time 
is collected for a visit to Business A at 5 : 13 pm on Monday , 
it will be sorted as a wait time for Business A , Monday 5 
pm - 5 : 30 pm . 
[ 0066 ] In block 470 , a deep neural network with a custom 
loss function is trained with the example features collected 
and stored in block 410 and the example labels collected and 
stored in block 450 . For example , the neural network may 
have two fully connected hidden layers , each with tens or 
hundreds of neurons . In this example , the deep neural 
network learns patterns from the feature data and label data 
and generates a quantile regression model by minimizing the 
loss function . In this example , the quantile regression model 
predicts an expected wait time as a value at a predetermined 
quantile , specifically , the 90th percentile expected wait time . 
[ 0067 ] However , the method 400 is not limited to training 
a neural network to generate a quantile regression model . 
Various types of models may be generated using the method 
400 . For example , the model may be a regression model or 
a classification model . The model may also be a linear 
model , a boosting tree model , a random forest model , or a 
neural net model , etc . 
10068 ] In block 480 , the training data are refreshed with 
feedback collected from users . For example , the user who 
requested the wait time information may provide feedback 
about the accuracy of the expected wait time , or input a new 

w ait time actually experienced by the user . The feedback 
may include additional options such as leave a review or a 
rating , or provide more information about the business . 
Feedback may additionally be collected via other methods 
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and from other sources other than the requesting user , for 
example , they could be collected from new customer sur 
veys , databases , etc . 
[ 0069 ] For example , the feedback may include a newly 
experienced actual wait time , which becomes an additional 
set of label data that can be used to refine and update the 
current model . The feedback may also include new infor 
mation that a user provides about the business , for example , 
that the place recommends reservations for lunch . Therefore , 
the current model may be updated with the new place 
attribute about reservations . The feedback may also include 
a new duration of visit that the user reports , which can be 
used to update the historical temporal signals . The model 
may be updated each time a new feedback is collected , or 
alternatively and more practically , for example , at some 
regular time interval , whenever a predetermined number of 
new feedbacks are collected , or whenever a new place 
attribute needs to be updated , etc . 
[ 0070 ] FIG . 5 illustrates in more detail an example method 
500 for determining an expected wait time using the model 
generated from the method 400 and providing for display . 
For example , some of the steps in the method 500 may 
correspond to blocks 330 and 350 . 
[ 0071 ] Block 510 shows that an upper bound expected 
wait time is determined using the model generated from 
method 400 . An upper bound expected wait time may be 
more useful for decision making than , for example , a lower 
bound or the mean expected wait time , since a user may have 
limited availability , e . g . , lunch hour ends . Instead of the 
absolute upper bound , one preferred example determines the 
90th percentile expected wait time . Alternatively , the upper 
bound could be the 70th percentile expected wait time , and 
so on . The method is not limited to expressing the expected 
wait time as an upper bound , for example , the expected wait 
time may also be expressed as a range of typically expected 
wait times or the most likely expected wait time . 
10072 ] In block 520 , it is determined whether the expected 
wait time is for a time period outside of opening hours , and 
if so , the expected wait time is reset as 0 min ( block 530 ) . 
[ 0073 ] In block 540 , the wait time is smoothed by taking 
a weighted average of the expected wait time and at least one 
other expected wait time from a neighboring time period . 
For example , if the expected wait time for Friday 5 pm - 5 : 30 
pm is 20 min , for 5 : 30 pm - 6pm is 55 min , and for 6 pm - 6 : 30 
pm is 70 min , then an example weighted average for the 5 : 30 
pm - 6 pm time period may be ( 0 . 5x20 min + 1x55 min + 0 . 5x 
70 min ) / 2 = 50 min . Expected wait times outside of the 
opening hours are not used in calculating weighted averages . 
[ 0074 ] In block 550 , the expected wait time is rounded to 
a predetermined granularity . For example , if granularity is 
set at 15 min , " up to 30 min wait ” and “ up to 45 min wait ” 
may be provided for display instead of " up to 28 min wait ” 
and " up to 40 min wait . ” Continuing from the example 
above for the time period Friday 5 : 30 pm - 6 pm , the expected 
wait time of 50 min may be rounded to 45 min . 
[ 0075 ] In block 560 , the expected wait time is compared 
to a significant - wait threshold . In many cases , a certain 
threshold of wait time is almost always expected for a 
category of businesses . For example , a person walking into 
almost any sit - down restaurant without a reservation could 
expect at least some wait before seated , say , 10 min . Thus , 
it would not be interesting for a user to see such trivial wait 
times . Since upper bound expected wait times are deter - 
mined in this example , a significant - wait threshold of 30 min 

