(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/071546 A2

(43) International Publication Date

4 August 2005 (04.08.2005)

(51) International Patent Classification’: GOG6F 12/00 (74) Agent: LING, Christopher, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
(21) International Application Number: ter Hampshire SO21 2JN (GB).
PCT/EP2005/050031

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

(22) International Filing Date: 5 January 2005 (05.01.2005)

(25) Filing Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE,
KG, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV, MA, MD,
(26) Publication Language: English MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(30) Priority Data:

10/753,817 8 January 2004 (08.01.2004) US

(71) Applicant (for all designated States except US): INTER- (84) Designated States (unless otherwise indicated, for every

NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

Published:
— without international search report and to be republished
upon receipt of that report

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHILDRESS,
Rhonda [US/US]; 8515 West Potosi Cove, Austin, Texas
78717 (US). KUMHYR, David [US/US]; 8934 Ap-
paloosa Run, Austin, Texas 78737 (US). PENNELL, Neil
[GB/US]; 12915 Partridge Bend, Austin, Texas 78729
(Us).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR SUPPORTING TRANSACTIONS

05/071546 A2 IR U0 OO OO

& (57) Abstract: A method, apparatus, and computer instructions for monitoring transactions for a set of known nodes in a network
data processing system. Cache data is received from a router in the dada processing system. The cache data includes an identification
of the set of known nodes sending data packets for transactions onto the network data processing system. The transactions are tracked
for the set of nodes using the cache data from the router. In this manner, the loading of work for different nodes in a set of nodes can
be identified.

WO 2005/071546 PCT/EP2005/050031

[001]

[002]

[003]

[004]

[005]

Description
METHOD AND APPARATUS FOR SUPPORTING

TRANSACTIONS
Technical Field

The present invention relates generally to an improved data processing system and
in particular to a method and apparatus for identifying node usage in a set of nodes.
Still more particularly, the present invention relates to a method, apparatus, and
computer instructions for identifying transactions handled by nodes.

Background Art

A network data processing system is a system that transmits any combination of
voice, video, and/or data between different clients. The network for this system
includes a medium used to provide communications links between various devices and
computers connected within the network data processing system. These devices
include permanent connections, such as wire or fiber optic cables, or temporary
connections, such as those made through telephone connections. Devices in addition to
server and client machines include bridges, routers, and switches. Additionally, a
network data processing system also may include wireless connections with supporting
hardware, such as antennas and towers.

A number of different types of networks are present, such as a wide area network
(WAN) and a local area network (LAN). A LAN is a communications network that
serves users within some confined geographic area. Typically, a LAN uses clients and
servers that have network-enabled operating systems. A WAN is a communications
network covering a wide geographic area, such as a state or country. LANs are
typically limited to a building or complex. Another example of a network is the
Internet. The Internet, also referred to as an “internetwork”, is a set of computer
networks, possibly dissimilar, joined by means of gateways that handle data transfer
and the conversion of messages from a protocol of the sending network to a protocol of
the receiving network. When capitalized, the term “Internet” refers to the collection of
networks and gateways that use the TCP/IP suite of protocols.

Businesses and other organizations employ network data processing systems to
conduct business and other transactions. These networks may be as small as a single
LAN or may encompass many networks, including the Internet.

Enterprise networking involves using a network infrastructure in a large enterprise
or business organization with multiple computer systems and networks. These types of
infrastructures are typically extraordinarily complex. An enormous amount of effort
goes into planning and managing the integration of different disparate networks and

WO 2005/071546 PCT/EP2005/050031

[006]

[007]

[008]

[009]

systems. Also, planning for additional interfaces as needs and demands change also
occurs.

In managing an enterprise system, these systems often include a number of servers
that are assigned to provide different services. Management of these servers is an
important function of ensuring that services are provided when needed. Managing the
allocation of resources for providing services to process requests is an important and
complex task. As part of a process to identify the capability and usage of resources,
identifying transactions processed by nodes, such as servers, is important for use in
ensuring that a perceived capability matches the actual usage for those nodes.

