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(57) ABSTRACT 
(76) Inventor: Yingquan Wu, Palo Alto, CA (US) An apparatus having a first circuit and a second circuit is 

disclosed. The first circuit may be configured to generate (i) a 
(21) Appl. No.: 13/547,463 plurality of symbols and (ii) a plurality of decision values 

both in response to detecting an encoded codeword. The 
(22) Filed: Jul. 12, 2012 second circuit may be configured to (i) generate a plurality of 

probabilities to flip one or more of the symbols based on the 
decision values, (ii) generate a modified probability by merg 

Publication Classification ing two or more of the probabilities of an unreliable position 
in the symbols and (iii) generate a decoded codeword by 

(51) Int. Cl. decoding the symbols using a list decode technique in 
HO3M5/00 (2006.01) response to the modified probability. 
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COMBINEDWU AND CHASE DECODING OF 
CYCLIC CODES 

FIELD OF THE INVENTION 

0001. The present invention relates to decoding cyclic 
codes generally and, more particularly, to a method and/or 
apparatus for implementing a combined Wu and Chase 
decoding of cyclic codes. 

BACKGROUND OF THE INVENTION 

0002 Efficient list decoding beyond half a minimum dis 
tance for Reed-Solomon and Bose, Ray-Chaudhuri and Hoc 
quenghem (i.e., BCH) codes were first devised in 1997 and 
later improved almost three decades after the inauguration of 
an efficient hard-decision decoding method. In particular, for 
a given Reed-Solomon code C(n.k.d), a GuruSwami-Sudan 
decoding method corrects up to n-Vn(n-d) errors, which 
effectively achieves a Johnson bound, a general lower bound 
on the number of errors to be corrected under a polynomial 
time for any code. Schmidt, Sidorenko, and Bossert devised a 
multi-sequence shift-register synthesis to find an error locator 
polynomial beyond half a minimum distance for low-rate 
(i.e. </3) Reed-Solomon codes when a unique Solution 
exists. Apart from small probability of failure due to ambigu 
ity, the resulting decoding radius is identical to that of the 
Sudan technique. The Sudan technique extended the 
Guruswami-Sudan technique to achieve subfield Johnson 
bounds for subfield subcodes of Reed-Solomon codes by 
distributing multiplicities across the entire subfield. 
0003 Wu presented a list decoding technique for Reed 
Solomon and binary BCH codes. The Wu list decoding tech 
nique casts a list decoding as a rational curve fitting problem 
utilizing polynomials constructed by a Berlekamp–Massey 
technique. The Wu technique achieves the Johnson bound for 
both Reed-Solomon and binary BCH codes. Beelen and Hoe 
holdt re-interpreted the Wu list decoding technique in terms 
of Gröbner bases and an extended Euclidean technique to list 
decoded binary Goppa codes up to the binary Johnson bound. 
0004. It would be desirable to implement a combined Wu 
and Chase decoding of cyclic codes. 

SUMMARY OF THE INVENTION 

0005. The present invention concerns an apparatus having 
a first circuit and a second circuit. The first circuit may be 
configured to generate (i) a plurality of symbols and (ii) a 
plurality of decision values both in response to detecting an 
encoded codeword. The second circuit may be configured to 
(i) generate a plurality of probabilities to flip one or more of 
the symbols based on the decision values, (ii) generate a 
modified probability by merging two or more of the probabili 
ties of an unreliable position in the symbols and (iii) generate 
a decoded codeword by decoding the symbols using a list 
decode technique in response to the modified probability. 
0006. The objects, features and advantages of the present 
invention include providing a combined Wu and Chase 
decoding of cyclic codes that may (i) merge two or more most 
reliable flipping estimations of an unreliable position into a 
single estimation, (ii) add two probabilities prior to base 
multiplicity adjustments, (iii) combine Chase decoding with 
Wu list decoding, (iv) decode BCH codewords and/or (v) 
decode Reed-Solomon codewords. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

0007. These and other objects, features and advantages of 
the present invention will be apparent from the following 
detailed description and the appended claims and drawings in 
which: 
0008 FIG. 1 is a block diagram of a communication sys 
tem, 
0009 FIG. 2 is a block diagram of an example implemen 
tation of a soft decoder circuit in accordance with a preferred 
embodiment of the present invention; 
0010 FIG. 3 is a detailed block diagram of an example 
implementation of a list decoder circuit; 
0011 FIG. 4 is a diagram of an example merging of prob 
ability values: 
0012 FIG. 5 is a flow diagram of an example method of a 
base multiplicity adjustment; 
0013 FIG. 6 is a graph of ratios of list decoding capabili 
ties to minimum distances; 
0014 FIG. 7 is a graph of a multiplicity ratio of a 
Guruswami-Sudan technique over a Wu list decode tech 
nique; 
0015 FIG. 8 is a graph of performance comparisons for 
decoding a (458, 410) Reed-Solomon code under a BPSK 
modulation; 
0016 FIG. 9 is a graph of performance comparisons for 
decoding a (255, 191) Reed-Solomon code under a QAM 
modulation; and 
(0017 FIG. 10 is a graph of performance comparisons for 
decoding a (4408, 4096) BCH code under a BPSK modula 
tion. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0018. Some embodiments of the present invention gener 
ally concern scenarios where a fraction of positions of a 
received word are pre-corrected. Accordingly, a Wu list 
decoding technique may avoid interpolating the pre-cor 
rected positions and thus effectively increases a list error 
correction capability (e.g., LECC). List decoding generally 
generates a list of possibilities for a received codeword, a 
single possibility being correct. For a Reed-Solomon code 
C(n.k.d), a parameter n may be an effective code length by 
neglecting known locations. Therefore, a resulting LECC 
may be n*-Vn(n-d) and independent of an actual code 
length n. When n reduces toward d, the LECC generally 
approaches to d-1. For a binary BCH/Goppa code C(n.k.d), 
the parametern may be the effective code length by neglect 
ing known locations. Hence, a resulting LECC may be /2(n- 
Vn(n-2d)) and independent of the actual code length n. 
When n reduces toward 2d, the LECC generally approaches 
to d-1. In particular, the lists may include all (e.g., up to 
2d-2) codewords among any 2d-1 erasure bits. The code 
words may be generated by applying the list decoding tech 
nique twice, an application with the given 2d-1 bits and 
another application with all flipped 2d-1 bits. The Wu list 
decoding technique may be transformed into an algebraic 
soft-decision decoding technique by translating symbol error 
probability information into an appropriate multiplicity vec 
tor. A combination of Chase decoding and the transformed 
Wu list decoding technique may be utilized. 
0019. Simulation results generally indicate that some 
embodiments of the present invention may achieve gains over 
hard-decision decoding at a practically implementable com 
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plexity. For instance, a (255, 191) Reed-Solomon code under 
a quadrature amplitude module (e.g., QAM), with a low cost 
value (e.g., C) of 300, in combination with a Chase-16 decod 
ing generally achieves a 0.9 dB gain over the hard-decision 
decoding. In another example, a (4408, 4096) Bose, Ray 
Chaudhuri and Hocquenghem (e.g., BCH) code under a 
binary phase-shift keying (e.g., BPSK) modulation, with a 
low cost value of 300 (which may be less than the redundant 
length), in combination with Chase-8 decoding may achieve 
a 0.55 dB improvement over the hard-decision decoding. 
0020 Referring to FIG. 1, a block diagram of a commu 
nication system (or apparatus) 90 is shown. The system 90 
generally comprises a block (or circuit)92, a block (or circuit) 
94 and a block (or circuit) 100. The circuit 100 generally 
comprises a block (or circuit)102 and a block (or circuit) 104. 
The circuits 92 to 104 may represent modules and/or blocks 
that may be implemented as hardware, Software, a combina 
tion of hardware and Software, or other implementations. 
0021. A signal (e.g., IN) may be received by the circuit 92. 
The signal IN may implement an input signal carrying code 
words (or words or symbols orbits) to be encoded and trans 
ferred/stored. The circuit 92 may generate a signal (e.g., TX) 
received by the circuit 94. The signal TX may implement a 
transmit signal that conveys the encoded codewords from the 
signal IN. A signal (e.g., RX) may be generated by the circuit 
94 and received by the circuit 100/102. The signal RX may 
implement a received signal. In the absence of errors, the 
codewords in the signal RX may match the codewords in the 
signal TX. The circuit 102 may generate a signal (e.g., 
WORD) received by the circuit 104. The signal WORD may 
carry a received codeword (or bits or symbols) detected in the 
signal RX. A signal (e.g., DEC) may also be generated by the 
circuit 102 and received by the circuit 104. The signal DEC 
may convey decisions about the received codewords in the 
signal RX. A signal (e.g., OUT) may be generated by the 
circuit 100/104. The signal OUT may implement an output 
signal that contains the decoded codeword (or word or sym 
bols orbits). 
0022. The circuit 92 may implement an encoder circuit. 
The circuit 92 is generally operational to encode the code 
words received in the signal IN. The encoding may be a cyclic 
code encoding, a BCH encoding or a Reed-Solomon encod 
ing. The encoded codewords may be presented in the signal 
TX. 

