The specification discloses a handheld computing device or portable electronic calculator that comprises a software application adapted to provide instructions to perform math operations to calculate trading and investment variables and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms. The software application may be further adapted to provide instructions that allows a user to input trading and investment variables including trading price/or trading premium and then incrementing trading price/or premium by decimal or fraction with up and down arrow key(s) or "speed key(s)" on the input device concurrently while viewing the trading price/or premium and calculated order size/or number of contract(s) changes on the display screen. The handheld electronic device or calculator determines variables that are used during active trading and investment, such as gain/loss, gross/net profit, margin, buy & sell price, cash amounts, return rate, yield, order sizes, as examples.
MAIN ROUTINE

CONTROL TRANSFER KEYS 30, 31, 32, 45

SUBROUTINE 200

STORED KEY 30, 31, 32, 35?

PRICE ENTERED KEYS 29

TRADE KEY 34 DEPRESSION

CALCULATE ORDER SIZE

DISPLAY ORDER SIZE BY PRICE

VIEW/SCROLL THRU RECORDS/RANGE

PREMIUM ENTERED KEYS 29

TRADE KEY 34 DEPRESSION

CALCULATE # OF CONTRACT(S)

DISPLAY # OF CONTRACTS BY PRICE

VIEW/SCROLL THRU RECORDS/RANGE (KEY 35, 36, 44, 47-49)

RETURN TO CALL ROUTINE
100 MAIN ROUTINE
301 OPTIONS
300 CONTROL
301 TRANSFER
300 SUBROUTINE
302 ENTER OPTIONS
29 VARIABLES KEYS
302 OPTIONS
300 SUBROUTINE
303 STORE OPTIONS
Option VARIABLES
304 DISPLAY
Option VARIABLES
305 INPUT COMPLETE?
306 DEPRESS
Desired Option
307 VARIABLE KEY
308 STORE RESULT
IN KEY REGISTER
309 CALCULATE
Unknown Option
308 RESULTANT
309 VARIABLE
310 RE-RUN?
311 RETURN TO
CALL ROUTINE
312 MISSING
VARIABLES?
FIG. 1F
FIG. 1G

SECTION #18

SECTION #16

SECTION #22

Price

TPB

EXS

Order Size Mode

Order Size

25 1/4

7,558

3000
FIG. 2A
TRADING & INVESTMENT CALCULATOR

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority from U.S. provisional application No. 60/402,559 filed Aug. 12, 2002; which is incorporated herein in its entirety by reference.

BACKGROUND OF THE INVENTION

[0002] Some existing calculators have the ability to perform mathematical operations on bonds, notes, and treasury bills, and then display this information. However, such calculators do not perform math operations to calculate stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, or interest rate trading and investment variables, in addition to more common investment calculations such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms. Also, such calculators are not "portable handheld" consumer calculators, but rather are very "heavy duty" expensive desktop calculators for professional traders, limited to bond, notes, and treasury bill calculations. The present invention generally relates to handheld computing devices, and more specifically to an apparatus and method to perform math operations to calculate trading and investment variables, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms. This handheld computing device or portable electronic calculator is "for traders and investors of all levels...trading securities of all types"

[0003] Methods have been developed for electronic calculators to perform calculations for bonds, notes, and treasury bills only. "The Monroe Trader" (1978; serial #K554351 made in the U.S.) calculates data only for bonds, notes, and treasury bills, and was designed only as a "heavy duty" desktop calculator for use by professionals. In researching prior art, there has not been a "portable handheld" consumer calculator or handheld computing device invented for trading and investment; only very large, heavy duty desktop calculators for professionals who trade bonds, notes, and treasury bills. This patent for Trading & Investment Calculator performs math operations to calculate stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, or interest rate trading and investment variables, in addition to more common investment calculations such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.

[0004] Because the preferred embodiment of the present invention calculates and displays trading and investment data, it provides an advantage of being a useful trading and investment tool. In addition, because the present invention is "portable" or "handheld" (unlike previous heavy duty desktop calculators), traders and investors can easily take it with them wherever they go. In addition, this calculator was designed for traders and investors of all levels...and not designed solely for professionals. The preferred embodiment may be valuable as a self-teaching aid allowing a trader/or investor to enter many examples and “what if” scenarios and see the results immediately on the screen.

BRIEF SUMMARY OF THE INVENTION

[0007] The problems and needs outlined above are addressed by the present invention. Essentially, a portable handheld calculator or handheld computing device is provided enabling traders and investors worldwide to be fast, proactive, prepared, and informed by quickly performing trading and investment functions. Some of these functions include: gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.
lars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios.

[0008] In accordance with one aspect of the present invention, a handheld computing device is provided, which comprises: an electrical circuit, a display screen, an input device, and a software application. The electrical circuit comprises a memory device electrically coupled to a processor. The display screen and the input device are each electrically coupled to the electrical circuit. The software application is stored in the memory device, and when executed by the processor, the software application is adapted to provide instructions to display trading and investment data on the display screen simultaneously along with descriptive acronyms. The handheld computing device may be a calculator with a display screen comprising a liquid crystal display device and an input device comprising a keypad, for example. The handheld computing device may be an electronic personal organizer. Such an electronic personal organizer may have a display screen comprising a touch sensitive screen, and the input device may comprise a simulated keypad displayed on the touch sensitive screen, such that a user can input a number or mathematical operator by contacting the touch sensitive screen, for example. The handheld computing device may be a cellular telephone and/or a pager, for example. The software application may be further adapted to provide instructions to perform math operations in order to calculate trading and investment variables. The software application may be further adapted to provide instructions to allow a user to input trading and investment variables including trading price/or trading premium and then incrementing trading price/or premium by decimal or fraction with dedicated or non-dedicated keys such as up and down arrow key(s) or “speed key(s)” on the input device concurrently while viewing the price/or premium and price/or premium changes on the display screen. The memory device may comprise a flash memory device or a synchronous dynamic access memory (SDRAM) device, for example. The input device may comprise at least one soft key shown on the display screen corresponding to a button on the keypad.

[0009] In accordance with another aspect of the present invention, a handheld computing device is provided, which comprises a software application stored in a memory device, and when executed by a processor, the software application being adapted to provide instructions to: perform math operations to calculate trading and investment variables; and display trading and investment variables resulting from the math operation on the display screen simultaneously along with descriptive acronyms.

