METHOD OF PROVIDING SUSTAINED ANALGESIA WITH BUPRENORPHINE

Inventors: Robert F. Reder, Greenwich, CT (US); Robert F. Kaiko, Weston, CT (US); Paul D. Goldenheim, Wilson, CT (US)

Assignee: Purdue Pharma L.P., Stamford, CT (US)

Notice: This patent is subject to a terminal disclaimer.

Appl. No.: 11/799,608
Filed: May 1, 2007

Related U.S. Patent Documents

Reissue of: 6,231,886

U.S. Applications:

Continuation of application No. 11/033,107, filed on Jan. 11, 2005, now abandoned, which is a continuation of application No. 08/939,068, filed on Sep. 29, 1997, now Pat. No. 5,968,547.

Provisional application No. 60/038,919, filed on Feb. 24, 1997.

Field of Classification Search

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

References Cited

OTHER PUBLICATIONS

Primary Examiner—Blessing M Fubara

BTDS List of Studies (Mar. 30, 2000).

A method of effectively treating pain in humans is achieved by administering buprenorphine in accordance with first order kinetics over an initial three-day dosing interval, such that a maximum plasma concentration from about 20 pg/ml to about 1052 pg/ml is attained, and thereafter maintaining the administration of buprenorphine for at least an addition two-day dosing interval in accordance with substantially zero order kinetics, such that the patients experience analgesia throughout the at least two-day additional dosing interval.

18 Claims, 5 Drawing Sheets
U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,843,468 A</td>
<td>12/1998</td>
<td>Burkoth et al.</td>
</tr>
<tr>
<td>5,900,420 A</td>
<td>5/1999</td>
<td>Cole</td>
</tr>
<tr>
<td>5,919,473 A</td>
<td>7/1999</td>
<td>Elkhoury</td>
</tr>
<tr>
<td>5,942,530 A</td>
<td>8/1999</td>
<td>Panetta</td>
</tr>
<tr>
<td>5,968,547 A</td>
<td>10/1999</td>
<td>Reder et al.</td>
</tr>
<tr>
<td>5,989,585 A</td>
<td>11/1999</td>
<td>Bracher</td>
</tr>
<tr>
<td>6,004,969 A</td>
<td>12/1999</td>
<td>Hu</td>
</tr>
<tr>
<td>6,024,974 A</td>
<td>2/2000</td>
<td>Li</td>
</tr>
<tr>
<td>6,024,976 A</td>
<td>2/2000</td>
<td>Miranda et al.</td>
</tr>
<tr>
<td>6,096,756 A</td>
<td>8/2000</td>
<td>Crain et al.</td>
</tr>
<tr>
<td>6,165,499 A</td>
<td>12/2000</td>
<td>Kleinsorgen et al.</td>
</tr>
<tr>
<td>6,210,699 B1</td>
<td>4/2001</td>
<td>Acharaya et al.</td>
</tr>
<tr>
<td>6,231,886 B1</td>
<td>5/2001</td>
<td>Reder et al.</td>
</tr>
<tr>
<td>6,264,980 B1</td>
<td>7/2001</td>
<td>Hille</td>
</tr>
<tr>
<td>6,280,766 B1</td>
<td>8/2001</td>
<td>Becher et al.</td>
</tr>
<tr>
<td>6,344,212 B2</td>
<td>2/2002</td>
<td>Reder et al.</td>
</tr>
<tr>
<td>6,391,294 B1</td>
<td>5/2002</td>
<td>Dettmar et al.</td>
</tr>
<tr>
<td>6,436,477 B1</td>
<td>8/2002</td>
<td>Thompson</td>
</tr>
<tr>
<td>6,554,851 B1</td>
<td>4/2003</td>
<td>Palasis et al.</td>
</tr>
<tr>
<td>6,595,956 B1</td>
<td>7/2003</td>
<td>Gross et al.</td>
</tr>
<tr>
<td>6,787,149 B1</td>
<td>9/2004</td>
<td>El Khoury et al.</td>
</tr>
<tr>
<td>6,865,444 B2</td>
<td>3/2005</td>
<td>Howard</td>
</tr>
<tr>
<td>2001/0051186 A1</td>
<td>1/2001</td>
<td>Acharaya et al.</td>
</tr>
</tbody>
</table>

FOREIGN PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 2165148</td>
<td>5/1989</td>
<td></td>
</tr>
<tr>
<td>PL 166095</td>
<td>*3/1995</td>
<td></td>
</tr>
<tr>
<td>WO 9619975</td>
<td>12/1994</td>
<td></td>
</tr>
<tr>
<td>WO 95/01167</td>
<td>1/1995</td>
<td></td>
</tr>
<tr>
<td>WO 95/20393</td>
<td>8/1995</td>
<td></td>
</tr>
<tr>
<td>WO 96/19975</td>
<td>7/1996</td>
<td></td>
</tr>
<tr>
<td>WO 97/48380</td>
<td>12/1997</td>
<td></td>
</tr>
<tr>
<td>WO 1999/012559</td>
<td>3/1999</td>
<td></td>
</tr>
<tr>
<td>WO 1999/032120</td>
<td>7/1999</td>
<td></td>
</tr>
<tr>
<td>WO 2005/011579</td>
<td>2/2005</td>
<td></td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

Buprenorphine TDS Pre-NDA Study. Fluoride elimination in Buprenorphine TDS pre-NDA studies (BTDS) (Jun. 9, 1999).

Cramner K., Laudau C.J., Friedman My Turner NG, Ripa SR. The Safety and tolerability of a 7-day buprenorphine TDS in the analgesic management of pain in the elderly—a six-month evaluation. [www.ASCP.com/education/postersandpapersam05.com. Poster 34. (Study BUP3002S) (Nov. 2005).]

Definition of “Tannin,” printed on Sep. 1, 2009 from Wikipedia.org, the free encyclopedia.

Excerpt of Review for Approval issued Aug. 7, 1990 by the FDA for Duragesic®.

Introduction to the Pharmacology of Opioids (Apr. 23, 2009).

Morgan, Mary Louise Hack The Effects of Low Dose Buprenorphine on Selected Psychiatric Patients San Francisco State University, San Francisco, CA. 1992, 105 ppg.
Sorrell, DC Nursing 24:30 (1994).
Letter from counsel for Acino AG (previously Novos AG), dated Apr. 17, 2009, to EPO re EP–B–964677 opposition proceedings. (in German, w/ English translation).
Berrococo et al., “Different role of 5-HT1A and 5-HT1B receptors on the antinoiceptive and antidepressant effect of tramadol in mice” Psychopharmacology 188(1): 111–118 (2006).*
Bonica, J.J., “Past and current status of pain research and therapy” Semin. Anesth. 5:82–99 (1986).*

Heel et al., Curr. Ther. 5: 29–33 (1979).

Matussek et al., “Investigations with the specific μ–opioid receptor antagonist fentanyl in depressive patients: Growth hormone, prolactin, cortisol, noradrenaline and euphoric responses” Neuropsychobiology 21: 1–8 (1989).*

Mendelson et al., “Dose proportionality of 4, 8, 16 and 32 mg sublingual buprenorphine solutions” American Society for Clinical Pharmacology and Therapeutics 65(2): 154 Abstract P11–28 (1999).*

Noble et al., “Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs” Expert Opinion on Therapeutic Targets 11(2): 145–159 (Nov. 2007).*

Rooke et al., “Maximal skin blood flow is decreased in elderly men” J. Appl. Physiol. 77: 11–14 (1994).*

Seidenari et al., “Echographic evaluation with image analysis of normal skin: variation according to age and sex” Skin Pharmacol. 7:201–209 (1994).*

Ashcroft et al., Buprenorphine TDS: Comparison with sublingual buprenorphine in osteoarthritic pain. 10th World Congress on Pain, Aug. 19, 2002 Abstract 510-P144.

Becker et al., Transdermal buprenorphine: Abuse potential assessment in non-opioid-dependent volunteers. CPDD Jun. 16–21, 2001 Abstract 40 (w/ PowerPoint presentation).

Buprenorphine Product Photo, Norspan™ 5, 10 & 20.

Captorso et al., Matrix transdermal technology: focus on a buprenorphine transdermal system. ASHP Midyear Clinical Meeting, Dec. 2001, p. 231D Abstract (w/ PowerPoint presentation).

Hale et al., Treatment of patients with chronic low back pain with buprenorphine transdermal systems (BTDS) compared with hydrocode/acetaminophen. National Clinical Symposium of the American College of Nurse Practitioners, Oct. 20, 2001 Abstract (w/ PowerPoint presentation).

Kaiko et al., Transdermal buprenorphine. Memorial Sloan Kettering Manuscript, Chapter 15 (w/ PowerPoint Final presentation presented May, 2, 2003).

Noveck et al., Pharmacokinetics of buprenorphine transdermal system (BTDS 10) employing the LPS pyrogen model. Clinical Pharmacology & Therapeutics 69(2)3 200 2001 Abstract P1–7 (w/ PowerPoint presentation).

Reidenberg et al., Daily pharmacokinetic performance of a buprenorphine transdermal system (BTDS) for up to 7 days. Abstract 13th Annual ACCP Meeting, Sep. 23–25, 2001, p. 1027 Abstract 57 (w/ PowerPoint presentation).

Reidenberg et al., Physiologic effects of buprenorphine transdermal system (BTDS) dose escalation in the young, healthy elderly and elderly hypertensive subjects, FASEB J. 15(4), Mar. 2001 Abstract 457.3 (w/ PowerPoint presentation presented Apr. 2001).

Spyker et al., Efficacy and safety of buprenorphine transdermal system (BTDS) compared with hydrocodeine/acetaminophen in the treatment of patients with chronic back pain. J. Pain 2002 3(Suppl. 1):14 Abstract 653 (w/ PowerPoint presentation).

Spyker et al., Efficacy of buprenorphine transdermal system (BTDS) compared with oxycodone/acetaminophen and placebo in the treatment of patients with chronic back pain. Morial Convention Center, Oct. 15, 2001 Abstract (w/ PowerPoint presentation).

Spyker et al., Analgesic efficacy and safety of buprenorphine transdermal system (BTDS) in patients with osteoarthritis. The Journal of Pain 3(2, Suppl. 1):12 Abstract 645 (w/ PowerPoint presentation).

Spyker et al., Effect Size (ES) Meta-analysis Approach to Noninferiority Clinical Pharmacology & Therapeutics 69(2):33 Abstract PI1–3 (w/ PowerPoint presentation presented Mar. 5, 2001). 0.*

Ashcroft et al., Buprenorphine TDS: Comparison with sublingual buprenorphine in osteoarthritic pain. 10th World Congress on Pain, Aug. 19, 2002 Abstract 510-P144.*

Becker et al., Transdermal buprenorphine: Abuse potential assessment in non-opioid-dependent volunteers. CPDD Jun. 16–21, 2001 Abstract 40 (w/ PowerPoint presentation).

Hale et al., Analgesic efficacy of buprenorphine transdermal systems vs. Oxy/APAP in patients with chronic low back pain. The Gerontologist from the Gerontological Society of America 54th Annual Scientific Meeting, Nov. 15–18, 2001, p. 25 (w/ PowerPoint presentation first presented on May 7, 2002 and revised on Oct. 30, 2002).*

Kaiko et al., Transdermal buprenorphine. Memorial Sloan Kettering Manuscript, Chapter 15 (w/ PowerPoint Final presentation presented May, 2, 2003).*

Lasseter et al., Systemic pharmacokinetic (PK) Study of buprenorphine (B) in mild to moderate chronic hepatic impairment (CHI). Amer. Society for Clinical Pharmacology and Therapeutics 69(2) 2 (P1–4) Feb. 2001 Abstract (w/ PowerPoint presentation presented Mar. 2001).*

Noveck et al., Pharmacokinetics of buprenorphine transdermal system (BTDS 10) employing the LPS pyrogen model. Clinical Pharmacology & Therapeutics 69(2):3 2001 Abstract P1–7 (w/ PowerPoint presentation).*

Reidenberg et al., Daily pharmacokinetic performance of a buprenorphine transdermal system (BTDS) for up to 7 days. Abstract 13th Annual ACCP Meeting, Sep. 23–25, 2001, p. 1027 Abstract 57 (w/ PowerPoint presentation).*

Spyker et al., Analgesic efficacy and safety of buprenorphine transdermal system (BTDS) in patients with osteoarthritis. The Journal of Pain 3(2, Suppl. 1):12 Abstract 645 (w/ PowerPoint presentation).

Spyker et al., Effectiveness of buprenorphine transdermal system (BTDS) compared with oxycodone/acetaminophen and placebo in the treatment of patients with chronic back pain. J. Pain 2002 3(Suppl. 1):14 Abstract 653 (w/ PowerPoint presentation).

Amass et al., Detectability of buprenorphine dose alternations in opioid-dependence humans. NIDA Res Monogr. 1993;132:335.

Marquet et al. [In utero exposure to Subutex induces no or mild withdrawal syndromes in the newborn] Therapie. 1998;53:178. [In German w/ English abstract].

San Molina et al. [Addiction to buprenorphine] Rev Clin Esp. 1987;181:288–9. [In Spanish w/ English transl].

Segui et al. [Data regarding buprenorphine consumption by drug-addicted individuals] Rev Clin Esp. 1989;185:271–2. [In Spanish w/ English transl].

Tracqui et al. [Prison, drugs and death: two deaths due to overdoses in a prison environment] J Med Leg Droit Med. 1998a;41:185–92.[in French w/ English trans].*

Umbricht et al. Safety of buprenorphine: ceiling for cardiorespiratory effects at high IV doses. NIDA Res Monogr. 1998; 179:225.*

Walsh et al. The acute effects of high dose buprenorphine in non-dependent humans. NIDA Res. Monogr. 1992;119:245.*

Annual report on the state of the drugs problem in the European Union by EMCDDA. 1999 (33pp.).

Auriaconbe et al., Buprenorphine prescribed by general practitioners—A safe means of increasing patient access to treatment?, in Maintenance Treatment in Heroin Addiction—Evidence at the Crossroads (Wall and Haga, eds.), 2003 (5 pp.).

BTDS List of Studies (undated).

BTDS Planned FDA Submissions/Interactions for 2000.

Buprenorphine DEA Review DocumentsScheduling under the CSA. Feb. 2002 (26 pp.).

Buprenorphine TDS Pre-NDA Meeting, Flux rate analysis of Buprenorphine transdermal delivery systems (BTDS) (undated).

Buprenorphine transdermal system (IND 50,273) meeting minutes dated Jan. 23, 1997.

Buprenorphine transdermal system (IND 50,273) meeting minutes of Jul. 14, 1999 (8 pp.).

Buprenorphine transdermal system (IND 50,273) meeting minutes of May 16, 1996.

Buprenorphine transdermal system (IND 50,273) meeting minutes of Nov. 18, 1998.

Buprenorphine transdermal system (IND 50,273) nonclinical video conference of Feb. 24, 1997 (4 pp.).

Caplan et al., Transdermal fentanyl: An overview of clinical progression in Opioids in Anesthesia II (Estafanous, ed.), 1991(21);267–73.

Charuvastra et al., Buprenorphine versus placebo taste test. CPDD 1994 Annual Scientific Meeting Abstract.

Clarification of pharmaox requirements for NDA (IND 50,273) meeting minutes with sponsor of Apr. 13, 1999.