0023 The circuit 94 may implement a communication 
channel. The circuit 94 is generally operational to carry the 
encoded codewords communicated from the circuit 92 to the 
circuit 100. The circuit 94 may also carry data communicated 
from the circuit 100 to the circuit 92. Implementations of the 
circuit 94 may include, but are not limited to, one or more 
transmission media Such as air, wire, optical fibre, Ethernet 
and the like. In some embodiments of the present invention, 
the circuit 94 may implement a storage medium. Storage 
media may include, but is not limited to, optical media, mag 
netic media and electronic media. 
0024. The circuit 100 may implement a receiver circuit. 
The circuit 100 is generally operational to decode the 
encoded codewords received in the signal RX. The decoding 
may include a soft detection and a soft decode. The received 
and decoded codewords may be presented in the signal OUT. 
0025. The circuit 102 may implement a soft detector cir 

cuit. The circuit 102 is generally operational to detect the 
codewords received in the signal RX using a soft decision 
and/or a hard decision. The detected codewords may be pre 
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sented in the signal WORD. Decision values corresponding to 
the detected codewords may be presented in the signal DEC. 
0026. The circuit 104 may implement a soft decoder cir 
cuit. The circuit 104 is generally operational to decode the 
codewords received in the signal WORD based on the deci 
sion values received in the signal DEC. The soft decoding 
may include, but is not limited to, (i) generating a plurality of 
probabilities to flip one or more of the symbols within the 
codewords based on said decision values, (ii) generating a 
modified probability by merging two or more of the probabili 
ties of an unreliable position in the symbols and (iii) gener 
ating the decoded codeword by decoding the symbols using a 
list decode technique in response to the modified probability. 
In some embodiments, the probabilities may be generated 
using the Chase technique. The list decode technique gener 
ally comprises the Wu list decode technique. The encoded 
codewords may comprise Reed-Solomon codewords or BCH 
codewords. 
0027. Referring to FIG. 2, a block diagram of an example 
implementation of the circuit 104 is shown in accordance 
with a preferred embodiment of the present invention. The 
circuit 104 generally comprises a block (or circuit) 106 and a 
block (or circuit) 108. The circuits 106 to 108 may represent 
modules and/or blocks that may be implemented as hardware, 
software, a combination of hardware and software, or other 
implementations. 
(0028. The signal DEC may be received by the circuit 106. 
The signal WORD may be received by the circuits 106 and 
108. A signal (e.g., PROD) may be generated by the circuit 
106 and presented to the circuit 108. The signal PROD gen 
erally conveys probability values for flipping bits or symbols 
in the received codewords in the signal WORD. The signal 
OUT may be generated by the circuit 108. 
0029. The circuit 106 may implement a merge circuit. The 
circuit 106 is generally operational to generate the probabili 
ties to flip one or more of the symbols/bits in the codewords 
based on the decision values in the signal DEC. The circuit 
106 may also be operational to generate a modified probabil 
ity by merging two or more of the probabilities of an unreli 
able position in the symbols/bits. In some embodiments, the 
merging may merge Chase reliabilities created by the Chase 
technique. The Chase technique is generally described in the 
paper, "A class of algorithms for decoding block codes with 
channel measurement information', IEEE Trans. Inform. 
Theory, vol. 18, pp. 170-182, January 1972, which is hereby 
incorporated by reference in its entirety. The merged reliabili 
ties may be presented as a merged matrix in the signal PROB. 
0030 The circuit 108 may implement a list decoder cir 
cuit. The circuit 108 is generally operational to generate the 
decoded codewords by decoding the symbols/bits using a list 
decode technique in response to the modified probability. In 
some embodiments, the list decode technique may be the Wu 
list decode technique. The Wu list decoding technique is 
generally described in a paper"New list decoding algorithms 
for Reed-Solomon and BCH codes', IEEE Trans. Inform. 
Theory, vol. 54, no. 8, pp. 3611-3630. August 2008, which is 
hereby incorporated by reference in its entirety. 
0031 Referring to FIG. 3, a detailed block diagram of an 
example implementation of the circuit 108 is shown. The 
circuit 108 generally comprises a block (or circuit) 110, a 
block (or circuit) 112, a block (or circuit) 114, a block (or 
circuit) 116, a block (or circuit) 118, a block (or circuit) 120, 
a block (or circuit) 122, a block (or circuit) 124, a block (or 
circuit) 126, a block (or circuit) 128 and a block (or circuit) 
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130. The circuits 110 to 130 may represent modules and/or 
blocks that may be implemented as hardware, software, a 
combination of hardware and Software, or other implementa 
tions. 
0032. The signal PROB may be received by the circuit 
116. The signal WORD may be received by the circuit 110. 
The signal OUT may be generated by the circuit 130. 
0033. The circuit 110 may implement a syndrome compu 
tation circuit. The circuit 110 is generally operational to cal 
culate syndromes for the received codewords in the signal 
WORD. The syndromes may be presented to the circuit 112. 
0034. The circuit 112 may implement a base multiplicity 
assignment circuit. The circuit 112 may be operational to 
compute a multiplicity matrix based on the syndromes calcu 
lated by the circuit 110. The multiplicity matrix may be pre 
sented to the circuit 114. 
0035. The circuit 114 may implement a polynomial evalu 
ation circuit. The circuit 114 is generally operational to evalu 
ate a rational polynomial defined as an error locator polyno 
mial divided by a corresponding auxiliary polynomial over 
the valid error locators. The obtained pairs of error locator and 
evaluated value may be applied to interpolate a bivariate 
polynomial Q(x,y). A bivariate polynomial is generally a 
polynomial with two variables. 
0036. The circuit 116 may implement a base multiplicity 
adjustment circuit. The circuit 116 is generally operational to 
construct the base multiplicity vector based on the merged 
Chase reliabilities received in the signal PROB. The multi 
plicity is generally proportional to the associated symbol 
error probability. For a symbol involved in Chase flipping, a 
symbol error probability may be obtained by removing the 
two most reliable estimations. The base multiplicity vector 
may be transferred to the circuit 118. 
0037. The circuit 118 may implement an interpolation 

circuit. The circuit 118 may be operational to interpolate the 
constant term Q(0,0) along the points/pairs computed in the 
circuit 114, each with the multiplicity computed in the circuit 
116. The results of the interpolation may be transferred to the 
circuit 120. 
0038. The circuit 120 may implement a checking circuit. 
The circuit 120 may be operational to check if a constant term 
Q(0,0) is zero. If not, the corresponding bivariate polynomial 
Q(x,y) generally does not yield a valid codeword and thus is 
invalid. Therefore, Chase flipping may be performed in the 
circuit 122 in an attempt to correct the errors. If the constant 
term is Zero, the bivariate polynomial Q(x,y) may be calcu 
lated in the circuit 126. 
0039. The circuit 122 may implement a Chase flipping 

circuit. The circuit 122 may be operational to flip a symbol 
based on the provided candidate flipping patterns. After the 
symbol has been flipped, the syndromes may be updated in 
the circuit 124. 
0040. The circuit 124 may implement a syndrome update 

circuit. The circuit 124 is generally operational to recalculate 
the syndromes based on the altered symbols received from the 
circuit 122. The updated syndromes may be presented back to 
the circuit 112 where the base multiplicity assignment is 
performed again. 
0041. The circuit 126 may implement an interpolation 

