Abstract:

Disclosed is a method for monitoring use of a tobacco product by a subject, the method comprising providing the tobacco product to the subject and, at one or more times after providing the tobacco product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to determine amount and/or concentration of a marker, wherein the amount and/or concentration of the marker is related to use of the tobacco product by the subject.
A method such as is described in various embodiments herein relates to monitoring use of a tobacco product by a subject. The method may comprise providing the product to the subject and, at one or more times after providing the product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to determine amount and/or concentration of a marker, wherein the amount and/or concentration of the marker is related to use of the product by the subject.

Popular smoking articles, such as cigarettes, have a substantially cylindrical rod shaped structure and include a charge, roll or column of smokable material such as shredded tobacco (e.g., in cut filler form) surrounded by a paper wrapper thereby forming a so-called "tobacco rod." Normally, a cigarette has a cylindrical filter element aligned in an end-to-end relationship with the tobacco rod. Typically, a filter element comprises plasticized cellulose acetate tow circumscribed by a paper material known as "plug wrap." Certain cigarettes incorporate a filter element having multiple segments, and one of those segments can comprise activated charcoal particles. Typically, the filter element is attached to one end of the tobacco rod using a circumscribing wrapping material known as "tipping paper." It also has become desirable to perforate the tipping material and plug wrap, in order to provide dilution of drawn mainstream smoke with ambient air. A cigarette is employed by a smoker...
by lighting one end thereof and burning the tobacco rod. The smoker then receives mainstream smoke into his/her mouth by drawing on the opposite end (e.g., the filter end) of the cigarette.

[0003] The tobacco used for cigarette manufacture is typically used in blended form. For example, certain popular tobacco blends, commonly referred to as "American blends," comprise mixtures of flue-cured tobacco, burley tobacco, and Oriental tobacco, and in many cases, certain processed tobaccos, such as reconstituted tobacco and processed tobacco stems. The precise amount of each type of tobacco within a tobacco blend used for the manufacture of a particular cigarette brand varies from brand to brand. However, for many tobacco blends, flue-cured tobacco makes up a relatively large proportion of the blend, while Oriental tobacco makes up a relatively small proportion of the blend. See, for example, Tobacco Encyclopedia, Voges (Ed.) p. 44-45 (1984), Browne, The Design of Cigarettes, 3rd Ed., p. 43 (1990) and Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) p. 346 (1999).

[0004] Through the years, various treatment methods and additives have been proposed for altering the overall character or nature of tobacco materials utilized in tobacco products. For example, additives or treatment processes have been utilized in order to alter the chemistry or sensory properties of the tobacco material, or in the case of smokable tobacco materials, to alter the chemistry or sensory properties of mainstream smoke generated by smoking articles including the tobacco material. The sensory attributes of cigarette smoke can be enhanced by incorporating flavoring materials into various components of a cigarette. Exemplary flavoring additives include menthol and products of Maillard reactions, such as pyrazines, aminosugars, and Amadori compounds. See also, Leffingwell et al., Tobacco Flavoring for Smoking Products, RJ. Reynolds Tobacco Company (1972), which is incorporated herein by reference. In some cases, treatment processes involving the use of heat can impart to the processed tobacco a desired color or visual character, desired sensory properties, or a desired physical nature or texture. Various processes for preparing flavorful and aromatic compositions for use in tobacco compositions are set forth in US Pat. Nos. 3,424,171 to Rooker; 3,476,118 to Luttich; 4,150,677 to Osborne, Jr. et al; 4,986,286 to Roberts et al; 5,074,319 to White et al; 5,099,862 to White et al; 5,235,992 to Sensabaugh, Jr.; 5,301,694 to Raymond et al; 6,298,858 to Coleman, III et al; 6,325,860 to Coleman, III et al; 6,428,624 to Coleman, III et al; 6,440,223 to
Dube et al.; 6,499,489 to Coleman, III; 6,591,841 to White et al; and 6,695,924 to Dube et al; and US Pat. Appl. Publication Nos. 2004/0173228 to Coleman, III; 2010/0037903 to Coleman, III et al; and 2013/0014771 to Coleman, III et al, each of which is incorporated herein by reference. Additionally, examples of representative components that can be employed as so-called natural tar diluents in tobacco products are set in PCT WO 07/012980 to Lipowicz, which is incorporated herein by reference.