Clinical documentation (Part IV), vols. 6–37 Table of Contents from Grünenthal GmbH as of Dec. 13, 1999.

Comparison of the analgesic efficacy and safety of buprenorphine in the form of a sublingual tablet and a transdermal therapeutic system (TTS 50) in chronic pain, Grünenthal; GmbH—Medical Department, Germany, Report No. WIS-BUP05, May 20, 1999.

Controlled Substance Staff—Background material for peripheral and central nervous system advisory committee. Risk management plans for recently approved drugs. Mar. 15, 2001.

Coop et al., Ring constrained analogs of Buprenorphine. CPDD 1994 Annual Scientific Meeting Abstract.

Determination of the absolute bioavailability of buprenorphine from a transdermal therapeutic system with 2 different loadings (20 and 40 mg) in comparison to an intravenous administration in an open 3-way crossover trial with 24 healthy male volunteers. Grünenthal GmbH—Research Centre, Germany. Report No. WO-PK 391, May 6, 1996.

Fukazoe et al., Precipitation of morphine withdrawal by buprenorphine and butorphanol in male cynomolgus monkeys. CPDD 1994 Annual Scientific Meeting Abstracts.

Hayes, of FDA, Comments dated Mar. 31, 1997 regarding buprenorphine patch (IND 50,273), Mar. 31, 1997 (2 pp.).

Hogan & Hartson’s response dated May 9, 2002 to 67 FR 17074 of Apr. 9, 2002.

Hyman, Phelps & McNamara P.C.’s comments and objections dated Jul. 5, 2002 to the citizen petition.

Johnson et al., Daily versus alternate-day dosing of buprenorphine in the outpatient treatment of opioid dependence. CPDD 1994 Annual Scientific Meeting Abstracts.

Jones et al., Buprenorphine and naloxone interactions in heroin–dependent volunteers. CPDD 1994 Annual Scientific Meeting Abstracts.

Kumar, Chemists selling illegal drugs to be booked in the times of India, Aug. 16, 2000.

Liguori et al., Modification of respiratory effects of levorphanol by nalbuphine, butorphanol, and buprenorphine in rhesus monkeys. CPDD 1994 Annual Scientific Meeting Abstracts.

Mann et al., Buprenorphine alone or in combination with naloxone for treatment of patients medically supervised opiate withdrawal. CPDD 1994 Annual Scientific Meeting Abstracts.

McNeal, of FDA, Medical Review on IND 40,273, dated May 10, 1996.

Miller, Memorandum to Brogden, Napp Pharmaceuticals Ltd., re Evaluation of clinical data received from Grunenthal buprenorphine TTS, Nov. 11, 1999 (5 pp.).

Pharmaceuticals: Restrictions in Use and Availability, Mar. 2001 (up to p. 5 re Buprenorphine).

Pilot study on the dermal tolerability and adhesion of a buprenorphine patch and the absorption of the active substance over an application period of 72 hours in 6 healthy volunteers, Final Report, 1992.

Rigas et al., Transdermal fentanyl: Practical use in the hospital and the home (undated).

Segal et al., A double blind, multicenter clinical trial comparing doses of buprenorphine. CPDD 1994 Annual Scientific Meeting Abstracts.

Smith, Grunenthal buprenorphine transdermal system. Review of pharmacokinetic studies. 11/10/1995 (7 pp.).

The Safety of High Doses of Buprenorphine. Table of Contents and Introduction (undated).

Wang et al., Negative opiates in urine of patients on buprenorphine study. CPDD 1994 Annual Scientific Meeting Abstracts.

Wodak, Additional commentary on a proposed review of the classification of buprenorphine in Schedule III of the 1971 Convention on Psychotropic substances (undated).

Ziedonis et al., Depression in cocaine abusing opioid addicts treated with buprenorphine versus methadone. CPDD 1994 Annual Scientific Meeting Abstracts.

Colloidal Dispersions, p. 267.

Chien, pp. 31–44, col. 8 and 9.

Crummer, K. W. et al., Transdermal buprenorphine (BTDS) on associated health outcomes in th elderly. Presented at the 11th World Congress on Pain, Sydney, Australia, Aug. 21–26, 2005; Abstr 691–P297. (Study sponsored by Purdue Pharma L.P.).

Landau, C.J. et al., The safety and tolerability of buprenorphine 7-day transdermal system in patients with nonmalignant pain syndrome responsive to opioids. Presented at the 11th World Congress on Pain, Sydney Australia, Aug. 21–26, 2005; Abstr. 690–P296 (Study sponsored by Purdue Pharma L.P.).

Opana® IR ((Oxymorphone Hydrochloride) Extended Release Tablets)) Package Insert.

Philipz, J. et al., Pharmacokinetics of transdermal buprenorphine (Transtec®) in patients with renal insufficiency. Presented at the 9th Congress of the European Association for Palliative Care, Aachen, Germany, Apr. 8–10, 2005. (Study sponsored by Grünenthal GmbH).

Buprenorphine Product Photo, Norspan™ 5, 10 & 20.

Hale et al., Treatment of patients with chronic low back pain with buprenorphine transdermal systems (BTDS) compared with hydrocodone/acetaminophen. *National Clinical Symposium of the American College of Nurse Practitioners, Oct. 20, 2001 Abstract (w/ PowerPoint presentation).

Kaiko et al., Transdermal buprenorphine. *Memorial Sloan Kettering Manuscript, Chapter 15 (w/ PowerPoint Final presentation presented May 2, 2003).*
Lasseter et al., Systemic pharmacokinetic (PK) Study of buprenorphine (B) in mild to moderate chronic hepatic impairment (CHI). Amer. Society for Clinical Pharmacology and Therapeutics 69(2) 2 (P1–4) Feb. 2001 Abstract (w/ PowerPoint presentation presented Mar. 2001).

Noveck et al., Pharmacokinetics of buprenorphine transdermal system (BTDS 10) employing the LPS pyrogen model. Clinical Pharmacology & Therapeutics 69(2):3 2000 Abstract P1–7 (w/ PowerPoint presentation).

Spyker et al., Effectiveness and safety of buprenorphine transdermal system (BTDS) compared with hydrocodone/acetaminophen in the treatment of patients with chronic low back pain. J Pain 2002 3(Suppl. 1):14 Abstract 653 (w/ PowerPoint presentation).

Spyker et al., Effectiveness of buprenorphine transdermal system (BTDS) compared with oxycodone/acetaminophen and placebo in the treatment of patients with chronic back pain. Morial Convention Center, Oct. 15, 2001 Abstract (w/ PowerPoint presentation).

Spyker et al., Analgesic efficacy and safety of buprenorphine transdermal system (BTDS) in patients with osteoarthritis. The Journal of Pain 3(2, Suppl. 1):12 Abstract 645 (w/ PowerPoint presentation).

* cited by examiner
FIG. 1

CONCENTRATIONS (pg/ml) vs DAYS

O MEAN PLASMA -- SMOOTHED LINE

AMENDED

FIG. 2

PD VARIABLES (VAS)

--- DIZZY --- NAUSEA ---- P EFFECTS --- SLEEPY
METHOD OF PROVIDING SUSTAINED ANALGESIA WITH BUPRENORPNE

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

[This application is a continuation of Ser. No. 08/939, 068, filed Sep. 29, 1997 now U.S. Pat. No. 5,688,547 Provisional Application No. 60/038,919 filed Feb. 24, 1997.]

More than one reissue application has been filed for reissue on U.S. Pat. No. 6,231,886. This application is a continuation of reissue application No. 11/033,107, filed on Jan. 11, 2005, now abandoned, which is a reissue of application Ser. No. 09/311,997, filed on May 14, 1999, now U.S. Pat. No. 6,231,886, which is a continuation of application Ser. No. 08/939,068, filed on Sep. 29, 1997, now U.S. Pat. No. 5,968,547, which claims priority to U.S. Provisional Application No. 60/038,919, filed Feb. 24, 1997.

BACKGROUND OF THE INVENTION

It is the intent of all sustained-release pharmaceutical preparations to provide a longer period of pharmacologic effect after the administration of a drug than is ordinarily experienced after the administration of immediate release preparations of the same drug. Such long periods of efficacy can provide many inherent therapeutic benefits that are not achieved with corresponding immediate release preparations. The benefits of prolonged analgesia afforded by sustained release oral analgesic preparations have become universally recognized and oral opioid analgesic sustained-release preparations are commercially available.

Prolonged analgesia is particularly desirable in patients suffering from moderate to severe pain, such as cancer patients. Available oral preparations provide a duration of effect lasting e.g., about twelve hours (and sometimes 24 hours) such that a drug may only have to be administered to a patient one to three times a day. For example, morphine, which has been considered to be the prototypic opioid analgesic, has been formulated into twice-daily, oral controlled release formulations (e.g., MS Contin® tablets, commercially available from The Purdue Frederick Company).

Another approach to sustained delivery of a therapeutically active agent is transdermal delivery systems, such as transdermal patches. Generally, transdermal patches contain a therapeutically active agent (e.g., an opioid analgesic), a reservoir or matrix containing the opioid or other active ingredient(s) and an adhesive which allows the transdermal device to adhere to the skin, allowing for the passage of the active agent from the device through the skin of the patient. Once the active agent has penetrated the skin layer, the drug is absorbed into the blood stream where it can exert a desired pharmacotherapeutic effect, such as analgesia.

Transdermal delivery systems in which an opioid analgesic is the active ingredient have been contemplated. For example, a commercially available opioid analgesic transdermal formulation is Duggesic® (commercially available from Janssen Pharmaceutical; active ingredient is fentanyl). The Duragesic® patch is said to provide adequate analgesia for up to 48 to 72 hours (2 to 3 days).

Buprenorphine, a partially synthetic opiate, has also been contemplated for prolonged analgesia. Although other types of opioid analgesic transdermal formulations have been reported in the literature (such as fentanyl, discussed above), buprenorphine transdermal delivery systems are of particular interest because buprenorphine is a potent, partial agonist opioid analgesic with desirable therapeutic properties. For example, buprenorphine is 50 to 100 times more potent than morphine, but has a much safer therapeutic index than morphine (see Wallenstein S. I., et al., Crossover Trials in Clinical Analgesic Assays: Studies of Buprenorphine and Morphine, Pharmacotherapy, G(5): 225-235, 1986 hereby incorporated by reference). Further, the partial agonist properties of buprenorphine are useful in the treatment of opioid addiction.

There are several types of transdermal formulations of buprenorphine reported in the literature. See, for example, U.S. Pat. No. 5,240,711 (Hille et al.), U.S. Pat. No. 5,225, 199 (Hidaka et al.), U.S. Pat. No. 5,069,909 (Sharma et al.), U.S. Pat. No. 4,806,341 (Chien et al.), and U.S. Pat. No. 5,026,556 (Drust et al.), all of which are hereby incorporated by reference.

Buprenorphine has a low oral bioavailability and has been considered by certain of those skilled in the art to be like other narcotics which are habit-forming (see, e.g., U.S. Pat. No. 5,240,711 to Hille, et al.) and induce tolerance (see, e.g., U.S. Pat. No. 5,613,958 to Kochinke, et al.). As reported in Hille, et al., experts are of the opinion that the form of administration of a medicinal drug contributes to the risk of addiction, and higher than necessary blood levels created immediately after administration of a drug such as buprenorphine, followed by a drastic decrease (causing in succession euphoria and then ineffective pain treatment), cause the patient to start to long for the next dosage (referred to as an "iatrogenic" addiction). In the case of buprenorphine, Hille et al. reported that continuous infusion would be considered the most suitable mode to avoid such an iatrogenic addiction by providing constant blood levels; however, continuous infusion requires physician control and insertion of a cannula (which may cause inflammation at the site). This problem is considered to be overcome by Hille, et al. by virtue of their use of a transdermal delivery system which includes buprenorphine or one of its pharmaceutically compatible salts and which releases the drug over a period of at least 24 hours in a controlled manner, and ensures that the buprenorphine does not notably decompose when the transdermal delivery system is stored, and which further ensures that the buprenorphine in-vivo penetrates through the skin at the required amount.

Kochinke et al. describes a transdermal system for the modulated administration of tolerance-inducing drugs. Buprenorphine is identified therein as such a drug. The system is designed to deliver the drug through the patient’s skin via a three-phase drug delivery profile. In the first phase, which begins with patch application and ends at 2-10 hours after patch application, plasma levels of the drug are obtained. This phase is followed by a second phase in which therapeutic plasma levels of the drug are maintained. The second phase begins at about two to ten hours after patch application and ends at about 8-18 hours after patch application. In a third phase, sub-therapeutic levels of the drug are maintained, via inherent patch design and/or patch removal. The rationale behind the drug delivery profile of Kochinke et al. is that initial high blood levels may be more effective when followed by a period of decreasing dosage (down to sub-therapeutic levels), than if the blood levels are maintained either at the higher or lower level (i.e., sub-therapeutic levels) throughout the entire administration period. By virtue of this modulated profile, it is said that the onset of tolerance to the drug being administered can be prevented or greatly reduced.

Despite these advances in the art, there remains a need for methods of treating patients with buprenorphine that provide
effective analgesic levels of buprenorphine for prolonged periods of time while eliminating or minimizing dependence, tolerance, and side effects, thus providing a safe and effective method of pain management.

OBJECTS AND SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method which allows for reduced plasma concentrations of buprenorphine over a prolonged time period than possible according to prior art methods, while still providing effective pain management.

It is a further object of the present invention to provide a method for treating patients in pain with buprenorphine which achieves prolonged and effective pain management, while at the same time provides the opportunity to reduce side effects, dependence and tolerance which the patients may experience when subjected to prolonged treatment with a narcotic such as buprenorphine.

It is yet a further object to provide a method for the treatment of pain in patients by utilizing a transdermal delivery system which contains buprenorphine in a manner which maximizes the dosage interval, i.e., the interval during which the transdermal delivery system is maintained in contact with the skin, and minimizes the plasma concentrations in the patients during the dosage interval, while [surprisingly] maintaining effective pain management.

A further object of the invention is to provide a method for treating opioid-addicted patients in a manner which gradually reduces the plasma concentration of opioid in the patients plasma while at the same time providing effective plasma concentrations for those patients to be detoxified.

The invention is directed in part to the [surprising] result that effective pain management is provided by providing a substantially first order rate of increase of blood plasma concentrations of buprenorphine over about a three day (e.g., 72 hours) interval, followed by a prolonged time period of at least about two days (e.g., 48 hours) during which the plasma concentrations of buprenorphine are maintained according to substantially zero order pharmacokinetics.

In accordance with the above objects and others, the invention relates in part to a method of effectively treating pain in humans, comprising administering buprenorphine transdermally to human patients such that mean relative release rates are achieved as follows: a mean relative release rate of from about 3 ug/hr to about 86 ug/hr from initiation of the dosing interval until about 72 hours thereafter; and a mean relative release rate of about 0.3 ug/hr to about 9 ug/hr from about 72 hours after the initiation of the dosing interval until at least about 120 hours after the initiation of the dosing interval. In certain preferred embodiments, the mean relative release rate of about 0.3 ug/hr to about 9 ug/hr is maintained from about 72 hours after the initiation of the dosing interval until at least about 168 hours after the initiation of the dosing interval.

