
No. 821,008.

PATENTED MAY 22, 1906.

F. R. WHITE.
GLOVE FASTENER.
APPLICATION FILED JUNE 29, 1905.

ANDREW, B. GRAHAM CO., PHOTO-LITHOGRAPHERS, WASHINGTON, D. C.

UNITED STATES PATENT OFFICE.

FRANKLIN R. WHITE, OF WATERBURY, CONNECTICUT, ASSIGNOR TO THE PATENT BUTTON COMPANY, OF WATERBURY, CONNECTICUT, A COR-PORATION OF CONNECTICUT.

GLOVE-FASTENER.

No. 821,008.

Specification of Letters Patent.

Fatented Way 22, 1906.

Application filed June 29, 1905. Serial No. 267,489.

To all whom it may concern:

Be it known that I, Franklin R. White, a citizen of the United States, and a resident of Waterbury, in the county of New Haven and State of Connecticut, have made and invented certain new and useful Improvements in Glove-Fasteners, of which the following is a

specification.

My invention relates to an improvement in to the socket member of a ball-and-socket fastener adapted for use in connection with gloves, suspenders, umbrellas, &c., and more particularly to that kind or character of socket wherein is employed a fastening-eye-15 let having formed thereon or attached thereto a stud-engaging piece and a cap containing a cone for spreading or upsetting the end of the eyelet to fasten or attach the same to the cap. Heretofore when the socket mem-20 ber has been so constructed—that is, with an upsetting or spreading cone—the eyelet has usually been formed with straight walls and of large diameter in order to admit the ball therein, thereby necessitating the formation of a comparatively large hole in the material for the passage of the fastening-eyelet through it. In many classes of work the flaps of the glove, for instance, are matched up, and a hole of proper size for the ball-attach-30 ing eyelet is made simultaneously through both flaps. As the socket-eyelet is comparatively large, it necessarily follows that the opening in the respective flap must in some way be made larger—as, for instance, by 35 forcing a bodkin through the same or by recutting.

The object of my invention is to overcome the necessity of making one hole larger than the other and to so construct the socket 40 member that the cone located in the cappiece after performing its function of spreading or upsetting the end of the eyelet may be forced backwardly or inwardly within the cap or otherwise so distorted as to prevent its in-45 terfering with the stud member when the latter is assembled with the socket and allowing the eyelet, preferably of cone shape, to be made comparatively small or of such size as will allow of its passage through a hole in the 50 material of similar size to the hole formed for the accommodation of the ball-attaching

eyelet.

vention consists in certain novel features of construction and combinations of parts, as 55 will be hereinafter fully described, and pointed out in the claims.

In the accompanying drawings, Figure 1 is a view of the star-shaped blank from which the fastening-eyelet is formed. Fig. 2 is a 60 top plan view thereof in its first stage of formation. Fig. 3 is a sectional view of the same, taken on the line 3 3 of Fig. 2. Fig. 4 is a plan view of the eyelet in its second stage of formation. Fig. 5 is a view in side eleva- 65 tion of the same, and Fig. 6 a sectional view taken on the line 6 6 of Fig. 4. Fig. 7 is a view in side elevation of the eyelet in its third stage of formation, and Fig. 8 a sectional view of the same. Fig. 9 is a view in side ele- 70 vation of the completed eyelet, and Fig. 10 a sectional view of the same. Fig. 11 is a bottom plan view of the cap-piece. Fig. 12 is a sectional view of the same, taken on the line 12 12 of Fig. 11. Fig. 13 is a view, partly in 75 section and partly in elevation, of the eyelet and cap prior to being assembled, the eyelet being shown attached to the setting-tool. Fig. 14 is a similar view after the cap and eyelet have been assembled. Fig. 15 is a sec- 80 tional view of the finished socket-piece.

Referring to the drawings, Fig. 1 shows the blank 16, from which the attaching-eyelet is formed, the same consisting of a single piece of sheet metal and in the form of a six-point- 85 ed star, the central portion thereof forming the flange 20 of the finished eyelet and the points 17 the cone-shaped hub or barrel of the eyelet. The central portion of the blank 16 is formed with the slots 18 radiating from 90 the center, the metal points 19, contained between the slots, forming the resilient or elastic stud-engaging piece of the finished article.