Tobacco also may be enjoyed in a so-called "smokeless" form. Particularly popular smokeless tobacco products are employed by inserting some form of processed tobacco or tobacco-containing formulation into the mouth of the user. Various types of smokeless tobacco products are set forth in US Pat. Nos. 1,376,586 to Schwartz; 3,696,917 to Levi; 4,513,756 to Pittman et al; 4,528,993 to Sensabaugh, Jr. et al; 4,624,269 to Story et al; 4,987,907 to Townsend; 5,092,352 to Sprinkle, III et al; 5,387,416 to White et al; and 8,336,557 to Kumar et al; US Pat. Appl. Pub. Nos. 2005/0244521 to Strickland et al. and 2008/0196730 to Engstrom et al; PCT WO 04/095959 to Arnarp et al; PCT WO 05/063060 to Atchley et al; PCT WO 05/016036 to Bjorkholm; and PCT WO 05/041699 to Quinter et al, each of which is incorporated herein by reference. See, for example, the types of smokeless tobacco formulations, ingredients, and processing methodologies set forth in US Pat. Nos. 6,953,040 to Atchley et al. and 7,032,601 to Atchley et al, each of which is incorporated herein by reference.

One type of smokeless tobacco product is referred to as "snuff." Representative types of moist snuff products, commonly referred to as "snus," have been manufactured in Europe, particularly in Sweden, by or through companies such as Swedish Match AB, Fiedler & Lundgren AB, Gustavus AB, Skandinavisk Tobakscompagni A/S, and Rocker Production AB. Snus products available in the U.S.A. have been marketed under the tradenames Camel Snus Frost, Camel Snus Original and Camel Snus Spice by R. J. Reynolds Tobacco Company. See also, for example, Bryzgalov et al, 1N1800 Life Cycle Assessment, Comparative Life Cycle Assessment of General Loose and Portion Snus (2005). In addition, certain quality standards associated with snus manufacture have been assembled as a so-called GothiaTek standard. Representative smokeless tobacco products also have been marketed under the tradenames Oliver Twist by House of Oliver Twist A/S; Copenhagen, Skoal, SkoalDry, Rooster, Red Seal, Husky, and Revel by U.S.
Smokeless Tobacco Co.; "taboka" by Philip Morris USA; Levi Garrett, Peachy, Taylor's Pride, Kodiak, Hawken Wintergreen, Grizzly, Dental, Kentucky King, and Mammoth Cave by Conwood Company, LLC; and Camel Orbs, Camel Sticks, and Camel Strips by R. J. Reynolds Tobacco Company.

[0008] A tobacco product may be a so-called electronic cigarette. The liquid in an electronic cigarette may comprise, for example, propylene glycol or glycerin, and may further comprise one or more flavorants, and may further comprise one or more substances that may impart a favorable user experience. A so-called electronic cigarette is an example of an alternative smoking device. Many such alternative smoking devices have been proposed through the years as improvements upon, or alternatives to, smoking products that require combusting tobacco for use. Many of those devices purportedly have been designed to provide the sensations associated with cigarette, cigar, or pipe smoking, but without delivering considerable quantities of incomplete combustion and pyrolysis products that result from the burning of tobacco. To this end, there have been proposed numerous smoking products, flavor generators, and medicinal inhalers that utilize electrical energy to vaporize or heat a volatile material, or attempt to provide the sensations of cigarette, cigar, or pipe smoking without burning tobacco to a significant degree. See, for example, the various alternative smoking articles, aerosol delivery devices and heat generating sources set forth in the background art described in U.S. Pat. No. 7,726,320 to Robinson et al, U.S. Pat. Pub. No. 2013/0255702 to Griffith Jr. et al, U.S. Pat. Pub. Nos. 2014/000638 to Sebastian et al, 2014/0060554 to Collett et al, 2014/0060555 to Chang et al, 2014/0096781 to Sears et al, 2014/0096782 to Ampolini et al, and 2015/0059780 to Davis et al, which are incorporated herein by reference in their entireties.
[0009] Because tobacco products have long been consumed, yet have there been few if any ways reliably to monitor consumption of such products, there is a long-felt need for a method for monitoring use of tobacco products.

SUMMARY OF EMBODIMENTS

[0010] A method such as is described in various embodiments herein provides monitoring use of a tobacco product by a subject. The method may comprise providing the product to the subject and, at one or more times after providing the product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to determine amount and/or concentration of a marker, wherein the amount and/or concentration of the marker is related to use of the product by the subject.

Products to which a method such as is described in various embodiments herein can be applied can vary, and include without limitation any tobacco product that can be consumed in any form, including, for example, a smoking article, a smokeless tobacco product, a dissolvable (such as gums, lozenges, snus, spray, orbs and sticks), or a so-called electronic cigarette.