circuit. The circuit 126 is generally operational to fully com 
pute the bivariate polynomial Q(x,y). The computation may 
utilize the information that the constant term is zero. 
0042. The circuit 128 may implement a factorize circuit. 
The circuit 128 is generally operational to factorize the poly 
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nomial to retrieve the valid codeword in which the n-k least 
reliable positions are to be determined. The factorized poly 
nomial may be presented to the circuit 130. 
0043. The circuit 130 may implement a Chien decoder 
circuit. The circuit 130 is generally operational to apply the 
Chien decoding technique to correct any errors that may 
remain in the n-k positions of the word received from the 
circuit 128. The corrected word may be presented in the signal 
OUT. 
0044) Referring to FIG. 4, a diagram of an example merg 
ing of probability values is shown. The merging operation 
may be performed by the circuit 106. Each position (e.g., y) 
of the codeword received through the channel may have cor 
responding hard-decision value (e.g., u) and a secondary 
channel decision value (e.g., u'), see reference arrow 140. 
The decision values may correspond to an a posteriori prob 
ability value (e.g., ). Each secondary decision value may 
correspond to an a posteriori probability value (e.g., T. 
The circuit 106 may merge the two probability values for the 
hard-decision values and the secondary decision values (e.g., 
1-T-T) in the unreliable positions, see reference 
arrow 142. Thus the hard-decision probabilities for position 
Yi may become a difference between a unity value and a 
Summed probability (e.g., 1-(t+TI)). 
0045 Referring to FIG. 5, a flow diagram of an example 
method 150 of a base multiplicity adjustment is shown. The 
method (or process) 150 may be implemented in the circuit 
116. The method 150 generally comprises a block (or step) 
152, a block (or step) 154, a block (or step) 156, a block (or 
step) 158, a block (or step) 160 and a block (or step) 162. The 
steps 152-162 may represent modules and/or blocks that may 
be implemented as hardware, Software, a combination of 
hardware and Software, or other implementations. 
0046. In the step 152, the circuit 116 may be initialized 
with a smallest meaningful list error correction capability 
(e.g., LECC). The variablet may represent a number of errors 
out of n symbols in a message length of k. Conditional symbol 
error probabilities may be computed in the step 154 condi 
tioned on the terrors out of then symbols. In the step 156, an 
adjusted multiplicity vector may be generated based on the 
conditional symbol error probability vector generated in the 
step 154, subject to the overall cost C. A check may be 
performed in the step 158 to see if the considered number of 
errors t is correctable in average, based on the multiplicity 
vector generated in the step 156. If correctable, the number of 
errorst may be incremented in the step 160. The method 150 
may thus return to the steps 154 and 156 to attempt to correct 
more errors. The cycle around the steps 154,156,158 and 160 
may continue until the last value oft is the largest correctable 
value. Thereafter, the multiplicity vector may be generated in 
the step 162. The resulting multiplicity information may be 
transferred from the circuit 116 to the circuit 118. 
0047 Referring to FIG. 6 a graph of ratios of list decoding 
capabilities to minimum distances as a function of ratio of 
minimum distances to the effective code length is shown. The 
Wu list decode technique generally does not take into account 
the known locations and thus effectively improves the list 
error correction capability. For a Reed-Solomon code C(n.k. 
d), the parametern may be the effective code length without 
counting known locations. By interpolating only the remain 
ing uncertain locations in the rational interpolation, the result 
ing LECC may be improved to n*-Vn(n-d), as shown by 
curve 172. The resulting LECC is generally independent of 
the actual code length n. In particular, when in reduces 
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Loward d, the LECC may approach d-1. For a binary BCH/ 
Goppa code C(n.k.d), the parameter n may be the effective 
code length without counting known locations. The resulting 
LECC may be /2(n-Vn(n-2d)) and independent of the 
original code length n, as shown by curve 174. When in 
shrinks toward 2d, the LECC generally approaches the limit 
d-1. In particular, the lists may include all (e.g., up to 2df+2) 
codewords whose discrepancy bits may be limited to any 
2d-1 erasure bits from a received word. The codewords may 
be generated by applying the list decoding technique twice, 
an application with the given 2d-1 bits and another applica 
tion with all flipped 2d-1 bits. In contrast, conventional era 
Sure decoding corrects d-1 errors out of d erasure bits. 
0048 Multiple (e.g., two) scenarios generally exist where 
a received word is partially corrected. A first scenario is an 
iterative decoding of product codes, where each row (column) 
component word is partially corrected by the preceding col 
umn (row) decoding, herein miscorrection is ignored. Pyn 
diah demonstrated that the iterative decoding of product 
codes achieves a near Shannon limit. Several error-correcting 
codes based on product constructions have been suggested for 
applications in optical networks at very high data rates. The 
optical networks (or communication channels) may be asym 
metric channels in which errors only change bits from a one 
value to a Zero value occur, since a photon may vanish but 
may not be created. Furthermore, the errors that may occur in 
many recently developed semiconductor and optical memory 
systems are of the asymmetric type. In some other applica 
tions, the errors may be of unidirectional type, where all the 
errors are of the same type, but the type is not known a priori. 
For along binary code, eachfraction of the 1 bits and the Obits 
may almost be one-half following the law of large numbers. 
The half fraction generally indicates that the effective code 
length is reduced almost by half in an asymmetric/unidirec 
tional channel (e.g., circuit 94). 
0049 Koetter and Vardy showed a way to translate soft 
decision reliability information provided by a channel into a 
multiplicity matrix that is directly involved in the 
Guruswami-Sudan method. The resulting method substan 
tially outperforms the Guruswami-Sudan method. However, 
implementation of the resulting multiplicity transformation 
technique to the Wu list decode technique may not be handy. 
An extra parameter, a degree of y in a bivariate polynomial 
(e.g., Ly) generally has a value dependent on the unknown 
actual number of errors. A straightforward solution is trial 
and-error on the actual number of errors. However, the trial 
and-error method is generally not desirable due to many calls, 
up to t-to times the number of calls in the list decoding tech 
nique. Therefore, the actual number of errors in the expres 
sion of Ly may be replaced by a largest number of errors that 
may be decoded in a mean sense. 
0050. The Chase decoding (which actually refers to 
Chase-II decoding) may provide Suitable algebraic soft-deci 
sion decoding methods for high-rate short-to-medium-length 
codes. A decoding complexity associated with flipping an 
additional symbol may be O(n), in contrast to O(nd) by 
directly exploiting hard-decision decoding. Without applying 
the Chase flipping, secondary channel decisions exhibit Small 
probabilities, thus are generally assigned Small multiplicities. 
Chase exhaustive flipping essentially merges two most reli 
able channel decisions into a unified estimation with almost 
twice a higher reliability, thus the multiplicities are literally 
doubled for the two most reliable channel decisions which 
involve the Chase flipping. 
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0051. For a possibly shortened Reed-Solomon C(n.k) 
code over a finite field Fq., a codeword polynomial C(x) 
generally satisfies formula 1 as follows: 

C(C’)=0, for i=mo, moi-1,..., non-ik-1 (1) 

where C. denotes a primitive element of Fq and mo may be an 
arbitrary integer. A minimum Hamming distance of the code 
is din-k+1, an attribute generally known as maximally-dis 
tance-separable attribute. 
0.052 Let C(X) denote the transmitted codeword polyno 
mial and R(x) the received word polynomial. A Berlekamp 
Massey technique generally provides a foundation for the list 
decoding technique. The Berlekamp–Massey technique may 
compute syndrome values (e.g., S.) performula 2 as follows: 

S=R)(C'), for i=0,1,2,..., n-k-1 (2) 

If all n-k syndrome values are Zero, R(x) may be a codeword 
polynomial and thus is presumed that C(X)=R(X) (e.g., no 
errors have occurred). Otherwise, let e denote the unknown 
number of errors, Xe{C}, o"' for i=1,2,..., e, denote the 
error locations, and YeF\{0} for i=1,2,..., e, denote the 
corresponding error magnitudes. 
0053 A syndrome polynomial may be defined by formula 
3 as follows: 

An error locator polynomial may be defined by formula 4 as 
follows: 

An error evaluator polynomial is generally defined by for 
mula 5 as follows: 

e e (5) 

