
(19) United States
(12) Patent Application Publication

MOSS et al.

US 20140258315A9

(10) Pub. No.: US 2014/0258315 A9
(48) Pub. Date: Sep. 11, 2014

CORRECTED PUBLICATION

(54) METHOD AND PROCESS FOR ENABLING
DISTRIBUTING CACHE DATA SOURCES
FOR QUERY PROCESSING AND
DISTRIBUTED DISK CACHING OF LARGE
DATA AND ANALYSIS REQUESTS

(71) Applicant: PNEURON CORP., Nashua, NH (US)

(72) Inventors: Simon Byford Moss, Cos Cob, CT (US);
Elizabeth Winters Elkins, Pompano
Beach, FL (US); Douglas Wiley
Bachelor, Groton, MA (US); Raul Hugo
Curbelo, Sturbridge, MA (US); Thomas
C. Fountain, Madison, NJ (US)

(73) Assignee: PNEURON CORP., Nashua, NH (US)

(21) Appl. No.: 13/943,187

(22) Filed: Jul. 16, 2013

Prior Publication Data

(15) Correction of US 2014/0012867 A1 Jan. 9, 2014
See (60) Related U.S. Application Data.

(65) US 2014/0012867 A1 Jan. 9, 2014

Related U.S. Application Data
(63) Continuation-in-part of application No. 12/870,348,

filed on Aug. 27, 2010, Continuation-in-part of appli
cation No. 13/442,353, filed on Apr. 9, 2012.

A GET CACHEMESSAGE

1. SAVE CACHE FILE DATA 3 40 8

SAVE CACHE FIE PROCESS H

3. CHECK FMAX
SPACE REACHED

44

5. SAVE NEW
CACHE

2. CHECK
MAX SPACE

SOFTWAREX.PROPERTIES
MAX SPACE 58

F, SAVE CACHE COPY

FE SYSTEM (
36 ("(

(60) Provisional application No. 61/672,028, filed on Jul.
16, 2012.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30132 (2013.01)
USPC .. T07/756

(57) ABSTRACT

A method and system for large data and distributed disk cache
processing in a Pneuron platform 100. The system and
method include three specific interoperable but distributed
functions: the adapter/cache Pneuron 14 and distributed disk
files 34, a dynamic memory mapping tree 50, and distributed
disk file cleanup 28. The system allows for large data pro
cessing considerations and the ability to access and acquire
information from large data files 102 and rapidly distribute
and provide the information to subsequent Pneurons 104 for
processing. The system also provides the ability to store large
result sets, the ability to deal with sequential as well as asyn
chronous parallel processing, the ability to address large
unstructured data; web logs, email, web pages, etc., as well as
the ability to handle failures to large block processing.

G. RETURNLocal cache
FILEREFERENCE 54 50

GET CACHE FILE PROCESS

46

4. DELETE OLDEST 52
FILES) TO

CLEARSPACE B. GET CACHE C. MISSING
CACHE GET
FROMOTHER

HOST

HOSTX
CACHE SYSTEM

30

34

FILE SYSTEM

E. CACHE FOUND RETURN CACHE GET CACHE FIE PROCESS

D. CHECK TO SEEF CACHE 50a
MESSAGE EXISTS ON HISHOST

HOST Y
56 CACHE SYSTEM

32

Sep. 11, 2014 Sheet 1 of 4 Patent Application Publication

Patent Application Publication Sep. 11, 2014 Sheet 2 of 4 US 2014/025831S A9

R.

s

s

US 2014/025831S A9 Sep. 11, 2014 Sheet 3 of 4 Patent Application Publication

79

??

WELSÅS E HOWO99

Patent Application Publication Sep. 11, 2014 Sheet 4 of 4 US 2014/025831S A9

s

S

S/

US 2014/02583 15 A9

METHOD AND PROCESS FOR ENABLNG
DISTRIBUTING CACHE DATA SOURCES

FOR QUERY PROCESSING AND
DISTRIBUTED DISK CACHING OF LARGE

DATA AND ANALYSIS REQUESTS

0001. This application is a continuation-in-part of U.S.
patent application Ser. No. 12/870,348 filed on Aug. 27, 2010
and entitled “System and Method For Employing The Use Of
Neural Networks For The Purpose Of Real-Time Business
Intelligence And Automation Control; and a continuation
in-part of U.S. patent application Ser. No. 13/442,353 filed on
Apr. 9, 2012 and entitled “Legacy Application Migration To
RealTime, Parallel Performance Cloud'; and claims the ben
efit of U.S. Provisional Patent Application No. 61/672,028
entitled “A Method And Process For Enabling Distributing
Cache Data Sources For Query Processing And Distributed
Disk Caching Of large Data And Analysis Requests”, which
was filed on Jul. 16, 2012, all of which are incorporated herein
by reference

