
E. F. TRENT.

UNITED STATES PATENT OFFICE.

EUGENE F. TRENT, OF JERSEY CITY, NEW JERSEY.

LAMP.

SPECIFICATION forming part of Letters Patent No. 519,853, dated May 15,1894.

Application filed December 10, 1887. Renewed March 31, 1891. Serial No. 387, 111. (No model.)

To all whom it may concern:

Be it known that I, EUGENE F. TRENT, of Jersey City, in the county of Hudson and State of New Jersey, have invented a certain 5 new and useful Improvement in Lamps, of which the following is a specification.

I will describe in detail a lamp embodying my improvement and then point out the novel

features in claims.

In the accompanying drawings, Figure 1 is a vertical section of a lamp embodying my improvement taken on the plane of the line x x, Fig. 2. Fig. 2 is a plan or top view of the lamp with the burner removed. Fig. 3 is a 15 plan view with the cone and flame spreader and its support removed. Fig. 4 is a transverse section of a portion of the wick tube and draft flues taken on the plane of the line s s, Fig. 1, a portion of the lamp body being 20 broken away to save space. Fig. 5 is a perspective view of a wick carrier employed in the lamp. Fig. 6 is a side view of a wick raiser acting in conjunction with said wick carrier. Fig. 7 is a view of a portion of the 25 outer wall of the wick tube. Fig. 8 is a detail view in longitudinal section showing a portion of the cone and chimney gallery of the lamp.

Similar letters of reference designate corre-

30 sponding parts in all the figures.

A designates the reservoir or fount of the lamp. It may be made of metal and spun.

B designates the base or pedestal of the lamp. The upper end of the base or pedes-35 tal comprises a socket into which the lower end or portion of the reservoir or fount A may fit and by which the parts above the pedestal are supported. The base or pedestal is also of spun metal. Near the bottom of the 40 base or pedestal the same is provided with a number of holes a through which air may be admitted to certain draft flues in the lamp, that portion of the base or distributer which is above the perforations a constitutes an air 45 chamber.

B' designates a drip cup supported in the base or pedestal of the lamp. As shown said drip cup comprises a cup-shaped piece of

upper ends have bent portions b2 which willengage a circumferential depression or groove b' formed in the base or pedestal of the lamp, preferably when the latter is being spun. The arms b being resilient, when they and 55 the drip cup are moved upwardly by hand upon the inside of the base or pedestal, the bent portions b^2 will be sprung into the circumferential portion b' and the drip cup will thereby be supported. By pulling the drip 60 cup outwardly, the arms b will of course become disengaged from the depression b'.

C designates the inner wall of the wick tube and C' the outer wall thereof. The space surrounded by the inner wall C of the wick 65 tube constitutes a central draft flue for the lamp. Both the outer and inner walls of the wick tube are rigidly secured to a base plate C² at the lower extremity of the reservoir or fount A. Air entering through the perfora- 70 tions a will ascend through said central draft

D D' designate other segmental draft flues through which air entering through the perforations a may also ascend. These draft 75 flues DD' are arranged at some distance from the wick tube and extend circumferentially about the same. They are formed by inner walls d and outer d' made of metal.

As shown more clearly in Fig. 2, passages 80 c extend from the interior of the main reservoir or fount A through the draft flues D D' and communicate with an annular reservoir A² surrounding the wick tube. Oil is supplied to the wick through apertures c' 85 opening from the annular reservoir A2 into the wick tube. It will be seen that not only is a column of air ascending through the space surrounded by the inner wall of the wick tube but also through the draft flues D 90 D', which latter in effect constitute a single circumferential draft flue. By this means not only is the wick tube kept cool but the body of oil in the lamp fount and reservoir A² is also kept cool owing to the passage of 95 cold air upwardly through the draft flues DD'.

The central draft flue supplies air to the inner side of the flame of the lamp. Air asmetal to which are secured by solder or other-so wise, resilient arms b. These arms near their plied to the outer side of said flame. Air as $oxed{ t 1}$ the $oxed{ t 1}$ the $oxed{ t 1}$ cending through the draft flues $oxed{ t D}$ enters an air space above the reservoir, formed as shown in this example of my improvement, by an imperforate jacket E. This latter, near its 5 lower extremity is provided with a rim e which fits snugly about the outer wall d of the draft flues D, D'. This jacket is shown as flaring upwardly. At its upper and open end it supports an air distributer e' here shown 10 as conical-shaped, a chimney gallery e^2 and a cone or deflector e3. The chimney gallery e2 has a downwardly extending conical imperforate portion or shell e5 to which is secured upon the inner side, the air distributer e'. 15 To this portion e^5 is also secured a ring e^4 preferably made of gutta percha or india rubber which is a poor conductor of heat. It is secured by rivets or otherwise. Lips or lugs e^6 extend inwardly from the portion e as shown, 20 below the chimney gallery e2. These lips or lugs are shown more clearly in Figs. 1 and 3. They are formed by cutting portions of the metal constituting the chimney gallery and bending the portions of metal between the 25 cuts inwardly. The cone or deflector e3 when placed in position as shown in Fig. 1, rests upon the lips or lugs e6 and does not come in contact with the chimney gallery. Spring fingers e7 of the usual construction are em-30 ployed and against these the lower portion of the cone or deflector e³ will press when in position. | By thus isolating the cone or deflector from the chimney gallery, very little heat will be transmitted from the cone or de-35 flector to the chimney gallery and the portions of metal below it.