For example, a set of servers may be provisioned to handle requests for a Website
set up to support an online business that provides goods or services. The servers also
may be set up to provide access to data, such as medical records, tax information, or
regulations. The resources needed vary depending on the usage and demand from
clients. In provisioning resources, it is important to identify the usage of the resources.
If the usage increases, capacity may be added to meet the increasing demand. In some
cases, the addition of servers may be unnecessary because one or more current Servers
may be underutilized while others may be strained to the point of failure or are unable
to meet expected service levels. A mismatch in the capabilities is often identified by
the occurrence of a failure and subsequent analysis of the system. These failures
typically occur when currently used load balancing techniques are unable to adequately
monitor and maintaining the capabilities for servicing requests.

When an application is simple and does not require the state to persist over multiple
requests from a user, the normal round robin or other such load balancing techniques
are sufficient to maintain capabilities for servicing requests. In the case where the ap-
plication is more complex and requires state information to persist across multiple
requests, the presently available load balancing techniques are unable to sufficiently
monitor and manage resources for servicing requests. In the case where state in-
formation is persisted, the user’s session is required to be associated with a particular
server providing the information. This situation is generally referred to as “sticky load
balancing”. In this case it is normal for a single server to become overloaded due to the
stickiness of the transaction. This problem increases when the situation changes from
the user being a human using a browser to a computer using Web services. The main
reason for having to maintain state information in these examples is the need to access
legacy systems.

Therefore, it would be advantageous to have an improved method, apparatus, and
computer instructions for identifying transactions being handled by a set of nodes in a
network data processing system.

WO 2005/071546 PCT/EP2005/050031

[010]

[011]

[012]

[013]

[014]

[015]

[016]

[017]

[018]

[019]

[020]

[021]

Disclosure of Invention

The present invention provides a method, apparatus, and computer instructions for
monitoring transactions for a set of known nodes in a network data processing system.
Cache data is received from a router in the data processing system. The cache data
includes an identification of the set of known nodes sending data packets for
transactions onto the network data processing system. The transactions are tracked for
the set of nodes using the cache data from the router. In this manner, the loading of
work for different nodes in a set of nodes can be identified.
Brief Description of the Drawings

A preferred embodiment of the present invention will now be described by way of
example only with reference to the following drawings in which:

Figure 1 depicts a pictorial representation of a distributed data processing system
in which preferred embodiments of the present invention may be implemented,;

Figure 2 is a server system depicted in accordance with a preferred embodiment of
the present invention;

Figure 3 is a block diagram depicting a data processing system that may be im-
plemented as a server or network dispatcher in accordance with a preferred
embodiment of the present invention;

Figure 4 is a diagram illustrating components used in discovering nodes and rela-
tionships between nodes in a network data processing system;

Figure 5 is a diagram illustrating information stored for entry in the data cache for
a router in accordance with a preferred embodiment of the present invention;

Figure 6 is a diagram illustrating usage of nodes in accordance with a preferred
embodiment of the present invention;

Figure 7 is a flowchart for a process for obtaining a snapshot of data from a cache
in accordance with a preferred embodiment of the present invention;

Figure 8 is a flowchart of a process for identifying transactions handled by nodes
in a network data processing system in accordance with a preferred embodiment of the
present invention; and

Figure 9 is a flowchart of a process for initializing a load balancing process in
accordance with a preferred embodiment of the present invention.

Mode for the Invention

With reference now to the figures, Figure 1 depicts a pictorial representation of a
distributed data processing system in which the preferred embodiments of the present
invention may be implemented. Distributed data processing system 100 is a network of
computers in which the preferred embodiments of the present invention may be im-
plemented. Distributed data processing system 100 contains a network 102, which is

WO 2005/071546 PCT/EP2005/050031

[022]

[023]

[024]

[025]

[026]

the medium used to provide communication links between various devices and
computers connected together within distributed data processing system 100. Network
102 may include permanent connections, such as wire or fiber optic cables, or
temporary connections made through telephone connections.

In the depicted example, a server system 104 is connected to network 102 along
with storage unit 106. Server system 104 typically will contain two or more servers
and is also referred to as a “cluster.” In addition, clients 108, 110, and 112 also are
connected to a network 102. These clients 108, 110, and 112 may be, for example,
personal computers or network computers. For purposes of this application, a network
computer is any computer, coupled to a network, which receives a program or other
application from another computer coupled to the network. In the depicted example,
server system 104 provides data, such as boot files, operating system images, and ap-
plications to clients 108-112. Clients 108, 110, and 112 are clients to server 104.
Distributed data processing system 100 may include additional servers, clients, and
other devices not shown. In the depicted example, distributed data processing system
100 is the Internet with network 102 representing a worldwide collection of networks
and gateways that use the TCP/IP suite of protocols to communicate with one another.
At the heart of the Internet is a backbone of high-speed data communication lines
between major nodes or host computers, consisting of thousands of commercial,
government, educational, and other computer systems that route data and messages. Of
course, distributed data processing system 100 also may be implemented as a number
of different types of networks, such as for example, an intranet, a local area network
(LAN), or a wide area network (WAN). Figure 1 is intended as an example and not as
an architectural limitation for embodiments of the present invention.