TECHNICAL FIELD

0002 The present invention relates to enabling distribut
ing cache data sources for processing large data and analysis
requests and more particularly, relates to providing a distrib
uted caching model to enable the management of distributed
cache files on multiple servers or virtual machines and facili
tating multiple distributed processing operations simulta
neously.

BACKGROUND INFORMATION

0003. Accessing geographically dispersed multiple sys
tems and large datasets and being able to operate on this
information to perform multiple simultaneous operations is
very difficult. Combining and federating distributed opera
tion results together compounds the problems. Most compa
nies utilize an aggregated data warehouse with multiple
feeder data sources and extraction, transformation, and load
ing (ETL) routines to organize distributed data together. The
data preparation cost and time are signification.
0004. Therefore, what is needed is a distributed cache
evaluation and processing model that operates across mul
tiple servers simultaneously. The system should function
Such that multiple analytic and business operations occur,
while the system should also enable sampling and evaluation
with collection and recording of results. Furthermore, the
invention should provide for distributed cache creation and
orchestration of coordinated distributed data access and gen
eration of iteration results from other distributed applications.
All distributed cache files operations should be coordinated
together into unified processing models.

SUMMARY OF THE INVENTION

0005. The system and method of the present invention
implements an Adapter Pneuron that interacts within its dis
tributed processing infrastructure for large data processing.
The Adapter Pneuron enables the real-time acquisition of data
from different types of application data sources, including
service application programming interface (API), database,
and files. Data is acquired and transformed into self-describ
ing ASCII disk cache files with an associated definition of the
structure. The disk cache files are distributed across one to
many servers or virtual machines (VMs). The distributed disk

Sep. 11, 2014

cache files are accessed by participating Pneuron applications
to perform operations selectively on the distributed disk data.
Multiple operations are performed simultaneously by the dif
ferent Pneurons with results evaluated and subsequent itera
tion operations applied. Evaluated results are concatenated
and federated together across the different disk cache files
simultaneously.
0006 Disk cache files are removed automatically using a
high-low disk evaluation model to remove disk cache files
based on server disk utilization and automatic evaluation
aging for disk cache files. The present invention enables the
ability to quickly access target systems and data sources and
generate distributed disk cache files, to simultaneously per
form real-time operations by other Pneuron programs and to
federate the results together. These activities occur without
requiring preparation of the data.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. These and other features and advantages of the
present invention will be better understood by reading the
following detailed description, taken together with the draw
ings wherein:
0008 FIGS. 1A-1B are a comparison of the prior art pro
cess execution with the distributed cache model according to
one embodiment of the present invention;
0009 FIG. 2 is an overview of the dynamic memory map
ping tree according to one embodiment of the present inven
tion;
0010 FIG. 3 is an overview of distributed disk cache
removal model scenarios according to one embodiment of the
present invention; and
0011 FIG. 4 is a block diagram of a system on which may
be implemented the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0012. The present invention features a system and method
for large data processing and requesting reconstruction. The
system 100, FIG. 4 and method includes the capacity for large
data processing considerations (targeting record, queries and
responses of 1 million and higher results). The invention
provides for the ability to access and acquire information
from large data files 102 (greater than 1 million records) and
rapidly provide the information to subsequent Pneurons for
processing combined with the ability to extract and render
large queries from databases 102 without impacting system
of records processing and rapidly provide the information to
Subsequent Pneurons for processing. The system also has the
ability for multi-threaded processing by multiple distributed
pneurons 104 of large input/record sets files, enabling of
storage and access to large historical results and the ability to
handle large inputs. The invention provides the ability to store
or persist large result sets. For example, a million plus raw
data evaluation may generate a very large array of intelligence
results that need to be persisted for future use, which might
occur with time-series data with multiple month-years and
multiple intelligence results for each intelligence record. Fur
ther, the invention is able to deal with sequential as well as
asynchronous parallel processing, is able to address large
unstructured data; weblogs, email, web pages, etc. and is able
to handle failures to large block processing.
0013 The design considerations of the present invention
are focused on maximizing distributed processing workload