= 0 + 1x+ (2x -- ... -- (), ix 

The three polynomials generally satisfy a key equation 6 as 
follows: 

The Berlekamp–Massey technique may be used to solve the 
above key equation, given that the number of errors e does not 
exceed the error-correction capability (n-k)/2. The Berle 
kamp–Massey technique may be re-formulated as follows: 
0054 Input: S-So, S. S. . . . . S. 
0055. Initialization: A'(x)=1, Eick- and LA-0, 
LO)=0 
0056 

0.057 
For r=0,1,2,..., n-k-1, do: 
Compute 

(r) LX 
Art) = X. A. S 

i=0 

0.058 
0059 

Compute A'(x)=A(x)-A*.xB (X) 
If A'z0 and 2LA’sr, then 

0060 Set B(x)e-(A*)''A'(x) 
0061 Set LA'''<-L+1, L'''<-LA 

0062. Else 
0063. Set B"'(x)<-xB(x) 
0064. Set L-L--1, L''<-LA 

0065 Output: A(x), B(x), LA and L. 
0.066 Let A*(x) be a true error locator polynomial as 
defined in formula 4. Let A(x) and B(x) be the error locator 



US 2014/0015697 A1 

and correction polynomials, respectively, obtained from the 
Berlekamp–Massey technique. Hence, A*(x) generally 
exhibits the form shown in formula 7 as follows: 

where the polynomials w(x) and b*(x) may exhibit the fol 
lowing properties: 
0067 (i). *=1: 
0068 (ii). If b*(x)=0, then *(x)=1; 
0069 (iii). W*(x) and b*(x) are coprime: 
0070 (iv). deg(v*(x))=deg(A*(x))-LA & deg(b*(x))<deg 

Dividing both sides of formula 7 by XB(x) generally results in 
formula 8 as follows: 

Define yi performula 9 as follows: 

-A(a) (9) 
y; = - , for i = 0, 1, 2, ... , n - 1 

at B(at ) 

where y, may be set to infinity when B(C)=0. Let O', C.’, 
. . . . C., be all the valid roots of the true error locator 
polynomial A*(x). Therefore, y-, *(x)-b (x) generally 
passes precisely through e points, (c.', y,), (C., y2),..., 
(C., y). 
0072 Given a set of n distinct points {(C., y)), "', a 
rational functions y(x) that passes through t points (where 
tet d/2) may be found, in the sense that y(C)=y. If 
y, infinity, y(x) may contain a pole C.'. The pole may exist 
because when B(C)=0, (C) may be zero because B(x) and 
A(x) are coprime and thus may not share the root. Hence, a 
rational curve-fitting problem may be used for the form of 
y:W(x)-b(X). The weight (e.g., w) of y may be assigned per 
formula 10 as follows: 

W-LA-L (10) 

0073 Let Q(x,y) be a bivariate polynomial passing 
through all n points {(1.yo), (Cy), (Cy),..., (C.'"'. 
y)), where y, is generally defined in formula 9, each with 
multiplicity m. If formula 1 1 is satisfied as follows: 

where L. may denote the degree of y in Q(x,y) and deg(Q 
(x,y)) (where w is defined in formula 10) may denote the 
(1,w)-weighted degree of Q(x,y), thus Q(x,y) generally con 
tains all factors of the form y2(x)-b(x) which pass throught 
points (where telA). 
0074. A sufficient condition for Q(x,y) to pass through all 

in points {(1-yo), (Cy), (c.f.y.),..., (C"'y, )}, each 
with multiplicity m, may be that the number of coefficients 
(e.g., number of degrees of freedom) of Q(x,y) is greater than 
the number of linear constraints. The number of degrees of 
freedom, denoted by N. is generally defined by formula 12 
as follows: 
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Ely (12) 
Nice =X (degl (Q(x,y) + 1-iw) 

i=0 

(2deg(Q(x, y)) + 2 - wily)(Ly + 1) 
2 

Passing through a point with multiplicity m may result in 
m(m+1)/2 linearly independent constraints. Thus, an overall 
number of linear constraints, denoted by N, is generally 
given by formula 13 as follows: 

St. 

nn(n + 1) (13) 
st 2 

0075. The number of degrees of freedom may be maxi 
mized subject to fixed number of errors e=t and the fixed 
multiplicity mand the constraint of formula 1 1, performula 
14 as follows 

N (2deg(Q(x, y)) +2-wly)(Ly + 1) (14) 
free — — 

(20m - 1 - (- LA Ly) + 2 - willy)(Ly + 1) 
2 

= (in - Ly(t-t'))) (Ly + 1) 

tim – t + to 2 (im + 1 - to): 
-(t- to Ly 2-2, ) 4(t-to) 

where to d/2. “= may be achieved in 's' if and only if 
formula 15 is satisfied as follows: 

deg(O*(x,y)=tm-1-(t-LA).L. (15) 

which may accommodate the Zero constraint in formula 1 1. 
The first equality in formula 14 may be due to formula 16 as 
follows: 

in - k + 1 (16) 

The maximum number of degrees of freedom may be 
achieved by choosing Ly to be the closest integer to 

in - t + to 
2i -2to 

performula 17 as follows: 

in -i- to 

2i -2to y +0.5 = ii. (17) 

Therefore, a good choice of m may be a minimum integer that 
enforces NeNe performula 18 as follows: St. 

(tm + 1 - to)' nm (n + 1) (18) 
4(t-to) > 2 ii. "l") 
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0076. The maximum number of degrees of freedom is 
bounded by formula 19 as follows: 

(tm + 1 - to) > (19) 
4(t - to) ii. "I,...) max.N.) = -tt-to-La". 2i -2to 

t – to (im + 1 - to) 
4 -- 4(t-to) 

Hence, to solve for the linear equation system, formula 20 
may be enforced as follows: 

(tm + 1 - to) - to n(n + 1) (20) 
4(t-to) 4 2 

Formula 20 may be reduced to formula 21 as follows: 

The above inequality generally holds true for sufficiently 
large m if and only if formula 22 is satisfied as follows: 

which may yield the general Johnsonbound performula 23 as 
follows: 

t-n-Vn(n-d) (23) 

The lower bound given by formula 19 may be tight in terms of 
the LECC t, while affecting the value of multiplicity m to 
achieve a particular LECC t. For any tsatisfying formula 19, 
the multiplicity m may be chose performula 24 as follows: 

i = 0 + = . . (24) 

0077 Referring to FIG. 7, a graph of a multiplicity ratio 
170 of the Guruswami-Sudan technique over the Wu list 
decode technique is shown. The graph generally indicates 
that the Wu list decode technique may be more efficient when 
a code rate is above roughly 0.25. The multiplicity ratio of the 
Guruswami-Sudan technique over the Wu list decode tech 
nique for decoding Reed-Solomon may code up to the 
Johnson bound. 

0078. An underlying generator polynomial of a BCH code 
generally contains consecutive roots C, C, ..., C. For an 
underlying binary BCH code, the designed minimum dis 
tanced may always be odd, which is actually a typically tight 
lower bound of the true minimum distance. 
007.9 The Berlekamp technique may be a simplified ver 
sion of the Berlekamp–Massey technique for decoding binary 
BCH codes by incorporating a special syndrome property per 
formula 25 as follows: 

S2, S., for i=0,1,2,... (25) 

which generally yields Zero discrepancies at even iterations of 
the Berlekamp–Massey technique. The Berlekamp technique 
may be reformulated as follows: 
0080 Input: S-So, S. S. ..., S. 
0081. Initialization: A(x)=1, B(x)=x', L=0, 
L'-- 
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For r=0, 2, ..., d-3, do: 
Compute 

0082 
0.083 

(r) LX 
A(i+2). X A) Sri 

0084 
0085 

Compute Ai(x)=A(x)-A).x'B''(x) 
If A20 and 2LA)=r, then 

I0086) Set B"'(x)e-(A*)''A'(x) 
I0087. Set L-L-2, L-L 

0088 Else 
I0089. Set B"'(x)e-xB-(x) 
(0090 Set L-L-42, LA-LA) 

0091 Output: A(x), B(x), LA, L. 
0092. Let A*(x) be the true error locator polynomial as 
defined in formula 4. Let A(x) and B(x) be the error locator 
and correction polynomials, respectively, obtained from the 
re-formulated Berlekamp technique. Therefore, A*(x) may 
exhibit the form per equation 26 as follows: 

where the polynomials w(x) and b*(x) may exhibit the fol 
lowing properties: 
0093 (i). *=1: 
0094 (ii). If b*(x)=0, then *(x)=1; 
(0095 (iii). *(x) and b*(x) are coprime: 
0096 (iv). 2deg(v*(x))=deg(A*(x))-LA and 2deg(b*(x)) 

(0097 (v). If deg(A*(x))<d-1, then,*(x) and b*(x) may be 
unique. 

