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COMBINED WU AND CHASE DECODING OF
CYCLIC CODES

FIELD OF THE INVENTION

[0001] The present invention relates to decoding cyclic
codes generally and, more particularly, to a method and/or
apparatus for implementing a combined Wu and Chase
decoding of cyclic codes.

BACKGROUND OF THE INVENTION

[0002] Efficient list decoding beyond half a minimum dis-
tance for Reed-Solomon and Bose, Ray-Chaudhuri and Hoc-
quenghem (i.e., BCH) codes were first devised in 1997 and
later improved almost three decades after the inauguration of
an efficient hard-decision decoding method. In particular, for
a given Reed-Solomon code C(n.k,d), a Guruswami-Sudan
decoding method corrects up to n—vn(n—d) errors, which
effectively achieves a Johnson bound, a general lower bound
on the number of errors to be corrected under a polynomial
time for any code. Schmidt, Sidorenko, and Bossert devised a
multi-sequence shift-register synthesis to find an error locator
polynomial beyond half a minimum distance for low-rate
(i.e., <¥4) Reed-Solomon codes when a unique solution
exists. Apart from small probability of failure due to ambigu-
ity, the resulting decoding radius is identical to that of the
Sudan technique. The Sudan technique extended the
Guruswami-Sudan technique to achieve subfield Johnson
bounds for subfield subcodes of Reed-Solomon codes by
distributing multiplicities across the entire subfield.

[0003] Wu presented a list decoding technique for Reed-
Solomon and binary BCH codes. The Wu list decoding tech-
nique casts a list decoding as a rational curve fitting problem
utilizing polynomials constructed by a Berlekamp-Massey
technique. The Wu technique achieves the Johnson bound for
both Reed-Solomon and binary BCH codes. Beelen and Hoe-
holdt re-interpreted the Wu list decoding technique in terms
of Grobner bases and an extended Fuclidean technique to list
decoded binary Goppa codes up to the binary Johnson bound.

[0004] It would be desirable to implement a combined Wu
and Chase decoding of cyclic codes.

SUMMARY OF THE INVENTION

[0005] The present invention concerns an apparatus having
a first circuit and a second circuit. The first circuit may be
configured to generate (i) a plurality of symbols and (ii) a
plurality of decision values both in response to detecting an
encoded codeword. The second circuit may be configured to
(1) generate a plurality of probabilities to flip one or more of
the symbols based on the decision values, (ii) generate a
modified probability by merging two or more of the probabili-
ties of an unreliable position in the symbols and (iii) generate
a decoded codeword by decoding the symbols using a list
decode technique in response to the modified probability.

[0006] The objects, features and advantages of the present
invention include providing a combined Wu and Chase
decoding of cyclic codes that may (i) merge two or more most
reliable flipping estimations of an unreliable position into a
single estimation, (ii) add two probabilities prior to base
multiplicity adjustments, (iii) combine Chase decoding with
Wu list decoding, (iv) decode BCH codewords and/or (v)
decode Reed-Solomon codewords.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0007] These and other objects, features and advantages of
the present invention will be apparent from the following
detailed description and the appended claims and drawings in
which:

[0008] FIG. 1 is a block diagram of a communication sys-
tem,
[0009] FIG. 2 is a block diagram of an example implemen-

tation of a soft decoder circuit in accordance with a preferred
embodiment of the present invention;

[0010] FIG. 3 is a detailed block diagram of an example
implementation of a list decoder circuit;

[0011] FIG. 4 is a diagram of an example merging of prob-
ability values;
[0012] FIG. 5is a flow diagram of an example method of a

base multiplicity adjustment;
[0013] FIG. 6 is a graph of ratios of list decoding capabili-
ties to minimum distances;

[0014] FIG. 7 is a graph of a multiplicity ratio of a
Guruswami-Sudan technique over a Wu list decode tech-
nique;

[0015] FIG. 8 is a graph of performance comparisons for

decoding a (458, 410) Reed-Solomon code under a BPSK
modulation;

[0016] FIG. 9 is a graph of performance comparisons for
decoding a (255, 191) Reed-Solomon code under a QAM
modulation; and

[0017] FIG. 10 is a graph of performance comparisons for
decoding a (4408, 4096) BCH code under a BPSK modula-
tion.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0018] Some embodiments of the present invention gener-
ally concern scenarios where a fraction of positions of a
received word are pre-corrected. Accordingly, a Wu list
decoding technique may avoid interpolating the pre-cor-
rected positions and thus effectively increases a list error
correction capability (e.g., LECC). List decoding generally
generates a list of possibilities for a received codeword, a
single possibility being correct. For a Reed-Solomon code
C(n,k,d), a parameter n* may be an effective code length by
neglecting known locations. Therefore, a resulting LECC
may be n*-vn*(n*-d) and independent of an actual code
length n. When n* reduces toward d, the LECC generally
approaches to d-1. For a binary BCH/Goppa code C(n,k,d),
the parameter n* may be the effective code length by neglect-
ing known locations. Hence, a resulting LECC may be %2(n*-
vn*(n*-2d)) and independent of the actual code length n.
When n* reduces toward 2d, the LECC generally approaches
to d-1. In particular, the lists may include all (e.g., up to
2d%+2) codewords among any 2d-1 erasure bits. The code-
words may be generated by applying the list decoding tech-
nique twice, an application with the given 2d-1 bits and
another application with all flipped 2d-1 bits. The Wu list
decoding technique may be transformed into an algebraic
soft-decision decoding technique by translating symbol error
probability information into an appropriate multiplicity vec-
tor. A combination of Chase decoding and the transformed
Wau list decoding technique may be utilized.

[0019] Simulation results generally indicate that some
embodiments of the present invention may achieve gains over
hard-decision decoding at a practically implementable com-
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plexity. For instance, a (255, 191) Reed-Solomon code under
a quadrature amplitude module (e.g., QAM), with a low cost
value (e.g., C) of 300, in combination with a Chase-16 decod-
ing generally achieves a 0.9 dB gain over the hard-decision
decoding. In another example, a (4408, 4096) Bose, Ray-
Chaudhuri and Hocquenghem (e.g., BCH) code under a
binary phase-shift keying (e.g., BPSK) modulation, with a
low cost value of 300 (which may be less than the redundant
length), in combination with Chase-8 decoding may achieve
a 0.55 dB improvement over the hard-decision decoding.
[0020] Referring to FIG. 1, a block diagram of a commu-
nication system (or apparatus) 90 is shown. The system 90
generally comprises a block (or circuit) 92, ablock (or circuit)
94 and a block (or circuit) 100. The circuit 100 generally
comprises a block (or circuit) 102 and a block (or circuit) 104.
The circuits 92 to 104 may represent modules and/or blocks
that may be implemented as hardware, software, a combina-
tion of hardware and software, or other implementations.
[0021] A signal (e.g., IN) may be received by the circuit 92.
The signal IN may implement an input signal carrying code-
words (or words or symbols or bits) to be encoded and trans-
ferred/stored. The circuit 92 may generate a signal (e.g., TX)
received by the circuit 94. The signal TX may implement a
transmit signal that conveys the encoded codewords from the
signal IN. A signal (e.g., RX) may be generated by the circuit
94 and received by the circuit 100/102. The signal RX may
implement a received signal. In the absence of errors, the
codewords in the signal RX may match the codewords in the
signal TX. The circuit 102 may generate a signal (e.g.,
WORD) received by the circuit 104. The signal WORD may
carry areceived codeword (or bits or symbols) detected in the
signal RX. A signal (e.g., DEC) may also be generated by the
circuit 102 and received by the circuit 104. The signal DEC
may convey decisions about the received codewords in the
signal RX. A signal (e.g., OUT) may be generated by the
circuit 100/104. The signal OUT may implement an output
signal that contains the decoded codeword (or word or sym-
bols or bits).

[0022] The circuit 92 may implement an encoder circuit.
The circuit 92 is generally operational to encode the code-
words received in the signal IN. The encoding may be a cyclic
code encoding, a BCH encoding or a Reed-Solomon encod-
ing. The encoded codewords may be presented in the signal
TX.

[0023] The circuit 94 may implement a communication
channel. The circuit 94 is generally operational to carry the
encoded codewords communicated from the circuit 92 to the
circuit 100. The circuit 94 may also carry data communicated
from the circuit 100 to the circuit 92. Implementations of the
circuit 94 may include, but are not limited to, one or more
transmission media such as air, wire, optical fibre, Ethernet
and the like. In some embodiments of the present invention,
the circuit 94 may implement a storage medium. Storage
media may include, but is not limited to, optical media, mag-
netic media and electronic media.

