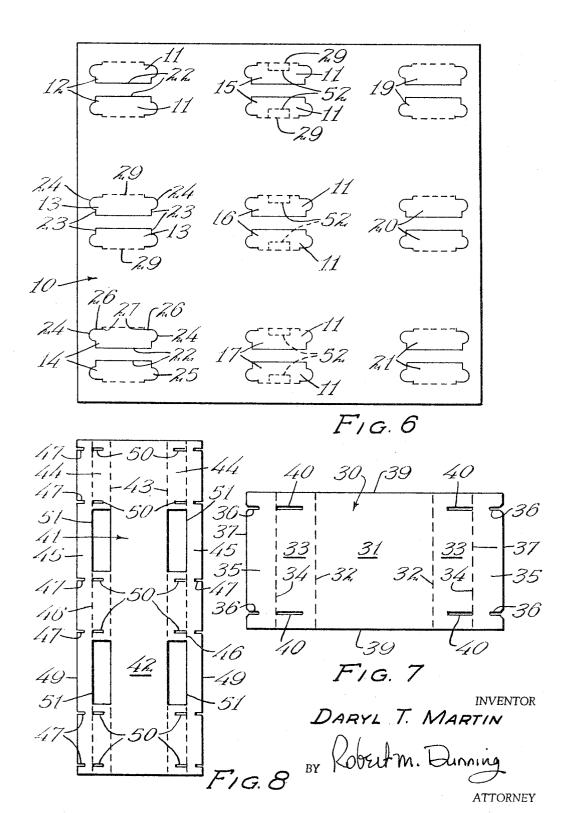

PAPERBOARD PALLETS

Filed May 8, 1968

2 Sheets-Sheet 1



ATTORNEY

PAPERBOARD PALLETS

Filed May 8, 1968

2 Sheets-Sheet 2

United States Patent Office

3,464,370
Patented Sept. 2, 1969

1

3,464,370
PAPERBOARD PALLETS
Daryl T. Martin, St. Paul, Minn., assignor to Hoerner
Waldorf Corporation, St. Paul, Minn., a corporation of
Delaware

Filed May 8, 1968, Ser. No. 727,392 Int. Cl. B65d 19/34, 19/12, 19/16 U.S. Cl. 108—56 10 Claims

ABSTRACT OF THE DISCLOSURE

A pallet is disclosed which may be produced at low cost. It comprises a platform panel having pairs of legforming flaps hinged thereto, the flaps of each pair being 15 hinged along parallel fold lines. The flaps of each pair are folded into parallel spaced relation at right angles to the platform. A leg-forming blank is wrapped around the flaps. Each blank includes a bottom panel, side wall panels secured to opposite sides of said bottom panel, and 20 bearing flanges hinged to the side wall panels. The bottom panel underlies the pair of flaps, the side walls extend over the sides of the flaps and interlock therewith, and the bearing flanges are in face contact with the under surface of the platform panel and interlock the sides of 25 said flaps. A plurality of leg-forming blanks may be combined if desired. The pallet may be impregnated with a stiffening material if desired.

This invention relates to an improvement in pallets and deals particularly with a pallet formed of cut paperboard or similar inexpensive material.

Numerous forms of pallets have been produced for supporting unitary loads. Most of these pallets were 35 originally made of wood or metal. However, with the increase of cost of these products, and the increase in cost of labor in making the pallets, disposable pallets made of paperboard were produced. Many such pallets are formed by winding single faced corrugated paperboard about a mandrel to form thick walled paperboard tubes, and sawing the tubes into sections of equal length to provide legs which may be glued to the under surface of a sheet of corrugated paperboard or the like, or glued between two parallel sheets of such material to form a pallet which may be discarded after use. Such disposable pallets are particularly desirable where pallet loads are being shipped considerable distances and where it is often impractical to ship the pallets back to the original manu-

Other pallets have been produced by forming reinforced paperboard box-line legs and securing them to the pallet either by adhesive or by locking the legs to the pallet sheet by the use of suitable locking flaps. While many such structures are capable of withstanding necessary compressive force, and often may be produced at a low cost for the materials, the cost of assembling the pallets and attaching the legs to the pallet platform is often quite high. It is an object of the present invention to provide a pallet construction which may be produced at low material cost, and which may be quickly and easily assembled.