It will be seen that all the air supplied to the outside of the flame of the lamp is received through the draft flues D D'. After the as-40 cending air has been received into the air space formed by the imperforate jacket E, it ascends through the air distributor e' and

thence to the outside of the flame.

By providing in combination, the draft flue 45 through which air ascends to the inner side of the flame and other draft flues extending from near the base of the lamp and through which all the air is supplied to the exterior of the flame a very accurate equalization of 50 draft is secured whereby the flame is maintained steady and a perfect combustion is secured occasioning an intense white light. The jacket E may be perforated, if desired, in which event the flame emanating from the 55 lamp will be whiter than when said jacket is made imperforate.

F designates a wick carrier shown more clearly in Fig. 5. This wick carrier comprises a ring f having inwardly struck teeth f6c adapted to engage the wick when the wick carrier is passed over the outside of the wick. Extending upwardly from the ring f are resilient arms f^2 . These arms are rigidly secured near their lower ends to the ring f. 65 The arms f^2 bear at their upper ends, pins or projections f^3 . These pins or projections ex-

tend at approximate right angles to the length of the arms f^2 . The upper portion of the outer wall of the wick tube is provided with longitudinal slots f^4 .

When the wick carrier F is within the wick tube and in engagement with the wick, as shown more clearly in Fig. 1, the projections f^3 , on the resilient arms f^2 extend through the slots f^4 in the wick tube. They are main-75 tained in this position by the resilient arms f^2 .

G designates a wick raiser used in conjunction with the wick carrier F. This wick raiser is cylindrical in form and is made of metal. It is provided with two spirally extending slots 80 When the wick raiser G is in position upon the exterior of the wick tube, as shown more clearly in Fig. 1, the projections f^3 on the arms f^2 of the wick carrier extend into the spiral slots g of the wick raiser. By ro- 85tating the wick raiser G the projections f^3 will be caused to follow the slots g and thus the wick may be raised or lowered according to the direction in which the wick raiser is rotated. The wick raiser is rotated by grasp- 90 ing the ring et and rotating the upper part of the burner which is supported upon the jacket E. The rotation of this portion of the burner is caused to effect the rotation of the wick raiser in the following manner: Upon 95 the exterior of the wick carrier are longitudinally extending ribs g'. The air distributer e has formed in it at that portion which is adjacent to the wick tube and the wick raiser G, notches g^3 . When the upper part of the roo burner containing the air distributer e' is slipped downwardly over the wick raiser, the notches g^3 will receive the ribs g' on the wick raiser and interlock therewith so that when the said upper portion of the burner is ro- 1c5 tated, the wick raiser will be rotated with it.

J J' designate buttons or spreaders. These

buttons or spreaders are mounted upon a supporting rod J². This supporting rod is screwthreaded for a portion of its length and its 110 lower end is provided with a socket j which latter is adapted to receive the upper end of a rod j' extending centrally through the central draft flue. The rod j' is supported in spiders j^2 secured to the inner wall of the 115 wick tube in the usual manner. The rod J^2 with the buttons or spreaders J J' may be readily lifted off from the rod j'. As shown each of these buttons or spreaders J J' is vertically adjustable. Screw-threaded nuts j^3 120 upon each side of each of said buttons or spreaders, which nuts engage the screwthreaded portion of the rod J2, may be moved upwardly or downwardly to thus vary the positions of either or both of said buttons or 125 spreaders, and when the desired position for either or both the buttons or spreaders has been attained, the nuts, by being tightened, will secure said buttons or spreaders in such position. The upper button, or J, is some- 130 what larger in diameter than the lower button J' and it will be observed that the button

519,853

J' is arranged at a little distance above the cone or deflector e3, while the button or spreader J is arranged at a long distance above the same. By this construction and arrangement the air ascending through the central draft flue may be caused to be deflected against the inner side of the flame at any desired point or points, and the flame may be lengthened or shortened at pleasure. The 10 ability to adjust either or both of the buttons or spreaders enables the ready determination of the exact point or points at which the deflection of the air against the flame will produce the best results.