[0011] When used in connection with a process such as is described in various embodiments herein, the term "one or more plants of genus Nicotiana" denotes any one or more plants of the genus Nicotiana of family Solanaceae, including, for example, any one or more of the following: N alata, N arentsi, N excelsior, N forgetiana, N glauca, N glutinosa, N gossei, N kawakamii, N knightiana, N langsdorffi, N otophora, N setchelli, N sylvestris, N tomentosa, N tomentosiformis, N undulata, and N x sanderae, N africana, N amplexicaulis, N benavidesii, N bonariensis, N debneyi, N longiflora, N maritina, N megalosphon, N occidentalis, N paniculata, N plumbaginifolia, N raimondii, N rosulata, N rustica, N simulans, N stocktonii, N suaveolens, N tabacum, N umbratica, N velutina, and N wigandioides, N acaulis, N acuminata, N attenuata, N benthamiana, N cavicola, N clevelandii, N cordifolia, N corymbosa, N fragrans, N goodspeedii, N linearis, N miersii, N nudicaulis, N obtusifolia, N occidentalis subsp. Hersperis, N pauciflora, N petunioides, N quadrivalvis, N repanda, N rotundifolia, N solanifolia, N spegazzinii.
The use of Nicotiana-denved (e.g., tobacco-derived) materials monitored by a method such as is described in various embodiments herein enables monitoring of use of smoking articles or smokeless tobacco compositions that are derived substantially or even entirely from Nicotiana materials. For example, a tobacco composition can incorporate tobacco or tobacco-derived material of some form, including isolated components from Nicotiana species, such that at least about 80 weight percent, more typically at least about 90 weight percent, or even at least about 95 weight percent (on a dry weight basis), of that tobacco composition consists of tobacco-derived material.

DETAILED DESCRIPTION

A method such as is described in various embodiments herein now will be described more fully hereinafter. A method such as is described in various embodiments herein may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of a method such as is described in various embodiments herein to those skilled in the art. As used in this specification and the claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Any reference to "dry weight percent" or "dry weight basis" refers to weight on the basis of dry ingredients (i.e., all ingredients except water). When used in this specification and the claims as an adverb rather than a preposition, "about" means "approximately" and comprises the stated value and every value within 10% of that value; in other words, "about 100%" includes 90% and 110% and every value in between.

The selection of the plant from a Nicotiana species can vary; and in particular, the types of tobacco or tobaccos may vary. Tobaccos that can be employed include Hue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kurnool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos. Descriptions of various types of tobaccos, growing practices and harvesting practices are set forth in Tobacco Production, Chemistry and Technology,

[0015] Nicotiana species can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of certain components or to otherwise change certain characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al; 5,668,295 to Wahab et al; 5,705,624 to Fitzmaurice et al; 5,844,191 to Weigl; 6,730,832 to Dominguez et al; 7,173,170 to Liu et al; 7,208,659 to Colliver et al; and 7,230,160 to Benning et al; US Patent Appl. Pub. No. 2006/0236434 to Conkling et al; and PCT WO 08/103935 to Nielsen et al.

[0016] For the preparation of smokeless and smokable tobacco products, it is typical for harvested plants of a Nicotiana species to be subjected to a curing process. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Exemplary techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al, Beitrage Tabakforsch. Int., 20, 467-475 (2003) and U.S. Pat. No.
6,895,974 to Peele, which are incorporated herein by reference. See, also, for example, US Pat. No. 7,650,892 to Groves et al, which is incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in Roton et al, Beitrage Tabakforsch. Int., 21, 305-320 (2005) and Staaf et al., Beitrage Tabakforsch. Int., 21, 321-330 (2005), which are incorporated herein by reference. Certain types of tobaccos can be subjected to alternative types of curing processes, such as fire curing or sun curing. Preferably, harvested tobaccos that are cured are then aged.

[0017] At least a portion of the plant of a Nicotiana species (e.g., at least a portion of the tobacco portion) can be employed in an immature form. That is, the plant, or at least one portion of that plant, can be harvested before reaching a stage normally regarded as ripe or mature. As such, for example, tobacco can be harvested when the tobacco plant is at the point of a sprout, is commencing leaf formation, is commencing seeding, is commencing flowering, or the like.

[0018] At least a portion of the plant of a Nicotiana species (e.g., at least a portion of the tobacco portion) can be employed in a mature form. That is, the plant, or at least one portion of that plant, can be harvested when that plant (or plant portion) reaches a point that is traditionally viewed as being ripe, over-ripe or mature. As such, for example, through the use of tobacco harvesting techniques conventionally employed by farmers, Oriental tobacco plants can be harvested, burley tobacco plants can be harvested, or Virginia tobacco leaves can be harvested or primed by stalk position. After harvest, a plant of a Nicotiana species, or portion thereof, can be used in a green form (e.g., tobacco can be used without being subjected to any curing process). For example, tobacco in green form can be frozen, freeze-dried, subjected to irradiation, yellowed, dried, cooked (e.g., roasted, fried or boiled), or otherwise subjected to storage or treatment for later use. Such tobacco also can be subjected to aging conditions.