During recent years a plastic composition has been produced which may be absorbed into paperboard while in a liquid state, and which when cured or set, greatly increase the strength and rigidity of the paperboard. Such materials also act to adhere contacting portions of the paperboard together so that the resulting structure is extremely hard and durable. By producing an inexpensive pallet of corrugated paperboard or fiberboard, and then impregnating the assembled pallet with a plastic material

2

of this type, an extremely strong rigid pallet is provided which may be produced at a cost considerably less than the cost of producing a wooden pallet of the same size, but yet which is substantially as durable as most conventional wooden pallets, and which is much lighter in weight.

A feature of the present invention resides in the provision of a pallet including a platform sheet which is die cut to provide pairs of flaps or flanges which may be folded in to right angular parallel relation to the remainder of the platform panel. A leg forming strip is cut and creased to fold about the free edges of these angularly extending flanges so as to form a rectangular box secured to the pallet panel and to enclose the side and bottom edges of the flaps or flanges. While the pallet may be used while in this form, the strength of the pallet may be greatly increased in impregnating the paperboard with a plastic material which adheres the contacting parts together and rigidifies the paperboard so that it 20 is capable of withstanding much greater loads.

These and other objects and novel features of the present invention will be more clearly and fully set forth in the following specification and claims.

In the drawings forming a part of the specification. FIGURE 1 is a perspective view of the pallet in inverted position.

FIGURE 2 is a perspective view of one of the legs of the pallet in assembled form.

FIGURE 3 is a perspective view similar to FIGURE 2 30 but showing the leg in partially formed position.

FIGURE 4 is a sectional view through one of the legs, the position of the section being indicated by the line 4—4 of FIGURE 1.

FIGURE 5 is a sectional view at right angles to FIG-URE 4, the position of the section being indicated by the line 5—5 of FIGURE 1.

FIGURE 6 is a diagrammatic view of the blank from which the platform panel is formed.

FIGURE 7 is a diagrammatic view of the blank from which one of the individual legs is formed.

FIGURE 8 is a diagrammatic view of the blank from which a multiple leg is formed.

It will be understood that pallets differ depending upon the size of the pallet. The size of the pallet is normally determined by the size of the product being palletized. Smaller pallets may be supported by four legs located near the corners of the pallet platform. Larger pallets are often supported by nine supporting legs, the legs being arranged in three spaced parallel rows. This structure is provided so that the forks of a lift truck used to lift the panel may be inserted either from the front or from the side of the pallet, the forks of the lift truck extending on opposite side of the center row of legs in either case.

The pallet illustrated in the drawings is designed to have the equivalent of nine legs. However, the center row of three legs is formed by a single elongated leg, portions of the elongated multiple leg being apertured for the accommodation of the forks of a lift truck.

The pallet platform is indicated in general by the numeral 10. The platform 10 is preferably rectangular in outline and is shown as including nine pairs of parallel flaps 11, the pairs of flaps in one row being indicated at 12, 13, and 14, the flaps of the third row being indicated at 19, 20, and 21. In view of the fact that the flaps 11 are all of identical form, only a single flap structure will be described in detail.

The flaps, such as 11, are generally rectangular in outline, and are connected to the remainder of the platform 10 along lines of fold which are shorter than the width of the flaps so that the ends of the leg forming blank may 4

be inserted between the side edges of the flaps and the under surface of the panel 10. The ends of the flaps which will be lower edges of the flaps when the legs are formed are defined by cut lines 22. At opposite ends of the cut lines 22, right angular cut lines 23 are provided at their ends with right angularly extending cut lines 23 which in turn communicate with semicircular cut lines 24 which provide laterally extending ears at the ends of the flaps. Cut lines 26 extend in alignment from the upper ends of the semicircular cut lines 24, the cut 10 lines 26 being parallel to the lower free edges 22 of the flaps. The inner opposed ends of the cut lines 26, which are of equal length, are connected by short right angularly extending cut lines 27 to the ends of a fold line 29. The fold lines connecting all of the flaps 11 to the platform panel 10 are paralleled. Accordingly, the flaps 11 can be folded out of the plane of the platform panel 10 and into spaced parallel right angular relation as indicated in FIGURE 3 of the drawings.