[0024] The circuit 100 may implement a receiver circuit.
The circuit 100 is generally operational to decode the
encoded codewords received in the signal RX. The decoding
may include a soft detection and a soft decode. The received
and decoded codewords may be presented in the signal OUT.
[0025] The circuit 102 may implement a soft detector cir-
cuit. The circuit 102 is generally operational to detect the
codewords received in the signal RX using a soft decision
and/or a hard decision. The detected codewords may be pre-
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sented in the signal WORD. Decision values corresponding to
the detected codewords may be presented in the signal DEC.
[0026] The circuit 104 may implement a soft decoder cir-
cuit. The circuit 104 is generally operational to decode the
codewords received in the signal WORD based on the deci-
sion values received in the signal DEC. The soft decoding
may include, but is not limited to, (i) generating a plurality of
probabilities to flip one or more of the symbols within the
codewords based on said decision values, (ii) generating a
modified probability by merging two or more of the probabili-
ties of an unreliable position in the symbols and (iii) gener-
ating the decoded codeword by decoding the symbols using a
list decode technique in response to the modified probability.
In some embodiments, the probabilities may be generated
using the Chase technique. The list decode technique gener-
ally comprises the Wu list decode technique. The encoded
codewords may comprise Reed-Solomon codewords or BCH
codewords.

[0027] Referring to FIG. 2, a block diagram of an example
implementation of the circuit 104 is shown in accordance
with a preferred embodiment of the present invention. The
circuit 104 generally comprises a block (or circuit) 106 and a
block (or circuit) 108. The circuits 106 to 108 may represent
modules and/or blocks that may be implemented as hardware,
software, a combination of hardware and software, or other
implementations.

[0028] The signal DEC may be received by the circuit 106.
The signal WORD may be received by the circuits 106 and
108. A signal (e.g., PROD) may be generated by the circuit
106 and presented to the circuit 108. The signal PROD gen-
erally conveys probability values for flipping bits or symbols
in the received codewords in the signal WORD. The signal
OUT may be generated by the circuit 108.

[0029] The circuit 106 may implement a merge circuit. The
circuit 106 is generally operational to generate the probabili-
ties to flip one or more of the symbols/bits in the codewords
based on the decision values in the signal DEC. The circuit
106 may also be operational to generate a modified probabil-
ity by merging two or more of the probabilities of an unreli-
able position in the symbols/bits. In some embodiments, the
merging may merge Chase reliabilities created by the Chase
technique. The Chase technique is generally described in the
paper, “A class of algorithms for decoding block codes with
channel measurement information”, IEEE Trans. Inform.
Theory, vol. 18, pp. 170-182, January 1972, which is hereby
incorporated by reference in its entirety. The merged reliabili-
ties may be presented as a merged matrix in the signal PROB.
[0030] The circuit 108 may implement a list decoder cir-
cuit. The circuit 108 is generally operational to generate the
decoded codewords by decoding the symbols/bits using a list
decode technique in response to the modified probability. In
some embodiments, the list decode technique may be the Wu
list decode technique. The Wu list decoding technique is
generally described in a paper “New list decoding algorithms
for Reed-Solomon and BCH codes”, IEEE Trans. Inform.
Theory, vol. 54, no. 8, pp. 3611-3630, August 2008, which is
hereby incorporated by reference in its entirety.

[0031] Referring to FIG. 3, a detailed block diagram of an
example implementation of the circuit 108 is shown. The
circuit 108 generally comprises a block (or circuit) 110, a
block (or circuit) 112, a block (or circuit) 114, a block (or
circuit) 116, a block (or circuit) 118, a block (or circuit) 120,
a block (or circuit) 122, a block (or circuit) 124, a block (or
circuit) 126, a block (or circuit) 128 and a block (or circuit)
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130. The circuits 110 to 130 may represent modules and/or
blocks that may be implemented as hardware, software, a
combination of hardware and software, or other implementa-
tions.

[0032] The signal PROB may be received by the circuit
116. The signal WORD may be received by the circuit 110.
The signal OUT may be generated by the circuit 130.
[0033] The circuit 110 may implement a syndrome compu-
tation circuit. The circuit 110 is generally operational to cal-
culate syndromes for the received codewords in the signal
WORD. The syndromes may be presented to the circuit 112.
[0034] The circuit 112 may implement a base multiplicity
assignment circuit. The circuit 112 may be operational to
compute a multiplicity matrix based on the syndromes calcu-
lated by the circuit 110. The multiplicity matrix may be pre-
sented to the circuit 114.

[0035] The circuit 114 may implement a polynomial evalu-
ation circuit. The circuit 114 is generally operational to evalu-
ate a rational polynomial defined as an error locator polyno-
mial divided by a corresponding auxiliary polynomial over
the valid error locators. The obtained pairs of error locator and
evaluated value may be applied to interpolate a bivariate
polynomial Q(x,y). A bivariate polynomial is generally a
polynomial with two variables.

[0036] The circuit 116 may implement a base multiplicity
adjustment circuit. The circuit 116 is generally operational to
construct the base multiplicity vector based on the merged
Chase reliabilities received in the signal PROB. The multi-
plicity is generally proportional to the associated symbol
error probability. For a symbol involved in Chase flipping, a
symbol error probability may be obtained by removing the
two most reliable estimations. The base multiplicity vector
may be transferred to the circuit 118.

[0037] The circuit 118 may implement an interpolation
circuit. The circuit 118 may be operational to interpolate the
constant term Q(0,0) along the points/pairs computed in the
circuit 114, each with the multiplicity computed in the circuit
116. The results of the interpolation may be transtferred to the
circuit 120.

[0038] The circuit 120 may implement a checking circuit.
The circuit 120 may be operational to check ifa constant term
Q(0,0) is zero. If not, the corresponding bivariate polynomial
Q(x,y) generally does not yield a valid codeword and thus is
invalid. Therefore, Chase flipping may be performed in the
circuit 122 in an attempt to correct the errors. If the constant
term is zero, the bivariate polynomial Q(x,y) may be calcu-
lated in the circuit 126.

[0039] The circuit 122 may implement a Chase flipping
circuit. The circuit 122 may be operational to flip a symbol
based on the provided candidate flipping patterns. After the
symbol has been flipped, the syndromes may be updated in
the circuit 124.

[0040] The circuit 124 may implement a syndrome update
circuit. The circuit 124 is generally operational to recalculate
the syndromes based on the altered symbols received from the
circuit 122. The updated syndromes may be presented back to
the circuit 112 where the base multiplicity assignment is
performed again.

[0041] The circuit 126 may implement an interpolation
circuit. The circuit 126 is generally operational to fully com-
pute the bivariate polynomial Q(X,y). The computation may
utilize the information that the constant term is zero.

[0042] The circuit 128 may implement a factorize circuit.
The circuit 128 is generally operational to factorize the poly-
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nomial to retrieve the valid codeword in which the n-k least
reliable positions are to be determined. The factorized poly-
nomial may be presented to the circuit 130.

[0043] The circuit 130 may implement a Chien decoder
circuit. The circuit 130 is generally operational to apply the
Chien decoding technique to correct any errors that may
remain in the n-k positions of the word received from the
circuit 128. The corrected word may be presented in the signal
OUT.

[0044] Referring to FIG. 4, a diagram of an example merg-
ing of probability values is shown. The merging operation
may be performed by the circuit 106. Each position (e.g., y,)
of the codeword received through the channel may have cor-
responding hard-decision value (e.g., u,) and a secondary
channel decision value (e.g., U';), see reference arrow 140.
The decision values may correspond to an a posteriori prob-
ability value (e.g., 7, ;) Bach secondary decision value may
correspond to an a posteriori probability value (e.g., 7, 4.
The circuit 106 may merge the two probability values for the
hard-decision values and the secondary decision values (e.g.,
1-m 5= ) 0 the unreliable positions, see reference
arrow 142. Thus the hard-decision probabilities for position
Yi may become a difference between a unity value and a
summed probability (e.g., 1=(7;; )+ ,.))-

[0045] Referring to FIG. 5, a flow diagram of an example
method 150 of a base multiplicity adjustment is shown. The
method (or process) 150 may be implemented in the circuit
116. The method 150 generally comprises a block (or step)
152, a block (or step) 154, a block (or step) 156, a block (or
step) 158, a block (or step) 160 and a block (or step) 162. The
steps 152-162 may represent modules and/or blocks that may
be implemented as hardware, software, a combination of
hardware and software, or other implementations.