By means of suitable dies (not shown) the blank 16 is struck up into the shape as illus- 95 trated in Figs. 2 and 3—that is, the points 17 of the star-shaped blank are turned downwardly, as are also the points 19, the latter forming inwardly-turned spring-teeth. The article is then shaped as shown in Figs. 4, 5, 10c and 6, the points 17 being brought closer together, after which it is shaped as illustrated in Figs. 7 and 8, during which operation said points 17 are brought still closer together. In the final operation is formed the flange 20, 105 With these and other ends in view the in- as illustrated in Figs. 9 and 10, the result being the formation of a cone-shaped eyelet having a split barrel and provided on its larger end with the flange 20 and resilient or yielding stud-engaging teeth, the whole being

2

formed of a single piece of metal. In Figs. 11 and 12 I have illustrated a cappiece consisting of a cap proper, 21, provided with the inwardly-turned flange 22 and containing the cone-shaped disk 23, the latter 10 being adapted to spread or upset the end of the fastening-eyelet outwardly and under the flange 22 for securing the parts together, the material 24 being clamped between the flanges 20 and 22, as illustrated in Fig. 14.

In assembling the parts a tool 25 is employed, having formed thereon the lug or projection 26, the latter being slightly longer than the diameter of the ball or stud to be employed in connection with the socket and 20 which lug 26 extends into the tapered eyelet, the spring-teeth 19 securely holding the eyelet thereon during the operation of assembling the parts, as clearly illustrated in Fig. 13. By suitable means (not shown) the tool 25 25 carries the tapered eyelet through the opening 27 in the material 24, on the opposite side of which latter is located the cap-piece, and the smaller end of the split tapered eyelet being pressed or forced against the cone

30 23 will readily yield and separate, thereby locking or securing the eyelet to the cappiece, as clearly illustrated in Fig. 14. pressure being continued, the lower end of the lug or projection 26 will force inwardly

35 the apex of the cone 23, bending, shaping, or distorting the same, as illustrated in Figs. 14 and 15, thereby affording sufficient room for the reception of the ball or stud member. From the foregoing it will be understood that

40 by thus crushing or inwardly bending the cone after it has performed its function of spreading the end of the fastening-eyelet, which would otherwise extend into the mouth or entrance of the socket, room is pro-

45 vided for the ball or stud member in a comparatively short and small fastening-eyelet, the latter requiring but a small hole or opening in the material for its passage.

Having fully described my invention, what 50 I claim as new, and desire to secure by Let-

ters Patent, is-

1. A fastener of the character described constructed with a cap-piece having an in-turned flange, a cone-disk contained within 55 the cap-piece between the inner wall thereof and said flange and having its marginal edge located within said flanged portion, and an eyelet the end of which is spread within the cap-piece by said cone, the end of the eyelet

being also spread within the cap-piece and 60 confined between the inturned flange thereof and the cone-disk, and the center of said cone being bent inwardly into the cap-chamber.
2. A fastener of the character described

constructed with a cap-piece having an in- 65 turned flange, a cone-disk contained wholly within the chamber of the cap-piece and having its marginal edge contained within the inturned portion of the cap-piece, and a tapered eyelet, the end of which is spread with- 70 in the chamber of the cap-piece and confined between the inner wall of the inturned flange and the cone-disk, said cone-disk having its central portion capable of spreading the end of the eyelet, and of being substantially bent 75 inwardly.

3. The socket member of a ball-and-socket fastener consisting of a cap-piece having an inturned flange, a cone-disk within the chamber of the cap-piece and having its marginal 80 edge confined within the said inturned portion of the cap-piece, and a split eyelet of tapered form the end of which is spread within the cap-piece between the flange thereof and said cone-disk, the latter being subsequently 85 bent inwardly, said eyelet having a central opening provided with yielding stud-engag-

ing members.

4. The socket member of a ball-and-socket fastener, consisting of a hollow cap-piece hav- 90 ing an inturned flange adapted to clamp one side of the material, said cap-piece containing within its chamber a cone, and an eyelet fashioned from a disk having radial points and having a perforate center with slots radi- 95 ating therefrom, said points subsequently bent to form a tapered split hub and to be spread within the cap-piece by said cone, and the metal between the radial slots at the center being bent inwardly substantially parallel 100 with the axis of the hub to form yielding stud-engaging means.

5. In the socket member of a ball-andsocket fastener, the combination with a cappiece containing a cone, a tapered split eye- 105 let, the upper smaller end of which is spread within said cap-piece by said cone, the latter being subsequently bent inwardly, the lower larger end of said eyelet being flanged and bent inwardly to form a yielding stud-engag- 110

ing piece, substantially as described.
Signed at Waterbury, in the county of New
Haven and State of Connecticut, this 21st day of June, A. D. 1905.

FRANKLIN R. WHITE.

Witnesses:

KATHARINE A. RUBEY, JAY H. HART.