The blank used for forming a single leg is indicated 20 in general by the numeral 30 and is illustrated in FIG-URE 7 of the drawings. The blank 30 is generally of rectangular form and includes a rectangular bottom panel 31 which is located centrally of the blank and which is connected by parallel fold lines 32 to leg side walls 33. 25 The side walls 33 are foldably connected by the fold lines 34 to bearing flanges 35. The fold lines 34 are parallel to the previously described fold lines 32 so that the leg 30 may fold into generally channel-shaped form with the bearing flanges 35 folded inwardly into a common plane. 30

Slots 36 are provided in spaced parallel relation extending into the end edges 37 of the blank parallel to the parallel side 39 of the blank. Elongated slots or apertures 40 are provided in the side walls 33. The slots 40 are aligned with the slots 36 and extend from the fold 35 line 34 toward the fold lines 32 but terminated short thereof. The slots 40 are of a length substantially equal to the diameter of the semicircular projections 25 of the flaps 11. The slots 36 and 40 are spaced apart a distance substantially equal to the distance between the fold lines 29 connecting the flaps 11 of each pair to the platform panel 10.

As indicated in FIGURE 3, each leg is formed by bending the flaps 11 into right angular relation to the end of the blank 30 with the upper edges 26 of the flaps adjacent their hinge to their hinge lines 29. The bearing flange 35 is in face contact with the under surface of the panel 10. The side wall 33 joining the engaged flange 35 is then folded upwardly as indicated in FIGURE 3, the 50 rounded projections 35 engaging through the slots 40 as illustrated.

The bottom panel 31 is then folded down toward the end surfaces 22 of the flaps 11, the side wall 33 is folded into angular relation to the bottom panel 31, and the 55 bearing flange 35 is folded into angular relation to the side wall 33. In other words, the leg forming blank is folded into substantially the position illustrated in FIG-URE 3 as the bottom panel 31 is swung toward the flap edges 22. The bearing flange 35 is folded against the under surface of the platform panel 10, and the bearing flange is forced beneath the ears 25 and beneath the end edges of the flaps 11, the slots 36 interlocking with the sides of the flaps 11, and the ears 25 extending through the slots 40. The leg unit is then complete, and appears 65 as indicated in FIGURE 2 of the drawings.

All of the legs may be made in the manner described using the leg forming blank 30. As previously described, there will then be nine such legs attached to the platform panel 10. However, an alternate structure is indicated in FIGURE 8 of the drawings which comprises, in effect, a multiple leg unit. One such multiple leg unit is indicated in FIGURE 1 of the drawings but it will be understood that three of such multiple leg units may be attached in parallel relation to the platform 10 if it is 75 light in weight.

preferred. In view of the fact that the blanks 30 and 41 function in much the same manner, either structure may be employed.

It will be understood that if jigs are used to hold the flaps in right angular relation to the platform 10 while the leg forming blanks are wrapped about the flaps, a multiple leg unit 41 may be easily applied to the flaps. However, if the flaps 11 are held in position manually during the attachment of the leg forming blanks, it may be quicker and simpler to use nine individual leg forming blanks 30 than to apply three multiple leg-forming

As indicated in FIGURE 8 of the drawings, the leg forming blank 41 includes an elongated bottom panel 42 having attached thereto along parallel fold lines 43 a pair of side walls 44. Bearing flanges 45 are hingedly connected to the side walls 44 along parallel fold lines 46. Each bearing flange 45 is provided with three pairs of slots 47 extending into the outer edges 49 of the blank. The slots 47 of each pair being spaced apart a distance equal to the spacing between the pairs of flaps. In other words, the slots 47 at one end of the bearing flanges 45 are spaced from the next pair a distance equal to the spacing between the end pair of flaps 15 and the intermediate pair of flaps 16, and the intermediate pair of slots 47 is spaced from the other end pair of slots 47 a distance equal to the spacing between the pair of flaps 16 and the pair of flaps 17. Elongated slots or apertures 50 are provided in the side walls 44 in alignment with the slots 47. The slots 50 are arranged similarly to the slots 40 and are designed to accommodate the locking ears 25 of the flaps 11.

Each side wall 44 is divided into three sections of equal width by two pairs of apertures 51. The apertures 51 are rectangular and extend the full width of the side walls between the fold lines 43 and 46. The three remaining portions of the side wall 44 are substantially equal in width to the side walls 33 of the individual leg forming blanks 30. As a result, the structure shown in FIGURE 8 of the drawings is actually the equivalent of three individual legforming units 30 which are connected by intermediate portions of the bottom panel 42 and intermediate portions of the bearing flanges 45.