[0046] In the step 152, the circuit 116 may be initialized
with a smallest meaningful list error correction capability
(e.g., LECC). The variable t may represent a number of errors
out of n symbols in a message length of k. Conditional symbol
error probabilities may be computed in the step 154 condi-
tioned on the t errors out of the n symbols. In the step 156, an
adjusted multiplicity vector may be generated based on the
conditional symbol error probability vector generated in the
step 154, subject to the overall cost C. A check may be
performed in the step 158 to see if the considered number of
errors t is correctable in average, based on the multiplicity
vector generated in the step 156. If correctable, the number of
errors t may be incremented in the step 160. The method 150
may thus return to the steps 154 and 156 to attempt to correct
more errors. The cycle around the steps 154, 156, 158 and 160
may continue until the last value of't is the largest correctable
value. Thereafter, the multiplicity vector may be generated in
the step 162. The resulting multiplicity information may be
transferred from the circuit 116 to the circuit 118.

[0047] Referring to FIG. 6 a graph of ratios of list decoding
capabilities to minimum distances as a function of ratio of
minimum distances to the effective code length is shown. The
Wu list decode technique generally does not take into account
the known locations and thus effectively improves the list
error correction capability. For a Reed-Solomon code C(n.k,
d), the parameter n* may be the effective code length without
counting known locations. By interpolating only the remain-
ing uncertain locations in the rational interpolation, the result-
ing LECC may be improved to n*—vn*(n*-d), as shown by
curve 172. The resulting LECC is generally independent of
the actual code length n. In particular, when n* reduces
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Loward d, the LECC may approach d-1. For a binary BCH/
Goppa code C(n,k,d), the parameter n* may be the effective
code length without counting known locations. The resulting
LECC may be Y2(n*—v/n*(n*-2d)) and independent of the
original code length n, as shown by curve 174. When n*
shrinks toward 2d, the LECC generally approaches the limit
d-1. In particular, the lists may include all (e.g., up to 2d*+2)
codewords whose discrepancy bits may be limited to any
2d-1 erasure bits from a received word. The codewords may
be generated by applying the list decoding technique twice,
an application with the given 2d-1 bits and another applica-
tion with all flipped 2d-1 bits. In contrast, conventional era-
sure decoding corrects d-1 errors out of d erasure bits.

[0048] Multiple (e.g., two) scenarios generally exist where
a received word is partially corrected. A first scenario is an
iterative decoding of product codes, where each row (column)
component word is partially corrected by the preceding col-
umn (row) decoding, herein miscorrection is ignored. Pyn-
diah demonstrated that the iterative decoding of product
codes achieves a near Shannon limit. Several error-correcting
codes based on product constructions have been suggested for
applications in optical networks at very high data rates. The
optical networks (or communication channels) may be asym-
metric channels in which errors only change bits from a one
value to a zero value occur, since a photon may vanish but
may not be created. Furthermore, the errors that may occur in
many recently developed semiconductor and optical memory
systems are of the asymmetric type. In some other applica-
tions, the errors may be of unidirectional type, where all the
errors are of the same type, but the type is not known a priori.
For along binary code, each fraction of the 1 bits and the O bits
may almost be one-half following the law of large numbers.
The half fraction generally indicates that the effective code
length is reduced almost by half in an asymmetric/unidirec-
tional channel (e.g., circuit 94).

[0049] Koetter and Vardy showed a way to translate soft-
decision reliability information provided by a channel into a
multiplicity matrix that is directly involved in the
Guruswami-Sudan method. The resulting method substan-
tially outperforms the Guruswami-Sudan method. However,
implementation of the resulting multiplicity transformation
technique to the Wu list decode technique may not be handy.
An extra parameter, a degree of y in a bivariate polynomial
(e.g., Ly) generally has a value dependent on the unknown
actual number of errors. A straightforward solution is trial-
and-error on the actual number of errors. However, the trial-
and-error method is generally not desirable due to many calls,
up to t-t, times the number of calls in the list decoding tech-
nique. Therefore, the actual number of errors in the expres-
sion of Ly may be replaced by a largest number of errors that
may be decoded in a mean sense.

[0050] The Chase decoding (which actually refers to
Chase-II decoding) may provide suitable algebraic soft-deci-
sion decoding methods for high-rate short-to-medium-length
codes. A decoding complexity associated with flipping an
additional symbol may be O(n), in contrast to O(nd) by
directly exploiting hard-decision decoding. Without applying
the Chase flipping, secondary channel decisions exhibit small
probabilities, thus are generally assigned small multiplicities.
Chase exhaustive flipping essentially merges two most reli-
able channel decisions into a unified estimation with almost
twice a higher reliability, thus the multiplicities are literally
doubled for the two most reliable channel decisions which
involve the Chase flipping.
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[0051] For a possibly shortened Reed-Solomon C(nk)
code over a finite field Fq, a codeword polynomial C(x)
generally satisfies formula 1 as follows:

C(a')=0, fori=mq, mo+1, ..., mo+n—k-1 1)

where o denotes a primitive element of Fq and m, may be an
arbitrary integer. A minimum Hamming distance of the code
is d=n-k+1, an attribute generally known as maximally-dis-
tance-separable attribute.

[0052] Let C(x) denote the transmitted codeword polyno-
mial and R(x) the received word polynomial. A Berlekamp-
Massey technique generally provides a foundation for the list
decoding technique. The Berlekamp-Massey technique may
compute syndrome values (e.g., S,) per formula 2 as follows:

S=R)(a*"%), fori=0,1,2,..., n—k-1 )

If all n-k syndrome values are zero, R(x) may be a codeword
polynomial and thus is presumed that C(x)=R(x) (e.g., no
errors have occurred). Otherwise, let e denote the unknown
number of errors, X,efe'},_,~ fori=1,2, ..., e, denote the
error locations, and Y €F \{0} for i=1, 2, . . . , e, denote the
corresponding error magnitudes.

[0053] A syndrome polynomial may be defined by formula
3 as follows:

S)=Sg+Sx+Sx2+ . . .+, x L 3)

An error locator polynomial may be defined by formula 4 as
follows:

4 )
AQ) = ]_[ (1=Xx) = L+ Apx+ Agx® + ..+ A
i=1

An error evaluator polynomial is generally defined by for-
mula 5 as follows:

. . ®)
Q) = H vx ] a-x»

i J=Lj#i

=Qo+ O x+ szz +...+ nglxgil

The three polynomials generally satisfy a key equation 6 as
follows:

QU)=AM)SEW*F(modx) Q)

The Berlekamp-Massey technique may be used to solve the
above key equation, given that the number of errors e does not
exceed the error-correction capability | (n-k)/2|. The Berle-
kamp-Massey technique may be re-formulated as follows:
[0054] Input: S=[S,, S1,S,, .., S, 1]

Initialization: A“(x)=1, B(Olg(x):l and L,©=0,

[0057] Compute

(r)
Ly

Al = } /\Er) -8,
i=0

[0058]
[0059]

Compute A"V (x)=AV(x)-A"*D-xB"(X)
If A*Y20 and 2L, P<r, then

[0060] Set B (x)«— (A1 AP (x

[0061] SetL "ML, 41, L, el

[0062] Else

[0063] Set B™V(x)«—xB"(x)

[0064] Set Lz+V<—1,0941, 1,0,
[0065] Output: A(x), B(x), L., and L.
[0066] Let A*(x) be a true error locator polynomial as
defined in formula 4. Let A(x) and B(x) be the error locator
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and correction polynomials, respectively, obtained from the
Berlekamp-Massey technique. Hence, A*(X) generally
exhibits the form shown in formula 7 as follows:

AR ()= AG) N () +xB (x)-b*(x) %)

where the polynomials A*(x) and b*(x) may exhibit the fol-
lowing properties:

[0067] (i). A*,=1;

[0068] (ii). If b*(x)=0, then A*(x)=1;

[0069] (iii). A*(x) and b*(X) are coprime;

[0070] (iv). deg(A*(x))=deg(A*(x))-L , & deg(b*(x))<deg

(A*(x))-L3, or deg(A*(x))=deg(A*(x))-L 5 & deg(b*(x))
=deg(A*(x))-L.s;

[0071] (v). If deg(A*(x))<n-k, then A*(x) and b*(x) are
unique.