[0010] In accordance with yet another aspect of the present invention, the software application being adapted to provide instructions to: allow a user to input trading and investment variables including price and premium and then increment it by decimal or fractions with up and down arrow keys or speed keys on the input device, concurrently while viewing the trading price/or premium and calculated order size/or contract changes on the display screen; and calculate trade price (s)/or premium(s) between a maximum and minimum trading price/or premium with a resultant trading price/or premium range and means for calculating order size(s)/or number of contract(s) for each trading price/or premium(s) within the price/or premium range; and where the keyboard includes incremental “speed key(s)” and “up/down arrow scroll key(s)” operatively connected to the processing means for automatically initiating the operations of the processing means involving numeric values in the internal price/or premium set by the price/or premium previously entered through the keyboard, where the user can quickly change the previously entered price/or premium with positive and negative incremental price/or premium “speed key(s)” and “up/down arrow scroll key(s)” to arrive at a new price/or premium.
order size/or number of contracts generating a display signal upon entry of the price(s)/or premium(s) or depression of the "up/down arrow scroll key(s)" or "speed key(s)". The computer program may be further adapted to provide instructions to determine trade order size(s) by price and to determine the number of contracts by premium. The computer program may be further adapted to provide instructions to perform math operations to calculate options variables to solve option(s) trading tasks and to perform math operations to calculate investment variables/or equations to solve investment tasks such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios.

In accordance with yet another aspect of the present invention, the software application being adapted to provide instructions to perform math operations in order to calculate stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, or interest rate trading and investment variables, in addition to more common investment calculations such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.

More particularly, in the first aspect, the calculator includes means for storing numeric trading price(s)/or premium(s) and range(s), and the cash, margin, option, and total buying power dollar amounts. This numeric input is used as a means for calculating trade order size(s) and number of option(s)/or contract(s) by price or premium. The trader selects a pre-defined fraction from a selector switch or button, in addition to a mode type of decimal or fraction. The trader then simply inputs the cash, margin, option money, buying power, and price/or premium into the calculator and it responds by assigning each price/or premium an order size/or number of option(s)/or contract(s) determined by internal calculations. The user/or trader, can then quickly scroll/view order size(s) and number of option(s)/or contract(s) by price or premium using speed keys and up/down arrow keys throughout a price/or premium range. Speed keys or up/down arrow keys can be used to quickly change price increments, instead of re-keying trading data over and over again.

In a preferred embodiment of the first aspect, the calculator includes means enabling the trader to manually override/or clear the numeric trading price/or premium. This enables the calculator to accommodate different trading price/or premium ranges without changing preset keys for total cash, margin, option money, or buying power dollar amounts.

In a second aspect, the calculator automatically determines unknown/or not stored variables for an option(s) trade and for a variety of margin, cash flow, and rate-of-return calculations. For these types of trading functions, the trader inputs option, margin, cash flow, and rate-of-return variables, and the calculator responds by returning the unknown/or not stored variable. The calculator determines and displays the variable corresponding to the trading mode/function performed. The Trading Calculator also performs standard calculator functions.

These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the detailed description of the preferred embodiment and the drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

Note: The Trading and Investment Calculator will be manufactured in several different styles or models (pocket, hand-held, desktop). Three different drawings/or models are being included in this patent, as the Claim(s) apply to each, and have been written accordingly: 1. Advanced/or Pro Model (hand-held or desktop styles only). This model incorporates Standard Calculator Mode, Trade Order Size Mode, Option Mode, and Investment Mode (which includes calculations such as: gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, for example.) 2. Basic/or “Core Concept” Model (pocket, hand-held, or desktop styles). Includes Standard Calculator Mode, Trade Order Size Mode (that includes premium and contracts), and Investment Mode (that only includes very simple investment calculations, as shown in Item #1 above.) 3. Investment Model (pocket, hand-held, or desktop styles). Includes Standard Calculator Mode, Trade Order Size Mode (that includes premium and contracts), and Investment Mode (that includes all of the advanced investment calculations such as: gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios. The “Investment Model” also calculates “Business Investment Ratios” or “Business Performance Ratios” in addition to calculating more common variables for investment tasks as shown above in Item #1. Investors can use these ratios when analyzing whether or not to invest in a business. These investment/or performance ratios are a way to evaluate the performance of a business and identify problems. This model helps investors, or others in business, calculate important ratios. Each ratio calculates variables such as solvency, earning power, debt load, and efficiency of a business. These key ratios are used to measure the relationship
between (2) two or more variables of financial statements. Users will enter all known variables, and then solve for the unknown investment ratio. Investment/or performance ratios on the “Investment Model” include: Leverage ratios: how assets are financed Debt-to-asset ratio Calculation=liabilities/assets Variables=current assets, fixed assets, total liabilities Commonly known as the Debt Asset Ratio, it determines the extent to which acquisition of assets have been financed by creditors. Debt-to-equity ratio Calculation=total liabilities/shareholders equity Variables=total liabilities, shareholders equity. This ratio determines the amount of liabilities the business has for every dollar of shareholders' equity. Liquidity Ratios: Ability of the Business to Meet Obligations Quick ratio Calculation=quick assets/current liabilities Variables=temporary investments & marketable securities, cash, other current assets, current liabilities. Sometimes this is called the Cash Ratio or the Acid Test Ratio, because it indicates the company’s ability to pay off creditor demands using liquid and current assets. Inventory to net working capital Calculation=inventory/(current assets-current liabilities) Variables=inventory, current assets (including inventory), current liabilities Determines if current working capital proportion in inventory is too high. Current ratio Calculation=current assets/current liabilities Variables=current assets, current liabilities Sometimes called the Working Capital Ratio, this ratio determines the extent to which current assets are available to meet current liabilities, due within the next 12 months. Operations Ratios: Effectiveness of Internal Operations Accounts receivable turnover Calculation=net credit sales/average accounts receivables. Variables=average accounts receivable, net sales. Determines liquid accounts receivable for the year. The average accounts receivable is an average of the opening and closing balances for accounts receivable. Asset utilization Calculation=net sales/total assets Variables=current assets, fixed assets, net sales. Determines the number of dollars in sales earned for each dollar invested in assets. Fixed asset utilization Calculation=net sales/average net fixed assets Variables=average of net fixed assets, sales.

[0018] Sometimes called the Sales to Fixed Assets Ratio, it determines the number of dollars in sales earned for each dollar of investment in fixed assets. This ratio is sometimes used in combination with the Asset Utilization Ratio. The Average of Net Fixed Assets equals the average of the opening and closing balances of fixed assets. Sales per employee Calculation=sales for the year/average number of employees Variables=annual sales, average number of employees. Determines the level of sales per employee. Average collection period Calculation=(days in period*average accounts receivable)/net credit sales Variables=opening balance for accounts receivable, closing balance for accounts receivable, number of days in period, net sales. Determines the average number of days customers use to pay bills. This ratio determines if credit terms are acceptable. The days in the period is typically 365 days. Average accounts receivable is the average of the opening and closing balances of Accounts Receivable for the period. Average days payable Calculation=(days in period*average accounts payable)/purchases on credit Variables=opening balance for accounts payable, closing balance for accounts payable, number of days in period, credit purchases. Determines the average number of days to pay suppliers. The days in the period is typically 365 days. Average accounts payable is the average of the opening and closing balances of accounts payable for the period. Days of sale in inventory Calculation=days in the period*average inventory/cost of goods sold

[0019] Variables=opening balance for inventory, closing balance for inventory, number of days in period, cost of goods sold.