The invention is further directed to a method of effectively treating pain in humans, comprising administering buprenorphine transdermally to human patients such that a mean relative release rate from about 3 ug/hr to about 86 ug/hr of buprenorphine is achieved until about 72 hours after the application of a transdermal delivery system, and thereafter providing (either with the same transdermal delivery system or upon removal of the system and replacement with a different transdermal delivery system) a mean relative release rate of about 0.3 ug/hr to about 9 ug/hr from about 72 hours after the initiation of the dosing interval until at least about 120 hours after the initiation of the dosing interval, and preferably until at least about 168 hours after the initiation of the dosing interval.

In preferred embodiments, the method comprises the application of a transdermal delivery system which is designed to provide analgesia for about 72 hours, and which provides a release rate of the drug when applied to the skin which generally follows first order pharmacokinetics over than 72 hour period, and further comprises taking advantage of the fact that such transdermal delivery systems typically provide a dramatic drop-off in the release rate of buprenorphine after the first 72 hours, but nevertheless provide a relatively small but sufficient release of buprenorphine to maintain analgesia and desirable plasma concentrations in the patients over a further period of time of at least, e.g., preferably at least 48 hours, by leaving the transdermal delivery system in contact with the skin of the patient for...
such additional desired dosing interval, which may be as long as, e.g., an additional 96 hours or more. Surprisingly, it has been found that such transdermal dosage systems exhibit substantially zero order release after about the initial 72 hour dosage interval, and therefore are capable of maintaining effective plasma concentrations of buprenorphine for a much longer period than previously reported in the prior art. However, the inventive method also contemplates the possibility of utilizing a first transdermal delivery system which provides the desired substantially first order kinetics, and thereafter the removal of the first transdermal delivery system and its replacement with a second system which provides the desired substantially zero order pharmacokinetics for a prolonged period of time (e.g., at least about 24 hours, preferably at least about 48 hours, and most preferably about 96 hours). This second system may be a second transdermal delivery system which provides the aforementioned mean relative release rate of about 0.3 μg/hr to about 9 μg/hr. On the other hand, the second system may even utilize a different mode of administration, for example, continuous infusion.

The present invention is also related, in part, to a method of effectively treating pain in patients, comprising applying onto the skin of the patient a transdermal delivery system containing buprenorphine which transdermal delivery system delivers the buprenorphine substantially according to first order kinetics to provide a mean plasma concentration from about 24 to about 850 pg/ml about 3 days after application, and then maintaining the transdermal buprenorphine formulation in contact with the skin of the patient for about 2 to about 6 additional days without removing the transdermal formulation, so that the patient continues to receive effective analgesia from the transdermal buprenorphine formulation.

The invention also provides, in certain preferred embodiments, an improvement in a method of treating pain in human patients by applying a 3 day transdermal delivery system containing buprenorphine onto the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to provide effective analgesia in the patient for about 3 days, the improvement comprising maintaining the transdermal dosage form in contact with the patient’s skin for at least 2 to about 6 additional days beyond the 3 day dosing interval.

The present invention also relates to a method of treating opioid addiction by administering buprenorphine transdermally to human patients which provides a release rate of the drug when applied to the skin which generally follows first order pharmacokinetics over a 72 hour period, such that the addict attains a buprenorphine plasma concentration from about 1000 to about 10,000 [μg/ml] pg/ml, and preferably from about 5000 to about 8000 [μg/ml] pg/ml, about 72 hours after application of a buprenorphine transdermal delivery system, and thereafter maintaining the [transdermal] delivery system in contact with the skin of the addict such that a mean relative release rate of buprenorphine approximating zero order kinetics over an additional dosing interval of at least about 48 hours, to provide the desired therapeutic effect (detoxification). In preferred embodiments the transdermal delivery system is maintained in contact with the addict’s skin for about 7 days.

The methods of the present invention are described in further detail in the following sections. However, it should be understood that for purposes of the present invention, the following terms have the following meanings:

The term “effective analgesia” is defined for purposes of the present invention as a satisfactory reduction in or elimination of pain, along with the process of a tolerable level of side effects, as determined by the human patient. The term “effective pain management” means for purposes of the present invention as the objective evaluation of a human patient’s response (pain expressed versus side effects) to analgesic treatment by a physician as well as subjective evaluation of therapeutic treatment by the patient undergoing such treatment. The skilled artisan will understand that effective analgesia will vary according to many factors, including individual patient variations.

The term “breakthrough pain” means pain which the patient experiences despite the fact that the patient is being administered generally effective amounts of, e.g., an opioid analgesic such as buprenorphine.

The term “rescue” refers to a dose of an analgesic which is administered to a patient experiencing breakthrough pain.

The term “first order” pharmacokinetics is defined as plasma concentrations which increase over a specified time period. Drug release from suspension matrices according to first order kinetics may be defined as follows:

Amount released per area unit Q=D_{eff}^2(2C_0-C_s)C_s \cdot t

First order kinetics

D_{eff} = \frac{apparent diffusion coefficient M}{V_t} = 2 \cdot C_s \cdot \sqrt{D_{eff} \cdot t/n}

C_0 = initial drug concentration in the transdermal delivery system
C_s = saturation concentration

Assumptions: perfect sink; diffusion of dissolved drug is rate controlling; therefore,

Q = const \cdot \sqrt{t}

Drug release from solution matrices according to first order kinetics may be defined as follows:

Amount released per area unit Q = \sqrt[2]{2 \cdot C_0 \cdot \left(D_{eff} \cdot \frac{t}{n}\right)}

First order kinetics

Assumptions: perfect sink; diffusion of dissolved drug is rate controlling: M_t \leq 0.4M_0 therefore Q = const \cdot \sqrt{t}

The term “zero ordering” pharmacokinetics contemplates an amount of drug released from a buprenorphine formulation which substantially maintains plasma concentrations at a relatively constant level. For purposes of the present invention, a relatively constant plasma concentration is defined as a concentration which does not decrease more than about 30% over a 48 hour time period. Drug release from membrane-controlled systems may be defined as follows:

Amount released per area unit Q = const \cdot (zero order kinetics)

The term “mean relative rate” is determined from the amount of drug released per unit time from the transdermal delivery system through the skin and into the blood-stream of a human patient. Mean relative release rate may be expressed, e.g., as μg drug/cm²/hr. For example, a transdermal delivery system that release 1.2 mg of buprenorphine over a time period of 72 hours is considered to have a rela-
tive rate of 16.67 µg/hr. For purpose of the invention, it is understood that relative release rates may be change between any particular time points within a particular dosing interval, and the term therefore only reflects the overall release rate during the particular dosing interval. For purpose of the present invention, release rate should be considered synonymous with the term “flux rate”.

The term “sustained release” is defined for purposes of the purposes of the present as the release of the drug (opioid analgesic) from the transdermal formulation at such a rate that blood (e.g., plasma) concentration (levels) are maintained within the therapeutic range (above the minimum effective analgesic concentration or “MEAC”) but below toxic levels over a period of time of about 3 days or longer.

The term “steady state” means that the plasma concentration curve for a given drug has been substantially repeated from dose to dose.

The term “minimum effective analgesic concentration” is defined for purposes of this invention as the minimum effective therapeutic blood plasma level of the drug at which at least some pain relief is achieved for a given patient. It will be well understood by those skilled in the medical art that pain measurement is highly subjective and great individual variations may occur among patients.

For purposes of the present invention, the term “buprenorphine” shall include buprenorphine base, pharmaceutically acceptable salts thereof, stereoisomers thereof, ethers and esters thereof, and mixtures thereof.

The term “ovarian” means for the purposes of the present invention the amount of buprenorphine contained in a transdermal delivery system which is not delivered to the patient. The overage is necessary for creating a concentration gradient by means of which the active agent (e.g., buprenorphine) migrates through the layers of the transdermal dosage form to the desired site on a patient’s skin.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.

FIG. 1 is a graphical representation of the mean plasma concentration (pg/ml) over time (hours) for Comparative Example 1;

FIG. 2 is a graphical representation of the drug concentration (pg/ml) over time (hours) for Comparative Example 1;

FIG. 3 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example A;

FIG. 4 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example B (intravenous concentrations divided by 100);

FIG. 5 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example C;

FIG. 6 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example A;

FIG. 7 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example B;

FIG. 8 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example C;

FIG. 9 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example D;

FIG. 10 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example E;

FIG. 11 is a graphical representation of the plasma concentration (pg/ml) over time (hours) for Comparative Example F;

FIG. 12 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example D;

FIG. 13 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example E; and

FIG. 14 is a graphical representation pharmacodynamic variables versus time (hours) for Comparative Example F.

DETAILED DESCRIPTION

While chronic pain is often manageable with the use of the combinations of “mild” analgesics, and nonpharmacologic intervention, selected patients continue to experience unacceptably intense pain. Some patients with chronic pain cannot tolerate therapeutic doses of “mild” analgesics, while others develop pain of such severity that “strong” analgesics should be considered for subacute or chronic use.

The phrase “strong analgesics” encompasses, inter alia, several classes of opioid analgesics, including the partial agonists. Parenteral buprenorphine (a Schedule V drug under the Controlled Substances Act) is the only example of a partial agonist opioid analgesic currently marketed in the United States.

Partial agonists provide several therapeutic advantages in many patients when compared to morphine-like agonists and mixed agonists-antagonists. For example, unlike the mixed agonists-antagonists (e.g., pentazocine, butorphanol, nalbuphine), buprenorphine is derived from psychotomimetic adverse reactions; in comparison with agonists (e.g., morphine and fentanyl), the dose-responsive relationship for respiratory depression without buprenorphine is relatively low and the abuse liability of buprenorphine is less.

The chemical name of buprenorphine is 21-cyclopentyl-7,14(S)-1-hydroxy-1,2,2-trimethylpropyl]-6,14-endo-ethano-6,7,8,14-tetrahydropavine. The molecular weight of buprenorphine base is 467.7; the empirical formula is C_{23}H_{31}NO_3.

The structural formula of buprenorphine is shown below:

Buprenorphine is an opioid partial agonist and shares many of the actions, such as analgesia, of opioid agonists. A “ceiling effect” to analgesia (i.e., no additional analgesia with increasing dose) is well documented with respect to buprenorphine in many animal models. It is highly lipophilic and dissociates slowly from opioid receptors. Buprenorphine is considered in the art to be a partial agonist at μ opioid receptors in the central nervous system (“CNS”) and peripheral tissues. It is further thought that buprenorphine binds with high affinity to μ and κ receptors, and, with lower affinity, to δ receptors. The intrinsic agonist activity at the κ receptor seems to be limited and most evidence sug-
suggests that buprenorphine has antagonist activity at \(\kappa \) receptors. The lack of \(\kappa \) agonism accounts for buprenorphine’s freedom from the dysphoric acid and psychotomimetic effects often seen with agonistantagonist drugs. Other studies suggest that the opioid antagonist effects of buprenor- phi ne may be mediated via an interaction with \(\delta \) opioid receptors.

It is known in the art that buprenorphine binds slowly with, and dissociates slowly from, the \(\mu \) receptor. The high affinity of buprenorphine for the \(\mu \) receptor and its slow binding to, and dissociates from, the receptor is thought to possibly account for the prolonged duration of analgesia, and in part, for the limited physical dependence potential observed with the drug. The high affinity binding may also account for the fact that buprenorphine can block the \(\mu \) agonist effects of other administered opioids.

Like other opioid agonists, buprenorphine produces dose-related analgesia. The exact mechanism has not been fully explained, but analgesia appears to result from a high affinity of buprenorphine for \(\mu \) and possibly \(\kappa \) opioid receptors in the CNS. The drug may also alter the pain threshold (threshold of afferent nerve endings to noxious stimuli). On a weight basis, the analgesic potency of parenteral buprenorphine appears to be about 25 to about 50 times that of parenteral morphine, about 200 times that of pentazocine, and about 600 times that of meperidine. Buprenorphine may produce sex-related differences in analgesia, with females requiring substantially less drug than males to produce adequate analgesia.

Buprenorphine has a low abuse liability compared to full agonist opioids. Although infrequent, however, buprenorphine may also produce limited physical dependence, and signs and symptoms of mild withdrawal may appear following discontinuance of prolonged therapy with the drug alone. Due to buprenorphine’s slow binding with the slow dissociation from the \(\mu \) receptor, elimination of the drug from the CNS is prolonged following abrupt discontinuation; consequently, signs and symptoms of acute withdrawal are less intense than those produced by morphine and are delayed in appearance.

In patients physically dependent on opioids, buprenorphine produces many of the subjective and objective effects of opioids; however, the drug may not be a satisfactory substitute for opioid agonists in all patients physically dependent on opioids. Tolerance to the opioid agonist activity of the drug reportedly develops rarely, if at all.

Buprenorphine may produce psychological dependence. Buprenorphine is a partial opioid agonist with behavioral and psychic effects similar to morphine. Unlike pentazocine, however, buprenorphine rarely causes psychotomimetic effects. Like other opioid agonists, buprenorphine may produce increases in cerebrospinal fluid pressure.

The pharmacokinetics of buprenorphine administered parenterally and sublingually are known. Intravenous administration of a single dose of about 0.3 mg of buprenorphine has been shown to provide mean peak plasma drug concentrations of about 18 ng/ml which occur within about 2 minutes; plasma concentrations declined to about 9 and about 0.4 ng/ml after about 5 minutes and about 3 hours, respectively. Following intramuscular administration of a second 0.3-mg dose 3 hours after the initial intravenous dose, mean peak plasma buprenorphine concentrations of about 3.6 ng/ml occur within about 2 to about 5 minutes and decline to about 0.4 ng/ml after about 3 hours. Approximately 10 minutes after administration, plasma concentrations of buprenorphine are similar following intravenous or intramuscular injection.

A parenteral solution of buprenorphine hydrochloride (0.3 mg buprenorphine/ml) is commercially available as Buprenex® (Reckitt & Colman) for intramuscular and intravenous administration. The usual adult dose (over age 13) is 0.3 mg IM or IV every 6 to 8 hours as needed for moderate to severe pain. The pediatric dose in patients age 2 to 12 is 2–6 mcg/kg of body weight every 4–6 hours. The increased frequency of administration in the pediatric population is believed to be caused by increased clearance of buprenorphine compared to the adult population. The mean duration of analgesia generally is six hours following single intramuscular or intravenous doses of 0.2 to 0.3 mg or 2 to 4 mcg/kg; however, in some studies, the mean duration of analgesia reportedly ranges from 4 to 10 hours following single intramuscular doses of 0.2 to 0.6 mg and 2 to 24 hours following single intravenous doses of 0.3 mg or 2 to 15 mcg/kg.

For reference, the mean peak plasma buprenorphine concentration, time to peak concentration, and systemic availability for a 0.4 mg and 0.8 mg single-dose sublingual dose of buprenorphine has been reported by Cowan, Alan and Lewis John, W., Buprenorphine; Combating Drug Abuse With a Unique Opioids, Wiley-Liss, Inc., New York, pp. 137–147 (1995), hereby incorporated by reference in its entirety. For a 0.4 mg sublingual dose, the Cmax was reported as 0.50±0.06 ng/ml; the Tmax was reported 210±40 minutes; and a systemic availability of 57.7%. For a 0.8 mg sublingual dose, the Cmax was reported as 1.04±1.27 ng/ml; the Tmax was reported 192±49 minutes; and a systemic availability of 54.1±12.7.