0098. The form of formula 26 may be incorporated into 
the rational interpolation process to optimize the LECC. 
Define y, performula 27 as follows: 

A - for i=0,1,2 1 (27) 
To 2i Bo-i) Or i , 1, 2, ... , it 

To determine the form of y(x)-b(x), the weight (e.g., w) of 
y may be assigned performula 28 as follows: 

w=LA-Le (28) 

which may always be odd since LA+L., d is odd. 
0099 Let A(x) and B(x) be the error locator and correction 
polynomials, respectively, obtained from the re-formulated 
Berlekamp technique. Let Q(x,y) be a bivariate polynomial 
passing through all n points {(1, yo), (C., y), (C., y2). . . . 
, (c.'', y)} where yi may be defined in formula 27, 
each with multiplicity m. If formula 29 is satisfied as follows: 

where L denotes the power ofy in Q(x,y) and deg2(Q(x,y)) 
denotes the (2,w)-weighted degree of Q(x,y) and w is defined 
in formula 28), then Q(x,y) may contain all factors of the 
formy) (x)-b(x) which pass throught points (where teLA). 
0100. The number of degrees of freedom is generally 
given by formula 30 as follows: 

Ely (30) 

Niree =X ( |sie -) 



US 2014/0015697 A1 

-continued 
L. 

Define to performula 31 as follows: 

(31) 

The above definition is generally consistent with the case of 
Reed-Solomon codes. 

(deg2(Q(x, y)) + 1 - Lyw/2)(L) + 1) 
The lower bound of Nice, 2 

may be maximized subject to the fixed number of errors t, 
fixed multiplicity m and the Zero constraint of formula 29. 
Thus, N may be defined by formula 32 as follows: 

(deg2(Q(x, y)) + 1 - Lyw/2)(L) + 1) (32) 
N = - a - s 

1 t – to 2im – t + to 
5 (2m – L(t-to)(L) + 1) = -- - Li+ 2 y + in = 

i - to 2im – t + to Yi (2im + 1 - to) 
- "( y - 2 - ) 8(t-to) 

where “=” in the “s' may be achieved if and only if formula 
33 is satisfied as follows: 

deg2(Q*(x,y)=2tm-1-LOt-L) (33) 

The maximum number of degrees of freedom may be 
achieved by choosing L*, to be the closest integer to 

2in - t + to 
2t -2to 

leading to formula 33 as follows: 

s: 2in - t + to ii. (34) 
L = T +0.5 T. 

Therefore, the maximum number of degrees of freedom may 
have the a lower bound performula 35 as follows: 

t – to (2im + 1 - to) fm + im(t-to) (35) 
- - -- 8(t-to) 2(t– to) 

Hence, to solve for the linear equation system, enforcing 
formula 36 may be sufficient as follows: 

t’m + im(t-to) nm(m + 1) (36) 
2(t– to) > 2 

which may be similar to formula 37 as follows: 
m’(t’-n(t-to))-m(t-to)(n-t)>0 (37) 

The above condition generally holds true for sufficiently large 
m if and only if formula 38 is satisfied as follows: 
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which approaches the binary Johnson bound given informula 
39 as follows: 

n - Vn(n - 4to) n - Vn(n -2d) (39) 
2 2 

When formula 29 is satisfied, the multiplicity m may be 
chosen performula 40 as follows: 

t? - n(t - to) 
ito (40) 

t? - n(t - to) 

The above results may also apply to binary Goppa codes. 
Therefore, binary BCH codes may not be differentiated from 
Goppa codes hereafter. 
0101. In many applications, correction of a fraction of the 
received word may be achieved through other means. For 
example, partial correction may be accomplished by product 
Reed-Solomon codes, wherein some symbols of a column 
(row) Reed-Solomon code may already be corrected during 
the preceding decoding of row (column) Reed-Solomon 
codes. 
0102 Let the transmitted codewords be defined by a (n.k. 
d) Reed-Solomon code. Let errors be limited to a subset Ie{0, 
1,2,..., n-1}, and n-III. Bypassing through n points {(C.'. 
y)), each with multiplicity 

t(d-t) 
it lf 

the rational curve fitting technique generally lists all candi 
date Reed-Solomon codewords with up to t<n-Vn(n-d) 
COS. 

(0103) The closer the effective code length n is to d, the 
closer the list decoding capability t is to d, as shown by curve 
172 in FIG. 6. In the case n*-n-k+1=d, the erasure-only list 
decoding may degenerate to the conventional erasure-only 
decoding which corrects up to d-1 errors. For binary BCH/ 
Goppa codes, when a fraction of the bits are pre-corrected, an 
improved list decoding capability may result, as shown by 
curve 174 in FIG. 6. 

0104 Let transmitted codewords be defined by a (n.k.d) 
binary BCH/Goppa code. Let errors be limited to a subset 
Ie{0,1,2,...,n-1}, and n-III. Bypassing through n points 
{(Oly,) each with multiplicity 

the rational curve fitting technique generally lists all candi 
date codewords with up to ts/2(n-Vn-2d)) errors. In the 
case n=2d, the erasure-only list decoding may correct up to 
d-1 errors out of 2d erasure locations. 
0105 Let a transmitted codeword be defined by a (n.k.d) 
binary BCH/Goppa code. Let errors be limited to a subset 
Ie{0,1,2,... n-1}, and III–2d-1. Thus, any errors among 
2d-1 erasure locations may be list corrected by (i) applying 
the rational curve fitting technique to pass through 2d points 
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{(C,y)} each with multiplicity m-d(d-1)2, and (ii) flip 
ping all 2d-1 erasure locations and applying the rational 
curve fitting technique to pass through 2d-1 points {(C'y.) 
}, each with multiplicity m=(d(d-1))/2. 
0106 The list size of erasing 2d-1 bits may be upper 
bounded by twice (due to applying twice the rational curve 
fitting technique) the degree of y in the bi-variate polynomial 
Q(x,y), which is computed in the rational interpolation per 
formula 41 as follows: 

d(d - 1) (41) 

(im + 0.25 -- 2 e (T.F.)= d - 1 - df 2 
2 

= 2d +2+25. 
2d +2; if d > 3 

24; if d = 3 

0107 Koetter and Vardy proposed a near-optimal proce 
dure to transform the probabilistic reliability information into 
a set of interpolation multiplicities for the Guruswami-Sudan 
technique. Some embodiments of the present invention may 
convert the symbol error probabilities into the corresponding 
multiplicities for the proposed list decoding technique. How 
ever, implementing the Koetter-Vardy conversion strategy 
may not be handy because of an extra parameter, L, whose 
value may be dependent on the unknown actual number of 
errors. A straightforward Solution may be trial-and-error on 
the actual number of errors (e.g., e). The trial-and-error 
method is generally not desirable due to calls of up to Le-to 
times the number of calls in the list decoding technique. To 
effectively circumvent the obstacle, the actual number of 
errors in the expression L. may be replaced by the largest 
number of errors that may be decoded in the mean sense. 
0108. A memory less channel may be defined as a collec 
tion of a finite field alphabet Fd, an output alphabet Y, and q 
functions performula 42 as follows: 

fylx):D maps to R, for all xeFq (42) 

Upon receiving a channel word y-Ily, y. . . . , y, a hard 
decision vector u u, u, . . . , u, may be determined per 
formula 43 as follows: 

u; = argmaxPr(X - y Y - y) = argmax 
yeFig yeFig 

where the second equality generally follows from an assump 
tion that X is uniform. An error probability of a symbol may 
be determined by formula 44 as follows: 

X f(y | x) (44) 
xiii 

Consider a conditional distribution generally having terrors 
out of n symbols, which is generally denoted by E=t/n. For 
notation conciseness, u, may denote the hard-decision sym 
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bol of received channel outputy. Therefore, the memory less 
channel may be defined performula 45 as follows: 