[0020] Sometimes called Days of Inventory Sales, this ratio determines the number of days of sales with current inventory. This ratio is used to determine whether or not there is too much investment in inventory. The days in period is typically 365 days. Average inventory is the average of the opening and closing balances of inventory for the period. Inventory turnover Calculation=cost of goods sold/average inventory Variables=cost of goods sold, average inventory during year. Determines the number of times of inventory turnover during the year (replaced and sold). This is a key ratio because gross profit is earned each time there is inventory turnover. Profitability Ratios: Profit Generated Earnings per share Calculation=(net income-preferred dividends)/number of common shares Variables=net income, preferred dividends, number of outstanding common shares. Determines earnings generated for each share of common stock (before or after taxes). Return on total assets Calculation=income from operations/average total assets Variables=income from operations, average current assets, average fixed assets. Determines the effectiveness of asset use to earn income by the amount of profit earned for every $100 invested in assets. Income from operations excludes expenses such as financing charges and income taxes. Average total assets equals average fixed assets plus average current assets. Net profit margin Calculation=net profit after taxes/net sales Variables=net income (before or after taxes), net sales.

[0021] Sometimes called the Return on Sales Ratio, this ratio shows the profit (before or after tax; net income) produced by each dollar in sales by determining the percentage of sales revenue kept after creditor interest expenses, operating expenses, and income taxes. Return of shareholder’s equity Calculation=(net income for the year-interest/taxes)/shareholders’ equity

[0022] Variables=shareholder’s equity, net earnings, taxes (before or after), interest.

[0023] Determines return rate shareholders receive on their investment. Net income for the year is after taxes and interest due to the fact that shareholders can only have the balance.

[0024] Coverage ratio Calculation=profit before taxes and interest/annual bank and interest charges Variables=profit (before interest and taxes), annual interest and bank charges. Sometimes known as the Number of Times Interest Earned Ratio, this ratio determines the organizations ability to produce enough income to pay loan interest charges. All of the flowcharts below are pseudo code flowcharts illustrating the process logic and instructions provided by the software application for the preferred embodiment. The particular computer language used to implement the logic and instructions shown in these figures may vary, depending on the programmer’s preference and/or depending on the computing device of an embodiment. The main process and subroutines for various modes and functions called upon by the main process are described and illustrated.

[0025] The figures and drawings are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations of the present invention
based on the following examples of possible embodiments of the present invention. Features of the present invention may be incorporated into a new device and/or may be provided as a software application enabling an existing device to provide such features, for example.

TRADING CALCULATOR—ADVANCED MODEL (hand-held, or desktop styles)

FIG. 1A is a front view of the calculator of the present invention showing trade price and calculated order size;

FIG. 1B is a front view of the calculator of the present invention showing premium and calculated number of contracts;

FIG. 1C is a flow chart illustrating the program flow of the “main” routine of the calculator;

FIG. 1D is a flow chart illustrating the program flow of the “order size” subroutine of the calculator;

FIG. 1E is a flow chart illustrating the program flow of the “option” subroutine;

FIG. 1F is a flow chart illustrating the program flow of the “margin/cash flow/return-of-return” subroutine;

FIG. 1G is a front view of the display that shows sections and annunciators/indicators.

TRADING CALCULATOR—BASIC/CORE CONCEPT MODEL (pocket, hand held, or small desktop styles)

FIG. 2A is a front view of the calculator of the present invention showing trade price and calculated trade order size;

FIG. 2B is a front view of the calculator of the present invention showing premium and calculated number of contracts.

FIGS. A through O are screenshots from the “Basic/Core Concept” model calculator to illustrate some of the various uses of the preferred embodiment in accordance with the present invention. These screenshots are described below:

FIG. A—is a front view of the calculator of the present invention showing . . . a resultant variable/or dollar amount stored (in decimal format) when “BUY” key 7 is depressed.

FIG. B—is a front view of the calculator of the present invention showing . . . a resultant variable/or dollar amount stored (in fractional format) when “BUY” key 7 is depressed.

FIG. C—is a front view of the calculator of the present invention showing . . . the dollar amount stored when “CASH” key 9 is depressed (“CASH” key 9 would appear in a similar manner).

FIG. D—is a front view of the calculator of the present invention showing . . . the number of contracts by premium in a decimal format.

FIG. E—is a front view of the calculator of the present invention showing . . . the number of contracts by premium in a fractional format.

FIG. F—is a front view of the calculator of the present invention showing . . . the number stored when “Multiplier” key 7 is depressed (“Multiplier” key 6 would appear in a similar manner).

FIG. G—is a front view of the calculator of the present invention showing . . . the order size by price in decimal format.

FIG. H—is a front view of the calculator of the present invention showing . . . the order size by price in fractional format.

FIG. I—is a front view of the calculator of the present invention showing . . . a rate-of-return or margin resultant variable (Profit %) or, Profit % stored (as a percent), when other variables are entered (such as “BUY” and “SELL” amounts) and the “Profit %” key 8 is depressed. This is a profit margin calculation expressed as a percent and is shown as a positive number in FIG. 1.

FIG. J—is a front view of the calculator of the present invention showing . . . a rate-of-return or margin resultant variable (Profit %) or, Profit % stored (as a percent), when other variables are entered (such as “BUY” and “SELL” amounts) and the “Profit %” key 8 is depressed. This is a profit margin calculation expressed as a percent and is shown as a negative number in FIG. J.

FIG. K—is a front view of the calculator of the present invention showing . . . a rate-of-return or margin resultant variable (Profit, in dollars) or, Profit amount stored (in dollars) when other variables are entered (such as “BUY”, “SELL”, “CASH”) and the “Profit” key 8 is depressed. This is a gain & loss calculation expressed in dollars, shown in FIG. K as a positive number.

FIG. L—is a front view of the calculator of the present invention showing . . . a rate-of-return or margin resultant variable (Profit, in dollars) or, Profit amount stored (in dollars) when other variables are entered (such as “BUY”, “SELL”, “CASH”) and the “Profit” key 8 is depressed. This is a gain & loss calculation expressed in dollars, shown in FIG. L as a negative number.

FIG. M—is a front view of the calculator of the present invention showing . . . a resultant variable/or dollar amount stored (in decimal format) when the “SELL” key 6 is depressed.