Turning now to Figure 2, a server system is depicted in accordance with a preferred
embodiment of the present invention. Server system 200 may be implemented as
server system 104 in Figure 1.

Server system 200 in this example includes router 202, which receives requests
from clients. Router 202 is connected to bus 204. This bus also provides an inter-
connection for network dispatcher 206. Network dispatcher 206 is also referred to as a
“front-end processor”. Also within server system 200 are servers 208, 210, 212, and
214. These servers are identical servers in these examples. Identical servers are servers
that process requests at the same rate.

Network dispatcher 206 will receive requests from router 202 and send the requests
to a server within server system 200 for processing. Responses to the requests are
routed from the server processing the request back to the client through router 202 in
these examples.

In accordance with a preferred embodiment of the present invention, a client

WO 2005/071546 PCT/EP2005/050031

[027]

[028]

[029]

[030]

[031]

making a request to a server and server system 200 only sees a single server. Servers
208, 210, 212, and 214 share data received within server system 200, as well as the
network address. For example, a request to server system 200 is made to a particular
network address, such as an Internet Protocol (IP) address. Router 202 will receive the
request and route this request to network dispatcher 206. In turn, network dispatcher
206 will send the request to the appropriate server for processing. This routing of the
request to an appropriate server for processing is transparent and is not visible to a
client making a request.

The illustration of server system 200 in Figure 2 is not meant to imply architectural
limitations to embodiments of the present invention. For example, only four servers are
illustrated in the system. Other numbers of servers may be used to implement a server
system. Additionally, bus 204 may take various forms. Bus 204 also may take the form
of a local area network or some other shared resource mechanism to transfer data
within server system 200. ‘

Referring to Figure 3, a block diagram depicting a data processing system that may
be implemented as a server or network dispatcher is depicted in accordance with a
preferred embodiment of the present invention. Data processing system 300 may be
implemented as a server, such as servers 208, 210, 212, or 214 in Figure 2. Further, a
network dispatcher, such as network dispatcher 206 in Figure 2, may be implemented
using data processing system 300.

Data processing system 300 may be a symmetric multiprocessor (SMP) system
including a plurality of processors 302 and 304 connected to system bus 306. Al-
ternatively, a single processor system may be employed. Also connected to system bus
306 is memory controller/cache 308, which provides an interface to local memory 309.
/O bus bridge 310 is connected to system bus 306 and provides an interface to I/O bus
312. Memory controller/cache 308 and I/O bus bridge 310 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 314 connected to I/O bus 312
provides an interface to PCI local bus 316. A number of modems may be connected to
PCI bus 316. Typical PCI bus implementations will support four PCI expansion slots
or add-in connectors. Communications links to network computers 108-112 in Figure
1 may be provided through modem 318 and network adapter 320 connected to PCI
local bus 316 through add-in boards.

Additional PCI bus bridges 322 and 324 provide interfaces for additional PCI buses
326 and 328, from which additional modems or network adapters may be supported. In
this manner, data processing system 300 allows connections to multiple network
computers. A memory-mapped graphics adapter 330 and hard disk 332 may also be
connected to I/O bus 312 as depicted, either directly or indirectly.

WO 2005/071546 PCT/EP2005/050031

[032]

[033]

[034]

[035]

[036]

[037]

[038]

Those of ordinary skill in the art will appreciate that the hardware depicted in
Figure 3 may vary. For example, other peripheral devices, such as optical disk drives
and the like, also may be used in addition to or in place of the hardware depicted. The
depicted example is not meant to imply architectural limitations with respect to em-
bodiments of the present invention.

The data processing system depicted in Figure 3 may be, for example, an IBM
RISC/System 6000 system, a product of International Business Machines Corporation
in Armonk, New York, running the Advanced Interactive Executive (AIX) operating
system.