[0019] In accordance with a method such as is described in various embodiments herein, a tobacco product may incorporate tobacco that is combined with some form of biomass or one or more anatomical parts obtained from, or derived from, a plant of at least one Nicotiana species. That is, a portion of a tobacco product according to a method such as is described in various embodiments herein can be composed of some form of biomass or one or more anatomical parts of a Nicotiana species, such as parts
or pieces of biomass or one or more anatomical parts, or processed materials incorporating processed biomass or one or more anatomical parts or components thereof. At least a portion of the tobacco product can be composed of components of biomass or one or more anatomical parts, such as ingredients removed from biomass or one or more anatomical parts (e.g., by extraction, distillation, or other types of processing techniques). At least a portion of the tobacco product can be composed of components derived from biomass or one or more anatomical parts, such as components collected after subjecting biomass or one or more anatomical parts to chemical reaction or after subjecting components collected from biomass or one or more anatomical parts to chemical reaction (e.g., acid/base reaction conditions or enzymatic treatment).

A *Nicotiana* species can be selected for the type of biomass or anatomical part that it produces. For example, plants can be selected on the basis that those plants produce relatively abundant biomass or seed, produce biomass or seed that incorporate relatively high levels of specific desired components, and the like.

A *Nicotiana* species of plant can be grown under agronomic conditions so as to promote development of biomass or one or more anatomical parts. Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.

According to a method such as is described in various embodiments herein, biomass or one or more anatomical parts are harvested from a *Nicotiana* species of plant. The manner by which biomass or one or more anatomical parts are harvested can vary. Typically, essentially all the biomass or anatomical parts can be harvested, and employed as such.

Time of harvest during the life cycle of the plant can vary. For example, biomass or one or more anatomical parts can be harvested when immature. Alternatively, biomass or one or more anatomical parts can be harvested after the point that the plant has reached maturity.

Post-harvest processing of biomass or one or more anatomical parts can vary. After harvest, the biomass or one or more anatomical parts, or portion thereof, can be used in the harvested form (e.g., the biomass or one or more anatomical parts, or portion thereof, can be used without being subjected to any curing and/or aging process steps). For example, biomass or one or more anatomical parts can be used
without being subjected to significant storage, handling or processing conditions. In certain situations, it is preferable that fresh biomass or one or more anatomical parts be used virtually immediately after harvest. Alternatively, for example, biomass or one or more anatomical parts can be refrigerated or frozen for later use, freeze dried, subjected to irradiation, yellowed, dried, cured (e.g., using air drying techniques or techniques that employ application of heat), heated or cooked (e.g., roasted, fried or boiled), or otherwise subjected to storage or treatment for later use.

Harvested biomass can be physically processed. Biomass or one or more anatomical parts, or one or more parts thereof, can be further subdivided into parts or pieces (e.g., biomass can be comminuted, pulverized, milled or ground into pieces or parts that can be characterized as granules, particulates or fine powders, or, e.g., petals can be removed from remaining portion of a flower). Biomass or one or more anatomical parts, or one or more parts thereof, can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment). When carrying out such processing conditions, biomass or one or more anatomical parts can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the biomass, or a moisture content that results from the drying of the biomass. For example, powdered, pulverized, ground or milled pieces of biomass or one or more anatomical parts can have moisture contents of less than about 25 weight percent, often less than about 20 weight percent, and frequently less than about 15 weight percent. Parts or pieces of biomass or one or more anatomical parts can be used as components of tobacco products without further processing, or alternatively the particulate biomass or anatomical part material can be processed further prior to incorporation into a tobacco product.

Harvested biomass or one or more anatomical parts or components thereof can be subjected to other types of processing conditions. For example, components of biomass or one or more anatomical parts can be separated from one another, or otherwise fractionated into chemical classes or mixtures of individual compounds. As used herein, an "isolated biomass component," "isolated component of one or more anatomical parts," "biomass isolate," "isolate of one or more anatomical parts," or "isolate" when used as a noun is a compound or complex mixture of compounds separated from biomass or one or more anatomical parts of a plant of a *Nicotiana*
species. The isolated biomass component or isolated component of one or more anatomical parts can be a single compound, a homologous mixture of similar compounds (e.g., isomers of a flavorful or aromatic compound), or a heterologous mixture of dissimilar compounds (e.g., a complex mixture of various compounds of different types, preferably having desirable sensory attributes).