FIG. N—is a front view of the calculator of the present invention showing . . . a resultant variable/or dollar amount stored (in fractional format) when the “SELL” key 6 is depressed.

FIG. O—is a front view of the calculator of the present invention showing . . . a resultant variable/or dollar amount stored (in fractional format) when the “SELL” key 6 is depressed.

DETAILED DESCRIPTION OF THE INVENTION

A calculator constructed in accordance with a preferred aspect of the invention is illustrated in FIG. 1A and generally designated 1000. The calculator includes a body or housing 1012 supporting a keypad 13 and a display 14. The display includes a number section 16, a trading price/premium section 18, an order size/number of contract/section 22, a mode type (order size, rate of return, option variables) section 20, cash type section 11 (cash, margin, total buying power), and a key indication (section 20, when operating trade order size, options and rate of return modes. The display also includes a plurality of annunciators/indicators. The calculator 1000 is illustrated in FIG. 1A in a configuration that is conventional in the art. Specifically, the keypad 13 and the display 14 are both connected to a processor 15. A storage device 17 is also connected to the processor 15. The processing functions described in this application are carried out by the processor 15; and storage functions are accommodated in storage device 17. When operating in the calculator mode, display 14 displays numbers in conventional fashion.
Again, the portable handheld calculator and several models of the preferred embodiment is just one example of a handheld computing device having a software application in accordance with the present invention. As is well known to those of ordinary skill in the art, a handheld computing device, such as a calculator, typically comprises (but is not limited to) an electrical circuit having a processor electrically coupled to a memory device, as well as a display screen and an input device electrically coupled to the electrical circuit. For illustration purposes, the electrical circuit is shown schematically outside of the calculator, even though the electrical circuit is actually within and part of the calculator in this example. A handheld computing device in accordance with an embodiment of the present invention also comprises at least one software application stored in the memory device that is adapted to be executed by the processor. The memory device, processor, display screen, input device, and software application, each may vary for a given application. Consider the following examples illustrating some variations of these components for a variety of handheld computing devices, which are just a few examples and are not intended to limit the scope of a claimed invention herein.

The handheld computing device may be adapted to connect to a television, personal computer, or other trading and investment display (not shown), so that these items provide a display screen or a duplicate image of the display screen on the computing device, for example. The display screen may comprise an active matrix display device (not shown). Also, the display screen and the input device may be integral with one another. For example, if the display screen comprises a touch sensitive screen (not shown) that allows inputs to be received by touching the screen with a finger or a touch wand (not shown), the input device may be a simulated keypad displayed on the touch sensitive screen. Such displays are often used in portable palm-sized computer devices for example. If the handheld computing device is a cellular telephone, for example, the input device may include the key pad normally used for dialing telephone numbers.

A portable handheld calculator, such as the one shown, may be battery powered, solar powered, and/or powered by an AC/DC converter that can be plugged into an AC wall outlet. In the figures, the display screen of the calculator has a liquid crystal display (LCD). The memory device comprises a flash memory device, which stores the software application, among other tasks. The input device comprises a key pad device with a variety of buttons. The input device may also comprise “soft keys”, which correspond to buttons whose function may change to suit a given software application. If the user presses a button below the displayed soft key, it will provide the input displayed on the soft key; such button depressions will be interpreted by the software application as the user’s desire to switch modes, as discussed further below, for example.

The keys supported within the body of the “Basic/ Core Concept Model” calculator are as follows:

| TABLE-US-00002 | TABLE 2 Basic/Core Concept Model Designating Key Numeral ON/C 1% or SET 2 M-3 M-4+ MEMORY RECALL (MRC) 5 SELL 6 MULTIPLIER | 6x BUY 7 MULTIPLIER 2 set 7 PROFIT (gain/loss; in dollars) 8 PROFIT% (as a percent) set 8 CASH (in dollars) 9 CASHE2 (in dollars) set 9 INDIVIDUAL NUMBERS 30 TRADE (dedicated execution key) 10 SCROLL UP (decimal/fractional increments) 11 SCROLL DOWN (decimal/fractional increments) 12 FRACTION INDICATOR/SE-

The function of these keys is explained in conjunction with the flow charts and front-views shown in the drawings for the “Basic/Core Concept Model”.

TABLE-US-00003 | TABLE 1 The keys supported within the body of the calculator are as follows: Designating Key Numeral ON/C 1% or SET 2 M-3 M-4+ MEMORY RECALL (MRC) 5 SELL 6 MULTIPLIER 7 PROFIT (gain/loss; in dollars) 8 PROFIT% (as a percent) set 8 CASH (in dollars) 9 CASHE2 (in dollars) set 9 INDIVIDUAL NUMBERS 30 TRADE (dedicated execution key) 10 SCROLL UP (decimal/fractional increments) 11 SCROLL DOWN (decimal/fractional increments) 12 FRACTION INDICATOR/SE-

The function of these keys is explained in conjunction with the flow charts and front-views shown in the drawings.
entering a user-defined range is an option, and certainly not a required method. These whole numbers or prices will then be used in Table LU1 to determine fractional price or premiums within a price or premium range. For example, a portion of Table WN-LU is shown:

TABLE-US-00004 TABLE WN-LU Whole Number Table (1-1000) 1 2 3 4 5 6 7 8 9 10 11 12 13 ... up to 1000

TABLE-US-00005 TABLE LU1 (EXAMPLE; 30-32 by ¼) Whole Number Price/Or Premium 30 31/4 301/4 301/2 303/4 31 31 31/4 311/2 313/4 32 32 32

Continuing on with this example, if the total buying power (TPPS key 31) was set and stored as $76,840.00, then each fractional number of table LU1 would be divided into $76,840.00, thereby calculating (EQU1) an associated trade order size that can be purchased (always rounded down to the nearest whole number for each trading price). Table LU2 would then become:

TABLE-US-00006 TABLE LU2 (EXAMPLE; 30-32 by ¼) Price/Or Premium Trade Order Size 30 31/4 2540 301/4 2519 303/4 2498 31 2478 311/4 2458 311/2 2439 313/4 2420 32 2401

The first entry in table LU2 will be displayed by the calculator (only fractional price and trade order size. Fractional premium and number of option(s)/contract(s) would be the only two variables displayed when calculating the number of option(s)/contract(s). To view/scroll through the table, the user would use keys 35 and 36. To adjust table LU1 and LU2 respectively, the user can clear the trading price range by depressing ON/C (key 1) or C/RNG (key 6), and then re-key a new individual trading price or price range by using the TO (key 33), individual numbers (keys 29), and TRADE (key 34). An individual price can be entered instead of a price range by using keys 29 and depressing TRADE (key 34). In addition, as already mentioned above, entering a price range manually (with a separator) is not required; the processor means can determine a price range internally when the user enters a single price, or increments can be used. These order sizes and fractional numbers are permanently embodied in read-only memory (ROM), and the user cannot edit them. The user can edit or change them by entering a new price or price range as mentioned above using the nonvolatile area of random-access memory (RAM). Default values for tables LU1 and LU2 are zero.