Preferred embodiments of the present invention provides a method, apparatus, and
computer instructions for monitoring transactions for a set of known nodes in a
network data processing system. The mechanism of the preferred embodiment of the
present invention uses cache data from one or more routers in the network data
processing system. This cache data includes an identification of the nodes sending
packets for transactions onto the network data processing system. As used herein, a
transaction begins when a user input at a client generates a request that is sent to a
server and ends when a response is received by the client at which the user is located.

Based on transactions being handled by the different nodes, the loading on the
nodes may be identified. In this manner, the mechanism of the preferred embodiment
of the present invention allows identifying whether all of the nodes are being evenly
utilized. Consequently, analysis of transaction may be made with respect to usage.
With this analysis, capability and changes in provisioning or assignment of servers
may occur based on the analysis.

With reference now to Figure 4, a diagram illustrating components used in
discovering nodes and relationships between nodes in a network data processing
system is depicted. In this illustrative example, router 400 and router 402 are present in
a network data processing system, such as network data processing system 100 in
Figure 1. In particular, these devices may be located as part of network 102. Data
processing system 400 is used to obtain data from data caches in router 400 and router
402 in these illustrative examples.

In particular, monitoring process 406 in data processing system 404 obtains data
from agent 408 and agent 410, which are located in router 400 and router 402, re-
spectively. These agents are processes or daemons that are used to obtain a snapshot of
data in ARP cache 412 and ARP cache 414, respectively.

When agent 408 obtains data from ARP cache 412, the data is cleared from ARP
cache 412. This data is sent to monitoring process 406, which stores the snapshot of
ARP cache 412 in node data 416. Similarly, agent 410 obtains a snapshot of data in
ARP cache 414 and sends that information to monitoring process 406 for storage in

WO 2005/071546 PCT/EP2005/050031

[039]

[040]

[041]

[042]

[043]

[044]

[045]

node data 416. Thereafter the data is cleared from ARP cache 414.

ARP cache 412 and ARP cache 414 contain data, identifying nodes that have sent
packets that have been routed through router 400 or router 402. By obtaining this in-
formation from these data caches in router 400 and router 402, nodes that have
transmitted packets may be identified, even though these nodes may not respond to
direct requests for responses. In this manner, the identification of nodes on a network
data processing system is made in a non-invasive manner.

Using node data 416, monitoring process 406 generates map 418. This map is used
to present a graphical view of nodes in the network data processing system. Further,
this map includes an identification of communication paths between the different
nodes as well as an identification of network traffic.

Turning now to Figure 5, a diagram illustrating information stored for entry in the
data cache for a router is depicted in accordance with a preferred embodiment of the
present invention. Entry 500 is an example of data that is stored in an ARP entry in
these examples. Each of these entries is made in response to the routing of a packet
through a router from a node. -

Entry 500 includes hardware type 502, protocol type 504, HLEN 506, PLEN 508,
operation 510, sender hardware address (HA) 512, sender IP 514, target hardware
address (HA) 516, and target IP 518.

Hardware type 502 is the type of adapter, such as an Ethernet adapter, that is being
used. Protocol type 504 is the type of protocol being used to transmit messages. In
these examples, the protocol type is IP. HLEN 506 is the length in bytes of the
hardware address, while PLEN 508 is the length in bytes of the protocol address.
Operation 510 indicates the type of operation being performed, such as a request or a
reply.

In these examples, sender hardware address 512 is a media access control (MAC)
address, which is included in a packet from a node transmitting the packet. A MAC
address is a unique serial number that is associated with an adapter to identify that
adapter from all others on a network. Sender IP 514 is the IP address of the node,
which is also referred to as the source address. The target hardware address is the
MAC address for an adapter in the target node. The target IP is the IP address of the
destination node, which is also referred to as the destination address for the packet.

Turning now to Figure 6, a diagram illustrating usage of nodes is depicted in
accordance with a preferred embodiment of the present invention. Diagram 600 shows
network dispatcher 602 and router 604. Router 604 may be, for example, router 400 in
Figure 4. Additionally, servers 606, 608, 610, and 612 are shown in diagram 600.
Connections 614, 616, 618, 620, and 622 are shown for the different nodes in diagram
600.