L designates an air distributer arranged within the central draft flue, and wholly below the upper end of the wick tube. This distributer is cylindrical in shape and is of such diameter that a considerable space will 20 be left between its exterior wall and the inner wall C of the wick tube. It is provided near its lower end with a spider l, and near its upper end with a perforated diaphragm The distributer L has an open lower end. 25 The diaphragm and spider are secured upon the inner side of the outer shell of the distributer. The outer shell of the distributer is also perforated throughout its length. This distributer rests upon the upper of the spiders 30 j^2 and is supported in a vertical position by the rod j' which extends centrally through

suitable apertures in the diaphragms ll'. This form of air distributer is very advantageous in that it causes a perfect breaking up of the 35 ascending column of air into small jets and currents and an even distribution of the same to the inner side of the flame.

I employ a tell-tale in conjunction with the lamp for indicating when the same has been 40 properly filled. This tell-tale comprises a cork or other piece of buoyant material n. The tell-tale is arranged in a perforated tube I having a closed lower end and being secured at its upper end to the shell of the reservoir 45 A. It opens beneath the usual opening in the shell of the reservoir through which oil is supplied. As the oil rises in the reservoir, the tell-tale n will be carried upwardly until it shows at the opening through which the oil 50 is supplied. In this manner it indicates when a sufficient quantity of oil has been intro-

A cap i of usual construction is employed to close the opening through which the oil is

duced into the reservoir.

55 supplied. In the present case I show a wick raising mechanism having features similar to that shown and claimed in my pending application, Serial No. 323,057, filed September 5, 60 1889, but it is to be understood that I do not claim the combination herein as set forth in said application.

What I claim as my invention, and desire to secure by Letters Patent, is-

1. In an Argand lamp, the combination with

central draft flue, an air chamber below the reservoir opening to the atmosphere, segmental draft flues D D' outside the wick tube opening at one end at the base of the reser- 70 voir and at the other end into an air chamber above the reservoir, an air distributer of conical form forming the upper wall of the air chamber and a cone or deflector above the air distributer, substantially as specified.

2. In an Argand burner, the combination with a reservoir having a cylindric wick tube, of an air chamber below the reservoir opening to the atmosphere, a central draft flue, segmental draft flues D D' outside the wick 80 tube opening at one end at the base of the reservoir and at the other end into an air chamber above the reservoir, an air distributer of conical form forming the upper wall of said last named air chamber, an imperfo- 85 rate conical shell outside said air distributer and a cone or deflector above the air distributer, substantially as specified.

3. In an Argand lamp, the combination with the reservoir and a cylindric wick tube, of 90 a central draft flue extending through the reservoir, an air chamber below the reservoir into which said central draft flue opens, a draft flue outside the wick tube and central draft flue opening below the reservoir, an an- 95 nular reservoir between the wick tube flue and the draft flue last named, the draft flue last named opening at one end into an air chamber above the reservoir, an air distributer constituting the upper wall of the air 100 chamber and a cone or deflector above the air distributer, substantially as specified.

4. In a lamp burner, the combination with a chimney gallery comprising a downwardly extending shell, of lips or lugs extending in- 105 wardly from said chimney gallery and a cone or deflector supported upon said lips or lugs so as not to contact with the chimney gallery, substantially as specified.

5. In a lamp, the combination with a wick 110 carrying ring having inwardly struck teeth, of resilient arms rigidly secured to said ring and provided with pins or projections near their upper ends, of a wick tube having an outer wall provided with longitudinal slots 115 having open upper ends into which said-pins or projections extend, and a wick raiser extending about the wick tube and comprising spirally extending slots into which said pins or projections also extend, substantially as 120 specified.

6. The combination with a wick tube having its outer wall provided with longitudinally extending slots, of a wick carrier comprising pins or projections extending through 125 said slots, a rotary wick raiser comprising spirally extending slots into which said pins or projections also extend, ribs on said wick raiser, and an air distributer provided with notches engaging said ribs, which air distrib- 130 uter when rotated will cause the rotation of a reservoir and a cylindric wick tube, of a the wick raiser, substantially as specified.

7. In an Argand lamp, the combination with a wick tube, of a central draft flue, an air distributer arranged in said draft flue wholly below the upper end of the wick tube and comprising a perforated cylindrical shell of less diameter than the inner wall of the wick tube, said shell having an open lower end and a

perforated diaphragm within said shell below its upper end, substantially as specified.

EUGENE F. TRENT.

Witnesses:
JAMES D. GRISWOLD,
D. H. DRISCOLL.