If an individual trading price was entered by the user, tables LU1 and LU2 would only have one record each.

Another example like the creation of table LU2, is when a user wants to calculate the number of option(s) or contract(s) he/she can purchase. If the trading premium range of 30-40 was selected as shown in the above example, and the total money (keys 30, 31, 32, 45) was set and stored as above ($76,840), and an option multiplier of 100 was set and stored (key 12) then tables WN-LU and LU1 would be created exactly as above. Table LU2, although, would have an additional column of data that would store the number of contract(s) [rounding down as stated above]. This is shown below in Table LU3. The number of contract(s) is calculated (EQU2) by dividing the trade order size (in LU2) by the stored option multiplier (key 12):

TABLE-US-00007 TABLE LU3 (EXAMPLE; 30-32 by ¼) Number of Premium Trade Order Size Contracts 301/4 2540 25 301/2 2519 25 303/4 2498 24 31 2478 24 311/4 2458 24 311/2 2439 313/4 2420 24 32 2401 24

The user can then view/scroll through each record that displays premium and number of contract(s) by using up/down arrow keys (keys 35, 36) or speed keys (keys 44, 47, 48, 49) in combination with selector keys 37 and 46.

Again, for method #3 aforementioned, instead of using a price or premium range (manually or internally set by processor means), prices or premiums can be changed using incremental speed keys (keys 44, 47, 48, 49) where increments are added to prices or premiums to arrive at a new price or premium. For example, with the Decimal-Fraction Mode Switch (key 46) set to Decimal and the amount of money being trade previously entered (keys 30, 31, 32, 45), the user could then enter 25.23 using the keypad (key 29) followed by depression of the TRADE key 34.

At this point the first display signal would be shown, and the display indicators would correlate to either premiums/contracts or price/order size depending on whether or not the multiplier (key 12) was depressed or not with a previously stored entry; when key 12 is depressed, the calculator determines the number of contracts instead of the order size as shown in Table LU3. In this example, let’s assume that key 12 was not depressed and there was nothing stored in key 12. Internal calculations would be like those shown in Table LU2 using $76,840 as the stored amount of cash (key 30). $76,840 (stored key 30) divided by a price of 25.23 equals 3045.58, rounded down to 3045.
At this point, the user could then depress a +0.01 increment (key 44). A second display signal would then be shown where 0.01 is added to the last price shown, 25.24, thus arriving at a new price 25.25. Again, $76,840 (stored key 30) now divided by 25.24 to equal 3044.37, rounded down to 3044.

Continuing on with this example, the user could now depress a +0.05 increment (key 48). Another display signal would then be shown where 0.05 is added to the last price shown, 25.24, thus arriving at a new price 25.29. Again, $76,840 (stored key 30) now divided by 25.29 to equal 3038.35, rounded down to 3038.

The number of contracts can be determined by increments in the same manner when multiplier (key 12) is depressed, and has a stored entry. Display indicators correlate to price/order size or premium/contracts accordingly.

These last several examples had the Decimal-Fraction Mode Switch (key 46) set to “Decimal”. When the Decimal-Fraction Mode Switch (key 46) is set to “Fraction” and the amount of money being traded was previously entered (keys 30, 31, 32, 45), the user could then select a pre-defined fractional increment from Fraction Indicator/Selector (key 37), and then enter a number using the keypad (keys 29) followed by depression of the TRADE (key 34). At this point the first display signal would be shown, and the display indicators would correlate to either premiums/contracts or price/order size depending on whether or not the multiplier (key 12) was depressed or not with a previously stored entry; when key 12 is depressed, the calculator determines the number of contracts instead of the order size as shown in Table LU3. In this example, let’s assume that key 12 was not depressed and there was nothing stored in key 12, that the Fraction Indicator/Selector (key 37) was set to ¼, the Cash (key 30) had $76,840 previously entered and was depressed, and the Decimal Fraction Mode Switch (key 46) was set to “Fraction”. At this point, the user enters the number 30 on the keypad (key 29) and then depresses the TRADE (key 34). Internal calculations would be those shown in Table LU2 using $76,840 as the stored amount of cash (key 30). The first display signal would be:

At this point, the user could then depress the up or down arrow scroll (keys 35, 36) to view/scroll through records by the pre-defined fractional increment already selected by Fraction Indicator/Selector (key 37). At this point, if the user depressed the up arrow (key 35) key once, a second display signal would then be shown as in Table LU2:
ON/C key 1. Tables WN-LU1.LU2.LU3 are reset <101> to the default values of 0. A hard reset is only performed when the batteries are removed. At this point, any keys can be depressed <102>. The calculator determines <103> if standard calculator functions will be performed. If they are, standard keys are depressed <104>, calculated <105>, and displayed <106>. If standard calculator functions are not to be performed <103>, the mode then needs to be determined <108>. The default mode <104> is calculator mode 500. Depressing TBPS key 31, CASH key 30, or OPTIONS key 32, or MARGINS key 45 places the calculator in trading order size mode 200. Depressing keys 4,8,9,12,23 and set keys 4,8,9,12,23,27 places the calculator in options trade mode 200, and depressing keys 10,13,14,16,21,25 and set keys 10, 13, 14, 16, 20, 21, 25 places the calculator in forecast mode 400. At any time during the operation of the calculator, any of the above keys can be depressed whereupon the calculator enters the corresponding mode 200, 300, 400, or 500. The mode is then displayed <107>,109,113> on display 14 (section 20). The main routine 100 will process trade order sizes <111> including number of option(s) or contract(s), option trading variables <110>, margin/percentage/cash flow/rate of return variables <112>, and standard calculator functions <104>. The calculator is powered off <114> by depressing the OFF key 3. In order to facilitate a precise description of the operation of the calculator, the following internal variables will be used:

[0104] TABLE-US-00013 INTERNAL VARIABLES 1-1

Variable Description
High-Price High trading price of range, user-defined
Low-price Low trading price of range, user-defined
FRA CP Fractional trading price (internal table L1)
CIND Indication of option很喜欢(key 37)
ORDSZ Order size (internal table L2)
MULTP Option multiplier (stored key 12) WN Whole number (internal table L1)
NOOPS Number of contracts (internal table L2)
CASH$ Total cash money (stored key 30) MARGINS Total
margin money (stored key 45) TBPS Total buying power money (stored key 31)
OPTS Options (stored key 32) OPT1 Premium option (stored key 49) OPT2 Total
option money (stored key 4) OPT3 option money (stored key set 12)
OPTS cap interval (stored key set 8) OPT6 # of options (stored key 8)
OPT7 cap price (stored key set 27, EQU27)
OPT8 # of shares (stored key set 27) OPT9 strike price (stored key set 23) OPT10 exercise price (stored key 23, EQU8, 10)
OPT11 settlement value (stored key 9, EQU34) OPT13 settlement
value (stored key set 9, EQU13) OPT12 multiplier (stored key 12) OPT14 option money (stored key 4, EQU4)
ROR1, fees total (stored key set 21) ROR2 total amount of dividend (stored key 21) ROR3 yield % (stored key 16, EQU79-80) ROR4 annualized return % (stored key 13, EQU51-62) ROR5 avg qty dividend (stored key set 20) ROR6 total dividends (stored key 20, EQU15-16) ROR26 total dividend income (stored key 14) ROR7 total dividend-reinvestment % (stored key set 14) ROR8 current price (stored key set 10) ROR10, position (stored key set 10, EQU63-74) ROR8 purchase price (stored key set 10) ROR10 IRR % (stored key set 13, EQU10) ROR11 gain/loss total (stored key set 16, EQU57-78) ROR12 EQU3 result (stored internally, fees/share) ROR13 EQU24 result (stored internally, g/1 per share) ROR14 EQU25 result (stored internally, total divd/share) ROR15 EQU26 result (stored internally, tax calc) ROR18 EQU36 result (stored internally, divd/share/year) ROR16 EQU35 result (stored internally, net cash flow) ROR20 ending balance (stored internally, EQU37) ROR21 beginning balance (stored internally, EQU38) ROR19 dividend

[0105] II. Trading Order Size Mode

[0106] The main routine <100> transfers control <201> (FIG. 1D) to the trading order size subroutine <200> when keys 31, CASH key 30, OPTIONS key 32, or MARGINS key 45 <201> is depressed. This subroutine processes the amount stored in the key register (key 30, 31, 32, 45). If the key register does not contain a number <202>, the control is immediately returned to the main routine <100>. If the key register does contain an amount in register 30, 31, 32, 45, the calculator then checks <203> for a multiplier stored in key register 12. If a multiplier is not stored in key register 12, the calculator then waits <209> for a trading price to be entered using keys 29. Once a trade price is entered, the TRADE key 34 is then depressed <210> which activates the processor to determine a trading price range, then determines <211> order sizes for each price in the price range and display <212> order size by price (from table L2) on display 14 that the user can view or scroll through <213> using up/down arrow keys 35 and 36, or increment speed keys 44, 47-49. If a multiplier is stored <203> in key register 12, the calculator then waits <204> for a trading premium to be entered using keys 29. Once a trading premium is entered, the TRADE key 34 is then depressed <205> which activates the processor to determine a trading premium range, and then determines <206> the number of contract(s) for each premium in the premium range and display <207> the number of contract(s) by premium (from table L2) on display 14 that the user can view or scroll through <208> using up/down arrow keys 35 and 36, or increment speed keys 44, 47-49. Control is then given back to the calling routine <214>. Please refer to tables WN-LU1, LU2, LU3 for examples. All data in tables WN-LU1, LU1, LU2, and LU3 are retained until the OFF (key 3), ON/C (key 1), or CLRNG (key 6) is depressed. (Please refer to examples and Table 1-1 for internal calculations in regard to determining order size(s) and the number of contract(s).)

[0107] III. Options Trading Mode

[0108] The main routine <100> transfers control <301> (FIG. 1E) to the options trading subroutine <300> when keys 4,8,9,12,23 and set keys 4, 8, 9, 12, 23, 27 are depressed. The user can then enter option variables through keys 29. These option variables are stored <303> in option key registers and displayed <304>. When the user finishes entering option variables into the different key registers, the user decides if input is complete <305>. If not, the user can continue <302> to enter option variables through keys 29. If the user decides that input is complete <305>, he/she can then depress the desired unknown or not stored option variable key <306>, where the calculator then determines <307> that unknown variable. If the calculator cannot determine the unknown variable because necessary variables were not previously entered <312>, the user can then enter those missing variables <302>, and then once again depress <306> the desired unknown or not stored option variable key. If the calculation is successful, the resultant variable will be stored <308> and displayed <309>. A “RUN” indicator is shown in the display when the calculation is taking place, indicating that the process is “running”. At this point, the user has the choice to solve for
additional unknown option variables <310>, or return the control to the calling routine <311>. Keys 4.8.9.12.23.27 and set keys 4.8.9.12.23 are used during this process, and internal variables are also assigned (see Internal Variables 1-1). Also refer to Equations Table 1-1, where any variable—for any equation—can be solved for. Stored entries can be re-displayed <304> at any time by depressing the option key directly <306>.

[0109] IV. Rate of Return Mode

[0110] The main routine <100> transfers control <401> (FIG. 11) to the rate-of-return trading subroutine <400> when keys 10,13,14,16,20,21,25 and set keys 10,13,14,16,20,21,25 are depressed. The user can then enter margin/percentage/ cash flow/rate-of-return variables through keys 29. These rate-of-return variables are stored <403> in key registers and displayed <404>. When the user finishes entering rate-of-return variables into the different key registers, the user decides if input is complete <405>. If not, the user can continue <402> to enter rate-of-return variables through keys 29. If the user decides that input is complete <405>, he/she can then depress the desired unknown/not stored margin/percentage/cash flow/rate-of-return variable key <406>, where the calculator then determines <407> that unknown variable. If the calculator cannot determine the unknown variable because necessary variables were not previously entered <412>, the user can then enter those missing variables <402>, and then once again depress <406> the desired unknown/not stored variable key. If the calculation is successful, the resultant variable will be stored <408> and displayed <409>; a “RUN” indicator is shown in the display when the calculation is taking place, indicating that the process is “running”. At this point, the user has the choice to solve for additional unknown rate-of-return variables <410>, or return the control to the calling routine <411>. Keys 10,13,14,16,20,21,25 and set keys 10,13,14,16,20,21,25 are used during this process, and internal variables are also assigned (see Internal Variables 1-1). Also refer to Equations Table 1-1, where any variable—for any equation—can be solved for. Stored entries can be re-displayed <404> at any time by depressing the rate-of-return key directly <406>.

[0111] V. Output

[0112] The calculator will display trading order size(s) by price and number of contract(s) by premium. It will also display and solve for individual option trading variables and investment variables including stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, and interest rate variables, including more common investment calculations such as: gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, cash flow, yield, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short-long term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, break even price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.