may be preferable . Therefore , continuing from the examples 
above , for Friday 5 pm - 5 : 30 pm the expected wait time is 
less than 30 min , so " usually no wait ” will be provided for 
display ( block 570 ) for Friday 5 pm - 5 : 30 pm . For Friday 
5 : 30 pm - 6 pm in the example above , the expected wait time 
is greater than 30 min , therefore " up to 45 min wait " will be 
provided for display ( block 580 ) for Friday 5 : 30 pm - 6 pm . 
10076 ) FIG . 6 illustrates in more detail an example method 
600 for determining a maximum expected wait time using 
the model generated from the example method 400 and 
providing the maximum expected wait time for display . For 
example , some of the steps in the method 600 may corre 
spond to blocks 330 and 350 . 
[ 0077 ] In block 610 , a maximum expected wait time for 
the day is determined among all the expected wait times 
available for the day . 
[ 0078 ] In block 620 , it is determined whether the maxi 
mum expected wait time of the day is less than the prede 
termined significant - wait threshold . If so , “ usually no wait ” 
is provided for display for the day 630 . For example , if the 
significant - wait threshold is set at 30 min and the maximum 
wait time of the day is 15 min , “ usually no wait ” would be 
provided for display ; otherwise , the method carries on to 
determine the peak interval corresponding to the maximum 
expected wait time . In this example , the threshold for 
determining whether there is a significant wait for a par 
ticular time period is the same as the threshold for deter 
mining whether there is a significant wait for a day ; how 
ever , alternatively , two different thresholds can be set . 
100791 . In block 640 , the peak interval corresponding to the 
maximum expected wait time is determined . In this 
example , it is the longest interval including all the time 
periods that have the maximum expected wait time for the 
day . For example , if Friday from 7 pm - 8 : 30 pm , the 
expected wait time is at maximum for the day at 90 min , then 
7 pm - 8 : 30 pm would be the peak interval for Friday , which 
includes all three time periods 7 pm - 7 : 30 pm , 7 : 30 pm - 8 pm , 
and 8 pm - 8 : 30 pm . The method may determine multiple 
peak intervals for a given day . 
[ 0080 ] In block 650 , it is determined whether the peak 
interval is only 30 min in length . If the peak interval is 
greater than 30 min in length , as in the example above , the 
maximum expected wait time along with the corresponding 
peak interval will be provided for display ( block 660 ) . If the 
peak interval is only 30 min in length , it is determined 
whether any of its neighbors have an expected wait time that 
is only one granularity less than the maximum expected wait 
time ( block 670 ) . If so , such neighbors will be included in 
the peak interval ( block 680 ) and the expected wait time of 
the entire peak interval will be reset to the majority value of 
the peak interval ( block 690 ) . For example , if Thursday 7 
pm - 7 : 30 pm has the maximum expected wait time of 45 min 
and it is the longest interval for this maximum expected wait 
time , then the peak interval is only 30 min in length . 
However , the expected wait time is 30 min for both 6 : 30 
pm - 7 pm and at 7 : 30 pm - 8 pm on Thursday . Since the 
granularity is set at 15 min , the expected wait times for both 
6 : 30 pm - 7 pm and 7 : 30 pm - 8 pm are only one granularity 
below the maximum expected wait time of 45 min . There 
fore , the new peak interval will be 6 : 30 pm - 8 pm on 
Thursday , and the expected wait time for this new peak 
interval will be the majority value of 30 min . In this way , 
instead of showing a very short peak interval of 30 min for 
Thursday having an expected wait of 45 min , it may be 
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better to show the user a broader peak interval that may be 
more representative of the peak , since the two time periods 
around 7 pm - 7 : 30 pm are not much different . 
[ 0081 ] FIG . 7 illustrates example displays 700 of the 
expected wait time data . In this example , the current 
expected wait time data is displayed along with the popular 
times data , including real - time busyness data . In this 
example , a user sent a request for information about the 
business at 7 : 12 pm on a Wednesday , therefore the expected 
wait time 710 for the time period 7 pm - 7 : 30 pm on a 
Wednesday is shown . The expected wait time 710 is 
expressed as an upper bound , “ up to 45 min wait . ” The text 
“ Correct ? ” links the requesting user to a feedback form , 
where the user may provide feedback about whether the 
information is accurate , an actually experienced wait time , 
additional information about the business , or other informa 
tion related to the user ' s visit . 
[ 0082 ] Pop - up 720 shows that , when the user clicks on the 
bar representing the time period 8 pm - 9 pm on Wednesday , 
the higher expected wait time between the two time periods 
8 pm - 8 : 30 pm and 8 : 30 pm - 9 pm is displayed . In this 
example , the expected wait time for 8 pm - 8 : 30 pm is 15 min 
and the expected wait time for 8 : 30 pm - 9 pm is 0 min . 
Therefore , the expected wait time for the time period 8 pm - 9 
pm on Wednesday is expressed as “ usually no wait ” since 
both values are below the predetermined significant - wait 
threshold . In this example , the threshold is set at 30 minutes . 
[ 0083 ] Below the popular times histogram , a maximum 
expected wait time 730 for the current day is displayed along 
with the corresponding peak time interval . In this example , 
the maximum expected wait time 730 for Wednesday is 
displayed as “ longest wait today 45 min 5 : 30 pm - 7 pm . " 
The text “ Useful ? ” links the user to a feedback form , where 
the user may provide feedback about whether the informa 
tion is accurate , provide an actually experienced wait time , 
additional information about the business , or other informa 
tion related to the user ' s visit . 
[ 0084 ] Pop - up 740 shows that , when the user changes the 
date on the dropdown menu for dates 750 to Monday , the 
expected wait time information for Monday is displayed . In 
this example , Monday ' s maximum expected wait time 760 
is expressed as “ usually no wait " because there is no time 
period on Monday with an expected wait time equal or 
above the predetermined significant - wait threshold , which is 
set at 30 minutes in this example . 
[ 0085 ] Although not shown here , if the business accepts or 
recommends making reservations at particular times or on 
particular days , and the expected wait times during these 
times or days are below the predetermined significant - wait 
threshold , it may simply be that most of the visitors make 
reservations to the business during such times and days , and 
therefore that was the reason for usually no wait . In such 
cases , though not shown in FIG . 7 , the method may provide 
for display “ recommend reservations " instead of usually no 
wait , ” as the latter may be misleading . 
[ 0086 ] It should be understood that the examples of how 
the predicted wait times are displayed are not limiting , and 
that the information may be displayed in any of a variety of 
other formats . For example , the expected wait time infor 
mation may be provided for display as text , pictorial dia 
grams , charts , graphs , etc . In other examples , the expected 
wait time information may be provided to other applications , 
such as scheduling applications , ride - service applications , 
games , or any of a variety of other applications . 