US 2014/02583 15 A9

(volumes, results and requests) without running out of
resources; e.g. hardware resources, including memory and
CPU. The solution consists of essentially three specific
interoperable but distributed functions. First, the Adaptor/
Cache Pneuron 14 and distributed disk cache files 30, 32.
Second, the dynamic mapping tree 50, FIG. 3. Third, the
distributed disk cache file cleanup FIG. 4. Each function will
be described in greater detail below.
0014. The Adaptor/Cache Pneuron 14 (and/or distributed
adaptor/cache pneurons 104) and distributed disk cache files
34 address the problem of extremely large record set process
ing which presents different technology challenges. Some of
the current problems in the prior art include: loading all
information into memory will exceed hardware server
resources; and breaking up large requests presents complexi
ties in consolidating and synchronizing the information
results together and multiple operations may be required at
different times by different programs across one or more large
record sets.
0015 The present invention solves these problems by
extracting large record sets from target systems 102 and data
Sources and converting them into distributed disk cache files
34. The disk-based intermediate cache files and processing is
coordinated by and across multiple Pneurons 104 to perform
multiple simultaneous operations on the information (distrib
uted disk cache files 34). A comparison of the prior art system
of process execution (FIG. 1A) and the distributed cache
model of the present invention (FIG. 1B) is shown in FIG. 1.
0016. The cache file based system 10 of the present inven
tion will store the large requests within self-describing ASCII
files and make these files (the data within them) available to
any Pneuron that needs to access them. Large data requests
12, are received and processed by the Adapter Pneuron 14.
The Adapter Pneuron 14 transforms the large data requests
into ASCII file content (extended CSV format including the
attribute type definition), and saves the ASCII file content on
the local host hard drive. Once a request is received, the
Adapter Pneuron 14 will send to all its associated Pneuron
connections 104 a special message that will announce that
new work is available and the data can be accessed from the
referred files from the target disk cache location 30, 32 on the
file system. This process will perform in the same manner
even if the request is composed from multiple batches,
thereby allowing the request to be reconstructed. All of the
Pneurons will interact with this model approach. The Adapter
Pneuron 14 maintains context of each distributed cache file
and provides system context to each participating Pneuron.
Context includes the definition of the cached file format and
information elements and location of the file. Participating
Pneurons are able to parse the cached/adaptor Pneuron infor
mation and perform different operations.
0017. Once the data has been cached, the Adapter Pneuron
14 will send to subsequently connected Pneurons 104 a spe
cial message 15 that will announce to all configured and
associated Pneurons that new work is available and the Pneu
rons can execute their operations on the disk cache files. The
system includes a utility that enables the calling Pneurons 104
to transform to and from XmlMessage to the target extended
CSV extended file format.
0018. As a result, the invention greatly simplifies the
access and operations on the distributed disk cache data and
provides a common abstraction layer and interface for the
Pneurons to access and perform operations on the data. The
Pneurons only need to read the referred file content and trans