U(uy + x x) 

where U() may be a step function. Following formulae 44 
and 45, a symbol error probability, given t errors out of n 
symbols, is generally determined by formula 46 as follows: 

x-tity 

x-Fity 

tfn 
Pr(x + uy x) 2. f(y | x) 

pain, p.2, fols' pre-elefol-ty) 
Given a multiplicity vector m m. m. . . . . m., a cost 
function (e.g., (C(ml)) may be defined by formula 47 as fol 
lows: 

(47) 
C(n) = lynn, + 1). 

i=l 

Given terrors out of n symbols, a binomial distribution of 
each multiplicity m, may be defined by formula 48 as follows: 

P(M = m) = It' (48) 
(0. = 0) = 1 - It' 
for 

i = 1, 2, 3, ... , in 

An expected score with respect to the random vector M, 
M. M.,..., M. may be defined performula 49 as follows: 

where <', 'D generally denotes an inner product. The variance 
of the score may be given by formula 50 as follows: 

(50) 
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When it, for i=1,2,..., n, may be identical (e.g., t'=t/n), 
the multiplicities m, for i=1,2,..., n, may also be identical. 
Therefore, formula 51 may be satisfied as follows: 

{M} nit) t S> 1 (51) 

3 M, V) Wn-i r" 

Therefore, the inequality of formula 52 generally holds as 
follows: 

Maximizing the expected score may produce formula 53 as 
follows: 

m(t'), C) = argmaxE{M} (53) 
mei (C) 

where 

1 (54) 
M (C) = { e Z: iXmin + 1) s. c} 

A multiplicity vector M(C) may be interatively constructed as 
follows: 
0109 Inputs: C, C 
0110. Initialization: m =0, for i=1,2,..., n. 
0111) While Cemin{m, m. . . . . m., do: 

0112 find the positionisuch that the entry II, may be the 
largest Subject to misC 

0113 set m,<-m+1 
0114 set 

m; 
7t; e- m; + it; 

0115 set C-C-m, 
0116 Output: mm, m, . . . . m. 
0117 Let t be the assumed number of errors. Following 
formula 14, an expected number of degrees of freedom may 
be maximized when the expected score is maximized per 
formula 55 as follows: 

(2degy (Q(x, y)) + 2 - wily)(Ly + 1) K (55) 
— —s 

where “=” in the first “= may be achieved by choosing the 
weighted degree of Q(x,y) performula 56 as follows: 

and '-' in the second “=” may be achieved by maximizing 
E{M} performula 57 as follows: 

Overall, E{N} is generally maximized by choosing the 
weighted degree performula 58 as follows: 

deg(Q*(x,y)=<m(t'),C). It's J-1-(t-LA).L. (58) 
Further choosing the degree of y, Ly is generally given by 
formula 59 as follows: 
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The expected number of degrees of freedom is generally 
bounded by formula 60 as follows: 

|ti. C), It') 2 (60) 
2t-2to 

E{Nice} = -(t-to) -- 
L(m(t'), C), it') - (it - to) 

(Lonci". C), r") + -to 
4(t-to) 

t – to (L(m(t'), C), t')] + 1 - to 
4 -- 4(t-to) 

If the expected number of degrees of freedom is greater than 
the cost, for example, performula 61 as follows: 

(L(m(t'), C), It')] + 1 - to 1- to (61) 
- Y - - - Y > C 

4(t-to) 4 

The errors may likely be correctable through the rational 
interpolation following the characterization in formula 52. 
Amore stringent condition may be enforced to boost the cor 
rection probability, such that formula 62 is satisfied as fol 
lows: 

(L(m(t'), C) - Oct(t'), C), t')] + 1 - to 1- to C (62) 
4(t-to) ---> 

where Öa.0 may be a tuning parameter. 
0118. In practice, the number of errorst may be substituted 
with a maximum LECC, denoted by t, which fulfills formula 
61. The parameters Ly and deg1,w(Q*(x,y)) associated with 
t may be used to correct less than terrors in high probabil 
ity. By choosing L*, and deg(Q*(x,y)) as in formulae 59 
and 58, respectively, corresponding to t, the constraint 
N->N is generally enforced. Therefore, formula 63 as 
follows: 

(t-LA)L +deg(9* o: m(at?"),C). () ) (63) 
generally holds for a high probability for any t<t'. For ana 
lytical simplicity, all integerprecisions may be ignored. Thus, 
formula 64 may be satisfied as follows: 

(t-LA)L + degw(Q(x, y) = (64) 

(t-LA)L + (m(t', C), it') - 1 - (f - LA)L = 
(t-t')L + (m(t'), C), t') - 1 = 

(n(t'), C), it') (t) s: it - i) - - - C), it') - 1 ( ) 2i - 2to (n(t'), C), ti) 

Combining formulae 63 and 64 generally results in formula 
65 as follows: 

(n(z), C), it''') (65) (t') (t) .(t) - (m(It', C), (it it') g (f - t) 2t -2to 
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which yields formula 66 as follows: 

(n(t'), C), it') t + 1-2to (66) 
(n(t(t), C), r(t)) 2f -2to 

Assume that formula 67 and 68 are satisfied as follows: 

s: . (67) 
Et} = E t = r. 

(68) 
Et)} = r). s") i. 

Further assume that formula 69 is satisfied as follows: 

(n(t'), C), it') (69) 
(m.tr), c), try r 

and thus 

it t + i - 2io 

Therefore, formula 66 may be fulfilled with a high probabil 
ity. The detailed procedure to determine the desired multi 
plicity vector is presented as follows. 
0119 Inputs: C, C, 6 
0120 For 

t=1-2, -3. ... , n -k, 

do: 
0121 Compute at 
0.122 Call Iterative Construction of Multiplicity Vector 
to generate m(t'), C). 

I0123. If the validity check of formula 62 is not satisfied, 
then break. 

0.124 Sette-t-1 and call Iterative Construction of Mul 
tiplicity Vector to generate m?t', C). 
Furthermore, given L* as defined in formula 59 upon a 
received wordy, the list decoding is generally successful if 
formula 70 is satisfied as follows: 

2deg1(Q(X, + 2 - will)(L, + 1 (70) C < N free = (2deg(Q( y )(L, + 1) 

= L(e- to) + L, X. m; - e -- to + X. m; 
city; city; 

where e may denote the number of errors, and the degree may 
be given performula 71 as follows: 

71 degl (Q(x, y) = X m; -1-(e-LA).L. (71) 
city; 
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0.125. The Chase decoding technique, referred to as a vari 
ant of Chase II technique, generally flips all combinations of 
a set oft symbol error patterns, each time applying bounded 
distance decoding, and finally choosing the most likely code 
word, if any, among the decoded candidate codewords. The 
Chase flipping and the Wu list decoding technique may be 
combined. Lety=y, y-, ..., y, be a received channel word. 
Let uu, u, . . . , u, be the hard-decision vector as defined 
informula 43. Letu', be the T (III-T) most reliable secondary 
channel decisions. Define t' performula 72 new error prob 
abilities as follows: 

72 X f(y | x) (72) 
xiii. xiii 

7t; = Pr(x + ui, x + u, Y = y;) = - -, for ie. I 
X f(y; v) 

xe F 

0.126 Let m= m, m, ..., m, be a multiplicity vector for 
all 2 combinatorial list decoding attempts. Hence, a prob 
ability of failure may be similar to a single list decoding with 
the multiplicity vectorm over the new vector of symbol error 
probabilities {Tc,}{t}. 
I0127 Given a symbol error probability vectorp, the mul 
tiplicity vectorm, as well as the associated y-degree L. by 
formula 55, the number of degrees of freedom may be 
expressed by formula 73 as follows: 

(73) -(-oil-). M.--- i=1 

wheret may denote an assumed number of errors and M, may 
be defined in formula 48. The failure probability of the list 
decoding technique, P, is generally governed by a single 
threshold performula 74 as follows: 

1 (74) 
52. m; (m; + 1)+(t-to)(L+ Ly) 

P = PXE M - - - 
i=1 Ly + 1 

Define t secondary error probabilities performula 75 as fol 
lows: 