It has previously been reported that a usual sublingual analgesic dose of buprenorphine is 0.2 to 0.4 mg every 8 ours (e.g., Kuhlman, J J et al. J Analyt Toxicol 1996; 20(10)). For transdermal patch watch might provide a nominal delivery rate of about 12.5 mcg/hr, the total buprenorphine administered over a 24 hour period would be about 0.3 mg, and the sublingual equivalent dose over the same period would be about 0.6 mg. For a transdermal delivery system (e.g., a transdermal patch) which might provide a nominal delivery rate of about 25 mcg/hr, the total buprenorphine administered over a 24 hour period would be about 0.6 mg, and the sublingual equivalent dose over the same period would be about 1.2 mg. For a transdermal patch which might provide a nominal delivery rate of about 50 mcg/hr, the total buprenorphine administered over a 24 hour period would be about 1.2 mg, and the sublingual equivalent dose over the same period would be about 2.4 mg. It is contemplated that one of ordinary skill in the art will appreciate that by simple pharmacutical calculations, the equivalent doses for achieving the inventive buprenorphine plasma concentration set forth herein can be determined regardless of the mode of adminis-
In the present discussion, the comparison is made between transdermal dose and sublingual dose. Distribution of buprenorphine into human body tissues and fluids has not been well characterized. Following oral or intramuscular administration in rats, buprenorphine distributes into the liver, brain, placenta, and GI tract; highest concentrations were attained in the liver within 10 or 40 minutes following oral or intramuscular administration, respectively. The hepatic extraction ratio of buprenorphine is approximately 1. The drug and its metabolites are distributed into bile. Following intravenous administration in humans, the drug rapidly distributes into cerebrospinal fluid (“CSF”) (within several minutes). CSF buprenorphine concentration appear to be approximately 15% to 25% of concurrent plasma concentrations. Buprenorphine is approximately 96% bound to plasma proteins, mainly to α and β globulins; the drug does not appear to bind substantially to albumin.

Buprenorphine is almost completely metabolized in the liver, principally by N-dealkylation, to form norbuprenorphine (N-dealkylbuprenorphine); buprenorphine and norbuprenorphine also undergo conjugation with glucuronic acid. Like the metabolites of other opioid agonists, norbuprenorphine may have weak analgesic activity; however, studies to determine the analgesic activity of the metabolites of buprenorphine have not been performed. Buprenorphine and its metabolites are excreted principally in feces via biliary elimination and also in urine. Buprenorphine is excreted in feces mainly as unchanged drug; small amounts of norbuprenorphine are also excreted in feces. The drug and its metabolites are believed to undergo enterohepatic circulation. Norbuprenorphine appears to be excreted principally in urine at a slower rate than the parent drug. Total plasma clearance of buprenorphine reportedly is approximately 1.28 L/minute in conscious postoperative patients. Limited data indicate that there is considerable interindividual variability in buprenorphine pharmacokinetics in children; however, clearance of the drug appears to be increased in children (e.g., those 5 to 7 years of age) compared with that in adults. Optimal dosing interval of buprenorphine may have to be decreased in pediatric patients.

Achieving effective analgesic opioid concentrations in patients is very complicated and involves a host of considerations, including the inherent chemical and physical properties of the opioid itself. Further considerations include in-vivo metabolism, individual patient response and tolerance. Generally, however, there is a “minimally effective analgesic concentration” (MEAC) in plasma for a particular opioid below which no analgesia is provided. There is relationship between plasma opioid levels and analgesia. Higher plasma levels are generally associated with greater pain relief, and (possibly) greater incidence and severity of side effects.

In preferred embodiments of the present invention where the patient(s) is being treated for moderate to severe pain, the buprenorphine is administered in a manner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 0.3 to about 113 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 3 to about 296 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 7 to about 644 pg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 13 to about 753 pg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 16 to about 984 pg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 20 to about 984 pg/ml at about 60 hours after initiation of the dosing interval; a mean plasma concentration from about 21 to about 1052 pg/ml at about 72 hours after initiation of the dosing interval. The buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 19 to about 1052 pg/ml over at least the next 48 hours. In further preferred embodiments, this method further comprises maintaining the dosing of buprenorphine during the at least next 48 hours in accordance with zero order kinetics. Preferably, the mean plasma concentrations are maintained after the 72 hour dosing interval as follows: a mean plasma concentration from about 23 to about 1052 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 25 to about 1052 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 22 to about 970 pg/ml at about 144 hours after initiation of the dosing interval; a mean plasma concentration from about 19 to about 841 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day dosing interval). In this embodiment where a transdermal delivery system is used, a mean relative release rate from about 3 µg/hr to about 86 µg/hr is preferably maintained from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate is preferably maintained from about 0.3 µg/hr to about 9 µg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval.

Preferably, the administration of buprenorphine is accomplished via a mode selected from the group consisting of transdermally, continuous infusion, and a mixture of transdermally and continuous infusion. Most preferably, the administration is accomplished by applying a transdermal delivery system to the skin of a patient, and maintaining said transdermal delivery system in contact with the patient’s skin for at least 5 days.

In a further preferred embodiment of the invention, buprenorphine is administered to human patients in a manner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 1 to about 28 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 14 to about 74 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 30 to about 161 pg/mg at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 51 to about 188 pg/mg at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 62 to about 246 pg/mg at about 48 hours after incubation of the dosing interval; a mean plasma concentration from about 85 to about 263 pg/mg at about 72 hours after initiation of the dosing interval. Thereafter, buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 77 to about 263 pg/mg over at least the next 48 hours. Preferably, the plasma concentrations are maintained after the 72 hour dosing interval as follows: a mean plasma concentration from about 92 to about 263 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 94 to about 263 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 86 to about 243 pg/ml at about 144 hours after initiation of the dosing interval; and a mean plasma concentration from about 77 to about 210 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day...
dosing interval). In this embodiment wherein a transdermal delivery system is used, it is preferred that a mean relative release rate of from about 13 ug/hr to about 21 ug/hr is maintained from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and that a mean relative release rate of about 1 ug/hr to about 2 ug/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval is maintained (e.g., to about 168 hours after initiation for a seven-day dosing interval).

In a further preferred embodiment of the invention, buprenorphine is administered to human patients in a manner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 0.3 to about 7 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 4 to about 19 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 7 to about 40 pg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 13 to about 47 pg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 21 to about 62 pg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 20 to about 66 pg/ml at about 72 hours after initiation of the dosing interval. Thereafter, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 19 to about 66 pg/ml over at least the next 48 hours. Preferably, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained as follows: a mean plasma concentration from about 23 to about 66 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 23 to about 66 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 22 to about 61 pg/ml at about 144 hours after initiation of the dosing interval; and a mean plasma concentration from about 19 to about 53 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day dosing interval). In embodiments where a transdermal delivery system is used, a mean relative release rate is maintained from about 3 ug/hr to about 5 ug/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 0.3 ug/hr to about 0.6 ug/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).

In a further preferred embodiment of the invention, buprenorphine is administered to human patients in a manner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 0.7 to about 14 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 7 to about 37 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 15 to about 80 pg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 25 to about 94 pg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 31 to about 123 pg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 40 to about 123 pg/ml at about 60 hours after initiation of the dosing interval; a mean plasma concentration from about 42 to about 132 pg/ml at about 72 hours after initiation of the dosing interval. Thereafter, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 38 to about 132 pg/ml over at least the next 48 hours. Preferably, the buprenorphine is further administered in a manner such that the mean plasma concentrations are maintained as follows: a mean plasma concentration from about 46 to about 132 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 47 to about 132 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 43 to about 121 pg/ml at about 144 hours after initiation of the dosing interval; and a mean plasma concentration from about 38 to about 105 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day dosing interval). In embodiments where a transdermal delivery system is used, a mean relative release rate from about 6 ug/hr to about 11 ug/hr is maintained from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 0.7 ug/hr to about 1 ug/hr is maintained from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven day dosing interval).

In a further preferred embodiment of the invention, buprenorphine is administered to human patients in a manner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 3 to about 57 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 28 to about 148 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 59 to about 322 pg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 102 to about 377 pg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 124 to about 492 pg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 159 to about 492 ml at about 60 hours after initiation of the dosing interval; a mean plasma concentration from about 169 to about 526 pg/ml at about 72 hours after initiation of the dosing interval. Thereafter, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 153 to about 526 pg/ml over at least the next 48 hours. Preferably, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained as follows: a mean plasma concentration from about 174 to about 526 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 187 to about 526 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 173 to about 485 pg/ml at about 144 hours after initiation of the dosing interval; a mean plasma concentration from about 153 to about 420 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day dosing interval). In embodiments where a transdermal delivery system is used, a mean relative release rate from about 26 ug/hr to about 43 ug/hr is maintained from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 2 ug/hr to about 4 ug/hr is maintained from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).

In a further preferred embodiment of the invention, buprenorphine is administered to human patients in a man-
ner such that the following mean plasma concentrations are achieved over a 72 hour dosing interval: a mean plasma concentration from about 4 to about 85 pg/ml at about 6 hours after initiation of the dosing interval; a mean plasma concentration from about 42 to about 222 pg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 89 to about 483 pg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 152 to about 565 pg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 186 to about 738 pg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 238 to about 738 pg/ml at 60 hours after initiation of the dosing interval; a means plasma concentration from about 254 to about 789 pg/ml at about 72 hours after initiation of the dosing interval. Thereafter, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained from about 230 to about 738 pg/ml over at least the next 48 hours. Preferably, the buprenorphine is administered in a manner such that the mean plasma concentrations are maintained as follows: a mean plasma concentration from about 276 to about 789 pg/ml at about 96 hours after initiation of the dosing interval; a mean plasma concentration from about 281 to about 789 pg/ml at about 120 hours after initiation of the dosing interval; a mean plasma concentration from about 259 to about 727 pg/ml at about 144 hours after initiation of the dosing interval; a mean plasma concentration from about 230 to about 630 pg/ml at about 168 hours after initiation of the dosing interval (for a seven day dosing interval). In embodiments where a transdermal delivery system is used, a mean relative release rate of from about 38 pg/hr to about 64 pg/hr is maintained from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 4 pg/hr to about 7 pg/hr is maintained from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).

In a further preferred embodiment of the invention, the mean relative release rates achieved over the dosing interval are as follows: a mean relative release rate of from about 3 pg/hr to about 5 pg/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 0.3 pg/hr to about 0.6 pg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).

In another preferred embodiment, the mean relative release rates achieved over the dosing interval are as follows: a mean relative release rate of from about 3 pg/hr to about 5 pg/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 0.3 pg/hr to about 0.6 pg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).

In yet another preferred embodiment, the mean relative release rates achieved over the dosing interval are as follows: a mean relative release rate of from about 3 pg/hr to about 5 pg/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 0.3 pg/hr to about 0.6 pg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after initiation of a seven-day dosing interval).
a mean relative release rate of from about 30 ηg/hr to about 64 ηg/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 4 ηg/hr to about 7 ηg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval (e.g., about 168 hours after the initiation of a seven-day dosing interval).

In yet a further preferred embodiment, the mean relative release rates achieved over the dosing interval are as follows: a mean relative release rate of from about 51 ηg/hr to about 86 ηg/hr from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval; and a mean relative release rate of about 5 ηg/hr to about 9 ηg/hr from about 72 hours after the initiation of the dosing interval until the end of the dosing interval, e.g., about 168 hours after the initiation of the dosing interval.

The method of the present invention may be accomplished by any mode of administration useful for buprenorphine known to those skilled in the art. However, certain modes of administration are more practical than others. Preferably, the mode of administration is via continuous infusion, through the oral mucosa, or most preferably, transdermally.

In embodiments of the invention where the plasma concentrations described herein are accomplished intravenous infusion, the pattern of plasma concentrations seen through time in this invention can be achieved by using the injectable, parenteral form of, e.g., buprenorphine hydrochloride suitably diluted in an intravenous infusion solution. The infusion rate would be controlled by a programmable infusion pump, to provide the desired plasma profile.

In preferred embodiments of the invention, the mode of administration of the buprenorphine is transdermal. Transdermal delivery of active agents is measured in terms of “relative release rate” or “flux”, i.e., the rate of penetration of the active agent through the skin of an individual. Skin flux may be generally determined from the following equation:

\[
\frac{dM}{dt} = \frac{J}{P} \cdot C
\]

where J is the skin flux, P is the permeability coefficient and C is the concentration gradient across the membrane, assumed to be the same as the donor concentration. M represents the cumulative amount of drug entering the blood stream. The variables dM and dt represent the change in cumulative amount of drug entering the blood stream and change in time, respectively.

It is well understood in the art of transdermal delivery systems that in order to maintain a desired flux rate for a desired dosing period, it is necessary to include an overage of active agent in the transdermal delivery system in an amount that is substantially greater than the amount to be delivered to the patient over the desired time period. For example, to maintain the desired flux rate for a three day time period, it is considered necessary to include much greater than 100% of a three day dose of an active agent in a transdermal delivery system. This overage is necessary for creating a concentration gradient by means of which the active agent migrates through the layers of the transdermal delivery system to the desired site on a patient's skin. The remainder of the active agent remains in the transdermal delivery system. It is only the portion of active agent that exits the transdermal delivery system that becomes available for absorption into the skin. The total amount of active agent absorbed into the patient's blood stream is less than the total amount available. The amount of overage to be included in a transdermal delivery system is dependent on these and other factors known to the skilled artisan.
copolymers, cellulose polymers (e.g., ethyl cellulose, and cellulose esters), polycarbonates, polytetrafluoroethylene and mixtures thereof).

Preferred materials for inclusion in the polymer matrix layer are silicone elastomers of the general polydimethylsiloxane structures, (e.g., silicon polymers). Preferred silicone polymers cross-link and are pharmaceutically acceptable. Other preferred materials for inclusion in the polymer matrix layer include: silicone polymers that are cross-linkable copolymers having dimethyl and/or dimethylvinyl siloxane units which can be crosslinked using a suitable peroxide catalyst. Also preferred are those polymers consisting of block copolymers based on styrene and 1,3-dienes (particularly linear styrene-isoprene-block copolymers of styrene-butadiene-block copolymers), polyisobutylene, polymers based on acrylate and/or methacrylate.

The polymer matrix layer may optionally include a pharmaceutically acceptable cross-linking agent. Suitable crosslinking agents include, e.g., tetrapropoxy silane. Preferred transdermal delivery systems used in accordance with the methods of the present invention include an adhesive layer to affix the dosage form to the skin of the patient for a desired period of administration, e.g., about 5 to about 8 days. If the adhesive layer of the dosage form fails to provide adhesion for the desired period of time, it is possible to maintain contact between the dosage form with the skin by, for instance, affixing the dosage form to the skin of the patient with an adhesive tape, e.g., surgical tape. It is not critical for purposes of the present invention whether adhesion of the dosage form to the skin of the patient is achieved solely by the adhesive layer of the dosage form or in connection with a peripheral adhesive source, such as surgical tape, provided that the dosage form is adhered to the patient’s skin for the requisite administration period.