[0027] Typical separation processes can include one or more process steps such as solvent extraction (e.g., using polar solvents, non-polar organic solvents, or supercritical fluids), chromatography, distillation, filtration, cold pressing or other pressure-based techniques, recrystallization, and/or solvent-solvent partitioning. Exemplary extraction and separation solvents or carriers include water, alcohols (e.g., methanol or ethanol), hydrocarbons (e.g., heptane and hexane), diethyl ether, methylene chloride and supercritical carbon dioxide. Exemplary techniques useful for extracting components from *Nicotiana* species are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr. et al; 4,267,847 to Reid; 4,289,147 to Wildman et al; 4,351,346 to Brummer et al; 4,359,059 to Brummer et al; 4,506,682 to Muller; 4,589,428 to Keritsis; 4,605,016 to Soga et al; 4,716,911 to Pouloue et al; 4,727,889 to Niven, Jr. et al; 4,887,618 to Bernasek et al; 4,941,484 to Clapp et al; 4,967,771 to Fagg et al; 4,986,286 to Roberts et al; 5,005,593 to Fagg et al; 5,018,540 to Grubbs et al; 5,060,669 to White et al; 5,065,775 to Fagg; 5,074,319 to White et al; 5,099,862 to White et al; 5,121,757 to White et al; 5,131,414 to Fagg; 5,131,415 to Munoz et al; 5,148,819 to Fagg; 5,197,494 to Kramer; 5,230,354 to Smith et al; 5,234,008 to Fagg; 5,243,999 to Smith; 5,301,694 to Raymond et al; 5,318,050 to Gonzalez-Parra et al; 5,343,879 to Teague; 5,360,022 to Newton; 5,435,325 to Clapp et al; 5,445,169 to Brmkle et al; 6,131,584 to Lauterbach; 6,298,859 to Kierulf et al; 6,772,767 to Mua et al; and 7,337,782 to Thompson, each of which is incorporated herein by reference. See also, the types of separation techniques set forth in Brandt et al, LC-GC Europe, p. 2-5 (March, 2002) and Wellings, A Practical Handbook of Preparative HPLC (2006), which are incorporated herein by reference. In addition, the biomass or components thereof can be subjected to the types of treatments set forth in Ishikawa et al., Chem. Pharm. Bull., 50, 501-507 (2002); Tienpont et al, Anal. Bioanal. Chem., 373, 46-55 (2002); Ochiai, Gerstel Solutions Worldwide, 6, 17-19 (2006); Coleman, III, et al, J. Sci. Food and Agric, 84, 1223-1228 (2004); Coleman, III et al, J. Sci. Food and Agric, 85, 2645-2654.

[0028] A portion of a harvested tobacco plant can be employed in any of a variety of forms. Harvested biomass or one or more anatomical parts can be employed as a component of processed tobaccos. In one regard, harvested biomass or one or more anatomical parts can be employed within a casing formulation for application to tobacco strip (e.g., using the types of manners and methods set forth in U.S. Pat. No. 4,819,668 to Sheral, which is incorporated herein by reference) or within a top dressing formulation. Alternatively, harvested biomass or one or more anatomical parts can be employed as an ingredient of a reconstituted tobacco material (e.g., using the types of tobacco reconstitution processes generally set forth in U.S. Pat. No. 5,143,097 to Sohn; U.S. Pat. No. 5,159,942 to Brinldey et al; U.S. Pat. No. 5,598,868 to Jakob; U.S. Pat. No. 5,715,844 to Young; U.S. Pat. No. 5,724,998 to Gellatly; and U.S. Pat. No. 6,216,706 to Kumar, which are incorporated herein by reference). Harvested biomass or one or more anatomical parts also can be incorporated into a cigarette filter (e.g., in the filter plug, plug wrap, or tipping paper) or incorporated into cigarette wrapping paper, preferably on the inside surface, during the cigarette manufacturing process.

[0029] Harvested biomass or one or more anatomical parts can be incorporated into smoking articles. Representative tobacco blends, non-tobacco components, and representative cigarettes manufactured therefrom, are set forth in U.S. Pat. No. 4,836,224 to Lawson et al; U.S. Pat. No. 4,924,888 to Perfetti et al; U.S. Pat. No. 5,056,537 to Brown et al; U.S. Pat. No. 5,220,930 to Gentry; and U.S. Pat. No. 5,360,023 to Blakley et al; US Pat. Application 2002/0000235 to Shafer et al; and PCT WO 02/37990. Those tobacco materials also can be employed for the manufacture of those types of cigarettes that are described in U.S. Pat. No. 4,793,365