75 X f(y | x) (75) 
xtu 

xe F 

i = Pr(x + u, Y = y) = , for i e 

and the corresponding binomial distributions performula 76 
as follows: 

, for i e {C. m.) i. (76) 
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Furthermore, define the binomial distributions associated 
with the combined error probabilities performula 77 as fol 
lows: 

P(M = mi) = It (77) 
, for i e 

P(M = 0) = 1 - It 

The independence of M', and M, ie I, in conjunction with 
formula 72 generally indicates that formula 78 is satisfied as 
follows: 

The decomposition formula 79 may conclude as follows: 

P(2. t; +X r P2. it, Ut; +X r (79) 
ie ise ie ise 

P X. it; + X. 7t; + X it, 
iel jell ise iCl 

0128. With t merged symbol decisions, the elements of It 
may no longer be similar and independently distributed. 
Therefore, an approximation may be made to ignore the dif 
ferences. Furthermore, half of the T second reliable symbols 
may be correct given that there are at least (d-1)/2 errors due 
to hard-decision decoding failure. Thus, the error probabili 
ties may be closely approximated by conditioning on an error 
rate of (t+1/2)n performulae 80 and 81 as follows: 

t = (80) 

(t + f2)f in 
Privil u, v)2. f(y; x) 

it. 

(n - it - f2) fin 
Pr(x = u, v) 

for i e 

it. 

xiii. xii; 
(t + f2)f in 

xiii. xii; 

(n - it - f2)f n 
xiii xiii 

for ie.I. 

0129. The subsequent adjustment (or optimization) of the 
multiplicity vector m generally follows. Without applying 
Chase flipping, the symbols generally suffer large error prob 
abilities, thus may be assign large multiplicities. Using Chase 
exhaustive flipping essentially merges multiple (e.g., two) 
most reliable channel estimations into a unified estimation 
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with almost a twice higher reliability. Thus, low multiplicities 
may be instead assigned to the flipping symbols which exhibit 
near-zero error probabilities. 
0.130 Referring to FIG. 8, a graph of performance com 
parisons for decoding an (458, 410) Reed-Solomon code over 
F" under a BPSK modulation is shown. The simulation 
results may be based on the decoding performance of 
RS/BCH codes over an additive white Gaussian noise (e.g., 
AWGN) channel with either BPSK or QAM as the signal 
modulation. In the simulations, d may be set to 0.25, which is 
used to determine the maximum LECC, as given in formula 
62. On all performance curves, 100 errors were generally 
collected for each data point. 
I0131 Consider the decoding for the (458, 410) Reed 
Solomon code over F.' under a BPSK modulation. A hard 
decision decoding may corrects up to 24 errors, see curve 180. 
A conventional Chase-10 decoding, see curve 184, which 
systematically flips the 10 most reliable second symbol deci 
sions, may provide a 0.3 dB gain over the hard-decision 
decoding. A conventional Chase-14 decoding, see curve 186, 
which uses up to 2-16384 hard-decision decodings, may 
provide an additional 0.1 dB gain. The additional gain of the 
Chase decoding may be diminishing by flipping more and 
more of the most reliable second symbol decisions. The Koet 
ter-Vary technique with maximum multiplicity 4 is also simu 
lated, see curve 182, which may exhibit a similar performance 
as the Chase-10 decoding. Three performance curves of some 
embodiments of the present invention in combination with 
the Chase-10 decoding may also be illustrated, see curves 188 
to 194. The used cost is generally smaller than code length, 
which may indicate that most of the locations incur Zero 
multiplicity. Finally, the Wulist decode technique using a cost 
100 in combination with the Chase-14 decoding may achieve 
near that of the infinity-cost Koetter-Vardy technique, see 
curve 196, and so may be effective. 
I0132 Referring to FIG. 9, a graph of performance com 
parisons for decoding a (255, 191) Reed-Solomon code over 
F, under a QAM modulation is shown. The Berlekamp 
Massey technique generally corrects up to 32 errors, see curve 
200. A Chase-11 decoding with a complexity increased by a 
factor of 2'-2048, see curve 202, generally yields a 0.5 dB 
improvement over the hard-decision decoding. The Chase-16 
decoding, see curve 204, which further increases complexity 
by a factor of 2-32, may achieve an additional 0.15 dB gain. 
Some embodiments of the present invention with a cost of 300 
by combined with the Chase-16 decoding, see curve 218, 
generally achieves a 0.4 dB gain on top of the Chase-16 
decoding, and is about 0.1 dB away from the Koetter-Vardy 
technique with infinite multiplicity, see curve 220. To dem 
onstrate performance-complexity tradeoff, performance 
curves are generally illustrated which combine the Wu list 
decode technique under the same cost C-300 but different 
number of Chase flipping symbols, t—5, 8, 11, and 16, respec 
tively, and the curves that combine the same Chase-11 decod 
ing and the Wu list decode technique under the different cost, 
C=150, 300, 600, respectively, see curves 206 to 218. Some 
embodiments of the Wu list decode technique with a low cost 
of 150 in combination with Chase-11, see curve 212, gener 
ally achieves a 0.7 dB gain over the hard-decision decoding at 
an implementable complexity. 
0.133 Referring to FIG. 10, a graph of performance com 
parisons for decoding a (4408, 4096) BCH code under a 
BPSK modulation is shown. The BCH code may be used in 
Flash memories in which errors tend to be random. The Ber 
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lekamp technique may correct up to 24 erroneous bits, see 
curve 230. The Koetter-Vardy technique with infinite multi 
plicity, see curve 232, generally performs similar to the 
Chase-12 technique, see curve 234, and achieves about a 0.4 
dB gain over the hard-decision decoding at a word-failure 
rate of 10. The Chase-18 technique, see curve 236, may 
obtain about a 0.12 dB gain over the Chase-12 technique at 
the price of increasing complexity by a factor of 2–64. The 
gain further generally diminishes by exhaustively flipping 
more bits. The Wu list decode technique with a mere cost of 
C-300 together with Chase-8, see curve 238, may achieve a 
0.55 dB at a word-failure-rate of 10. The cost may be even 
smaller than the code redundant length, 312. Furthermore, the 
Wu list decode technique with a cost of 400 combining with 
Chase-12 decoding, see curve 240, generally exhibits again 
of more than 0.6 dB over hard-decision decoding at a word 
failure-rate of 10. 
0134. When some positions are pre-corrected, the Wu list 
decode technique may adapt to increase the list error correc 
tion capability for Reed-Solomon and binary BCH/Goppa 
codes. For Reed-Solomon codes, when the number of uncer 
tain positions reduces down to the minimum distanced, the 
corresponding LECC generally enlarges accordingly up to 
d-1. For binary BCH codes, when the number of uncertain 
positions reduces down to 2d., the corresponding LECC may 
enlarge accordingly up to d-1. All codewords with errors 
confined to 2d-1 erasure bits may be listed for a binary 
BCH/Goppa code, where d may denote a minimum distance. 
0135 The Wu list decoding technique may also be 
extended to algebraic soft decoding by converting symbol 
error probabilities into varying multiplicities. During the con 
version process, the demand for the number of symbol errors 
may be replaced by the largest LECC which is correctable in 
the mean sense. 