Dividing both sides of formula 7 by xB(x) generally results in

formula 8 as follows:

A0 2D e+ b, ®
xB(x) xB(x)

Define yi per formula 9 as follows:

_A@@™) (©)]

yi=————,fori=0,1,2,... ,n-1
a'Ba™)

where y, may be set to infinity when B(a™)=0. Let o™, o™"2,
..., a”™ be all the valid roots of the true error locator
polynomial A*(x). Therefore, yA*(x)-b*(x) generally
passes precisely through e points, (&™, y,1), (2, V,2), . . -,
(07, ¥io)-

[0072] Given a set of n distinct points {(a 7, y)},_,""', a
rational functions y(x) that passes through t points (where
t=t,=d/2) may be found, in the sense that y(a)=y, If
y~infinity, y(X) may contain a pole o.”’. The pole may exist
because when B(a.™)=0, A(o.™) may be zero because B(x) and
A(X) are coprime and thus may not share the root. Hence, a
rational curve-fitting problem may be used for the form of
y-AX)-b(x). The weight (e.g., w) of y may be assigned per
formula 10 as follows:

W=Lr-L.p 10)

[0073] Let Q(x,y) be a bivariate polynomial passing
through all n points {(1,y,), (@™1y,), (@ 2y,), . .., (0”@ Y,
¥,._1)}, Where y, is generally defined in formula 9, each with
multiplicity m. If formula 11 is satisfied as follows:

(=Lp)L,+deg,, (Q(x.y)<im an

where L, may denote the degree of y in Q(x,y) and deg, ,,(Q
(x,y)) (where w is defined in formula 10) may denote the
(1,w)-weighted degree of Q(x,y), thus Q(x,y) generally con-
tains all factors of the form yA.(x)-b(x) which pass through t
points (where t=L,).

[0074] A sufficient condition for Q(x,y) to pass through all
n points {(Lyo), (@™y)). @2y, .. .. (=" Vyy, )}, each
with multiplicity m, may be that the number of coefficients
(e.g., number of degrees of freedom) of Q(x,y) is greater than
the number of linear constraints. The number of degrees of
freedom, denoted by N, is generally defined by formula 12
as follows:
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Ly 12
Njwe = ) (degy,(Qux, y) + 1= im)
i=0
_ (Zdeglyw(Q(x, W +2-wL)(L,+1)
B 2

Passing through a point with multiplicity m may result in
m(m+1)/2 linearly independent constraints. Thus, an overall
number of linear constraints, denoted by N_,,, is generally
given by formula 13 as follows:

ostr?

nm(m + 1) (13)

cstr =
2

[0075] The number of degrees of freedom may be maxi-
mized subject to fixed number of errors e=t and the fixed
multiplicity m and the constraint of formula 11, per formula
14 as follows

(2deg, ,(Q(x, y)) +2 - wLy)(Ly + 1) (14
free = 5

L Qm—1 - @=Ly +2 - wly)Ly + 1)
= 2
= (m— Lt —10)(Ly+ 1)

=—(@—10)L2y+ Ly(zm —t+10) + 1

m-t+0\2 (m+i—1)?
= _([_[0)(Ly T -2z ) 4t —10)
where t,=d/2, “=" may be achieved in “<” if and only if
formula 15 is satisfied as follows:
deg,, (Q*(xy))=tm—1-(t=LA)L,, 15)

which may accommodate the zero constraint in formula 11.
The first equality in formula 14 may be due to formula 16 as
follows:

n—k+1 (16)

The maximum number of degrees of freedom may be
achieved by choosing [.*y to be the closest integer to

m-—i+1i
21— 21y

per formula 17 as follows:

L=|

. m—I+i J:[ m J (17

21— 21 * 2r—21o
Therefore, a good choice of m may be a minimum integer that
enforces Ny, 2N, per formula 18 as follows:

ostr

(m+1—-19)° nmm+1) (18)
At —1) > 2

l‘m—l‘+1‘0)2

_([_[0)([21Z10 J - 21— 21y
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[0076] The maximum number of degrees of freedom is
bounded by formula 19 as follows:

(m+1-1p)° . (19
Ar—1)

l‘m—l‘+l‘0)2

max(N e} = =10~ 10){| 5 o

m J
r—21o
r—1p (m+r—1)?
B R T R

Hence, to solve for the linear equation system, formula 20
may be enforced as follows:

(m+1-1p)° =ty mmm+1) (20)

At —19) 4 2

Formula 20 may be reduced to formula 21 as follows:
w2 (P=2n(t-to))-2m(t-to)(n—1)=0 1)
The above inequality generally holds true for sufficiently
large m if and only if formula 22 is satisfied as follows:
£2-2n(t-15)>0 (22)

which may yield the general Johnson bound per formula 23 as
follows:

t<n—n(n-d) (23)

The lower bound given by formula 19 may be tight in terms of
the LECC t, while affecting the value of multiplicity m to
achieve a particular LECC t. For any t satisfying formula 19,
the multiplicity m* may be chose per formula 24 as follows:

. 2r—r10)n—1) 1219 — 1)

" =Lz—2n(z—zo) * J:Lz_zn(z_zo)J -

[0077] Referring to FIG. 7, a graph of a multiplicity ratio
170 of the Guruswami-Sudan technique over the Wu list
decode technique is shown. The graph generally indicates
that the Wu list decode technique may be more efficient when
acode rate is above roughly 0.25. The multiplicity ratio of the
Guruswami-Sudan technique over the Wu list decode tech-
nique for decoding Reed-Solomon may code up to the
Johnson bound.

[0078] An underlying generator polynomial of a BCH code
generally contains consecutive roots o, ¢, . . . , a*. For an
underlying binary BCH code, the designed minimum dis-
tance d may always be odd, which is actually a typically tight
lower bound of the true minimum distance.

[0079] The Berlekamp technique may be a simplified ver-
sion of the Berlekamp-Massey technique for decoding binary
BCH codes by incorporating a special syndrome property per
formula 25 as follows:

Soi01=S2, fori=0,1,2, ... (25)

which generally yields zero discrepancies at even iterations of
the Berlekamp-Massey technique. The Berlekamp technique
may be reformulated as follows:

[0080] Input: S=[S,,S,,S,, ..., S ]

[00(811)] Initialization: A®(x)=1, BY(x)=x",
Lz "=

LA(O):O,
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Forr=0, 2, ..., d-3, do:
Compute

[0082]
[0083]

(r)
Ly

A2 = } /\Er) Sy
i=0

[0084]
[0085]

Compute A" (x)=A"(x)-A"*2x*B"V(x)
If A”220 and 2L, “=r, then

[0086] Set B*V(x)«—(A“2) L AN(x)

[0087] SetL,"*P«L, D42 [P @

[0088] Else

[0089] Set B™(x)«—x*B"(x)

[0090] Set L, "*Ve1,0"Y42, L, Pl @
[0091] Output: A(x), B(x), L, L.
[0092] Let A*(x) be the true error locator polynomial as
defined in formula 4. Let A(x) and B(x) be the error locator
and correction polynomials, respectively, obtained from the
re-formulated Berlekamp technique. Therefore, A*(x) may
exhibit the form per equation 26 as follows:

A*(x)=A(x) W (32 )2 B(x)-b*(x2) (26)

where the polynomials A*(x) and b*(x) may exhibit the fol-
lowing properties:

[0093] (i). A*,=1;

[0094] (ii). If b*(x)=0, then A*(x)=1;

[0095] (iii). A*(x) and b*(x) are coprime;

[0096] (iv). 2deg(r*(x))=deg(A*(x))-L, and 2deg(b*(x))

=deg(A*(x))-L, 2, or 2deg(h*(x))=deg(A*(x))-L, and
2deg(b*(x))=deg(A*(x))-L,"5:

[0097] (v).Ifdeg(A*(x))<d-1,thenA*(x)and b*(x) may be
unique.
[0098] The form of formula 26 may be incorporated into

the rational interpolation process to optimize the LECC.
Define y, per formula 27 as follows:

MO oo 1 N
=TT ori=0,1,2,... ,n—

yi=
To determine the form of yA(x*)-b(x?), the weight (e.g., w) of
y may be assigned per formula 28 as follows:

w=Lx~Lp (28)

which may always be odd since L ,+L 2,=d is odd.