The adhesive layer preferably includes using any adhesive known in the art that is pharmaceutically compatible with the dosage form and preferably hypoallergenic, such as polyacryl adhesive polymers, acrylate copolymers (e.g., polyacrylate) and polyisobutylene adhesive polymers. In other preferred embodiments of the invention, the adhesive is a pressure-sensitive contact adhesive, which is preferably hypoallergenic.

The transdermal dosage forms which can be used in accordance with the present invention may optionally include a permeation enhancing agent. Permeation enhancing agents are compounds which promote penetration and/or absorption of the buprenorphine into the blood stream of the patient. A non-limiting list of permeation enhancing agents includes polyethylene glycols, surfactants, and the like.

Alternatively, permeation of buprenorphine may be enhanced by occlusion of the dosage form after application to the desired site on the patient with, e.g., an occlusive bandage. Permeation may also be enhanced by removing hair from the application site by, e.g., clipping, shaving or use of a depilatory agent. Another permeation enhancer is heat. It is thought that heat enhancement can be induced by, among other things, using a radiating heat form, such as an infrared lamp, onto the application site after application of the transdermal dosage form. Other means of enhancing permeation of buprenorphine such as the use of iontophoretic means are also contemplated to be within the scope of the present invention.

A preferred transdermal dosage form which may be used in accordance with the present invention includes a non-permeable backing layer made, for example, of polyester, an adhesive layer made, for example of a polyacrylate; and a matrix containing the buprenorphine and other desirable pharmaceutic acids such as softeners, permeability enhancers, viscosity agents and the like.

The active agent may be included in the device in a drug reservoir, drug matrix or drug/adhesive layer. Preferably, the active agent is buprenorphine or a pharmaceutically acceptable salt thereof.

Certain preferred transdermal delivery systems also include a softening agent. Suitable softening agents include higher alcohols such as dodecanol, undecanol, octanol, esters of carboxylic acids, wherein the alcohol component may also be a polyethoxylated alcohol, diesters of dicarboxylic acids, such as di-n-butyladipate, and triglycerides particularly medium-chain triglycerides of the caprylic/capric acids or coconut oil, have proved to be particularly suitable. Further examples of suitable softeners are multivalent alcohols, for example, levulinc acid, coenzyme acids glycerol and 1,2-propanediol which can also be etherified by polyethylene glycols.

A buprenorphine solvent may also be included in the transdermal delivery systems of the present invention. Preferably, the solvents dissolve the buprenorphine to a sufficient extent thereby avoiding complete salt formation. A non-limiting list of suitable solvents include those with at least one acidic group. Particularly suitable are monoesters of dicarboxylic acids such as monomethylglutarate and monomethyladipate.

Other pharmaceutically acceptable compounds which may be included in the reservoir or matrix include: solvents, for example alcohols such as isopropanol; permeation enhancing agents such as those described above; and viscosity agents, such as cellulose derivatives, natural or synthetic gums, such as guar gum, and the like.

In preferred embodiments, the transdermal dosage form includes a removable protective layer. The removable protective layer is removed prior to application, and consists of the material used for the production of the backing layer described above provided that they are rendered removable, for example, by a silicone treatment. Other removable protective layers, for example, are polyurethane, polyethylene, treated paper, aliphatic, polystyrene or chloroform, and the like. Generally, the removable protective layer is in contact with the adhesive layer and provides a convenient means of maintaining the integrity of the adhesive layer until the desired time of application.

The composition of the transdermal dosage form used in accordance with the invention and the type of device used are not considered critical to the method of the invention, provided that the device delivers the active agent, e.g. buprenorphine, for the desired time period and at the desired flux rate and/or the desired activity rate of the transdermal dosage form.

Certain preferred transdermal dosage forms for use in accordance with the present invention are described in U.S. Pat. No. 5,240,711 (Hille et al.; assigned to LTS Lohmann Therapie-Systeme GmbH & Co.), hereby incorporated by reference. Such buprenorphine transdermal delivery systems may be a laminated composite having an impermeable backing layer containing buprenorphine, and optionally, a permeation enhancer combined with a pressure-sensitive adhesive.

A preferred transdermal dosage form in accordance with the '711 patent includes: (i) a polyester backing layer which is impermeable to buprenorphine; (ii) a polyacrylate adhesive layer; (iii) a separating polyester layer; and (iv) a matrix containing buprenorphine, a solvent for the buprenorphine, a softener and a polyacrylate adhesive. The buprenorphine solvent may or may not be present in the final formulation. The transdermal delivery device described therein includes a
backing layer which is impermeable to the active substance, a pressure-sensitive adhesive reservoir layer and optionally, a removable protective layer. Preferably, the reservoir layer includes about 10 to about 95%-wt polymeric material, about 0.1 to about 40%-wt softener, about 0.1 to about 30%-wt buprenorphine. A solvent for the buprenorphine base or pharmaceutically acceptable salt thereof may be included as about 0.1 to about 30%-wt.

In a preferred embodiment, the transdermal delivery system is prepared in accordance with Example 1 appended hereto. In this example, the transdermal delivery system was prepared in accordance with the disclosure of International Patent Application No. WO 96/1975 (Hille, et al.; assigned to LTS Lohmann Therapie-Systeme GMBH), hereby incorporated by reference. In this device, the buprenorphine transdermal delivery device contains resorption-promoting auxiliary substances. The resorption-promoting auxiliary substance forms an undercooled mass. The delivery system contains 10% buprenorphine base, 10–15% acid (such as levulinic acid), about 10% softener (such as oleoylate); 55–70% polyacrylate; and 0–10% polyvinylpyrrolidone (PVP).

In embodiments of the present invention wherein the buprenorphine plasma concentrations described herein are achieved via the use of a transdermal delivery device prepared in accordance with WO 96/1975, it is contemplated for example that the nominal delivery rate of buprenorphine from such patches will be, e.g., from about 12.5 to about 100 µg/hr. In certain preferred embodiments, in order to achieve a nominal delivery rate of 12.5 µg/hr, the total of buprenorphine included in the transdermal patch is about 5 mg, the active surface area is about 6.25 cm² and the patch size may be, e.g., about 19.4 cm². In certain preferred embodiments, in order to achieve a nominal delivery rate of 25 µg/hr, the total of buprenorphine included in the transdermal patch is about 10 mg, the active surface area is about 12.5 cm² and the patch size may be, e.g., about 30.6 cm². In certain preferred embodiments, in order to achieve a nominal delivery rate of 50 µg/hr, the total of buprenorphine included in the transdermal patch is about 20 mg, the active surface area is about 25 cm² and the patch size may be, e.g., about 51.8 cm². In certain preferred embodiments, in order to achieve a nominal delivery rate of 75 µg/hr, the total of buprenorphine included in the transdermal patch is about 30 mg, the active surface area is about 37.5 cm² and the patch size may be, e.g., about 69.8 cm². In certain preferred embodiments, in order to achieve a nominal delivery rate of 100 µg/hr, the total of buprenorphine included in the transdermal patch is about 40 mg, the active surface area is about 50 cm² and the patch size may be, e.g., about 87.8 cm².

In accordance with a method of the invention, the above-described transdermal delivery system has been designed to be adhered to the patient for only three days and is expected to release analytically effective doses of buprenorphine for only about 3 days. Instead, in accordance with the present invention, the transdermal delivery device is maintained in contact with the skin of the patient for a much longer time period, e.g., from about 5 to about 8 days, without any change in the formulation of the transdermal device itself. It has [surprisingly] been found that analgesia is maintained for this extended period of time (the time beyond the useful life designed for the transdermal formulation).

In other embodiments, the buprenorphine transdermal delivery system may be a plaster such as that described in U.S. Pat. No. 5,225,190 to Hidaka et al., hereby incorporated by reference. Such plasters include a film layer including a polyester film of about 0.5 to about 4.9 µm thickness, about 8 to about 85 g/mm strength, respectively in the two directions intersecting substantially at right angles, about 30 to about 150% elongation, in the two directions intersecting substantially at right angles and an elongation ratio of A to B of about 1.0 to about 5.0, wherein A and B represent data in two directions intersecting at right angles, and A is greater than B and wherein said polyester film includes about 0.1% to about 1.0% by weight, based on the total weight of the polyester film, of solid fine particles in which the average particle size is about 0.001 to about 3.0 µm and an adhesive layer which is composed of an adhesive containing transdermally absorbable drugs; wherein the adhesive layer is laminated on said film layer over the surface in about 2 to about 60 µm thickness. The average particle size is substantially not more than 1.5 times the thickness of the polyester film.

The transdermal delivery system used in the present invention may also be prepared in accordance with U.S. Pat. No. 5,069,909 (Sharma et al.), hereby incorporated by reference. This patent describes a laminated composite for administering buprenorphine transdermally to treat pain. The composite includes an impermeable backing layer providing a protective covering for the composite which may be made from an alastomic polymer such as polyurethane, polyether amide, or copolyester and may be about 15–250 microns in thickness. The composite further includes a reservoir lamina composed of buprenorphine (base or HCl) in an amount of 1–12% by weight and a pressure-sensitive adhesive, e.g., polyisobutylene, or a silicone adhesive such as silastic, or an acrylic adhesive, and 2–35% permeation enhancer (comprising propylene glycol monolaurate in combination with capric acid or oleic acid). The amounts of buprenorphine and permeation enhancer are sufficient to cause the buprenorphine to pass through the skin at a rate of about 1 to 100 kg/g/cm².

The transdermal delivery system used in the present invention may also be prepared in accordance with U.S. Pat. No. 4,806,341 (Chien et al.), hereby incorporated by reference. This patent describes a transdermal morphinan narcotic analgesic or antagonist (including Buprenorphine) pharmaceutical polymer matrix dosage unit having a backing layer which is substantially impervious to the buprenorphine, and a polymer matrix disc layer which is adhered to the backing layer and which has microdispersed therein effective dosage amounts of the buprenorphine. The polymer matrix may be a silicon polymer or copolymer, such as methyl silicone polymer or copolymer, or methylvinyl silicone polymer or copolymer. The polymer matrix layer preferably has dispersed therein a skin permeation enhancing agent such as isopropyl myristate, azone, or a combination of ethyl caprylate and caprylic alcohol.

The transdermal delivery system used in the present invention may also be that described in U.S. Patent No. 5,025,556 (Drust et al.), hereby incorporated by reference. Therein, compositions for the transdermal delivery of buprenorphine comprises buprenorphine in a carrier of a polar solvent material selected from the group consisting of C₅-C₆ diols, C₅-C₆ triols, and mixtures thereof, and a polar lipid material selected from the group consisting of fatty alcohol esters, fatty acid esters, and mixtures thereof; wherein the polar solvent material and the lipid material are present in a weight ratio of solvent material:lipid material of from 60:40 to about 99:1.

The transdermal delivery system used in the present invention may also be that described in U.S. Pat. No. 4,588,580 (Gale et al.), hereby incorporated by reference. That system comprises a reservoir for the drug having a skin proximal, material releasing surface area in the range of
about 5–100 cm² and containing between 0.1 and 50% by weight of a skin permeable form of the buprenorphine. The reservoir contains an aqueous gel comprising up to about 47–95% ethanol, 1–10% gelling agent, 0.1–10% buprenorphine, and release rate controlling means disposed in the flow path of the drug to the skin which limits the flux of the buprenorphine from the system through the skin. The release rate controlling means is more permeable to the buprenorphine than to the ethanol, and may be for example low density polyethylene (LDPE), ethylene-vinyl acetate (EVA) copolymers, heat sealable polyesters, and elastomeric polymer block copolymers, such as HYTREL® from DuPont. This system is said to be capable of providing an administration rate of about 10–300 μg/hr. It is contemplated that each of the transdermal delivery systems described herein (other than the system exemplified in Example 1 appended hereto) would require minor manipulation in order to achieve the methods of the invention. Such modifications are within the abilities of one skilled in the art of formulating such transdermal delivery systems. The present invention may also be accomplished via the use of a sustained oral mucosal delivery system. Such a system is described by McQuinn, R. L. et al., “Sustained Oral Mucosal Delivery in Human Volunteers J. Controlled Release; 34 1995 (243–250). Therein, oral mucosal patches were prepared by homogeneously mixing buprenorphine free base (8%), Carbopol 934 (52%), polisobutylene (35%) and polyisoprene (5%, w/w) via a two-roll mill and then compressing the mixtures to the appropriate thickness. A membrane backing (ethyl cellulose) was applied to one side of the compressed material and then circular disks (0.5 cm²) were purchased from the material. The backing was included in order to retard drug release from one side of the disk and to prevent adhesion to opposing sides. Each soft, flexible disk was approximately 0.6 mm thick and contained 2.9 mg buprenorphine. These patches were worn by the subjects for 12 hours. Gum and lip application was tested, although adhesion at the gum site was considered superior. After the initial appearance of serum buprenorphine (≥25 pg/ml), levels generally increased relatively rapidly and persisted until the patch was removed. After the patch was removed, buprenorphine levels fell promptly and were at a relatively low (but measurable) level by 24 hours post-dose. It was estimated that 0.42±0.18 mg were delivered via the gum treatment. From this discussion, it is apparent that an oral mucosal patch can be prepared which will provide plasma concentrations considered desirable according to the present invention.

A significantly higher increase in side effects such as nausea, vomiting, or drowsiness would normally be expected when high blood levels of opioid analogues are administered. The present invention, by maintaining a lower blood level of drug over the 7 day dosing period while maintaining effective pain management, has a lower incidence of side effects. In comparison, a much higher plasma concentration is seen in patients over the same period of time when a new transdermal delivery device of the same strength is put on every three days, and therefore increased side effects are expected with each new 3 day transdermal application.

In general upon administration of an opioid analgesic, there is a lag time or “hysteresis”, between the pharmacodynamic effects and the time course of opioid plasma concentration levels. Generally, peak plasma level concentrations are often attained prior to exhibition of the maximum pharmacotherapeutic or side effect response. It has been surprisingly discovered that the method according to the present invention provides a “reverse hysteresis”, i.e. the rise in plasma concentrations follow the appearance and rise of certain of the pharmacodynamic events and side effects.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.

A seven day pharmacokinetic/pharmacodynamic study was conducted on 24 healthy human patients. The subjects were comprised of approximately an equal number of male and female subjects. In this study, the buprenorphine was administered via a transdermal patch which is described in WO 96/19975.

The transdermal patch is prepared in accordance with the disclosure of WO 96/19975 for Example 1 therein as follows:

1.339 g of a 47.83 wt% polycarbonate solution with a self-netting acrylate copolymer containing 2-ethylhexylacrylates, vinyl acetates, acrylic acid (dissolving agent: ethyl acetate: heptan: isopropanol: toluene: acetylatedonate in the ratio of 37:26:24:6:1), 100 g laevulonic acid, 150 g oleyleolate, 100 g polyvinylpyrroolidone, 150 g ethanol, 200 g ethyl acetate and 100 g buprenorphine base are homogenized. The mixture is stirred for about 2 hours and then examined visually to determine if all solid substances have been dissolved. One has to control the evaporation loss by method of weighing back and makes up for the solvent with the help of ethyl acetate, if necessary. Thereafter, the mixture is put onto a 420 mm wide, transparent polyester foil, since the surface weight of the dried layer of paste is 80 g/m². The polyester foil which can be dissolved again with treatment of silicone serves as a protective layer. The solvent is removed by drying with heated air which is led over a moist lane. With this treatment of warmth not only do solvents evaporate but the laevulonic acid melts as well. Thereafter, the sealing films is covered with a polyester foil 15 μm. A surface of about 16 cm² is cut with the help of the appropriate cutting tool, and the rims that have been left between the individual systems are removed.