Sep. 11, 2014

form the information into usable XmlMessage Type data. In
addition, the Pneurons can filter and extract only the neces
sary attributes as vectors or other objects and optimize the
memory management resources.
0019. This invention therefore provides many critical
transformational benefits. The data is accessed and managed
at targeted server 106 locations on the respective filing system
30, 32 such that requests do not need to be reconstructed,
which saves processing time and reduces complexity. The
system ability to process very large amounts of data is sig
nificant and unconstrained. Within the actual memory pro
cessing, the information is streamlined. Only reference and
common messages and pointers are included. The distributed
cache file model enables a planning mechanism to be imple
mented to optimize the resources and synchronize distributed
cache file access and processing. The messages do not require
any complex logical operations that will require the file struc
ture to change. The system will be fully capable of handling
the CRUD operations (create-add new entry/record; read
record; update-record; and delete-record). This solution will
work for all cases where the entity (large request—as a
whole) will retain its integrity/structure.
0020. The dynamic mapping tree model shown for
example in FIG. 2 is implemented to support the Adaptor
Pneuron. The memory mapping enables a large data process
ing request transaction to retain its processing integrity from
initiation through completion of an execution. By retaining
processing integrity, the representation and all the data char
acteristics will be retained and accessible during the request
life cycle. Data representation defines the meta-data charac
teristics of the information, including the way that the data is
stored on the file system, the number of files, file types, data
definition (attribute definition), request references etc.
0021. In order to manage the distributed disk caching
model, the invention enables the following operations to be
performed on the disk cache files: Create—add new record
within the large request; Read—access one or more records
from the large request; Update update/modify the data for
one or more records; and Delete—delete one or more records.
Given the synchronization and management complexities,
the invention restricts the following functions: batching,
duplicate batches and conditional batches.
0022. To manage the distribution complexity of multiple
disk cache files, the invention maintains and adjusts the sys
tem context dynamically. This model enables automatic
changes to the data representation and structure. A program
matic change history tracking is maintained, which keeps
track of changes applied to the disk cache file(s). This feature
enables automatic reconstruction of the disk cache file at any
given time to Support a Pneuron initiated operation and
request. The present invention has implemented a program
matic process to decompose large data sets into request into
smaller batches. The batches are organized into parallel
execution requests and configured as part of the Pneuron
Networks definition.
0023. A dynamic memory tree map, FIG. 2, is imple
mented to manage the distributed cache process across mul
tiple Pneurons. The dynamic tree maintains and provides
system context for the entire distributed processing model
and plan. The entire processing life cycle is maintained. Each
node/leaf within the dynamic tree will contain a file reference
or a position/index reference and then point the Pneuron
request message to the corresponding memory area. The
dynamic memory tree map establishes a breadcrumb trail.

US 2014/02583 15 A9

Using this approach, the system is able to reconstruct the
request with the new values by traversing the memory tree.
The system merges and reconstructs the disk cache results
based on the specific request. The same logic and approach is
also applied for the Large Request Reconstruction, which
enables a generic distributed disk cache operation model to be
applied at the Pneuron Base Level.
0024. The system will apply different solutions based on
the context and type of operation. Dead (empty) messages are
still sent out through the network. When a batch gets split in
two or more Sub-batches they are flagged. By doing this the
system will be able to track the messages. The final Pneuron
should have a max dead time interval, which will represent
the time that it will wait for more batches. This time is
checked/validated with the last batch arrival time. Each time
a batch gets split the characteristic flag is appended with
additional information meant to inform about the split.
Example: 1/1-3715-1/3-6/7-4/4. SPLIT is defined as Posi
tion/Number Of Message/Batch/ITotal Number Of Mes
sages. Each time a batch gets split request, the split informa
tion will be appended to the current flag, which will be done
for each split/sub batch. By the time the message reaches the
Final Pneuron, the Pneuron will be able to establish the con
text based on the amount of information that it receives, and
the Pneuron will be ready to create an execution tree, such as
the one detailed in FIG. 2. This approach is based on the fact
that when the Final Pneuron receives a batch request, it will be
able to trace it and complete (or start if it is the first batch from
a large request) based on the defined execution tree. Any
sub-batch that is received is able to communicate with the
Pneuron of all the tree node parents and also the number of
“leafs' per split. With this approach the Final Pneuron will be
able to map out what it should receive, also the information
that it receives can be ordered.

0025. There are scenarios where the requesting Pneuron is
unable to interact with the distributed cache disk. Examples
could include: (1) The target data source or system is not
available for access by the Adapter Pneuron and the disk file
cache cannot be created; and (2) The file system where the
disk cache file is stored is not available. An Idle or Dead Time
interval model can be implemented to manage this scenario,
such that the Idle or Dead Time interval establishes a periodic
mechanism to compose the message and send it further (or
execute the request). The Idle or Dead Time interval evaluates
each past request and the elapsed time when the last batch was
received and the execution trigger.
0026. Finally, the distributed disk cache file clean up por
tion of the process 28, FIG. 3, provides users with the capa
bility of caching data, within the entire system, on all the hosts
106 that are running the platform (distributed pneuron 104).
The cache is a file system 34 based mechanism that trans
forms and stores them indefinitely making them available. to
one or more worker process pneurons. Since the invention is
dealing with a highly distributed system that provides value
by providing the users with parallel computing capabilities,
all the resources that are used within this computing process
must be available at each host level (that takes part of the
parallel execution). In doing so, each host will own a copy for
each cache data that it will process. This creates a big problem
because the hardware resources, hard drive space in this case
is not unlimited, and since each host must have a local copy of
the cached job the system does not deal with replication
(duplicate resources—at different host levels).