[0099] Let A(x)and B(x) be the error locator and correction
polynomials, respectively, obtained from the re-formulated
Berlekamp technique. Let Q(x,y) be a bivariate polynomial
passing through all n points {(1,y,), (@™, y,), (@™ y,), . ..
, (@72 y )} where yi may be defined in formula 27,
each with multiplicity m. If formula 29 is satisfied as follows:

(=LA, tdeg,, (Q(Xy))<2 29)
where L, denotes the power ofy in Q(x,y) and deg, , (Q(x,y))
denotes the (2,w)-weighted degree of Q(x,y) and w is defined
in formula 28), then Q(x?y) may contain all factors of the
form yA(x*)-b(x) which pass through t points (where t=L,).
[0100] The number of degrees of freedom is generally
given by formula 30 as follows:

L 30)

Y
d .
M= (1

i=0
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-continued

Ly
(degy, (Q(x, y) —iw—1
D e |

i=0

_ (deg, ,(Q0x, y) + 1 —wL, ()L, +1)
= 5 .

Define t, per formula 31 as follows:

La+Lzy d &3
=L, -w/2=—X£ _—
fp=Ly-w/ 5 3

The above definition is generally consistent with the case of
Reed-Solomon codes.

(degy (@, y) + 1 = Lyw[2)(L, + 1)

The lower bound of N g, 3

may be maximized subject to the fixed number of errors t,
fixed multiplicity m and the zero constraint of formula 29.

Thus, N, may be defined by formula 32 as follows:
_ (degy, (@, ) +1 = Lyw/2)(Ly +1) . (32
free = 3 =
12 b= =1 , 2m-—i+ip _
5( im— Ly(t —10))(Ly +1) = _TLy + —s y +im=
—ﬂ(L ~ 21‘m—l‘+l‘0]2 Qm+1—19)?
2\ 2r—15) 8(r—15)
where “="in the “<” may be achieved if and only if formula
33 is satisfied as follows:
deg, ,(Q*xy)=2tm-1-L,(t-L,) (33)

The maximum number of degrees of freedom may be
achieved by choosing L* | to be the closest integer to

2im—r1+1
2t-21y

leading to formula 33 as follows:

+0.5J = [ﬂj G4

. | 2m—-1+1y
L =
-1

YL 2r-21
Therefore, the maximum number of degrees of freedom may
have the a lower bound per formula 35 as follows:

1—1y  Qm+1-1)" Im’+m(i—1) (35)
2 —1p)

8 * 8(r—1)
Hence, to solve for the linear equation system, enforcing
formula 36 may be sufficient as follows:

2m? +m(t—1,) nmm+1) (36)
2 —1p) 2

which may be similar to formula 37 as follows:

M2 (LP-n(t=ty))-m{t~to)(n-1)>0 (37
The above condition generally holds true for sufficiently large
m if and only if formula 38 is satisfied as follows:

Pon(t-1,)>0 (%)
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which approaches the binary Johnson bound given in formula
39 as follows:

n—nn—45) B n—nn-2d) (39

< ) )

When formula 29 is satisfied, the multiplicity m may be
chosen per formula 40 as follows:

. [([ —i)(n—1 J _ [ it J 40)

m = =
2 —n(t—10) 2 —n(t—10)

The above results may also apply to binary Goppa codes.
Therefore, binary BCH codes may not be differentiated from
Goppa codes hereafter.

[0101] Inmany applications, correction of a fraction of the
received word may be achieved through other means. For
example, partial correction may be accomplished by product
Reed-Solomon codes, wherein some symbols of a column
(row) Reed-Solomon code may already be corrected during
the preceding decoding of row (column) Reed-Solomon
codes.

[0102] Let the transmitted codewords be defined by a (nk,
d) Reed-Solomon code. Let errors be limited to a subset [e{0,
1,2,...,n-1},and n*=I1l. By passing through n* points {(c’,
V) hiers €ach with multiplicity

B wd-1)
m= LZ —Zn*t—n*dJ’

the rational curve fitting technique generally lists all candi-
date Reed-Solomon codewords with up to t<n*—yn*(n*-d)
errors.

[0103] The closer the effective code length n* is to d, the
closer the list decoding capability t is to d, as shown by curve
172 in FIG. 6. In the case n*=n-k+1=d, the erasure-only list
decoding may degenerate to the conventional erasure-only
decoding which corrects up to d-1 errors. For binary BCH/
Goppa codes, when a fraction of the bits are pre-corrected, an
improved list decoding capability may result, as shown by
curve 174 in FIG. 6.

[0104] Let transmitted codewords be defined by a (nk,d)
binary BCH/Goppa code. Let errors be limited to a subset
1e{0,1,2,...,n~1}, and n*=|1|. By passing through n* points
{(&,y)},er» each with multiplicity

the rational curve fitting technique generally lists all candi-
date codewords with up to t<l4(n*-yn*-2d)) errors. In the
case n*=2d, the erasure-only list decoding may correct up to
d-1 errors out of 2d erasure locations.

[0105] Let a transmitted codeword be defined by a (n,k,d)
binary BCH/Goppa code. Let errors be limited to a subset
1e{0, 1,2, ... n-1}, and I1I=2d-1. Thus, any errors among
2d-1 erasure locations may be list corrected by (i) applying
the rational curve fitting technique to pass through 2d points
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{(c,y)},err each with multiplicity m=d(d-1)2, and (ii) flip-
ping all 2d-1 erasure locations and applying the rational
curve fitting technique to pass through 2d-1 points {(cy,)
}er» €ach with multiplicity m=(d(d-1))/2.

[0106] The list size of erasing 2d-1 bits may be upper
bounded by twice (due to applying twice the rational curve
fitting technique) the degree of'y in the bi-variate polynomial
Q(x,y), which is computed in the rational interpolation per
formula 41 as follows:

dd-1) 41)
L—z”“o'zs . [(d—l) 5 +o.25]
- (z—d/z]‘ d-1-dj2
5

_ 2
=2d +2+2[—2d_4J

242 +2; if d>3
Tl 24 ifd=3

[0107] Koetter and Vardy proposed a near-optimal proce-
dure to transform the probabilistic reliability information into
a set of interpolation multiplicities for the Guruswami-Sudan
technique. Some embodiments of the present invention may
convert the symbol error probabilities into the corresponding
multiplicities for the proposed list decoding technique. How-
ever, implementing the Koetter-Vardy conversion strategy
may not be handy because of an extra parameter, L, whose
value may be dependent on the unknown actual number of
errors. A straightforward solution may be trial-and-error on
the actual number of errors (e.g., e). The trial-and-error
method is generally not desirable due to calls of up to [e-t, |
times the number of calls in the list decoding technique. To
effectively circumvent the obstacle, the actual number of
errors in the expression L, may be replaced by the largest
number of errors that may be decoded in the mean sense.

[0108] A memoryless channel may be defined as a collec-
tion of a finite field alphabet Fq, an output alphabet Y, and q
functions per formula 42 as follows:

Aylx):D maps to R, for all xeFg (42)
Upon receiving a channel word y=[y,, v,, . . .

decision vector u=[u,, u,, . .
formula 43 as follows:

s y}’l]S a hard-
., u,] may be determined per

i 43
s = axgmaxPr(X — y| ¥ —y) = argmax—2 2V “3)
vefa veFq % Filx)
xeFg

where the second equality generally follows from an assump-
tion that X is uniform. An error probability of a symbol may
be determined by formula 44 as follows:

D foilw @4

xEitj

2 filxw

xeFg

m=Prix#u|Y=y)=

Consider a conditional distribution generally having t errors
out of n symbols, which is generally denoted by E=t/n. For
notation conciseness, u, may denote the hard-decision sym-
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bol of received channel output y. Therefore, the memoryless
channel may be defined per formula 45 as follows:

fOlx, E=t/n)= fylx,uy=x, E=t/m)Prix=u,|x, E=t/n) + 45)

flx,uy#x, E=t/n)Prix #u,|x, E=1[n) =
((n=0/m)f(ylx uy =)V (u, =x|x) +
@/mf(ylx, uy #0U @, #x|x) =

n-t  fylx) r fylx)
TPr(x=uy|x)U(uy =xl0+ ZPr(x#uylx)U(uy #x]%)
where U(-) may be a step function. Following formulae 44
and 45, a symbol error probability, given t errors out of n
symbols, is generally determined by formula 46 as follows:

2 =Prix#u,|Y =y, E=1/n) (46)
13
Z f(ylxa E= ;)
X#My

i Zf(ylx,Ezi)

xeFg
Zf(ylx,x#uy,Ezi)

n

X#My
B Zf(ylx xFu E:£)+f(y|x U, = X. E:i)
xFuy ’ v n T n
t/n
m;ﬂyu)
_ ity
L P e i L PP

Prix £ u, |x)X¢,,y Prix =uy, | x)

Given a multiplicity vector m=[m,, m,, . . . , m,], a cost
function (e.g., (C(m)) may be defined by formula 47 as fol-
lows:

L 7
Cim) = %Zm;(m; +1).
i=1

Given t errors out of n symbols, a binomial distribution of
each multiplicity m, may be defined by formula 48 as follows:

P(M; = m;) =" “8)
{P(M; =0)=1-xf"
for
i=1,2,3,... .n

An expected score with respect to the random vector M, =
[M;,M,, ..., M, ] may be defined per formula 49 as follows:

» » 49
E(Mp}=EY My = » mix = (m, )
i=1 i=1

where <, -> generally denotes an inner product. The variance
of the score may be given by formula 50 as follows:

n n (50)
Mt = Y P M= Y mda — (af))
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When n?,, fori=1, 2, . . ., n, may be identical (e.g., n°,=t/n),
the multiplicities m,, for i=1, 2, . . ., n, may also be identical.
Therefore, formula 51 may be satisfied as follows:

{M} B mr‘(') B nt o1
SMa) A\ 1-2" Nn-1

Therefore, the inequality of formula 52 generally holds as
follows:

6D

E{M,,}>>d{M,} (52)

Maximizing the expected score may produce formula 53 as
follows:
m(7\", C) = argmaxE{M,,} (53)
meM(C)

where

< (54)
M(C) = {m ez %;m;(m; +D= c}

A multiplicity vector M(C) may be interatively constructed as
follows:

[0109] Inputs: &, C
[0110] Initialization: m,=0, fori=1,2,...,n
[0111] While Czmin{m,, m,, ..., m_ }, do:
[0112] find the position i such that the entry &, may be the

largest subject to m,;=C

[0113] set m,«<—m,+1
[0114] set
m;
e mi + 1ﬂi
[0115] set C<—C-m,
[0116] Output: m=[m,, m,,...,m,]
[0117] Let t be the assumed number of errors. Following

formula 14, an expected number of degrees of freedom may
be maximized when the expected score is maximized per
formula 55 as follows:

2d, 8 2-wLy)(Ly+1 55
E{me}:( egyw(Qx y));— wiy)(Ly + )S 45

—(t = 10)L2 + Ly(LE{M,,}| — 1+ 1o) + LE{M,,}}] =

—(t = )L2 + Ly({m(=?, C), 7] — 1+ 10) + [m(z?”, O)n7 |

where “=" in the first “=" may be achieved by choosing the
weighted degree of Q(x,y) per formula 56 as follows:

deg , (QE=LE{M,,} |-1-(-LA)L, (6)

and “=" in the second “=" may be achieved by maximizing
B{M,,} per formula 57 as follows:

E{Mm}=<m@m®,C)n®> (57)
Overall, E{N,__} is generally maximized by choosing the
weighted degree per formula 58 as follows:

degy W (O* )= <m(@®, O D> |-1-(t=LA)L,, 3)

Further choosing the degree of y, Ly is generally given by
formula 59 as follows:

. Km@", ©), 2] (59
L 21 — 21,
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The expected number of degrees of freedom is generally
bounded by formula 60 as follows:

{um(n"’, 0), 7'M) J ; (60)

2t - 21y
E{Nfreet = —(1 = 19)
(=, ©), 7] = (t = 10)

2t - 21y

Lm0 2D 4 1-10)*
4t —10) -

1—1  (Lon(x®, ), )] +1- 1)
=zt A1 —19)

If the expected number of degrees of freedom is greater than
the cost, for example, per formula 61 as follows:

L™, €), 2] +1-10) 11 61
-—>C
4(r—1p) 4

The errors may likely be correctable through the rational
interpolation following the characterization in formula 52.
Amore stringent condition may be enforced to boost the cor-
rection probability, such that formula 62 is satisfied as fol-
lows:

(Lm(x9, €)= 69, C), 7N +1-1) -1 c (62)
A1 —19) BT

where 0=0 may be a tuning parameter.

[0118] Inpractice,the number oferrors t may be substituted
with a maximum LECC, denoted by t*, which fulfills formula
61. The parameters [.*y and deg1,w(Q*(x,y)) associated with
t* may be used to correct less than t* errors in high probabil-
ity. By choosing L* and deg, ,(Q*(x,y)) as in formulae 59
and 58, respectively, corresponding to t*, the constraint

N;..>N,, is generally enforced. Therefore, formula 63 as
follows:
(t=Lp)L¥+deg, (O (x,y))<< m(@,C) 7 > (63)

generally holds for a high probability for any t<t*. For ana-
Iytical simplicity, all integer precisions may be ignored. Thus,
formula 64 may be satisfied as follows:

(1= L)L + degy w(Q7(x, ) = 64
(1= L)L, +m(x", ), 7"y = 1 = (¢" = Ly)Ly =
(=)L + (", ), 7y~ 1=

(m(zx"), €), #')
- )

) o), 7y — 1
S " 0.

(r

Combining formulae 63 and 64 generally results in formula
65 as follows:

. . (m(n(’*), 0), n(’*)) (65)
(") () _ ) )
{m(x"’, C), (7 Ay = -1 YT,
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which yields formula 66 as follows:

(mA), 0, 7 -2 (66)
(m(a™), C), 7Y T 2 =21

Assume that formula 67 and 68 are satisfied as follows:

. . (67)
Ein" Y = E AT =

i=1

u (63)
Ein\) = E{Z n‘(')} =r

i=1

Further assume that formula 69 is satisfied as follows:

(m(x®, ©), 7Py : 69)
n(x, €), 700 "

and thus

1 +1-2p

> .
r 2 — 21o

Therefore, formula 66 may be fulfilled with a high probabil-
ity. The detailed procedure to determine the desired multi-
plicity vector is presented as follows.

[0119] Inputs: =, C, d

[0120] For

do:
[0121] Compute 7
[0122] Call Iterative Construction of Multiplicity Vector
to generate m(®, C).
[0123] Ifthe validity check of formula 62 is not satisfied,
then break.
[0124] Set t*<—t-1 and call Iterative Construction of Mul-
tiplicity Vector to generate m(n“”, C).
Furthermore, given L*; as defined in formula 59 upon a
received word y, the list decoding is generally successtul if
formula 70 is satisfied as follows:

2deg, ,(Q(x, +2—wl )L, + 1 (70)
C< N = (2deg, ,,(Q( y))2 L+ 1)
=L (e-1)+L Z mi—e+1|+ Z m;
ci*Yi ci#yi

where e may denote the number of errors, and the degree may
be given per formula 71 as follows:

71
deg, (@, YD = Y mi—1—-(e— L)L )

CiFyi
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[0125] The Chase decoding technique, referred to as a vari-
ant of Chase I technique, generally flips all combinations of
a set of t symbol error patterns, each time applying bounded-
distance decoding, and finally choosing the most likely code-
word, if any, among the decoded candidate codewords. The
Chase flipping and the Wu list decoding technique may be
combined. Lety=[y,, ¥, . . ., ¥,,] be areceived channel word.
Letu=u,,u,, .. .,u,] be the hard-decision vector as defined
in formula 43. Let u',, be the T (III=t) most reliable secondary
channel decisions. Define t' per formula 72 new error prob-
abilities as follows:

72
AL 72

XU xEu]

% fOil®
xefy

Ti=Prix#u, x+u|Y=y)= ,foriel

[0126] Letm=[m,, m,,...,m,]beamultiplicity vector for
all 2% combinatorial list decoding attempts. Hence, a prob-
ability of failure may be similar to a single list decoding with
the multiplicity vector m over the new vector of symbol error
probabilities {70',}, {7} o

[0127] Given a symbol error probability vector p, the mul-
tiplicity vector m, as well as the associated y-degree L, by
formula 55, the number of degrees of freedom may be
expressed by formula 73 as follows:

+Z M;

i=1

n n 73)
—(t— to)Li + Ly[Z M -1+ l‘o]
=)

where t may denote an assumed number of errors and M, may
be defined in formula 48. The failure probability of the list
decoding technique, P,, is generally governed by a single
threshold per formula 74 as follows:

n (74)
%Z mim; + 1)+ (1 - )L + L)

.
Po=P Y Mi<——
i=1

L,+1

Define T secondary error probabilities per formula 75 as fol-
lows:

75
NI =

# i

Ai=Prix#u |Y=y) = ,foriel

% fOil®
xefy

and the corresponding binomial distributions per formula 76
as follows:

P(M; = m;) = frgr) 76)
. foriel



US 2014/0015697 Al

Furthermore, define the binomial distributions associated
with the combined error probabilities per formula 77 as fol-
lows:

Jforiel

P(M; =m;) =7 an
PM;=0)=1-7"

The independence of M', and M,, iel, in conjunction with
formula 72 generally indicates that formula 78 is satisfied as
follows:

PM)=P(M"\UM,) el (78)

The decomposition formula 79 may conclude as follows:

r[ 7r‘+Z ﬂ‘]—
iel

il

Zﬁ;Uﬂ;+Z ﬂ;] (79)

iel il

PY A Y e Y
IIC, = ety il

[0128] With T merged symbol decisions, the elements of &t
may no longer be similar and independently distributed.
Therefore, an approximation may be made to ignore the dif-
ferences. Furthermore, half of the T second reliable symbols
may be correct given that there are at least (d—1)/2 errors due
to hard-decision decoding failure. Thus, the error probabili-
ties may be closely approximated by conditioning on an error
rate of (t+t/2)n per formulae 80 and 81 as follows:

A0 = (80)

t+7/2)/n
Prix # u; |x)Z JOilx)

- 2
Wre/DIr o e

Prx # u; | X) sy

(n—t—7/2)/n
Prix=u; | x)

+7/2
Pr(x#u;IY=y;,E= ]

FOilu=x)

foriel

r+7/2 81
7r§”:Pr{x¢u;,x¢uf|Y=yi,E: / ]: @D

n

(t+7/2)/n
P raaraTn 2 S0l

xtup xEU

(t+7/2)/n

Prix £un, x4l [x) Y foilo+

Xt xFU!

(n—t—1/2)/n

S S A s = ;_
Pr(x = ujorx = u} | x) 2 JOilu=xorul=x)

xEil; ,x#u‘f

for iel.

[0129] The subsequent adjustment (or optimization) of the
multiplicity vector m generally follows. Without applying
Chase flipping, the symbols generally suffer large error prob-
abilities, thus may be assign large multiplicities. Using Chase
exhaustive flipping essentially merges multiple (e.g., two)
most reliable channel estimations into a unified estimation
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with almost a twice higher reliability. Thus, low multiplicities
may be instead assigned to the flipping symbols which exhibit
near-zero error probabilities.

[0130] Referring to FIG. 8, a graph of performance com-
parisons for decoding an (458, 410) Reed-Solomon code over
F,'° under a BPSK modulation is shown. The simulation
results may be based on the decoding performance of
RS/BCH codes over an additive white Gaussian noise (e.g.,
AWGN) channel with either BPSK or QAM as the signal
modulation. In the simulations, d may be set to 0.25, which is
used to determine the maximum LECC, as given in formula
62. On all performance curves, 100 errors were generally
collected for each data point.

[0131] Consider the decoding for the (458, 410) Reed-
Solomon code over F,'° under a BPSK modulation. A hard-
decision decoding may corrects up to 24 errors, see curve 180.
A conventional Chase-10 decoding, see curve 184, which
systematically flips the 10 most reliable second symbol deci-
sions, may provide a 0.3 dB gain over the hard-decision
decoding. A conventional Chase-14 decoding, see curve 186,
which uses up to 2'*=16384 hard-decision decodings, may
provide an additional 0.1 dB gain. The additional gain of the
Chase decoding may be diminishing by flipping more and
more of the most reliable second symbol decisions. The Koet-
ter-Vary technique with maximum multiplicity 4 is also simu-
lated, see curve 182, which may exhibit a similar performance
as the Chase-10 decoding. Three performance curves of some
embodiments of the present invention in combination with
the Chase-10 decoding may also be illustrated, see curves 188
to 194. The used cost is generally smaller than code length,
which may indicate that most of the locations incur zero
multiplicity. Finally, the Wulist decode technique using a cost
100 in combination with the Chase-14 decoding may achieve
near that of the infinity-cost Koetter-Vardy technique, see
curve 196, and so may be effective.

[0132] Referring to FIG. 9, a graph of performance com-
parisons for decoding a (255, 191) Reed-Solomon code over
F,® under a QAM modulation is shown. The Berlekamp-
Massey technique generally corrects up to 32 errors, see curve
200. A Chase-11 decoding with a complexity increased by a
factor of 2''=2048, see curve 202, generally yields a 0.5 dB
improvement over the hard-decision decoding. The Chase-16
decoding, see curve 204, which further increases complexity
by a factor of 2°=32, may achieve an additional 0.15 dB gain.
Some embodiments of the present invention with a cost of300
by combined with the Chase-16 decoding, see curve 218,
generally achieves a 0.4 dB gain on top of the Chase-16
decoding, and is about 0.1 dB away from the Koetter-Vardy
technique with infinite multiplicity, see curve 220. To dem-
onstrate performance-complexity tradeoft, performance
curves are generally illustrated which combine the Wu list
decode technique under the same cost C=300 but different
number of Chase flipping symbols, =5, 8, 11, and 16, respec-
tively, and the curves that combine the same Chase-11 decod-
ing and the Wu list decode technique under the different cost,
C=150, 300, 600, respectively, see curves 206 to 218. Some
embodiments of the Wu list decode technique with a low cost
of 150 in combination with Chase-11, see curve 212, gener-
ally achieves a 0.7 dB gain over the hard-decision decoding at
an implementable complexity.

[0133] Referring to FIG. 10, a graph of performance com-
parisons for decoding a (4408, 4096) BCH code under a
BPSK modulation is shown. The BCH code may be used in
Flash memories in which errors tend to be random. The Ber-
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lekamp technique may correct up to 24 erroneous bits, see
curve 230. The Koetter-Vardy technique with infinite multi-
plicity, see curve 232, generally performs similar to the
Chase-12 technique, see curve 234, and achieves about a 0.4
dB gain over the hard-decision decoding at a word-failure-
rate of 107>, The Chase-18 technique, see curve 236, may
obtain about a 0.12 dB gain over the Chase-12 technique at
the price of increasing complexity by a factor of 2°=64. The
gain further generally diminishes by exhaustively flipping
more bits. The Wu list decode technique with a mere cost of
C=300 together with Chase-8, see curve 238, may achieve a
0.55 dB at a word-failure-rate of 107>, The cost may be even
smaller than the code redundant length, 312. Furthermore, the
Wu list decode technique with a cost of 400 combining with
Chase-12 decoding, see curve 240, generally exhibits a gain
of more than 0.6 dB over hard-decision decoding at a word-
failure-rate of 107°.

[0134] When some positions are pre-corrected, the Wu list
decode technique may adapt to increase the list error correc-
tion capability for Reed-Solomon and binary BCH/Goppa
codes. For Reed-Solomon codes, when the number of uncer-
tain positions reduces down to the minimum distance d, the
corresponding LECC generally enlarges accordingly up to
d-1. For binary BCH codes, when the number of uncertain
positions reduces down to 2d, the corresponding LECC may
enlarge accordingly up to d-1. All codewords with errors
confined to 2d-1 erasure bits may be listed for a binary
BCH/Goppa code, where d may denote a minimum distance.
[0135] The Wu list decoding technique may also be
extended to algebraic soft decoding by converting symbol
error probabilities into varying multiplicities. During the con-
version process, the demand for the number of symbol errors
may be replaced by the largest LECC which is correctable in
the mean sense.