[0113] VI. Operation

[0114] The present calculator quickly and easily processes trade order size(s) by price and number of contract(s) by premium; users can view/scroll through records in a price/or premium range using up/down arrow keys or incremental speed keys. It also processes option trading and investment variables including stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, and interest rate variables; and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms. The calculator is powered on by depressing the ON/C key 1. Tables are reset to default automatically, and counters are cleared.

[0115] I. Main Routine—“Basic/Core Concept Model” (as amended in FIGS. A through O; see Table 2 keys for the “Basic/Core Concept Model”). Program flow of the main routine <100> is illustrated in FIG. 30A. The calculator is powered on by depressing ON/C key 1. Internal tables are reset <101> to the default variables <A> a hard reset is only performed when the batteries are removed. At this point, any keys can be depressed <102>. The calculator determines <103> if standard calculator functions will be performed. If they are, standard keys are depressed <104>, calculated <105>, and displayed <106>. If standard calculator functions are not to be performed <103>, the mode then needs to be determined <108>. The default mode <104> is calculator mode 500. Depressing TRADE key 10 places the calculator in trade “Order Size Mode” 200. Depressing BUY key 7, SELL key 6, PROFIT key 8, or PROFIT % set key 8 places the calculator in “Rate-of-Return” or “Investment” mode 400. At any time during the operation of the calculator, any of the above keys can be depressed whereabouts the calculator enters the corresponding mode 200,300,400, or 500. The main routine 100 will determine trade order size(s) by price and the number of trade contract(s) by premium <111>, display numbers including fractions that the user can select and store into key registers by using UP/and DOWN ARROW keys <110>, investment variables by calculating gain/loss in dollars (PROFIT) or margin as a percent (PROFIT %) <112>, and standard calculator functions <104>. The calculator is powered off <114> automatically or manually with an OFF key.

[0116] II. Trade Order Size Mode—“Basic/Core Concept Model” (as amended in FIGS. A through O; see Table 2 keys for the “Basic/Core Concept Model”). The main routine <100> transfers control <201> (FIG. 30B) to the trade order size subroutine <200> when TRADE key 10 <201> is depressed. This subroutine processes the cash amount stored in key register(s) CASH (key 9) or CASH2 (set key 9). If the key register does not contain a cash amount <202>, the control is immediately returned to the main routine <100>. If the key register does contain an amount in CASH (key 9) or CASH2 (set key 9) the calculator then checks <203> if a multiplier is stored in key register(s) MULTIPLIER1 (set key 6) or MULTIPLIER2 (set key 7). If a multiplier is not stored in key register(s) set key(s) 6 or 7, the calculator then waits <209> for a trading price to be entered using keys 29. Once a trade price is entered, the TRADE key 10 is then depressed <210> which activates the processor means to determine <211> an order size using price and cash amount(s) stored in key registers 9 and set key 9, and display <212> order size by price on display 14 that the user can view or scroll through <213> using UP/DOWN ARROW keys 11 and 12. It should be mentioned that a trade price can also be entered through Selection Mode (Subroutine 300), where keypad 30 is used to enter a number followed by depression of the UP/DOWN ARROW keys, and once a number plus fraction is selected, the TRADE key 10 is depressed; see <209> or <204>. At this point, if a multiplier is stored <203> in set key(s) 6 or 7, the
calculator then waits <204> for a trading premium to be entered using keys 29. Once a trading premium is entered, the TRADE key 10 is then depressed <205> which activates the processor means to determine <206> the number of contract(s) for each premium using premium and cash amount(s) stored in key registers 9 and set key 9, and display <207> the number of contract(s) on premium on display 14 that the user can view or scroll through <208> using UP/DOWN ARROW keys 11 and 12. Control is then given back to the calling routine <209> until data in tables are retained until the calculator turns off or the ON/C (key 1) is depressed. [Please refer to examples and Equations Table 1-1 for internal calculations in regard to determining order size(s) and the number of contract(s).]}

[0117] III. Selection Mode—“Basic/Core Concept Model” (as amended in FIGS. A through O; see Table 2 keys for the “Basic/Core Concept Model”). The main routine <100> transfers control <301> (FIG. 30C) to the selection mode subroutine <300> when UP SCROLL key 11 or DOWN SCROLL key 12 <303> is depressed. This subroutine processes a number/price that is entered by the user on the keypad (keys 30) <302> followed by a depression <303> of the UP SCROLL key 11 or DOWN SCROLL key 12, in order to arrive <304> at a new number or price (including fraction) that is displayed <305>, which can then be “selected” <306> and entered <307> by the user. At this point, the user can choose to continue <306> to select numbers or prices by using the UP or DOWN SCROLL keys 11 or 12 <308> or depress <309> a desired variable key (BUY or SELL keys, for example), in order to store <308> selection in a key register chosen by the user. If the TRADE key 10 is depressed <308>, the program goes into Order Size Mode (subroutine 200) <310>, using the selection <306> chosen by the user. Once a number or price is selected <306> and stored <309> by the user, the program returns to the call routine <310>, where it awaits Investment Mode (subroutine 400), for example.

[0119] This mode allows a user to select and then enter a fractional number into various key registers such as BUY key 7 or SELL key 6, for example, when used in combination with FRACTION INDICATOR/SELECTION key 13 and DECIMAL-FRACTION MODE SWITCH key 14. For example, a user may want to enter a fractional number into a BUY or SELL key register (keys 6 and 7; table 2; “Basic/Core Concept Model”), in order to calculate the PROFIT (key 8; table 2; “Basic/Core Concept Model”) in dollars. This is a “Rate-of-Return Mode” or “Investment Mode” calculation, and not a calculation performed while in trade “Order Size Mode.” The user would enter a whole number using the keypad (keys 30), and then depress an up or down arrow key (keys 11 and 12; table 2; “Basic/Core Concept Model”) or speed key, in order to scroll through a range of numbers each shown on the display screen, together with fractions. When the user finally increments to the number (including fraction) he/she is looking for, that number is then selected and entered into a BUY or SELL key register by depressing the corresponding BUY or SELL button, for example. At this point, the user could also decide to depress TRADE key 10, in order to enter Order Size Mode (subroutine 200), instead of entering the selected number into BUY or SELL key registers, for example.