[0030] Harvested biomass or one or more anatomical parts can be incorporated into smokeless tobacco products, such as loose moist snuff, loose dry snuff, chewing tobacco, pelletized tobacco pieces (e.g., having the shapes of pills, tablets, spheres, coins, beads, obloids or beans), extruded or formed tobacco strips, pieces, rods, cylinders or sticks, finely divided ground powders, finely divided or milled agglomerates of powdered pieces and components, flake-like pieces, molded processed tobacco pieces, pieces of tobacco-containing gum, rolls of tape-like films, readily water-dissolvable or water-dispersible films or strips (e.g., US Pat. App. Pub. No. 2006/0198873 to Chan et al), or capsule-like materials possessing an outer shell (e.g., a pliable or hard outer shell that can be clear, colorless, translucent or highly colored in nature) and an inner region possessing tobacco or tobacco flavor (e.g., a Newtonian fluid or a thixotropic fluid incorporating tobacco of some form). Various types of smokeless tobacco products are set forth in U.S. Pat. No. 1,376,586 to Schwartz; U.S. Pat. No. 3,696,917 to Levi; U.S. Pat. No. 4,513,756 to Pittman et al; U.S. Pat. No. 4,528,993 to Sensabaugh, Jr et al; U.S. Pat. No. 4,624,269 to Story et al; U.S. Pat. No. 4,987,907 to Townsend; U.S. Pat. No. 5,092,352 to Sprinkle, III et al; and U.S. Pat. No. 5,387,416 to White et al; US Pat. App. Pub.Nos. U.S. Pat. No. 2005/0244521 to Strickland et al. and U.S. Pat. No. 2008/0196730 to Engstrom et al;

[0031] Harvested biomass or one or more anatomical parts can be incorporated into an electronic smoking article. An electronic smoking article may encompass a variety of combinations of components useful in forming an electronic aerosol delivery device. Reference is made, for example, to the following: a reservoir and heater system for controllable delivery of multiple aerosolizable materials disclosed in US Pat. Pub. No. 2014/0000638 to Sebastian et al.; microheaters as disclosed in US Pat. Pub. No. 2014/0060554 to Collett et al; carbon-based cartridges and components thereof, as disclosed US Pat. Pub. No. 2013/0255702 to Griffith, Jr. et al; single-use cartridges as disclosed in US Pat. Pub. No. 2014/0060555 to Chang et al; aerosol precursor transport elements, such as disclosed in US Pat. Pub. No. 2014/0209105 to Sears et al; charging components, such as an adapter disclosed in US Pat. Pub. No. 2014/0261495 to Novak, III et al; vibration components, such as disclosed in US Pat. Pub. No. 2015/0020825 to Galloway et al; and batteries, such as disclosed in U.S. Pat. Pub. No. 2010/0028766 to Peckerar et al.

[0032] Representative types of aerosol precursor components and formulations also are set forth and characterized in U.S. Pat. No. 7,217,320 to Robinson et al and U.S. Pat. Pub. Nos. 2013/0008457 to Zheng et al; 2013/0213417 to Chong et al; 2014/0060554 to Collett et al; 2015/0020823 to Lipowicz et al; and 2015/0020830 to Koller, as well as WO 2014/182736 to Bowen et al, the disclosures of which are incorporated herein by reference. Other aerosol precursors that may be employed include the aerosol precursors that have been incorporated in the VUSE® product by
R. J. Reynolds Vapor Company, the BLU™ product by Lorillard Technologies, the MISTIC MENTHOL product by Mistic Ecigs, and the VYPE product by CN Creative Ltd. Also desirable are the so-called "smoke juices" for electronic cigarettes that have been available from Johnson Creek Enterprises LLC. Additionally, a tobacco product may be, or may comprise, a medicinal or nicotine inhaler. A nicotine inhaler may be as set forth and characterized in US Pat. Pub. No. 2015/0208728, 2015/0201675, 2015/0196058, 2015/0157055, 2015/0136153, 2015/0128966, 2015/0128965 and/or 2015/01 14408, each of which is to Lord. A tobacco product, such as a nicotine inhaler, may be, or may comprise, a Voke® nicotine inhaler such as is produced for and/or licensed to Nicoventures Ltd. London, UK.