[ 0087 ] The wait time prediction technology described 
herein is advantageous in a number of ways . For example , 
the technology may be developed for a large scale of 
businesses and public service establishments , and therefore 
can be relied on by users in making many everyday deci 
sions . Further , because a larger amount of historical data 
may be collected as compared to requesting users currently 
visiting a business for real - time data , the predicted wait 
times will be less affected by outliers and more indicative of 
a trend . Still further , because the wait time prediction model 
can be refined and refreshed with newly collected data , the 
wait time prediction technology can be updated to reflect a 
recent change in trend . The data used to build the wait time 
prediction model may be large in volume , but the users are 
presented with useful information that is simple to under 
stand . Therefore , after a quick glance , users will be aided in 
their decision making . 
[ 0088 ] Unless otherwise stated , the foregoing alternative 
examples are not mutually exclusive , but may be imple 
mented in various combinations to achieve unique advan 
tages . As these and other variations and combinations of the 
features discussed above can be utilized without departing 
from the subject matter defined by the claims , the foregoing 
description of the examples should be taken by way of 
illustration rather than by way of limitation of the subject 
matter defined by the claims . In addition , the provision of the 
examples described herein , as well as clauses phrased as 
" such as , " “ including ” and the like , should not be interpreted 
as limiting the subject matter of the claims to the specific 
examples ; rather , the examples are intended to illustrate only 
one of many possible examples . Further , the same reference 
numbers in different drawings can identify the same or 
similar elements . 