The formulation utilized in Example 1 is substantially the same as that described in Example 3 of WO 96/19975, which is preparing in accordance with Example 1 and is stated therein to include 10% buprenorphine, 10% levalinic acid, 10% polyvinylpyrroolidone, 10% oleyleolate, and 60% polycarbonate.

In order to achieve the nominal delivery rate of 25 μg/hr expected for the formulation of Example 1, the total of buprenorphine included in the transdermal patch is about 10 mg, the active surface area is about 12.5 cm² and the patch size may be, e.g., about 30.6 cm².

The dosing regimen was one (1) patch containing 10 mg buprenorphine base/patch reservoir applied to the subject’s skin and maintained in contact with the skin for a time period of seven (7) days.

The adhesive patch with the medication being tested was placed on the right midaxillary line at the level of the 5th intercostal space at approximately 0800 hr on day 1. For patch application, the skin was washed with lukewarm soapy water, then rinsed with clear water and left to air dry. The skin was not rubbed while it was being washed. The application site was relatively hairless. Hair was not clipped or shaved. The patches were removed by approximately 0800 hr on day 8. Following patch removal, the patch site was not washed or rubbed until the last blood collection for that treatment period was over. Each patch was placed unfolded onto its release liner and the patch/release liner unit was placed back in the correct pouch, which was then sent to a bioanalytical laboratory for residual buprenorphine assay.
Blood sampling (10 ml at each time point) started on day 1, and continued thereafter at the following times: 1 hr (pre-dose) and at regular intervals thereafter during the 7-day dosing interval.

Patch site skin observations of the patch sites were performed by the investigator/staff rating the quality of the skin at the site of the actual medication reservoir of the patch at 0 hr (prior to patch placement) and 30 minutes after patch removal. The rating scale was as follows:

- Erythema: 0=No visible redness; 1=Very slight redness (just perceptible); 2= Slight but well-defined redness; 3=Moderate intensity redness; 4=Severe erythema (dark red discoloration of the skin).

Eccema: 0=No visible reactions; 1=Very mild edema (just perceptible); 2=Mild edema (corners of the area are well defined due to noticeable swelling); 3=Moderate edema (up to 1 mm swelling in diameter); 4=Severe edema (more than 1 mm swelling in diameter, protruding over the edges of the patch).

The following pharmacokinetic parameters were estimated: AUC (0-168 hrs) (pg hr/ml)—the area under the curve from time zero to the time of last non-zero plasma buprenorphine concentration, calculated by the linear trapezoidal method; \(C_{\text{max}} \) (pg/ml)—maximum observed plasma buprenorphine concentration over the dosing interval; if \(C_{\text{max}} \) occurs at more than one time point, \(T_{\text{max}} \) is defined as the time point for the first \(C_{\text{max}} \); residual=buprenorphine remaining in used patches (mg/patch).

A summary of the plasma buprenorphine concentrations (provided in picograms per milliliter, or pg/ml), is set forth in Table 1 below:

<table>
<thead>
<tr>
<th>HOURS</th>
<th>MEAN</th>
<th>STD. DEV.</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.76</td>
<td>6.20</td>
<td>352.77</td>
</tr>
<tr>
<td>12</td>
<td>18.47</td>
<td>26.00</td>
<td>140.78</td>
</tr>
<tr>
<td>18</td>
<td>37.45</td>
<td>36.16</td>
<td>91.67</td>
</tr>
<tr>
<td>24</td>
<td>58.94</td>
<td>46.66</td>
<td>75.76</td>
</tr>
<tr>
<td>30</td>
<td>67.69</td>
<td>48.78</td>
<td>72.06</td>
</tr>
<tr>
<td>36</td>
<td>82.44</td>
<td>53.02</td>
<td>64.32</td>
</tr>
<tr>
<td>42</td>
<td>107.61</td>
<td>65.43</td>
<td>60.81</td>
</tr>
<tr>
<td>48</td>
<td>104.69</td>
<td>60.69</td>
<td>57.97</td>
</tr>
<tr>
<td>54</td>
<td>105.81</td>
<td>66.68</td>
<td>63.02</td>
</tr>
<tr>
<td>60</td>
<td>112.93</td>
<td>63.02</td>
<td>55.81</td>
</tr>
<tr>
<td>66</td>
<td>129.25</td>
<td>64.37</td>
<td>49.80</td>
</tr>
<tr>
<td>72</td>
<td>130.55</td>
<td>64.16</td>
<td>49.14</td>
</tr>
<tr>
<td>78</td>
<td>122.83</td>
<td>54.97</td>
<td>44.75</td>
</tr>
<tr>
<td>84</td>
<td>129.03</td>
<td>51.50</td>
<td>39.92</td>
</tr>
<tr>
<td>90</td>
<td>139.50</td>
<td>68.26</td>
<td>48.93</td>
</tr>
<tr>
<td>96</td>
<td>146.70</td>
<td>62.76</td>
<td>42.78</td>
</tr>
<tr>
<td>102</td>
<td>130.19</td>
<td>57.68</td>
<td>44.31</td>
</tr>
<tr>
<td>108</td>
<td>135.40</td>
<td>67.72</td>
<td>49.98</td>
</tr>
<tr>
<td>114</td>
<td>150.24</td>
<td>71.69</td>
<td>47.72</td>
</tr>
<tr>
<td>120</td>
<td>136.22</td>
<td>63.62</td>
<td>46.70</td>
</tr>
<tr>
<td>126</td>
<td>130.25</td>
<td>57.77</td>
<td>44.33</td>
</tr>
<tr>
<td>132</td>
<td>124.78</td>
<td>52.82</td>
<td>42.34</td>
</tr>
<tr>
<td>138</td>
<td>138.55</td>
<td>58.34</td>
<td>42.11</td>
</tr>
<tr>
<td>144</td>
<td>113.23</td>
<td>48.30</td>
<td>41.92</td>
</tr>
<tr>
<td>150</td>
<td>116.30</td>
<td>49.04</td>
<td>42.16</td>
</tr>
<tr>
<td>156</td>
<td>126.07</td>
<td>50.88</td>
<td>42.38</td>
</tr>
<tr>
<td>162</td>
<td>117.66</td>
<td>52.71</td>
<td>44.80</td>
</tr>
<tr>
<td>168</td>
<td>108.02</td>
<td>49.92</td>
<td>48.94</td>
</tr>
</tbody>
</table>

1 hours after administration of dose (e.g., application of patch)
2 mean blood plasma concentration for the 24 test subjects (pg/ml)
3 standard deviation of mean blood plasma concentrations
4 coefficient of variation (%)

The mean plasma concentrations are further depicted in FIG. 1 (concentration pg/ml vs. time (dys)). It is apparent from the pharmacokinetic results obtained with respect to Example 1 that the mean blood plasma concentrations rose steadily and peaked at about the 3-day time point during the dosing interval (e.g., about 72 hours after application of the patch), and thereafter [surprisingly] remained relatively steady throughout the remaining portion of the dosing interval (e.g., to about the 7-day time point, 168 hours after initiation of the dosing interval). Further, it is apparent from the buprenorphine plasma concentrations that first order kinetics were present during the first 72 hours of the dosing interval, and substantially zero order kinetics were present thereafter.

A summary of the pharmacokinetic parameters obtained for Example 1 are set forth in Table 2 below:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEAN</th>
<th>STD. DEV.</th>
<th>GEOMETRIC MEAN</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (0-168 hrs)</td>
<td>17740.68</td>
<td>7503.50</td>
<td>16203.88</td>
<td>42.30</td>
</tr>
<tr>
<td>Cmax (pg/ml)</td>
<td>184.80</td>
<td>68.84</td>
<td>171.78</td>
<td>37.25</td>
</tr>
<tr>
<td>Tmax (hrs)</td>
<td>110.50</td>
<td>26.48</td>
<td>23.96</td>
<td></td>
</tr>
</tbody>
</table>

The following pharmacodynamic parameters were assessed 5 minutes prior to each blood collection by having each patient respond to several questions by placing a vertical mark at the approximate spot on a 100 mm visual analog scale (“VAS”) anchored on one end by “not at all” and on the other end by “an awful lot”. The first question asked to the subjects was “Do you feel any effect of the drug?” After the patient marked his/her response on the VAS to this question, responses were obtained via the VAS as to whether the subjects had experienced (i) nausea, (ii) dizziness, and (iii) sleepiness. The results are set forth in Table 3. All pharmacodynamic parameters were summarized and tabulated. Then a mixed (linear or nonlinear) effect was used to model the pharmacokinetic and pharmacodynamic relationships. The results concerning pharmacodynamic parameters (VAS) are set forth in FIG. 2.

<table>
<thead>
<tr>
<th>SEVERITY</th>
<th>MILD</th>
<th>MODERATE</th>
<th>SEVERE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>CONSTIPATION</td>
<td>3</td>
<td>12.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIZZINESS</td>
<td>8</td>
<td>33.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEADACHE</td>
<td>7</td>
<td>29.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NAUSEA</td>
<td>6</td>
<td>25.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RASH</td>
<td>20</td>
<td>83.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SOMNOLENCE</td>
<td>11</td>
<td>45.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VOMITING</td>
<td>2</td>
<td>8.3</td>
<td>1</td>
<td>4.2</td>
</tr>
</tbody>
</table>

As can be seen from the results set forth in Table 3, there was only one incident of a moderate adverse event, and no incidents of severe adverse events reported by the test subjects during the application interval. Further, turning to FIG. 2, it can be seen that the level of dizziness, nausea and sleepiness significantly decreased after day 3 of the dosing interval. Other side effects such as headache, vomiting and constipation were also low in occurrence.

Table 4 provides a summary of the amount of drug which was measured as remaining in the patches which were removed from the subjects after 7 days.
Comparative Examples A–C

A three (3) treatment, randomized, crossover study was conducted in normal volunteers. The treatments consisted of
Comparative Example A (a single application buprenorphine transdermal delivery system); Comparative Example B (a
dose of buprenorphine administered intravenously) and Comparative Example C (3 sequential applications,
every three days, of the buprenorphine transdermal delivery system used in Comparative Example A). A 10–14 day
washout period intervened between the first dosing (application) day of each treatment. For the buprenorphine
transdermal delivery system, the wash-out started when the third sequential patch was removed. This study was not
analytically blinded due to analytical chemistry considerations and different sampling times.

The buprenorphine transdermal delivery system (patch) used in Comparative Examples A and C contained 250 mg
buprenorphine base, and is prepared in accordance with Example 1. It was contemplated that the buprenorphine
patch of Comparative Examples A and C would provide approximately double the dose and approximately double
the relative release rate as compared to the buprenorphine patch of Example 1. For Comparative Examples A and C, it
would be released from the patch per day, which is equivalent to an intravenous dose of 0.3 mg every 6 hours. The
reference buprenorphine intravenous injection (Comparative Example B) was 0.3 mg (Temgesic® Injectable 0.3 mg/ml,
[1 ml/4ml]).

In Comparative Example A, the buprenorphine transdermal delivery system (single dose) was adhered to a relatively
hairless area of a subject’s right thorax at the level of the fifth intercostal space in the midaxillary line at approximately 8
am on day 1 and removed at approximately 8 am on day 4. For Comparative Example A (buprenorphine transdermal
delivery system single dose), blood sampling was conducted as follows: Day 1: 0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 45
minutes and 1, 1.5, 2, 3, 4.5, 6, 10, 12, 24 hr; arterial blood sampling (left radial artery) for the first 4 hours; venous blood sampling from 2 hours post-dose to 24 hours post-dose. Therefore arterial and venous blood sampling occurred simultaneously
2, 3, and 4 hours post-dose.

With respect to Comparative Example B, buprenorphine intravenous injection (IV) injection, 0.3 mg was infused over 2
minutes at approximately 8 am on day 1 through an in-dwelling cannula in the right antecubital vein. The buprenorphine
intravenous 0.3 mg blood sampling was conducted as follows: Day 1: 0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 45 minutes and
1, 1.5, 2, 3, 4.5, 6, 10, 12, 24 hr; arterial blood sampling (left radial artery) for the first 4 hours; venous blood sampling from 2 hours post-dose to 24 hours post-dose. Therefore arterial and venous blood sampling occurred simultaneously
2, 3, and 4 hours post-dose.

With respect to Comparative Example C, the buprenorphine transdermal delivery system (3 sequential applications), was adhered to a relatively hairless area of a subject’s right thorax at the level of the fifth intercostal space
in the midaxillary line at approximately 8 am on day 1 and removed at approximately 8 am on day 4. The second
buprenorphine transdermal delivery system 50 μg/hr was placed just adjacent to the first patch after the first was
removed on day 4 at approximately 8 am and removed on day 7 at approximately 8 am. The third buprenorphine trans-
dermal delivery system 50 μg/hr was placed just adjacent to the second patch but not in the same place as the first patch
after the second patch is removed on day 7 at approximately 8 am and removed on day 10 at approximately 8 am. Blood
samples for Comparative Example C, buprenorphine transdermal delivery system 3 sequential applications, were
obtained as follows: Day 1: 0, (buprenorphine transdermal delivery system adhered), 2, 3, 4, 6, 8, 10, 12, and 16 hr; Day
2: 0, 6, 12 hr; Day 3: 0, 12 hr; Day 4: 0 (prior to removal), and 2, 3, 4, 6, 8, 10, 12, 16 hrs (after second buprenorphine transdermal delivery system adhered); Day 5: 0, 6, 12 hr; Day 6: 0, 12 hr; Day 7: 0 (prior to removal), and 2, 3, 4, 6, 8, 10, 12, 16 hrs (after third buprenorphine transdermal delivery system adhered); Day 8: 0, 6, 12 hr; Day 9: 0, 12 hr; Day
10: 0 (prior to buprenorphine transdermal delivery system removal), and 0.25, 0.5, 0.75, 1, 2, 3, 6, 12 hr (post-removal);
the wash-out period started after patch removal on Day 10; Day 11: 0, 12 hr; Day 12: 0, 12 hr; and Day 13: 0.