Sep. 11, 2014

0027. Therefore, the present invention has implemented a
High-Low distributed disk cache removal model. The inven
tion configures properties for each host 106 (either a physical
server or virtual server machine). The host Max Available
Space property establishes the amount of bytes (megabytes or
even gigabytes) that can be used by the caching system 34 on
that specific server 106. Once this max threshold is reached,
the system will delete existing cache files based on the size
and age of the distributed cache file. This model will eliminate
past files and enable new disk files to be established and used.
The cache file system will be bounded with these rules; in this
case the only rule/limitation that we need is to have a maxi
mum level of space that it can be used in order to store the
working cache files. This maximum level of space that can be
used will be stored within the SoftwarerX.Properties file 36
from CFG directory, because this is a centralized storage
point for all the properties and attributes that must or can’t be
stored within the database.

0028. The following examples are intended to provide
details on how the distributed disk file clean up functions in
the present system. In a first example, a save cache data
request 38 is requested/received and max space has not been
reached on the host server 30/32. In this scenario, a Pneuron
issues a request 38 to save data into the cache data file system
34. The request reaches the SAN (Storage Area Network or
Cache System/process)40. The system checks the Max Space
configured value 36. The system 28 compares the Max Space
with the actual available space on the local hard drive, which
is the hard drive where the host system 106 is running, or
more exactly where the “cache' directory file system 34 is
found. In this first example there is sufficient space to save the
information; therefore the system 28 will save the informa
tion 42 with the provided data (reference name/file name) in
the file system 34.
0029. In a second example, a save cache data request is
requested and max space has been reached. In this scenario, a
Pneuron issues a request to save data into the cache data
system. The request reaches the SAN (Storage Area Network
or Cache System). The system checks the Max Space config
ured value. The system compares the Max Space with the
actual available space on the local hard drive, which is the
hard drive where the system is running, or more exactly where
the “cache' directory is found. The system determines 44
there is NO sufficient space to save the information. The
system orders the existing cache data in descending order
based upon the creation date. Then a loop occurs, which
deletes the oldest file 46 and then re-checks to see if there is
Sufficient space. The loop ends once Sufficient space is
cleared or if there is nothing else to delete. If the system has
sufficient space to save, then the information is saved 42 with
the provided data (reference name/file name).
0030. In a third example, a save cache data request is
requested and max space has been reached, however the sys
tem is unable to make Sufficient space. In this scenario, a
Pneuron issues a request to save data into the cache data
system. The request reaches the SAN (Storage Area Network
or Cache System). The system checks the Max Space config
ured value. The system compares the Max Space with the
actual available space on the local hard drive, which is the
hard drive where the system is running, or more exactly where
the “cache' directory is found. The system finds there is NO
Sufficient space to save the information. The system orders
the existing cache data descending based upon the creation
date. A loop is created, such that the oldest file is deleted and

US 2014/02583 15 A9

then the system re-checks to see if there is sufficient space. In
this example, the system deletes all old files 46 and checks
again for Sufficient space and determines that there is not
sufficient space and there is nothing else to delete, thereby
ending the loop. In this example, the system does not have
Sufficient space to save and the system will register a failure.
0031. In a fourth example, a system is able to get cache
data when a local copy is available. In this scenario, the cache
system receives a request 48 to get a specific data. This
request can be issued by any Pneuron Instance that is Sup
posed to use the cached data and needs to get a reference to the
local file copy in order to read and parse/analyze or otherwise
utilize the necessary information. The system receives a
request to get cache data 48. The system process cache 50
checks to see if the cached data is found within the local file
system34. The cache data is found to exist 52 within the local
file system. Return reference to cache data 54. The caller will
then be able to use the data.
0032. In a fifth example, a system is unable to get cache
data because a local copy is not available. In this scenario, the
cache system 30, 32 receives a request to get specific data 48.
This request can be issued by any Pneuron Instance that is
Supposed to use the cached data and needs to get a reference
to the local file copy in order to read and parse/analyze or
otherwise utilize the necessary information. The system
receives a request to get cache data 48. The system cache
process 50 checks to see if the cached data is found within the
local file system 34a. The system determines that the cache
data DOES NOT EXIST within the local file system. The
Current Cache System asks the other registered host 32 by
calling their associated cache system process 50a which
check for existence of the data. A loop is created, such that the
Foreign Cache file system34b of server 32 is checked for data
56, then the data is found, and then the data is copied locally
58. The loop ends when there are no more hosts/cache sys
tems to search or once the cache data is found. Return refer
ence to cache data 58. The caller host 30 will then be able to
use the cached data.