In attaching the leg forming blank 41, one row of legplatform panel 10, and interengaging the slots 36 at one 45 forming flaps such as indicated at 15, 16 and 17 are folded into right angular relation to the platform panel 10, and are preferably held in this position by suitable means while the blank 41 is applied. For example, the platform 10 may be inserted over a table having pairs of upwardly extending lugs which engage the various flaps 11 closely adjacent the fold lines 29 and hold the flaps at right angles to the platform 10. Six such lugs are indicated at 52 beneath the blank in FIGURE 6 of the drawings.

With the flaps 11 of each pair supported in parallel relation at right angles to the platform 10, one bearing flange 46 is interlocked with one edge of the flaps, the slots 47 accommodating portions of the flaps 11. The adjoining side wall is folded upwardly; the ears 25 extending through the slots 50. The bottom panel 41 is folded down to overlie the edges 22 of the flaps 11, the other side wall 44 is folded about the opposite end of the flaps 11, and the adjacent bearing flange 49 is inserted beneath the opposite side of each of the flaps, and the slots 47 are interlocked with portions of the sides of the flaps 11.

The assembled pallet is preferably impregnated with a solution which will stiffen and rigidify the corrugated paperboard, and which will normally hold the pallet from disassembly. For example, a melamine resin solution or urea-formaldehyde solution may be used. Similarly, a silicone or sulphur solution may be used to accomplish the purpose. When treated in this manner, the pallet becomes very durable, and normally may be reused if desired. At the same time, the pallet is relatively low in cost and

5

If desired, a second platform sheet may be used, be secured to the lower ends of the legs, or paperboard strips may be adhered to the legs of each row of individual legs. However, the pallet functions very effectively without this additional platform sheet.

In accordance with the patent statutes, I have described the principles of construction and operation of my paper-board pallets; and while I have endeavored to set forth the best embodiment thereof, I desire to have it understood that obvious changes may be made without departing 10 from the spirit of my invention.

I claim:

1. A pallet comprising:

a platform panel of paperboard or the like,

- a series of pairs of singular flaps hingedly connected 15 to said panel, the flaps of each pair being folded along parallel fold lines into right angular relation to said panel, and
- a leg-forming blank including a bottom panel underlying the end edges of said flaps, side walls extending upwardly along the sides of said flaps, and bearing flanges in face contact with the under surface of said panel.
- 2. The structure of claim 1 and including interlocking means on the sides of said flaps and said side walls.
- 3. The structure of claim 1 including laterally projecting ears on said flaps, said side walls including apertures through which said ears extend.
- 4. The structure of claim 3 and in which said bearing flanges include slots into which portions of said flaps extend.
- 5. The structure of claim 1 and in which said bearing flanges include slots into which portions of said flaps extend.
- 6. The structure of claim 1 and in which said leg forming blank extends about a plurality of pairs of parallel flaps
- 7. The structure of claim 5 and in which said side walls are apertured between said pairs of flaps to accommodate the forks of a lift truck.
 - 8. A pallet comprising:
 - a platform panel of paperboard,

6

- a series of pairs of similar flaps hingedly connected to said panel and folded into parallel spaced relation,
- said flaps being generally rectangular in form including end flaps to said panel and side edges including projecting ears,
- lines of fold hingedly connecting said flaps to said panel, said lines of fold terminating short of said side edges and connected thereto by cut lines forming upper edge portions on said flaps adjoining the ends thereof.
- a leg-forming blank creased along parallel fold lines to provide a bottom panel, side walls hinged to opposite edges of said bottom panel and bearing flanges hinged to the upper edges of said side walls and extending between said upper edge portions of said flaps and said panel,

said side walls being apertured to accommodate said projecting ears extending therethrough,

said leg-forming blank enclosing the edges of at least one pair of flaps,

there being sufficient such leg-forming blanks to enclose the marginal edges of all of said pairs of flaps.

9. The structure of claim 8 and in which one said leg 25 forming blank is provided for each pair of flaps.

10. The structure of claim 8 and in which one legforming blank encloses the edges of a plurality or pairs of said flaps.

References Cited

UNITED STATES PATENTS

2,925,978	2/1960	Marso 108—56
2,692,747	10/1954	Strauss 108—56
3,126,140		Lizan et al 229—16
3,167,038	1/1965	Brown 108—56
3,232,252	2/1966	Nelson 108—51 XR
3,308,772	3/1967	Thomas 100 56

BOBBY R. GAY, Primary Examiner

40 GLENN O. FINCH, Assistant Examiner

U.S. Cl. X.R.

108---51