The pharmacokinetic variables determined for Comparative Examples A–C were as follows:

\[
\text{AUC}_{(0-24h)}: \text{pg-hr/ml—The area under the curve, as calculated by the linear trapezoidal method, up to the last observed value;}
\]

\[
\text{AUC}_{(0-12h)}: \text{pg-hr/ml—The area under the curve, calculated using the linear trapezoidal method;}
\]

\[
\text{C}_{\text{max}}: \text{pg/ml—Maximum measured plasma buprenorphine over the time span specified;}
\]

\[
\text{T}_{\text{max}}: \text{hrs—Time of the maximum measured plasma buprenorphine; when the maximum value occurs in more than one time point, T}_{\text{max}} \text{ is defined as the first time point with this value;}
\]

\[
\text{T}_{\text{(1/2)ecl/m}}: \text{The plasma half life of buprenorphine elimination, defined as In2/K}_{\text{el,m}} \text{ where K}_{\text{el,m}} \text{ is the apparent first order elimination constant.}
\]

\[
\text{C}_{\text{t}}: \text{ml/min or 1/hr—Total clearance characterizes the}
\]

\[
\text{V}_{\text{c}}: 1 \text{ or 1 kg—Hypothetical volumes in which the drug is}
\]

\[
\text{Absorption Rate: μg/hr—The rate at which buprenorphine enters the systemic circulation.}
\]

Plasma concentration data was analyzed using standard noncompartmental and compartmental techniques to derive
pharmacokinetic parameters. In addition, various exploratory methods including fitting the intravenous data to
pharmacokinetic models to determine which model best describes the data, and deconvolution analysis to determine
the absorption rate was employed. Other parameters such as clearance, volumes of distribution, absorption rate, amount
absorbed and bioavailability were determined by either standard noncompartmental or compartmental analysis or
A summary of plasma buprenorphine concentrations for Comparative Example A is provided in Table 5 below:

TABLE 5

<table>
<thead>
<tr>
<th>HOUR</th>
<th>MEAN PLASMA CONC. (pg/ml)</th>
<th>STD. DEV</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.04</td>
<td>5.87</td>
<td>287.10</td>
</tr>
<tr>
<td>3</td>
<td>7.96</td>
<td>16.28</td>
<td>204.47</td>
</tr>
<tr>
<td>4</td>
<td>14.84</td>
<td>18.63</td>
<td>125.51</td>
</tr>
<tr>
<td>6</td>
<td>23.49</td>
<td>25.81</td>
<td>108.85</td>
</tr>
<tr>
<td>8</td>
<td>42.34</td>
<td>37.91</td>
<td>89.52</td>
</tr>
<tr>
<td>10</td>
<td>72.03</td>
<td>71.36</td>
<td>99.07</td>
</tr>
<tr>
<td>12</td>
<td>85.96</td>
<td>68.69</td>
<td>79.90</td>
</tr>
<tr>
<td>16</td>
<td>133.89</td>
<td>103.43</td>
<td>77.25</td>
</tr>
<tr>
<td>24</td>
<td>175.58</td>
<td>120.17</td>
<td>68.44</td>
</tr>
<tr>
<td>30</td>
<td>169.15</td>
<td>108.61</td>
<td>64.22</td>
</tr>
<tr>
<td>36</td>
<td>200.16</td>
<td>134.45</td>
<td>67.17</td>
</tr>
<tr>
<td>48</td>
<td>251.10</td>
<td>156.66</td>
<td>62.39</td>
</tr>
<tr>
<td>60</td>
<td>323.11</td>
<td>125.01</td>
<td>49.98</td>
</tr>
<tr>
<td>72</td>
<td>286.50</td>
<td>131.58</td>
<td>45.92</td>
</tr>
<tr>
<td>78</td>
<td>188.73</td>
<td>61.26</td>
<td>33.60</td>
</tr>
<tr>
<td>84</td>
<td>114.68</td>
<td>52.72</td>
<td>45.97</td>
</tr>
<tr>
<td>96</td>
<td>90.75</td>
<td>39.12</td>
<td>43.11</td>
</tr>
<tr>
<td>108</td>
<td>56.82</td>
<td>25.66</td>
<td>45.17</td>
</tr>
<tr>
<td>120</td>
<td>44.85</td>
<td>23.80</td>
<td>53.06</td>
</tr>
<tr>
<td>132</td>
<td>30.40</td>
<td>21.87</td>
<td>71.95</td>
</tr>
<tr>
<td>144</td>
<td>29.14</td>
<td>20.27</td>
<td>69.58</td>
</tr>
</tbody>
</table>

A summary of plasma buprenorphine concentration (pg/ml) for Comparative Example C at each sampling time is set forth in Table 6 below:

TABLE 6

<table>
<thead>
<tr>
<th>HOUR</th>
<th>MEAN PLASMA CONC. (pg/ml)</th>
<th>STD. DEV</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.54</td>
<td>2.63</td>
<td>489.90</td>
</tr>
<tr>
<td>3</td>
<td>5.70</td>
<td>13.18</td>
<td>231.23</td>
</tr>
<tr>
<td>4</td>
<td>10.33</td>
<td>14.64</td>
<td>141.71</td>
</tr>
<tr>
<td>6</td>
<td>28.84</td>
<td>31.19</td>
<td>108.31</td>
</tr>
<tr>
<td>8</td>
<td>54.62</td>
<td>65.83</td>
<td>120.52</td>
</tr>
<tr>
<td>10</td>
<td>78.92</td>
<td>81.23</td>
<td>103.93</td>
</tr>
<tr>
<td>12</td>
<td>95.14</td>
<td>75.70</td>
<td>79.57</td>
</tr>
<tr>
<td>16</td>
<td>162.26</td>
<td>114.80</td>
<td>70.75</td>
</tr>
<tr>
<td>24</td>
<td>218.57</td>
<td>153.58</td>
<td>70.27</td>
</tr>
<tr>
<td>30</td>
<td>206.10</td>
<td>141.70</td>
<td>68.75</td>
</tr>
<tr>
<td>36</td>
<td>205.08</td>
<td>110.76</td>
<td>54.01</td>
</tr>
<tr>
<td>48</td>
<td>265.04</td>
<td>123.66</td>
<td>46.66</td>
</tr>
<tr>
<td>60</td>
<td>265.18</td>
<td>133.48</td>
<td>52.11</td>
</tr>
<tr>
<td>72</td>
<td>306.02</td>
<td>152.77</td>
<td>49.02</td>
</tr>
<tr>
<td>74</td>
<td>278.22</td>
<td>135.14</td>
<td>48.57</td>
</tr>
<tr>
<td>75</td>
<td>245.91</td>
<td>112.06</td>
<td>45.82</td>
</tr>
<tr>
<td>76</td>
<td>237.01</td>
<td>83.41</td>
<td>35.19</td>
</tr>
<tr>
<td>78</td>
<td>213.54</td>
<td>94.42</td>
<td>44.22</td>
</tr>
<tr>
<td>80</td>
<td>215.45</td>
<td>103.75</td>
<td>48.15</td>
</tr>
<tr>
<td>82</td>
<td>216.00</td>
<td>107.08</td>
<td>49.85</td>
</tr>
<tr>
<td>84</td>
<td>210.52</td>
<td>107.67</td>
<td>51.14</td>
</tr>
<tr>
<td>88</td>
<td>219.77</td>
<td>110.46</td>
<td>50.26</td>
</tr>
<tr>
<td>96</td>
<td>269.91</td>
<td>134.61</td>
<td>49.87</td>
</tr>
<tr>
<td>102</td>
<td>205.54</td>
<td>102.03</td>
<td>49.64</td>
</tr>
<tr>
<td>108</td>
<td>225.11</td>
<td>87.97</td>
<td>39.08</td>
</tr>
<tr>
<td>120</td>
<td>310.27</td>
<td>153.57</td>
<td>49.50</td>
</tr>
<tr>
<td>132</td>
<td>300.34</td>
<td>157.05</td>
<td>52.29</td>
</tr>
<tr>
<td>144</td>
<td>305.99</td>
<td>139.75</td>
<td>52.21</td>
</tr>
<tr>
<td>146</td>
<td>301.39</td>
<td>141.37</td>
<td>46.91</td>
</tr>
<tr>
<td>147</td>
<td>289.96</td>
<td>132.91</td>
<td>45.84</td>
</tr>
<tr>
<td>148</td>
<td>287.68</td>
<td>151.93</td>
<td>52.81</td>
</tr>
<tr>
<td>150</td>
<td>260.04</td>
<td>130.19</td>
<td>50.07</td>
</tr>
<tr>
<td>152</td>
<td>236.61</td>
<td>119.77</td>
<td>50.62</td>
</tr>
<tr>
<td>154</td>
<td>284.15</td>
<td>158.84</td>
<td>55.90</td>
</tr>
</tbody>
</table>

A summary of mean plasma buprenorphine concentrations (pg/ml) at each sampling time for Comparative Example B (buprenorphine intravenous 0.3 mg single dose) is provided in Table 7 below:

TABLE 7

<table>
<thead>
<tr>
<th>HOUR</th>
<th>MEAN PLASMA CONC. (pg/ml)</th>
<th>STD. DEV</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>14812.04</td>
<td>11319.10</td>
<td>76.42</td>
</tr>
<tr>
<td>0.03</td>
<td>31052.04</td>
<td>16156.81</td>
<td>52.03</td>
</tr>
<tr>
<td>0.05</td>
<td>24547.00</td>
<td>16461.86</td>
<td>67.06</td>
</tr>
<tr>
<td>0.08</td>
<td>6418.80</td>
<td>1975.26</td>
<td>30.79</td>
</tr>
<tr>
<td>0.17</td>
<td>3360.76</td>
<td>2457.58</td>
<td>73.13</td>
</tr>
<tr>
<td>0.25</td>
<td>1747.96</td>
<td>465.81</td>
<td>26.65</td>
</tr>
<tr>
<td>0.33</td>
<td>1210.08</td>
<td>210.28</td>
<td>18.12</td>
</tr>
<tr>
<td>0.42</td>
<td>1050.00</td>
<td>242.10</td>
<td>23.06</td>
</tr>
<tr>
<td>0.50</td>
<td>951.52</td>
<td>207.25</td>
<td>22.25</td>
</tr>
<tr>
<td>0.75</td>
<td>692.92</td>
<td>175.29</td>
<td>25.30</td>
</tr>
<tr>
<td>1.00</td>
<td>584.40</td>
<td>148.93</td>
<td>25.48</td>
</tr>
<tr>
<td>1.50</td>
<td>457.44</td>
<td>131.44</td>
<td>28.73</td>
</tr>
<tr>
<td>2.00</td>
<td>335.12</td>
<td>79.36</td>
<td>23.08</td>
</tr>
<tr>
<td>3.00</td>
<td>238.80</td>
<td>63.03</td>
<td>26.39</td>
</tr>
<tr>
<td>4.00</td>
<td>170.87</td>
<td>49.84</td>
<td>29.17</td>
</tr>
</tbody>
</table>

A summary of the maximum concentration (Cmax) for Comparative Examples A–C measured in pg/ml is set forth in Table 8 below:

TABLE 8

<table>
<thead>
<tr>
<th>Cmax (pg/ml) Values for Comparative Examples A–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Example A</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Geometric Mean</td>
</tr>
<tr>
<td>CV %</td>
</tr>
</tbody>
</table>

A summary of Tmax values obtained for Comparative Examples A–C is set forth in Table 9 below:
The pharmacodynamics were determined via VAS “drug effect” observations. The subject was asked “do you feel any of the drug?” , the subject then rated the item by placing a vertical mark along a 100 mm visual analog scale (VAS) anchored on one end by “not at all” and on the other end by “an awful lot”. The “drug effect” question was assessed just prior to each blood sample during the study. The following adverse effects were elicited just prior to blood sampling using the VAS: nausea; dizziness; and sleepiness. Asymmetric blood sampling was used in this study due to the number of sampling times.

The pharmacokinetic results (concentration in pg/ml vs. hours) for Comparative Examples A–C are depicted in FIGS. 3–5, respectively. FIG. 4 depicts the plasma concentration obtained divided by 100. The pharmacokinetic results (PD variables) (VAS) for Comparative Examples A–C, B, A are depicted in FIGS. [6–8] 6, 7, 8, respectively.

Comparative Examples D–F

The bioequivalence between a buprenorphine transdermal delivery system in accordance with Example 1 is compared to identify prepared patches having different sizes and therefore different amounts of buprenorphine contained therein.

Comparative Example D utilizing a patch identical in size and containing the same amount of buprenorphine as Example 1. The total of buprenorphine included in the transfer patch is 10 mg, the active surface area is 12.5 cm² and the patch size is 30.6 cm². In Comparative Example E, two patches are utilized, each patch including total of buprenorphine of about 5 mg, and having an active surface area of 6.25 cm² and a patch size of 19.4 cm². Comparative Example F allows for the determination area of the dose proportionality of a buprenorphine transdermal delivery system (patch) having twice the dose as compared to Example 1. In Comparative Example F, the total of buprenorphine include in the transdermal patch is 20 mg, the active surface area is 25 cm² and the patch size is 51.8 cm². The study was conducted via a 3-way cross-over design. The patches were left in place for 72 hours and then removed.

Table 11 provides a summary of means plasma buprenorphine concentrations (pg/ml) at each sampling time for Comparative Example D.
Table 15 provides a summary of mean plasma buprenorphine concentrations for Comparative Example F:

TABLE 15

<table>
<thead>
<tr>
<th>HOURS</th>
<th>MEAN PLASMA CONC. (pg/ml)</th>
<th>STD. DEV.</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5.23</td>
<td>13.21</td>
<td>252.44</td>
</tr>
<tr>
<td>6</td>
<td>34.49</td>
<td>55.11</td>
<td>159.80</td>
</tr>
<tr>
<td>9</td>
<td>58.67</td>
<td>91.17</td>
<td>155.40</td>
</tr>
<tr>
<td>12</td>
<td>94.52</td>
<td>111.07</td>
<td>117.51</td>
</tr>
<tr>
<td>16</td>
<td>137.07</td>
<td>118.65</td>
<td>86.56</td>
</tr>
<tr>
<td>24</td>
<td>195.58</td>
<td>148.53</td>
<td>75.94</td>
</tr>
<tr>
<td>36</td>
<td>229.52</td>
<td>154.25</td>
<td>67.20</td>
</tr>
<tr>
<td>48</td>
<td>283.35</td>
<td>124.06</td>
<td>43.78</td>
</tr>
<tr>
<td>60</td>
<td>341.17</td>
<td>173.81</td>
<td>55.32</td>
</tr>
<tr>
<td>72</td>
<td>366.60</td>
<td>124.57</td>
<td>40.63</td>
</tr>
<tr>
<td>84</td>
<td>269.66</td>
<td>62.84</td>
<td>29.97</td>
</tr>
<tr>
<td>96</td>
<td>143.50</td>
<td>43.88</td>
<td>30.62</td>
</tr>
<tr>
<td>108</td>
<td>113.53</td>
<td>70.33</td>
<td>61.95</td>
</tr>
<tr>
<td>120</td>
<td>78.71</td>
<td>37.86</td>
<td>47.59</td>
</tr>
<tr>
<td>132</td>
<td>57.29</td>
<td>47.92</td>
<td>63.64</td>
</tr>
<tr>
<td>144</td>
<td>44.45</td>
<td>32.26</td>
<td>72.57</td>
</tr>
</tbody>
</table>

Table 16 provides a summary of the dose-corrected pharmacokinetic parameters for Comparative Example F. The values are calculated based on a Cmax value which is one-half the actual reported value:

TABLE 16

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>ARITHMETIC MEAN (SE)</th>
<th>GEOMETRIC MEAN (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (0-infinity)</td>
<td>14761.59 (1449.7)</td>
<td>13540.78 (1228.3)</td>
</tr>
<tr>
<td>AUC (0-last)</td>
<td>12558.04 (1313.9)</td>
<td>11458.76 (1087.0)</td>
</tr>
<tr>
<td>Cmax (pg/ml)</td>
<td>191.84 (16.93)</td>
<td>179.60 (14.23)</td>
</tr>
<tr>
<td>T 1/2 Elim. (hrs)</td>
<td>26.59 (1.52)</td>
<td>258.5 (1.89)</td>
</tr>
<tr>
<td>Tmax (hrs)</td>
<td>72.57 (1.89)</td>
<td>72.57 (1.89)</td>
</tr>
</tbody>
</table>

Table 17 provides a summary of the buprenorphine patch residuals for each of Comparative Examples D–F:

TABLE 17

<table>
<thead>
<tr>
<th>AMOUNT LEFT IN PATCH (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. D</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>MEAN</td>
</tr>
<tr>
<td>SE</td>
</tr>
</tbody>
</table>

The pharmacokinetic results (concentration in pg/ml vs. hours) for Comparative Examples D–F are depicted in FIGS. 9–11, respectively. The pharmacodynamic results (PD variables (VAS)) for Comparative Examples A–C D–F are depicted in FIGS. 12–14, respectively.