WO 2005/071546 PCT/EP2005/050031

[046]

[047]

[048]

[049]

[050]

[051]

[052]

In this figure, connections 616, 618, 620, and 622 illustrate the relative traffic
between nodes for the servers of interest. In these illustrative examples, server 606,
608, 610 and 612 correspond to servers 208, 210, 212, and 214 in Figure 2. The
transactions handled by servers 606 and 608 are greater than those handled by servers
610 and 612. In this illustrative example, connection 616 is illustrated with a dotted
line to indicate that no traffic is present with respect to server 612. This inference
regarding traffic is made by the absence of any data in the data cache for router 604.

The absence of data in the cache indicates that transactions are not being handled by
server 612. As a result, an analysis or inspection of server 612 may be made to identify
why transactions are not being handled by this particular server. Such a feature also
may be used to initiate a load balancing process depending on the particular imple-
mentation. In this manner, traffic may be routed to server 612 with less traffic being
routed to server 606 and 608 to balance the load handled by the different servers. This
type of monitoring allows for the identification of the distribution of loads between
machines in a non-intrusive manner. Often times, the monitoring of a given server is
turned off during time of heavy load to provide additional CPU cycles to process
transactions. This situation may occur with server systems, such as those for trading
houses or banks in which time and money critical transactions occur.

The manner in which nodes and connections are illustrated in Figure 6 is not
known to limit the way in which the information may be presented. For example,
different colors and animations may be used in place of or in addition to the thickness
of the segments for these connections.

Turning now to Figure 7, a flowchart for a process for obtaining a snapshot of data
from a cache is depicted in accordance with a preferred embodiment of the present
invention. The process illustrated in Figure 7 may be implemented in an agent, such as
agent 408 in Figure 4 to obtain data from a data cache, such as ARP cache 412 in
Figure 4.

The process begins by retrieving data from the cache (step 700). Thereafter, the data
is sent to a monitoring process (step 702). In the illustrative examples, the monitoring
process is one such as monitoring process 406 in Figure 4. Thereafter, the data cache
is cleared (step 704) with the process terminating thereafter.

This process may be initiated on some periodic basis based on a timer executed by
an agent process. Further, this process may be initiated through a request generated by
the monitoring process in response to an event. This event may be periodic or non-
periodic depending on the particular implementation. The event may be based on the
expiration of the timer or based on some request generated by a network administrator
in the illustrative examples.

With reference next to Figure 8, a flowchart of a process for identifying

WO 2005/071546 PCT/EP2005/050031

[053]

[054]

[055]

[056]

[057]

[058]

[059]

transactions handled by nodes in a network data processing system is depicted in
accordance with a preferred embodiment of the present invention. The process il-
lustrated in Figure 8 may be implemented in a monitoring process, such as monitoring
processing 404 in Figure 4.

The process begins by receiving data from an agent on a router (step 800).
Thereafter, the data is stored (step 802). This data is stored in a data structure, such as
node data 414. Traffic for the nodes is updated (step 804).

Thereafter, the paths in the map are updated (step 806). This updating is used to
indicate the amount of traffic for transactions being handled by the different nodes
being monitored. Next, node usage is analyzed (step 808). Thereafter, the process
returns to step 800.

This analysis in step 808 may be made through various statistical processes or
algorithms to determine the usage of nodes within the set of nodes. This process may
identify nodes that are being under-utilized or over-utilized with respect to the
particular functions being performed.

In an environment where a sticky load balancer is used, the session must maintain
its association with the server it started with to disperse initial traffic across a pool of
servers. In one illustrative example, the pool contains three servers. As the load
increases on the servers in the pool, more servers are added to the pool. Because the
sessions are long running, the work is not distributed to the new servers in the pool. In
this instance, the new servers may be under utilized. In this case, it is better to reclaim
these servers and use them elsewhere. A similar case exists if the pool has five servers
and only three of the servers are being used to support long running sessions. The
mechanism of the preferred embodiment of the present invention may be used to
identify the two servers that are not performing any work.

These situations in the illustrative examples exist because these systems were ar-
chitected and created before the best practices came about and rewrites for these en-
vironments are at a fundamental level that would require close to a ninety percent re-
placement of code. This problem also occurs when an integration of systems occurs
during a merger of businesses.

With reference now to Figure 9, a flowchart of a process for initializing a load
balancing process is depicted in accordance with a preferred embodiment of the
present invention. The process illustrated in Figure 9 may be implemented in a
monitoring process, such as monitoring process 404 in Figure 4.

