The present invention has for its object a seat with flexible bottom and back, which is chiefly adapted for motor cars and essentially comprises, on the one hand, a metal frame, and preferably a tubular frame made in a single piece, and on the other hand, two flexible panels consisting of canvas and rubber, which form respectively the bottom and the back of the seat.

A seat of this construction offers numerous advantages, among which are the following:

(1) It is economical, as its ready construction requires the minimum amount of fittings, since there are no springs to be embedded in hair, or wadding etc.

(2) It is of an extremely light construction.

(3) It occupies but little space, owing to the reduced thickness of the seat back, thus allowing more room for the persons in the rear, when it is employed for the front seats of motor cars.

(4) It is durable, as it will not lose its shape in course of time, as is the general rule for structures containing springs.

The flexible panels preferably consist of longitudinal canvas bands, which are connected together by rubber bands or laces which are suitably secured to two adjacent canvas bands.

The following description relates to embodiments of the invention with reference to the accompanying drawings.

Fig. 1 is a perspective view of a seat in conformity to the invention, which is not provided with its upholstery.

Fig. 2 is a central longitudinal section of the seat.

Fig. 2a is a cross-section on line C—C of Fig. 1. Figs. 3 and 4 are cross-sections respectively on the lines A—A and B—B of Fig. 1.

Fig. 5 is a perspective view of a detail, showing the connection between a spring and the frame.

Fig. 5 shows a modified construction of the panel forming the flexible seat-back.

In the embodiment shown in Figs. 1 to 4, the tubular frame I of the seat is pivotally mounted, at the front at 2, upon two half-hinges mounted on the motor-car body, so that it may be raised and thus give a ready access to the rear seats. The two lateral sides of the tubular frame are spaced apart by a tube 3 of U shape welded thereto, which permits sagging of the flexible band of the seat bottom under the weight of the person.

The panel forming the seat bottom consists of a central canvas band 4 and two lateral canvas bands 5 and 6, each of which is connected to the central band by a rubber band 7 cemented to the said canvas bands. The end bands 5 and 6 are turned over and are sewed along the side, in order to form sheaths 8 and 9 containing the sides of the tubular frame 1. Also, the canvas bands are held at the rear by a spring 10 which is connected to the two sides of the frame by hooks 11 as shown in Fig. 3a, each canvas band being brought around the spring and then cemented upon itself. At the front, the canvas bands are nailed to a wood cross-piece 11 which is also connected to the two sides of the metal frame by screws 23 as shown in Fig. 2a.

The spacing between the central canvas band 4 and the end bands 5 and 6 is greater in the rear than in front, as shown in Fig. 1, in order that the panel forming the seat bottom shall be more flexible in the rear than in front, and that the person's legs shall thus be better supported.

The panel which forms the flexible seat back consists of a rubber band 12 cemented between two canvas bands 13 and 14 whose edges are turned over and are sewed in order to form two sheaths 15 and 16 adapted to contain the sides of the tubular frame. The said panel, which forms the seat back, is held at the top by turning the canvas around the upper cross-piece 17 of the metal frame and then cementing the edges, for instance by a latex cement, and at the bottom, by turning the canvas bands around a spring 18 which is stretched, like the spring 10, between the two vertical sides of the tubular frame.

It will be noted that the rubber band 12 is apertured by the use of slots 19, starting from a certain height on the seat back, and this construction increases the flexibility of the seat back in the region of the shoulder blades, while properly supporting the loins.

Instead of employing rubber bands to insure the elasticity of the flexible panels, this elasticity may be obtained by a lacing of rubber cord, as shown in Fig. 5, in which the panel forming the flexible seat back consists of two canvas bands 20 and 21 which are connected together by rubber cords 22. In this case, in order to obtain a different elasticity from the top to the bottom of the seat back, the diameter of the rubber cords can be varied as represented. It is also desirable to vary the spacing between the canvas bands, as shown in Fig. 1 for the seat.

I claim:

1. A seat adapted for use in motor vehicles.
comprising a frame having side members, flexible seat and back panels attached to said side members, each of said panels consisting of a plurality of spaced canvas bands and rubber-like elements connecting said bands, the portion of the rubber-like elements at a selected part of each panel having a greater degree of yieldable elasticity than at the other parts thereof.

2. A seat as claimed in claim 1 wherein said 10 canvas bands and rubber-like elements extend parallel to said side members, said seat further comprising a pair of springs extending between said side members, each being disposed adjacent one end of each panel and the adjacent end of said canvas bands being secured thereto.

3. A seat as claimed in claim 1 wherein certain of the rubber-like elements consists of a band provided with slots in that portion of the band in which a higher degree of yieldable elasticity is desired.

4. A seat as claimed in claim 1 wherein the rubber-like elements consist of lacing, the size of said lacing being smaller at selected points to provide for the desired increases in the degree of yieldable elasticity.

5. A seat as claimed in claim 1 wherein the space between certain of said canvas bands is greater at a selected part than at the other parts whereby the degree of yieldable elasticity of said rubber-like elements is increased at the selected part.

LÉON SAIVES.