0033. In a sixth example, a system is unable to get cache
data because a local copy is not available anywhere. The
cache system receives a request to get a specific data. This
request can be issued by any Pneuron Instance that is Sup
posed to use the cached data and needs to get a reference to the
local file copy in order to read and parse the necessary infor
mation. The system receives a get cache data request. The
system checks to see if the cached data is found within the
local file system. The system determines that cache data
DOES NOT EXIST within the local file system. The Current
Cache System asks the other registered host by calling their
associated cache systems 32 and checking for the data exist
ence. A loop is created, wherein the system checks the Check
Foreign Cache System for data and determines that the data is
not found. The loop ends once there are no more hosts/cache
systems to check and no cache data has been found. The
system determines that the data was not found. A failure has
occurred.

0034. In summary, the present invention enables the real
time generation, management, and synchronization of dis
tributed disk caches within a highly distributed processing
environment. The process deconstructs and organizes large
data sets acquired from disparate systems and data sources
across an unlimited number of physical servers and virtual
machines. An abstraction layer is applied across all distrib
uted disk cache files. Multiple distributed Pneurons perform

Sep. 11, 2014

simultaneous operations across one or more disk cache files.
Processing is synchronized automatically. The system main
tains an in-memory mapping tree to maintain distributed
interactions and provides the ability to dynamically construct
and deconstruct the distributed cache files into any form. The
distributed cache model enables synchronized federation of
selected information from multiple distributed cache files
automatically and as part of the Pneuron processing. The
invention allows Pneuron to use existing client disk capacity
and obtain and utilize targeted large data cache files on
demand and without preparing aggregated data stores. As a
result, businesses benefit by foregoing large data preparation
activities.
0035 Modifications and substitutions by one of ordinary
skill in the art are considered to be within the scope of the
present invention, which is not to be limited except by the
allowed claims and their legal equivalents.
The invention claimed is:
1. A method for processing large data and analysis

requests, said method comprising the following acts:
acquiring data in real-time from one or more application

data Sources by a data processing pneuron, said data
processing pneuron configured for operating under con
trol of a computer program product, said computer pro
gram product comprising a computer program;

transforming said data into self-describing ASCII disk
cache files by said data processing pneuron;

distributing said disk cache files across one or more servers
or virtual machines by an adaptor cache pneuron;

allowing access to said distributed disk cache files by par
ticipating applications, wherein said applications are
configured to perform operations on said distributed
disk data; and

removing said disk cache files automatically using a high
low disk evaluation model to remove said distributed
disk cache files based on server disk utilization and
automatic evaluation aging for said distributed disk
cache files.

2. A system for processing large data and analysis requests,
said system comprising:

a pneuron server configured for operating under control of
a computer program product, said computer program
product comprising a computer program, for deploying
a data processing pneuron for acquiring data in real-time
from one or more application data sources, said data
processing pneuron for transforming said data into one
or more self-describing ASCII disk cache files:

said pneuron server configured for deploying one or more
adaptor cache pneuron, said adaptor cache pneuron
operating under control of a computer program product,
said computer program product comprising a computer
program, for distributing said one or more disk cache
files across one or more servers or virtual machines;

said one or more servers configured for allowing access to
said distributed disk cache files by one or more distrib
uted worker pneurons, wherein said distributed worker
pneurons are configured to perform operations on said
distributed disk data; and

said one or more worker pneurons configured removing
said disk cache files automatically using a high-low disk
evaluation model to remove said distributed disk cache
files based on server disk utilization and automatic
evaluation aging for said distributed disk cache files.

US 2014/02583 15 A9 Sep. 11, 2014

3. The system of claim 2 wherein said one or more worker
pneurons configured removing said disk cache files are con
figured for removing disk cache files prior to storing disk
cache files received from said adaptor pneuron.

k k k k k