1 . A method , comprising : 
receiving data related to a business , the data including at 

least historical wait time information ; 
generating a model using one or more computing devices 

based on at least the historical wait time information for 
the business ; 

determining an expected wait time for service at the 
business for at least one particular time period on a 
particular day of a week using the model ; 

receiving a request for information about a business ; and 
providing for display , in response to the request , the 

expected wait time . 
2 . The method according to claim 1 , wherein generating 

the model is additionally based on place attributes , the place 
attributes comprise at least one of a place category , a number 
of online visits , reservation information , and user review 
information . 

3 . The method according to claim 1 , wherein generating 
the model is additionally based on historical temporal sig 
nals collected for a predetermined look - back window for the 
particular time period on the particular day of the week , the 
historical temporal signals comprise at least one of an arrival 
count , a departure count , an occupancy level , durations of 
visits , and a number of online visits . 

4 . The method according to claim 3 , wherein the historical 
temporal signals further comprise derived temporal signals 
computed over at least a part of the predetermined look - back 
window for at least one of the historical temporal signals for 
the particular time period on the particular day of the week . 

5 . The method according to claim 4 , wherein the derived 
temporal signals further comprise at least one of a back 
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ward - looking lag variable , the backward - looking lag vari 
able being one of the historical temporal signals collected 
for an earlier time period on the particular day of the week . 

6 . The method according to claim 4 , wherein the derived 
temporal signals further comprise at least one of a forward 
looking lag variable , the forward - looking lag variable being 
one of the historical temporal signals collected for a later 
time period on the particular day of the week . 

7 . The method according to claim 1 , wherein the expected 
wait time is an upper bound expected wait time . 

8 . The method according to claim 1 , further comprising : 
determining whether the expected wait time is less than a 

predetermined significant - wait threshold ; and 
displaying the particular time period as a no - wait time 

period if the expected wait time is less than the prede 
termined significant - wait threshold . 

9 . The method according to claim 1 , further comprising : 
computing a maximum expected wait time for the par 

ticular day of the week ; 
determining at least one peak interval for the particular 
day of the week , the peak interval comprising the 
particular time periods having the maximum expected 
wait time ; 

displaying the maximum expected wait time ; and 
displaying the at least one peak interval . 
10 . The method according to claim 1 , wherein the 

expected wait time is smoothed by taking a weighted 
average of the expected wait time and at least one other 
expected wait time from a neighboring time period . 

11 . The method according to claim 1 , wherein the pro 
viding for display is in association with other business 
information indicating busyness level . 

12 . The method according to claim 1 , further comprising : 
requesting user feedback regarding the expected wait 

time ; 
receiving , in response to the request , the user feedback ; 

and 
updating the model based on the user feedback . 
13 . The method according to claim 1 , further comprising : 
refreshing the model as new wait times are received . 
14 . The method according to claim 1 , wherein the model 

is one of a regression model or a classification model . 
15 . The method according to claim 14 , wherein the model 

is a quantile regression model capable of determining the 
expected wait time as a value at a predetermined quantile . 

16 . The method according to claim 1 , wherein the model 
is one of a linear model , a boosting tree model , a random 
forest model , or a neural net model . 

17 . A system , comprising : 
a memory ; and 
one or more processor in communication with the 
memory , the one or more processors configured to : 
receive data related to a business , the data including at 

least historical wait time information ; 
generate a model using one or more computing devices 
based on at least the historical wait time information 
for the business ; 

determine an expected wait time for service at the 
business for at least one particular time period on a 
particular day of a week using the model ; 

receive a request for information about a business ; and 
provide for display , in response to the request , the 

expected wait time . 
18 . The system according to claim 17 , wherein generating 

the model is additionally based on place attributes , the place 
attributes comprise at least one of a place category , a number 
of online visits , reservation information , and user review 
information . 

19 . The system according to claim 17 , wherein generating 
the model is additionally based on historical temporal sig 
nals collected for a predetermined look - back window for the 
particular time period of the day on the particular day of the 
week , the historical temporal signals comprise at least one of 
an arrival count , a departure count , an occupancy level , 
durations of visits , and a number of online visits . 

20 . A computer - readable storage medium storing instruc 
tions executable by one or more processors for performing 
a method , comprising : 

receiving data related to a business , the data including at 
least historical wait time information ; 

generating a model using one or more computing devices 
based on at least the historical wait time information for 
the business ; 

determining an expected wait time for service at the 
business for at least one particular time period on a 
particular day of a week using the model ; 

receiving a request for information about a business ; and 
providing for display , in response to the request , the 

expected wait time . 
* * * * * 