[0033] An amount of harvested biomass or one or more anatomical parts added to a tobacco composition, or otherwise incorporated within a tobacco composition or tobacco product, can depend on the desired function of that harvested biomass or one or more anatomical parts, the chemical makeup of that component, and the type of tobacco composition to which the harvested biomass or one or more anatomical parts are added. When the harvested biomass or one or more anatomical parts comprise a flower or flower isolate, for example, the amount added to a tobacco composition can vary, but will typically not exceed about 5 weight percent based on the total dry weight of the tobacco composition to which the flower or flower isolate or seed or seed isolate is added. When the flower is employed within a smoking article, the amount of flower will typically be at least about 5 ppm, generally at least about 10 ppm, and often at least about 100 ppm, based on the total dry weight of the tobacco material within the smoking article; but will typically be less than about 5 percent, generally less than 2 percent, and often less than about 1 percent, based on the total dry weight of the tobacco material within the smoking article. When the flower is employed within a smokeless tobacco product, the amount of flower will typically be less at least about 5 ppm, generally at least about 10 ppm, and often at least about 100 ppm, based on the total dry weight of the tobacco material within the smokeless tobacco product; but will typically be less than about 5 percent, generally less than 2 percent, and often less than about 1 percent, based on the total dry weight of the tobacco material within the smokeless tobacco product.

[0034] Aspects of a method such as is described in various embodiments herein are further illustrated by the following examples, which are set forth to illustrate certain
aspects of a method such as is described in various embodiments herein and are not to be construed as limiting thereof.

[0035] In an example, a method such as is described in various embodiments herein comprises providing a tobacco product comprising one or more flavorants listed in the FEMA GRAS™ Flavoring Substance List published by the Flavor and Extract Manufacturers Association, which is incorporated herein by reference in its entirety. In such an example, a subject's consumption of a tobacco product comprising such a flavorant may be monitored by detection of a marker and/or a biomarker derived from the flavorant in exhaled breath of the subject. Such a marker may comprise 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanal, 2-heptanol, 3-heptanol, 4-heptanol, 5-methyl-3-heptanol, 6-methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-isopropylcyclohexanol, and/or trimethylcyclohexanol. In an example, a subject's consumption of a tobacco product comprising such a flavorant may be monitored by detection of a marker and/or a biomarker identical to the flavorant in exhaled breath of the subject. Such a marker may comprise D-limonene, methyl salicylate, vanillin, ethyl vanilllin, benzaldehyde, methyl anthranilate, D,L-menthol, L-menthol, L-carvone, and/or nicotine.

[0036] In an example, a method such as is described in various embodiments herein comprises collecting one or more samples of exhaled breath from a subject. Such one or more samples are subjected to analysis to determine one or more baseline marker and/or biomarker values.

[0037] In an example, a method such as is described in various embodiments herein comprises providing a tobacco product to the subject after one or more samples of exhaled breath have been collected from the subject for the determination of one or more baseline marker and/or biomarker values.

[0038] In an example, a method such as is described in various embodiments herein comprises collecting one or more samples of exhaled breath from a subject after a tobacco product has been provided to the subject. Such one or more samples are subjected to analysis to determine one or more experimental marker and/or biomarker values. By “experimental” is meant that the value is determined once a study has begun, or subsequent to conduct of the study.
In an example, a SMART™ analytical system provided by Xhale, Inc., of Gainesville, Florida, is employed for conduct of analyses. In this regard, US Pat. Appl. Pub. No. 2014/0341983 to Dennis and Melker is incorporated herein by reference in its entirety.

In an example, concentration of a marker and/or a biomarker in a sample of exhaled breath is directly related to use of a tobacco product by a subject.

In an example, mass of a marker and/or a biomarker in a sample of exhaled breath is directly related to use of a tobacco product by a subject.

Many modifications and other embodiments of a method such as is described in various embodiments herein will come to mind to one skilled in the art to which this disclosed method pertains having the benefit of the teachings presented in the foregoing description. Therefore, it is to be understood that a method such as is described in various embodiments herein is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
WHAT IS CLAIMED:
1. A method for monitoring use of a tobacco product by a subject, the method comprising providing the tobacco product to the subject and, at one or more times after providing the tobacco product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to determine amount and/or concentration of a marker, wherein the amount and/or concentration of the marker is related to use of the tobacco product by the subject, thereby monitoring the use of the tobacco product by the subject.
2. The method of claim 1, wherein the tobacco product comprises a flavorant.
3. The method of claim 2, wherein the marker is derived from the flavorant.
4. The method of claim 2, wherein the marker is identical to the flavorant.
5. The method of claim 2, wherein the flavorant comprises D-limonene, methyl salicylate, vanillin, ethyl vanillin, benzaldehyde, methyl anthranilate, D,L-menthol, L-menthol, L-carvone, and/or nicotine.
6. The method of claim 4, wherein the flavorant comprises comprise D-limonene, methyl salicylate, vanillin, ethyl vanillin, benzaldehyde, methyl anthranilate, D,L-menthol, L-menthol, L-carvone, and/or nicotine.
7. The method of claim 1, wherein the marker comprises 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 5-methyl-3-heptanol, 6-methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-isopropylcyclohexanol, and/or trimethylcyclohexanol.
8. The method of claim 2, wherein the marker comprises 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 5-methyl-3-heptanol, 6-methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-isopropylcyclohexanol, and/or trimethylcyclohexanol.
9. The method of claim 3, wherein the marker comprises 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 5-methyl-3-heptanol, 6-
methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-isopropylcyclohexanol, and/or trimethylcyclohexanol.