In order to readily consider the results obtained comparing the method of the present invention to the Comparative Examples, the following tables are provided.

Table 18 provides a direct comparison of the plasma concentrations obtained from Example 1 (a 10 mg buprenorphine patch maintained in contact with the subject’s skin for 7 days) to Comparative Example A (20 mg buprenorphine patch left on the subjects’ skin for only 3 days, then removed) to Comparative Example C (three sequential applications of a 20 mg buprenorphine patch left on the subjects’ skin for only 3 days, then removed). In order to compare the plasma concentrations, the plasma concentrations of Comparative Examples A and C are also presented at 50% concentrations for each time interval:

TABLE 18

<table>
<thead>
<tr>
<th>HOUR (DAY)</th>
<th>Ex. 1</th>
<th>COMPARATIVE EXAMPLE C</th>
<th>COMPARATIVE EXAMPLE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 (1)</td>
<td>58.94</td>
<td>218.57</td>
<td>109.29</td>
</tr>
<tr>
<td>48 (2)</td>
<td>104.69</td>
<td>265.04</td>
<td>132.52</td>
</tr>
<tr>
<td>72 (3)</td>
<td>130.95</td>
<td>306.02</td>
<td>153.01</td>
</tr>
<tr>
<td>96 (4)</td>
<td>146.70</td>
<td>369.91</td>
<td>134.96</td>
</tr>
<tr>
<td>120 (5)</td>
<td>136.22</td>
<td>310.27</td>
<td>155.14</td>
</tr>
<tr>
<td>144 (6)</td>
<td>115.23</td>
<td>305.59</td>
<td>153.00</td>
</tr>
<tr>
<td>168 (7)</td>
<td>102.00</td>
<td>340.71</td>
<td>170.36</td>
</tr>
<tr>
<td>192 (8)</td>
<td>305.95</td>
<td>197.08</td>
<td></td>
</tr>
</tbody>
</table>

The data presented in Table 18 shows that surprisingly plasma levels effective to provide analgesia were present in Example 1 (patch remained on skin for 7 days) even 7 days after application of the patch; whereas in Comparative Example A (patch removed after 3 days), blood levels fell dramatically once the patch was removed, such that plasma levels which would be indicative of ineffective treatment for the dosage of buprenorphine occurred not long after patch removal. On the other hand, turning to Comparative Example C, it is apparent that the plasma levels obtained from 3-day sequential administration of the buprenorphine patch resulted in significant increases in Cmax levels during each day dosing interval. This fact is confirmed by the graph of plasma concentration over time for Comparative Example C provided in FIG. 3. In contrast, the plasma level for Example 1 remained substantially level over the time-frame of 72 hours–168 hours after patch application. The results indicate that the method of the present invention has the surprising benefit of reducing plasma concentrations of buprenorphine required to allow patients to experience effective analgesia. Furthermore, comparing the VAS results graphically depicted for Example 1 to Comparative Example C, it is apparent that side effects were significantly reduced according to the method of Example 1, during the 7-day dosage interval. Further benefits are obtained from the invention respect to modes of administration other than (transdermally) transdermally where the large plasma concentration peaks obtained in the prior art, e.g., through intravenous dosing, can be avoided. For example, in Comparative Example B, a Cmax in excess of about 30,000 pg/ml was obtained.

Table 19 provides a direct comparison of the plasma concentrations of Example 1 (a 10 mg buprenorphine patch
maintained in contact with the subjects' skin for 7 days) to Comparative Example D (same 10 mg buprenorphine patch left on the subjects' skin for only 3 days, then removed) to Comparative Example E (two 5 mg buprenorphine patches left on the subjects' skin for 3 days, then removed):

<table>
<thead>
<tr>
<th>TABLE 19</th>
<th>COMPARISON OF PLASMA CONCENTRATIONS (PGML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours (Post-Application)</td>
<td>Ex. 1 MEAN CONC.</td>
</tr>
<tr>
<td>3</td>
<td>1.92</td>
</tr>
<tr>
<td>6</td>
<td>1.76</td>
</tr>
<tr>
<td>9</td>
<td>3.85</td>
</tr>
<tr>
<td>12</td>
<td>18.47</td>
</tr>
<tr>
<td>15</td>
<td>89.85</td>
</tr>
<tr>
<td>24</td>
<td>58.84</td>
</tr>
<tr>
<td>30</td>
<td>67.69</td>
</tr>
<tr>
<td>36</td>
<td>82.48</td>
</tr>
<tr>
<td>48</td>
<td>104.69</td>
</tr>
<tr>
<td>60</td>
<td>112.93</td>
</tr>
<tr>
<td>72</td>
<td>130.55</td>
</tr>
<tr>
<td>120</td>
<td>129.03</td>
</tr>
<tr>
<td>240</td>
<td>146.70</td>
</tr>
<tr>
<td>108</td>
<td>135.40</td>
</tr>
<tr>
<td>120</td>
<td>136.22</td>
</tr>
<tr>
<td>144</td>
<td>124.79</td>
</tr>
<tr>
<td>150</td>
<td>113.23</td>
</tr>
</tbody>
</table>

The results depicted in Table 19 confirm that the method according to the present invention provides effective plasma levels over the 7-day period; whereas if the patch (or patches) containing the same dose is removed after 3 days, the buprenorphine plasma levels fall precipitously over the next 24 hour interval to levels which would be indicative of ineffective treatment for the dosage of buprenorphine. This result is surprising in view of the fact that the patches are designed to provide effective analgesic levels of buprenorphine only for a three day period—these patches are not designed to provide effective plasma levels of buprenorphine over a substantially longer period of time. (It must be noted that the absolute mean plasma levels of Example 1 and the Comparative Examples are not directly comparable because these results are taken from different studies involving different subjects, etc.).

Further surprising results are apparent from the data provided in Table 20 below, which compares the amount of buprenorphine retained in the transdermal delivery systems in Example 1 to certain Comparative Examples, as well as their relative release rates:

<table>
<thead>
<tr>
<th>TABLE 20</th>
<th>BUPRENORPHINE PATCH RELEASE RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch strength</td>
<td>Example</td>
</tr>
<tr>
<td>5 MG</td>
<td>E</td>
</tr>
<tr>
<td>10 MG</td>
<td>D</td>
</tr>
<tr>
<td>20 MG</td>
<td>F</td>
</tr>
<tr>
<td>20 MG</td>
<td>A, C</td>
</tr>
<tr>
<td>10 MG</td>
<td>I</td>
</tr>
</tbody>
</table>

RR = relative release rate

The total amount of buprenorphine released for Example 1 (1.40 mg) may be expressed as 0.2 mg buprenorphine administered per day; when averaged over the seven day dosing interval. In contrast, Comparative Example F D (same patch over 3 days) released a total of 1.23 mg, which may be expressed as 0.41 mg buprenorphine administered per day. [Comparing the cumulative amount released for Example 1 as compared to Comparative Example D, it can be seen that the present invention results in one-half the dose (mg/patch/day) which would be administered based on prior art methodology. Further, it is apparent that almost all of the buprenorphine dose for Example 1 is released over the first 72 hours (3 days)—1.23 mg released from the 10 mg patch over 3 days is 87.86% of the 1.4 mg released from the same patch over 7 days. It is surprising that analgesia can be maintained given the very low amount of buprenorphine released from the 10 mg patch over the 72–168 hour dosing interval.]

Further, the results indicate that over the first 72 hours the buprenorphine is released substantially according to first order kinetics, whereas during the 72–168 hour time period after administration, the buprenorphine is released substantially according to zero order kinetics. This is confirmed from the plasma concentration curve provided for Example 1 in FIG. 1. [Thus, during the first 72 hours after administration according to the invention, a relative release rate of 17.1 µg/hr is obtained (1.23 mg divided by 72 hours); whereas from 72–168 hours after administration according to the invention, the relative release rate may be lowered to only 1.77 µg/hr (1.40 mg minus 1.23 mg=0.17 mg divided by 96 hours) while maintaining effective analgetic levels of buprenorphine in human patients.]

EXAMPLE 2

In Example 2, the method of the present invention is accomplished via a different mode of administration, i.e., intravenous infusion. The pattern of plasma concentrations seen through time in this invention can be achieved by using an intravenous infusion using the injectable, parenteral form of, e.g., buprenorphine hydrochloride suitably diluted in an intravenous infusion solution. The infusion rate would be controlled by a programable infusion pump, to provide the desired plasma concentration profile. The rate of infusion through time can be determined and adjusted based upon pharmacodynamic parameters such as pupil size (pupilometry) or pain relief (analgesia) or by the results of a suitable bioassay to determine the plasma buprenorphine concentrations at any particular point in time. In addition, it is possible to model the desired curve using pharmacokinetic modeling techniques; in this way the desired curve can be approximated without need for pharmacokinetic or pharmacodynamic monitoring. However, periodic plasma concentration determinations would make the model more accurate and allow further adjustment of the infusion rate. Following the method set forth above, mean plasma concentrations are obtained as follows: a mean plasma concentration from about 1 to about 28 µg/ml at about 6 hours after initiation of dosing interval; a mean plasma concentration from about 14 to about 74 µg/ml at about 12 hours after initiation of the dosing interval; a mean plasma concentration from about 30 to about 161 µg/ml at about 24 hours after initiation of the dosing interval; a mean plasma concentration from about 51 to about 188 µg/ml at about 36 hours after initiation of the dosing interval; a mean plasma concentration from about 62 to about 246 µg/ml at about 48 hours after initiation of the dosing interval; a mean plasma concentration from about 79 to about 246 µg/ml at about 60 hours after initiation of the dosing interval; a mean plasma concentration from about 85 to about 263 µg/ml at about 72 hours after initiation of the dosing interval; a mean plasma concentration from about 92 to about 263 µg/ml at about 96 hours after initiation of the dosing interval and plasma concentrations from about 94 to about 263 µg/ml at about 120 hours after initia-
A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing buprenorphine onto the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system providing a substantially first order plasma level increase of buprenorphine from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval, and substantially zero order plasma level fluctuation of buprenorphine from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for [at least 2 to about 4] additional days beyond said [3] day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing material.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for [at least 2 to about 4] additional days beyond said 3 day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing interval.

A method of treating pain in a human patient comprising:

administering an opioid transdermally to said human patient by applying a transdermal delivery system comprising an opioid to the skin of a patient, and maintaining said transdermal delivery system in contact with the skin of said patient for [at least 7] days, said transdermal delivery system containing a substantially first order plasma level increase of said opioid from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval and providing a substantially zero order plasma level fluctuation of said opioid from about 72 hours after the initiation of the dosing interval until the end of [at least] [five] seven-day dosing interval.

The method of claim 10 wherein said opioid is buprenorphine.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for [at least 2 to about 4] additional days beyond said 3 day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing interval.

The method of claim 12 wherein said transdermal delivery system provides a substantially first order plasma level increase of buprenorphine from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval, and substantially zero order plasma level fluctuation of buprenorphine from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

The method of claim 14 wherein said transdermal delivery system is maintained on the skin of the patient for about 7 days.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for 4 additional days beyond said 3 day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing interval.

A method of treating pain in a human patient comprising:

administering an opioid transdermally to said human patient by applying a transdermal delivery system comprising an opioid to the skin of a patient, and maintaining said transdermal delivery system in contact with the skin of said patient for 7 days, said transdermal delivery system containing a substantially first order plasma level increase of said opioid from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval and providing a substantially zero order plasma level fluctuation of said opioid from about 72 hours after the initiation of the dosing interval until the end of [at least] [five] seven-day dosing interval.

The method of claim 10 wherein said opioid is buprenorphine.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for [at least 2 to about 4] additional days beyond said 3 day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing interval.

The method of claim 12 wherein said transdermal delivery system provides a substantially first order plasma level increase of buprenorphine from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval, and substantially zero order plasma level fluctuation of buprenorphine from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

The method of claim 14 wherein said transdermal delivery system is maintained on the skin of the patient for about 7 days.

A method of treating human patients suffering from opioid addiction by applying a transdermal delivery system containing an active ingredient, wherein the active ingredient consists essentially of buprenorphine, on the skin of the patient and maintaining the transdermal delivery system in contact with the skin for a 3 day dosing interval, the transdermal delivery system containing an amount of buprenorphine sufficient to maintain an adequate relative release rate to provide a plasma concentration of from about 1000 pg/ml to about 10,000 pg/ml at the end of said 3 day dosing interval, and maintaining the transdermal delivery system in contact with the patient's skin for [at least 2 to about 4] additional days beyond said 3 day dosing interval, such that the patient continues to receive effective treatment for opioid addiction from said transdermal buprenorphine delivery system over said dosing interval.

The method of claim 16 wherein said transdermal delivery system provides a substantially first order plasma level increase of buprenorphine from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval, and substantially zero order plasma level fluctuation of buprenorphine from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.
level increase of buprenorphine from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval, and substantially zero order plasma level fluctuation of buprenorphine from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

19. The method of claim 18 wherein said transdermal delivery system is maintained on the skin of the patient for about 7 days.

20. A method of treating pain in a human patient comprising transdermally administering an active ingredient, wherein the active ingredient consists essentially of an opioid, to said human patient by applying a transdermal delivery system comprising an active ingredient, wherein the active ingredient consists essentially of an opioid to the skin of a patient, and maintaining said transdermal delivery system in contact with the skin of a patient for 7 days, said transdermal delivery system providing a substantially first order plasma level increase of said opioid from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval and providing a substantially zero order plasma level fluctuation of said opioid from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

21. The method of claim 20 wherein said opioid is buprenorphine.

22. A method of treating pain in a human patient comprising transdermally administering an active ingredient, wherein the active ingredient consists of an opioid, to said human patient by applying a transdermal delivery system comprising an active ingredient, wherein the active ingredient consists of an opioid to the skin of a patient, and maintaining said transdermal delivery system in contact with the skin of said patient for 7 days, said transdermal delivery system providing a substantially first order plasma level increase of said opioid from the initiation of the dosing interval until about 72 hours after the initiation of the dosing interval and providing a substantially zero order plasma level fluctuation of said opioid from about 72 hours after the initiation of the dosing interval until the end of the seven-day dosing interval.

23. The method of claim 22 wherein said opioid is buprenorphine.

* * * * *
In column 1, before the heading “BACKGROUND OF THE INVENTION” on line 21, please insert the following paragraph:

--The subject matter of the claimed invention was made by or on behalf of the below listed parties to a joint research agreement. The joint research agreement was in effect on or before the date the claimed invention was made and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement. The parties to the joint research agreement are 1) Purdue Pharma L.P., U.S.A. and 2) LTS Lohmann Therapie-Systeme GmbH & Co. KG, Germany.--