0136. A combination of the Chase decoding and the alge 
braic soft decoding may assign unreliable positions to be 
flipped with low multiplicities whereas unreliable positions 
not to be flipped are generally assigned with high multiplici 
ties. Simulation results generally indicate that the Wu list 
decoding technique with a small cost in combination with 
Chase decoding may achieve gains over the hard-decision 
decoding at a practically implementable complexity. For 
example, given a (255, 191) Reed-Solomon code under a 
QAM modulation, the Wu list decode technique with a low 
cost of 300 in combination with Chase-16 generally yields a 
0.9 dB gain over the hard-decision decoding, which is about 
0.1 dB away from the Koetter-Vardy technique with infinite 
multiplicity. Given a (4408, 4096) BCH code under a BPSK 
modulation, the Wu list decode technique with a low cost of 
300 (which is less than the redundant length) in combination 
with Chase-8 may achieve a 0.55 dB over hard-decision 
decoding. 
0.137 The functions performed by the diagrams of FIGS. 
1-5 may be implemented using one or more of a conventional 
general purpose processor, digital computer, microprocessor, 
microcontroller, RISC (reduced instruction set computer) 
processor, CISC (complex instruction set computer) proces 
Sor, SIMD (single instruction multiple data) processor, signal 
processor, central processing unit (CPU), arithmetic logic 
unit (ALU), video digital signal processor (VDSP) and/or 
similar computational machines, programmed according to 
the teachings of the present specification, as will be apparent 
to those skilled in the relevant art(s). Appropriate software, 
firmware, coding, routines, instructions, opcodes, microcode, 
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and/or program modules may readily be prepared by skilled 
programmers based on the teachings of the present disclo 
sure, as will also be apparent to those skilled in the relevant 
art(s). The Software is generally executed from a medium or 
several media by one or more of the processors of the machine 
implementation. 
0.138. The present invention may also be implemented by 
the preparation of ASICs (application specific integrated cir 
cuits), Platform ASICs, FPGAs (field programmable gate 
arrays), PLDs (programmable logic devices), CPLDs (com 
plex programmable logic devices), sea-of-gates, RFICs (ra 
dio frequency integrated circuits), ASSPs (application spe 
cific standard products), one or more monolithic integrated 
circuits, one or more chips or die arranged as flip-chip mod 
ules and/or multi-chip modules or by interconnecting an 
appropriate network of conventional component circuits, as is 
described herein, modifications of which will be readily 
apparent to those skilled in the art(s). 
0.139. The present invention thus may also include a com 
puter product which may be a storage medium or media 
and/or a transmission medium or media including instruc 
tions which may be used to programa machine to perform one 
or more processes or methods in accordance with the present 
invention. Execution of instructions contained in the com 
puter product by the machine, along with operations of Sur 
rounding circuitry, may transform input data into one or more 
files on the storage medium and/or one or more output signals 
representative of a physical object or Substance, Such as an 
audio and/or visual depiction. The storage medium may 
include, but is not limited to, any type of disk including floppy 
disk, hard drive, magnetic disk, optical disk, CD-ROM, DVD 
and magneto-optical disks and circuits such as ROMs (read 
only memories), RAMS (random access memories), 
EPROMs (erasable programmable ROMs), EEPROMs (elec 
trically erasable programmable ROMs), UVPROM (ultra 
violet erasable programmable ROMs), Flash memory, mag 
netic cards, optical cards, and/or any type of media Suitable 
for storing electronic instructions. 
0140. The elements of the invention may form part or all of 
one or more devices, units, components, systems, machines 
and/or apparatuses. The devices may include, but are not 
limited to, servers, workstations, storage array controllers, 
storage systems, personal computers, laptop computers, note 
book computers, palm computers, personal digital assistants, 
portable electronic devices, battery powered devices, set-top 
boxes, encoders, decoders, transcoders, compressors, decom 
pressors, pre-processors, post-processors, transmitters, 
receivers, transceivers, cipher circuits, cellular telephones, 
digital cameras, positioning and/or navigation systems, medi 
cal equipment, heads-up displays, wireless devices, audio 
recording, audio storage and/or audio playback devices, 
Video recording, video storage and/or video playback 
devices, game platforms, peripherals and/or multi-chip mod 
ules. Those skilled in the relevantart(s) would understand that 
the elements of the invention may be implemented in other 
types of devices to meet the criteria of a particular application. 
0.141. The terms “may” and “generally' when used herein 
in conjunction with “is(are)” and verbs are meant to commu 
nicate the intention that the description is exemplary and 
believed to be broad enough to encompass both the specific 
examples presented in the disclosure as well as alternative 
examples that could be derived based on the disclosure. The 
terms “may” and “generally' as used herein should not be 
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construed to necessarily imply the desirability or possibility 
of omitting a corresponding element. 
0142. While the invention has been particularly shown and 
described with reference to the preferred embodiments 
thereof, it will be understood by those skilled in the art that 
various changes in form and details may be made without 
departing from the scope of the invention. 

1. An apparatus comprising: 
a first circuit configured to generate (i) a plurality of sym 

bols and (ii) a plurality of decision values both in 
response to detecting an encoded codeword; and 

a second circuit configured to (i) generate a plurality of 
probabilities to flip one or more of said symbols based on 
said decision values and (ii) generate a decoded code 
word by decoding said symbols using a list decode tech 
nique in response to said probabilities. 

2. The apparatus according to claim 1, wherein (i) said 
probabilities are generated using a Chase technique and (ii) 
said list decoding technique comprises a Wu list decode tech 
nique. 

3. The apparatus according to claim 1, wherein said 
encoded codeword comprises one of (i) a Reed-Solomon 
encoded codeword and (ii) a BCH encoded codeword. 

4. The apparatus according to claim 1, wherein said detect 
ing comprises a soft detecting. 

5. The apparatus according to claim 1, wherein (i) said 
decisions comprise a plurality of hard decisions and a plural 
ity of soft decisions and (ii) said probabilities are modified 
before said decoding by merging two or more of said prob 
abilities of an unreliable position in said symbols. 

6. The apparatus according to claim 5, wherein (i) a first of 
said probabilities corresponds to one of said hard decisions, 
(ii) a second of said probabilities corresponds to one of said 
Soft decisions and (iii) said merging comprises Subtracting 
said first probability and said second probability from a pre 
determined value. 

7. The apparatus according to claim 1, wherein (i) said 
second circuit is further configured to adjust a plurality of 
multiplicities in response to said probabilities and (ii) said list 
decode technique generates said decoded codeword based on 
said multiplicities. 

8. The apparatus according to claim 7, wherein (i) said 
second circuit is further configured to interpolate a bivariate 
polynomial in response to said multiplicities and (ii) said list 
decode technique generates said decoded codeword based on 
said bivariate polynomial. 

9. The apparatus according to claim 8, wherein said second 
circuit is further configured to flip one or more of said sym 
bols in response to a constant term of said bivariate polyno 
mial being non-zero. 

10. The apparatus according to claim 1, wherein said appa 
ratus is implemented as one or more integrated circuits. 

11. A method of cyclic code decoding, comprising the steps 
of: 
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(A) generating (i) a plurality of symbols and (ii) a plurality 
of decision values both in response to detecting an 
encoded codeword using a circuit; 

(B) generating a plurality of probabilities to flip one or 
more of said symbols based on said decision values; and 

(C) generating a decoded codeword by decoding said sym 
bols using a list decode technique in response to said 
probabilities. 

12. The method according to claim 11, wherein (i) said 
probabilities are generated using a Chase technique and (ii) 
said list decoding technique comprises a Wu list decode tech 
n1due. 

13. The method according to claim 11, wherein said 
encoded codeword comprises one of (i) a Reed-Solomon 
encoded codeword and (ii) a BCH encoded codeword. 

14. The method according to claim 11, wherein said detect 
ing comprises a soft detecting. 

15. The method according to claim 11, wherein (i) said 
decisions comprise a plurality of hard decisions and a plural 
ity of soft decisions and (ii) said probabilities are modified 
before said decoding by merging two or more of said prob 
abilities of an unreliable position in said symbols. 

16. The method according to claim 15, wherein (i) a first of 
said probabilities corresponds to one of said hard decisions, 
(ii) a second of said probabilities corresponds to one of said 
Soft decisions and (iii) said merging comprises Subtracting 
said first probability and said second probability from a pre 
determined value. 

17. The method according to claim 11, further comprising 
the step of 

adjusting a plurality of multiplicities in response to said 
probabilities, wherein said list decode technique gener 
ates said decoded codeword based on said multiplicities. 

18. The method according to claim 17, further comprising 
the step of: 

interpolating a bivariate polynomial in response to said 
multiplicities, wherein said list decode technique gener 
ates said decoded codeword based on said bivariate 
polynomial. 

19. The method according to claim 18, further comprising 
the step of: 

flipping one or more of said symbols in response to a 
constant term of said bivariate polynomial being non 
ZO. 

20. An apparatus comprising: 
means for generating (i) a plurality of symbols and (ii) a 

plurality of decision values both in response to detecting 
an encoded codeword; 

means for generating a plurality of probabilities to flip one 
or more of said symbols based on said decision values: 
and 

means for generating a decoded codeword by decoding 
said symbols using a list decode technique in response to 
said probabilities. 
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