The process begins by determining whether a node is present with transactions less
than a selected threshold. If a node is present with transactions less than some selected
threshold, then a load balancing process is initiated (step 902) with the process
terminating thereafter.

WO 2005/071546 PCT/EP2005/050031

[060]

[061]

[062]

[063]

[064]

10

With reference again to step 900, if a node is not present with transactions that is
less than a selected threshold, then a determination is made as to whether a node is
present with transactions that are greater than a threshold (step 904). The threshold in
step 900 and the threshold in step 904 are different values in the illustrative
embodiment. The exact values for these thresholds depends on the particular imple-
mentation.

If a node is present with transactions greater than a threshold, the process proceeds
(step 902) as previously described. Otherwise, the process terminates.

Thus, an improved method, apparatus, and computer instructions for identifying
transactions and managing the capability to support transactions is provided. The
mechanism utilizes data found in the cache of a router to determine the transactions
being handled by the different nodes. In these examples, the presence of the nodes are
known, and an absence of data for a particular node indicates that the node is not
handling transactions. '

Further, this data may be used to generate a map or display to graphically present
the different nodes and the transactions being handled by the nodes. In this manner, ad-
justments may be made to load balancing, assignment or allocation of servers to ensure
that a match between the capability and demand for services is met.

It is important to note that while embodiments of the present invention has been
described in the context of a fully functioning data processing system, those of
ordinary skill in the art will appreciate that the processes are capable of being
distributed in the form of a computer readable medium of instructions and a variety of
forms and that the approach applies equally regardless of the particular type of signal
bearing media actually used to carry out the distribution. Examples of computer
readable media include recordable-type media, such as a floppy disk, a hard disk drive,
a RAM, CD-ROMs, DVD-ROMs, and transmission-type media, such as digital and
analog communications links, wired or wireless communications links using
transmission forms, such as, for example, radio frequency and light wave
transmissions. The computer readable media may take the form of coded formats that
are decoded for actual use in a particular data processing system.

WO 2005/071546 PCT/EP2005/050031

[001]

[002]

[003]

[004]

[005]

[006]

{007]

[008]

[009]

[010]

[011]

11

Claims

A method in a data processing system for monitoring transactions for a set of
known nodes in a network data processing system, the method comprising
receiving cache data from a router in the data processing system, wherein the
cache data includes an identification of the set of known nodes sending data
packets for transactions onto the network data processing system; and tracking
the transactions for the set of nodes using the cache data from the router.

The method of claim 1, wherein the cache data is from an address resolution
protocol cache located on the router.

The method of claim 1 further comprising: receiving cache data from other
routers on the network data processing system

The method of claim 1, wherein the receiving step occurs on a periodic basis and
further comprising: identifying transactions handled by a node in the set of
known nodes using the cache data received on the periodic basis from the router.
The method of claim 1 further comprising: analyzing usage of each node in the
set of known nodes using the cache data.

The method of claim 5 further comprising: selectively initiating a load balancing
process in response to analyzing the usage of each node in the set of known
nodes.

The method of claim 4 further comprising: generating a display of the set of
known nodes in a graphical view, wherein the graphical view includes the com-
munications paths with a graphical indication of the network traffic.

The method of claim 2, wherein the cache data is received through an agent
located on the router.

The method of claim 8, where the agent clears the address resolution protocol
cache each time data is sent to the data processing system.

A data processing system for monitoring transactions for a set of known nodes in
a network data processing system, the data processing system comprising: a bus
system; a communications unit connected to the bus system; a memory
connected to the bus system, wherein the memory includes a set of instructions;
and a processing unit connected to the bus system, in which the processing unit
executes the set of instructions to receive cache data from a router in the data
processing system, in which the cache data includes an identification of the set of
known nodes sending data packets for transactions onto the network data
processing system, and tracks the transactions for the set of nodes using the
cache data from the router.

A data processing system for monitoring transactions for a set of known nodes in

WO 2005/071546 PCT/EP2005/050031

[012]

[013]

[014]

[015]

[016]

[017]

[018]

[019]

[020]

12

a network data processing system, the data processing system comprising
receiving means for receiving cache data from a router in the data processing
system, wherein the cache data includes an identification of the set of known
nodes sending data packets for transactions onto the network data processing
system; and tracking means for tracking the transactions for the set of nodes
using the cache data from the router.