[0136] A combination of the Chase decoding and the alge-
braic soft decoding may assign unreliable positions to be
flipped with low multiplicities whereas unreliable positions
not to be flipped are generally assigned with high multiplici-
ties. Simulation results generally indicate that the Wu list
decoding technique with a small cost in combination with
Chase decoding may achieve gains over the hard-decision
decoding at a practically implementable complexity. For
example, given a (255, 191) Reed-Solomon code under a
QAM modulation, the Wu list decode technique with a low
cost of 300 in combination with Chase-16 generally yields a
0.9 dB gain over the hard-decision decoding, which is about
0.1 dB away from the Koetter-Vardy technique with infinite
multiplicity. Given a (4408, 4096) BCH code under a BPSK
modulation, the Wu list decode technique with a low cost of
300 (which is less than the redundant length) in combination
with Chase-8 may achieve a 0.55 dB over hard-decision
decoding.

[0137] The functions performed by the diagrams of FIGS.
1-5 may be implemented using one or more of a conventional
general purpose processor, digital computer, microprocessor,
microcontroller, RISC (reduced instruction set computer)
processor, CISC (complex instruction set computer) proces-
sor, SIMD (single instruction multiple data) processor, signal
processor, central processing unit (CPU), arithmetic logic
unit (ALU), video digital signal processor (VDSP) and/or
similar computational machines, programmed according to
the teachings of the present specification, as will be apparent
to those skilled in the relevant art(s). Appropriate software,
firmware, coding, routines, instructions, opcodes, microcode,
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and/or program modules may readily be prepared by skilled
programmers based on the teachings of the present disclo-
sure, as will also be apparent to those skilled in the relevant
art(s). The software is generally executed from a medium or
several media by one or more of the processors of the machine
implementation.

[0138] The present invention may also be implemented by
the preparation of ASICs (application specific integrated cir-
cuits), Platform ASICs, FPGAs (field programmable gate
arrays), PLDs (programmable logic devices), CPLDs (com-
plex programmable logic devices), sea-of-gates, RFICs (ra-
dio frequency integrated circuits), ASSPs (application spe-
cific standard products), one or more monolithic integrated
circuits, one or more chips or die arranged as flip-chip mod-
ules and/or multi-chip modules or by interconnecting an
appropriate network of conventional component circuits, as is
described herein, modifications of which will be readily
apparent to those skilled in the art(s).

[0139] The present invention thus may also include a com-
puter product which may be a storage medium or media
and/or a transmission medium or media including instruc-
tions which may be used to program a machine to perform one
or more processes or methods in accordance with the present
invention. Execution of instructions contained in the com-
puter product by the machine, along with operations of sur-
rounding circuitry, may transform input data into one or more
files on the storage medium and/or one or more output signals
representative of a physical object or substance, such as an
audio and/or visual depiction. The storage medium may
include, but is not limited to, any type of disk including floppy
disk, hard drive, magnetic disk, optical disk, CD-ROM, DVD
and magneto-optical disks and circuits such as ROMs (read-
only memories), RAMs (random access memories),
EPROMs (erasable programmable ROMs), EEPROMs (elec-
trically erasable programmable ROMs), UVPROM (ultra-
violet erasable programmable ROMs), Flash memory, mag-
netic cards, optical cards, and/or any type of media suitable
for storing electronic instructions.

[0140] Theelements ofthe invention may form part or all of
one or more devices, units, components, systems, machines
and/or apparatuses. The devices may include, but are not
limited to, servers, workstations, storage array controllers,
storage systems, personal computers, laptop computers, note-
book computers, palm computers, personal digital assistants,
portable electronic devices, battery powered devices, set-top
boxes, encoders, decoders, transcoders, compressors, decom-
pressors, pre-processors, post-processors, transmitters,
receivers, transceivers, cipher circuits, cellular telephones,
digital cameras, positioning and/or navigation systems, medi-
cal equipment, heads-up displays, wireless devices, audio
recording, audio storage and/or audio playback devices,
video recording, video storage and/or video playback
devices, game platforms, peripherals and/or multi-chip mod-
ules. Those skilled in the relevant art(s) would understand that
the elements of the invention may be implemented in other
types of devices to meet the criteria of a particular application.

[0141] The terms “may” and “generally” when used herein
in conjunction with “is(are)” and verbs are meant to commu-
nicate the intention that the description is exemplary and
believed to be broad enough to encompass both the specific
examples presented in the disclosure as well as alternative
examples that could be derived based on the disclosure. The
terms “may” and “generally” as used herein should not be
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construed to necessarily imply the desirability or possibility
of omitting a corresponding element.

[0142] While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made without
departing from the scope of the invention.

1. An apparatus comprising:

a first circuit configured to generate (i) a plurality of sym-
bols and (ii) a plurality of decision values both in
response to detecting an encoded codeword; and

a second circuit configured to (i) generate a plurality of
probabilities to flip one or more of said symbols based on
said decision values and (ii) generate a decoded code-
word by decoding said symbols using a list decode tech-
nique in response to said probabilities.

2. The apparatus according to claim 1, wherein (i) said
probabilities are generated using a Chase technique and (ii)
said list decoding technique comprises a Wu list decode tech-
nique.

3. The apparatus according to claim 1, wherein said
encoded codeword comprises one of (i) a Reed-Solomon
encoded codeword and (ii) a BCH encoded codeword.

4. The apparatus according to claim 1, wherein said detect-
ing comprises a soft detecting.

5. The apparatus according to claim 1, wherein (i) said
decisions comprise a plurality of hard decisions and a plural-
ity of soft decisions and (ii) said probabilities are modified
before said decoding by merging two or more of said prob-
abilities of an unreliable position in said symbols.

6. The apparatus according to claim 5, wherein (i) a first of
said probabilities corresponds to one of said hard decisions,
(i) a second of said probabilities corresponds to one of said
soft decisions and (iii) said merging comprises subtracting
said first probability and said second probability from a pre-
determined value.

7. The apparatus according to claim 1, wherein (i) said
second circuit is further configured to adjust a plurality of
multiplicities in response to said probabilities and (i1) said list
decode technique generates said decoded codeword based on
said multiplicities.

8. The apparatus according to claim 7, wherein (i) said
second circuit is further configured to interpolate a bivariate
polynomial in response to said multiplicities and (ii) said list
decode technique generates said decoded codeword based on
said bivariate polynomial.

9. The apparatus according to claim 8, wherein said second
circuit is further configured to flip one or more of said sym-
bols in response to a constant term of said bivariate polyno-
mial being non-zero.

10. The apparatus according to claim 1, wherein said appa-
ratus is implemented as one or more integrated circuits.

11. A method of cyclic code decoding, comprising the steps
of:
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(A) generating (i) a plurality of symbols and (ii) a plurality
of decision values both in response to detecting an
encoded codeword using a circuit;

(B) generating a plurality of probabilities to flip one or
more of said symbols based on said decision values; and

(C) generating a decoded codeword by decoding said sym-
bols using a list decode technique in response to said
probabilities.

12. The method according to claim 11, wherein (i) said
probabilities are generated using a Chase technique and (ii)
said list decoding technique comprises a Wu list decode tech-
nique.

13. The method according to claim 11, wherein said
encoded codeword comprises one of (i) a Reed-Solomon
encoded codeword and (ii) a BCH encoded codeword.

14. The method according to claim 11, wherein said detect-
ing comprises a soft detecting.

15. The method according to claim 11, wherein (i) said
decisions comprise a plurality of hard decisions and a plural-
ity of soft decisions and (ii) said probabilities are modified
before said decoding by merging two or more of said prob-
abilities of an unreliable position in said symbols.

16. The method according to claim 15, wherein (i) a first of
said probabilities corresponds to one of said hard decisions,
(ii) a second of said probabilities corresponds to one of said
soft decisions and (iii) said merging comprises subtracting
said first probability and said second probability from a pre-
determined value.

17. The method according to claim 11, further comprising
the step of:

adjusting a plurality of multiplicities in response to said
probabilities, wherein said list decode technique gener-
ates said decoded codeword based on said multiplicities.

18. The method according to claim 17, further comprising
the step of:

interpolating a bivariate polynomial in response to said
multiplicities, wherein said list decode technique gener-
ates said decoded codeword based on said bivariate
polynomial.

19. The method according to claim 18, further comprising

the step of:

flipping one or more of said symbols in response to a
constant term of said bivariate polynomial being non-
Zero.

20. An apparatus comprising:

means for generating (i) a plurality of symbols and (ii) a
plurality of decision values both in response to detecting
an encoded codeword;

means for generating a plurality of probabilities to flip one
or more of said symbols based on said decision values;
and

means for generating a decoded codeword by decoding
said symbols using a list decode technique in response to
said probabilities.
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