10. The method of claim 1, wherein the tobacco product is a smoking article.
11. The method of claim 1, wherein the tobacco product is a smokeless tobacco product.
12. The method of claim 1, wherein the tobacco product is a dissolvable tobacco product.
13. The method of claim 1, wherein the tobacco product is an electronic cigarette.
14. The method of claim 12, wherein the tobacco product is a gum.
15. The method of claim 12, wherein the tobacco product is a lozenge,
16. The method of claim 12, wherein the tobacco product is snus.
17. The method of claim 12, wherein the tobacco product is a spray
18. The method of claim 12, wherein the tobacco product is an orb or a stick.
19. The method of claim 1, wherein the tobacco product is a nicotine inhaler.
20. A method for monitoring use of a tobacco product by a subject, the method comprising providing the tobacco product to the subject and, at one or more times after providing the tobacco product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to determine amount and/or concentration of a marker, wherein the amount and/or concentration of the marker is related to use of the tobacco product by the subject, thereby monitoring the use of the tobacco product by the subject, wherein the tobacco product comprises a flavorant; the flavorant comprises comprise D-limonene, methyl salicylate, vanillin, ethyl vanillin, benzaldehyde, methyl anthranilate, D,L-menthol, L-menthol, L-carvone, and/or nicotine; and the marker comprises 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 5-methyl-3-heptanol, 6-methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-isopropylcyclohexanol, and/or trimethylcyclohexanol.
21. The method of claim 20, wherein the tobacco product is a nicotine inhaler.
22. A method for monitoring use of a smokeless tobacco product by a subject, the method comprising providing the smokeless tobacco product to the subject and, at one or more times after providing the smokeless tobacco product, collecting a sample of exhaled breath from the subject and subjecting the collected sample to analysis to
determine amount and/or concentration of a marker, wherein the amount and/or
congestion of the marker is related to use of the smokeless tobacco product by the
subject, thereby monitoring the use of the smokeless tobacco product by the subject,
wherein the smokeless tobacco product comprises a flavorant; the flavorant comprises
comprise D-limonene, methyl salicylate, vanillin, ethyl vanillin, benzaldehyde,
methyl anthranilate, D,L-menthol, L-menthol, L-carvone, and/or nicotine; and the
marker comprises 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol,
3-hexanol, 2-hexanol, 3-methyl-2-pentanol, 4-methyl-2-pentanol, 2,4-dimethyl-3-
pentanol, 3-methyl-3-hexanol, 2,6-dimethyl-4-heptanol, 2-heptanol, 3-heptanol, 4-
heptanol, 5-methyl-3-heptanol, 6-methyl-3-heptanol, cyclopentanol, cyclohexanol, 4-
isopropylcyclohexanol, and/or trimethylcyclohexanol.

23. The method of claim 2, wherein the tobacco product is a nicotine inhaler.
A. CLASSIFICATION OF SUBJECT MATTER
INV. G01N33/497 A24F47/00 A61B5/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01N A24F A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * A* document defining the general state of the art which is not considered to be of particular relevance
 * E* earlier application or patent but published on or after the international filing date
 * L* document on which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 * O* document referring to an oral disclosure, use, exhibition or other means
 * P* document published prior to the international filing date but later than the priority date claimed

* T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* Y* document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* Z* document member of the same patent family

Date of the actual completion of the international search 27 October 2016

Date of mailing of the international search report 04/11/2016

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV RIJWIJK
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

WILHELM-SHALGANOV, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MELISSA HAGAN HUGHES ET AL: "Estimation of the Retention of Menthol in the Respiratory Tract of Menthol Cigarette Smokers: A Pilot Study" , CONTRIBUTIONS TO TOBACCO RESEARCH , vol. 26, no. 1, 1 May 2014 (2014-05-01) , pages 26-33 , XP55314158 , ISSN : 0005-819X , DOI : 10.2478/cttr-2014-0005 abstract</td>
<td>1,2,4-6, 10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>US 2014378790 A1</td>
<td>25-12-2014</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2010137733 A1</td>
<td>03-06-2010</td>
<td>CN 102300502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104856679 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2369989 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5848608 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012510319 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010137733 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2010065452 A1</td>
</tr>
</tbody>
</table>