The data processing system of claim 11, wherein the cache data is from an
address resolution protocol cache located on the router.

The data processing system of claim 11 wherein the receiving means is a first
receiving means and further comprising second receiving means for receiving
cache data from other routers on the network data processing system.

The data processing system of claim 11, wherein the receiving means is initiated
on a periodic basis and further comprising: identifying means for identifying
transactions handled by a node in the set of known nodes using the cache data
received on the periodic basis from the router.

The data processing system of claim 11 further comprising: analyzing means for
analyzing usage of each node in the set of known nodes using the cache data.
The data processing system of claim 15 further comprising: initiating means for
selectively initiating a load balancing process in response to analyzing the usage
of each node in the set of known nodes.

The data processing system of claim 14 further comprising: generating means for
generating a display of the set of known nodes in a graphical view, wherein the
graphical view includes the communications paths with a graphical indication of
the network traffic.

A computer program product in a computer readable medium for monitoring
transactions for a set of known nodes in a network data processing system, the
computer program product comprising: first instructions for receiving cache data
from a router in the data processing system, wherein the cache data includes an
identification of the set of known nodes sending data packets for transactions
onto the network data processing system; and second instructions for tracking the
transactions for the set of nodes using the cache data from the router.

The computer program product of claim 18, wherein the cache data is from an
address resolution protocol cache located on the router.

The computer program product of claim 18 further comprising: third instructions
for receiving cache data from other routers on the network data processing
system.

PCT/EP2005/050031

WO 2005/071546
1/3
’1/ 00
104
\
SERVER
SYSTEM
FIG. 1 j
106
CLIENT
208 208 210
N \ /
NETWORK 200
DISPATCHER SERVER SERVER 204 o
| l |
A 1 —=
—»{ ROUTER SERVER SERVER FIG. 2
/ / \
202 212 214
502 504 506 508 510

L8 18\ 24 32 N 40\

48 56 / 64

HARDWARE TYPE | PROTOCOL TYPE { HLEN | PLEN | OPERATION

512

514

72\ 80 B8 96 104 112 120 128 136 / 144

SENDER HA (OCTETS 0-5)

916

SENDER [P (OCTETS 0-3)
' 518

152 160 168 176 184 192 200 208 216 / 224

TARGET HA (OCTETS 0-5)

TARGET IP (OCTETS 0-3)

—

e A ——— Y el

= ey ——
FIG. 5

—_— i

PCT/EP2005/050031

WO 2005/071546
2/3
802~ PROCESSOR PRocessor 304
SYSTEM BUS 9}06
y y
<= > SERVER
300
MEMORY . Pl
308~ CONTROLLER/ | /O BRIDGE |-310
CACHE
‘ 314
Z 316
.| PCIBUS PCI BUS /
309’\ MLE?\‘/l:g\IéY N BRIDGE y F >
|0 NETWORK
312 BUS MODEM ADAPTER
GRAPHICS 322 A \
5301 ADAPTER | / 318 320
<:‘ PCI BLS PCI BUS _>
BRIDGE <
326
HARD DISK PCI BUS PCI BUS
3327 <— BriDaE <
FIG. 3 {/ S 38
324
400 ROUTER DATA PROCESSING
) - 404
L 2
M2~J arp cACHE wap | 418
' MONITORING
ROUTER PROCESS [™-406
¥ NODE
402" 414 ARP CACHE DATA I ~416

FIG. 4

WO 2005/071546

?00
602~ \D 506
2
gia~] %
620
N ON
604 608

616" \\\7>\\\(::%\
612 618 610

(_ START)

-

-

Y

800~ [RECEIVE DATA FROM AN
AGENT ON A ROUTER
¥
802~ STORE DATA
!
804~ UPDATE TRAFFIC FOR NODES
Y
8061 UPDATES PﬁiTHS IN MAP
G
8081 ANALYZE N?DE USAGE
FIG. 8

PCT/EP2005/050031
3/3

RETRIEVE DATA FROM CACHE

!

SEND DATATO
MONITORING PROCESS

v

CLEAR CACHE

700+

702~

704

800

NODE
.WITH TRANSACTIONS <
THRESHOLD?

YES

NODE
WITH TRANSACTIONS >
THRESHOLD?

YES

P

L4
INITIATE LOAD
BALANCING PROCESS

902

3

CEvD)
FIG. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