[0120] IV. Investment Mode—“Basic/Core Concept Model” (as amended in FIGS. A through O; see Table 2 keys for the “Basic/Core Concept Model”). The main routine <100> transfers control <401> (FIG. 30D) to the Rate-of-Return/Investment subroutine <400> when keys 6, 7, 8, 9, set key(s) 8 or 9 are depressed. The user can then enter <402> investment variables through the keypad (keys 30) or numbers selected from subroutine 300 <413>. These investment variables are stored <403> in key registers and displayed <404>. When the user finishes entering investment variables into the different key registers (BUY, SELL, PROFIT, PROFIT %, for example), the user decides if input is complete <405>. If not, the user can continue to enter <402> or <413> investment variables through keypad (keys 30) or numbers selected from subroutine 300. If the user decides that input is complete <405>, he/she can then depress the desired unknown/not stored investment variable key <406>, where the calculator then determines <407> that unknown variable (BUY, SELL, PROFIT, PROFIT %, CASH, for example). If the calculator cannot determine the unknown variable because necessary variables were not previously entered <412>, the user can then enter those missing variables <402> or <413>, and then once again depress <406> the desired unknown/not stored variable key. If the calculation is successful, the result variable will be stored <408> and displayed <409>, a “RUN” indicator is shown in the display when the calculation is taking place, indicating that the process is “running.” At this point, the user has the choice to solve for additional unknown investment variables <410>, or return the control to the calling routine <411>. Various investment/return of-return keys are used during this process, and internal variables are assigned. Stored entries can be re-displayed <404> at any time by depressing the investment key directly <406>.

[0121] Examples of using the invention are below. Examples that demonstrated use of the trading order size mode were already shown above when discussing internal tables WN-LULU1, LU2, LU3. A few more examples will demonstrate the use of the calculator in options trading mode and rate of return mode, when determining individual variables. An equations table is listed for reference:
Example 2

If I have $30,000 in total option money, and want to buy 20 options, what does the premium need to be? (multiplier of 100 assumed to be stored in key 12).

Example 3

What exercise price/or cap price do I need to reach to have "even" option money for puts and calls. My original premium was $5.00 and strike price $50.00.

Example 4

If I want to be "in-the-money" by $15,000, what exercise price/or cap price do I need to reach? I have 12 options at a $7.00 premium and a $40.00 strike price (multiplier of 100 assumed to be stored in key 12).

Example 5

What will my settlement value be for an automatically exercised option with a cap interval of 23? (multiplier of 100 assumed to be stored in key 12).

Example 6

What will my settlement value be for an option that is not automatically exercised? The exercise settlement value today is $55.30 and my strike price was $41.75.

Example 1

Options Trade Mode

Example 1

If I want to buy 25 options at $10.00 premium, how much option money do I need? (multiplier of 100 assumed to be stored in key 12).

Example 1

What is my FMRR rate of return (before taxes) if I sell now? My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax %=-28%, total fees=$400).

In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the option money key 4. At this point, the calculator would display "RUN" in display 14 (section 18), then calculate EQU4 and store the resultant variable assigned OPT4 to key register 13, and also display this variable in display 14 (section 16). The option variable mode would be displayed in display 14 (section 20) along with the specific key indicator (section 21). Please refer to Options Trading Mode (Section III) (FIG. 1E) for more details on program flow. All other option variable mode examples below will follow this same logic.

For example 2:

If I have $30,000 in total option money, and want to buy 20 options, what does the premium need to be? (multiplier of 100 assumed to be stored in key 12).

Example 3:

What exercise price/or cap price do I need to reach to have "even" option money for puts and calls. My original premium was $5.00 and strike price $50.00.

Example 4:

If I want to be "in-the-money" by $15,000, what exercise price/or cap price do I need to reach? I have 12 options at a $7.00 premium and a $40.00 strike price (multiplier of 100 assumed to be stored in key 12).

Example 5:

What will my settlement value be for an automatically exercised option with a cap interval of 23? (multiplier of 100 assumed to be stored in key 12).

Example 6:

What will my settlement value be for an option that is not automatically exercised? The exercise settlement value today is $55.30 and my strike price was $41.75.
assigned ROR4 to key register 13. This variable would be displayed in display 14 (sections 16, 17.20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for FMRR rate of return follow this same logic, depending on whether ROR9, ROR1, ROR19, and ROR6 are > or = to zero (refer to FIG. IF and EQU51-62).

```
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>times.100</td>
<td>times.12</td>
</tr>
<tr>
<td>(S7200-$600+$200+$400=$2000)</td>
<td>(S6000+$400=$6400)</td>
</tr>
<tr>
<td>0.05=$100</td>
<td>EQU7 ROR23-ROR27=5%</td>
</tr>
</tbody>
</table>

Example 2

[0134] What is my FMRR rate of return, without fees and after taxes, if I sell now? My dividends are not reinvested. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax%=28%, total fees=$400).

[0135] Similar to Example 7 above, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the ROR % key 13. At this point, the calculator would display "RUN" in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. IF). In this example, at the time of depression of key 13, if ROR9=0, ROR1=0, ROR19=0, and ROR6=0, then equation EQU12 would be calculated by program flow (FIG. IF) and resultant variable assigned ROR4 to key register 13. This variable would be displayed in display 14 (sections 16, 17.20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for FMRR rate of return follow this same logic, depending on whether ROR9, ROR1, ROR19, and ROR6 are > or = to zero (refer to FIG. IF and EQU51-62).

```
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>times.100</td>
<td>times.12</td>
</tr>
<tr>
<td>(S7200-$600+$200+$400=$2000)</td>
<td>(S6000+$400=$6400)</td>
</tr>
<tr>
<td>0.72-7.8%</td>
<td>EQU26 ROR15=(100-ROR9)-100- (100-28)-100=0.72</td>
</tr>
<tr>
<td>EQU18 ROR15=(100-ROR9)-100- (100-28)-100=0.72</td>
<td>EQU26 ROR15=(100-ROR9)-100- (100-28)-100=0.72</td>
</tr>
<tr>
<td>OPTS-$30</td>
<td>times.200</td>
</tr>
</tbody>
</table>

Example 3

[0136] What selling price provides my desired FMRR rate of return of 15%?

[0137] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax%=28%, total fees=$400).

[0138] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the CPRICE key 10. At this point, the calculator would display "RUN" in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. IF). In this example, at the time of depression of key 10, if ROR9=0, ROR1=0, ROR19=0, and ROR6=0, then equation EQU79 would be calculated by program flow (FIG. IF) and resultant variable assigned ROR3 to key register 10. This variable would be displayed in display 14 (sections 16, 17.20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for FMRR rate of return follow this same logic, depending on whether ROR9, ROR1, ROR19, and ROR6 are > or = to zero (refer to FIG. IF and EQU51-62).

```
<table>
<thead>
<tr>
<th>TABLE-US-00024</th>
<th>EQU75 ROR4-[[ROR7-ROR8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OPTS)-ROR1</td>
<td>times.</td>
</tr>
<tr>
<td>OPTS-$30</td>
<td>times.200</td>
</tr>
</tbody>
</table>

Example 4

[0139] What is my total gain/loss on sale, after taxes and with fees?

[0140] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax%=28%, total fees=$400).

[0141] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the G/L set key 16. At this point, the calculator would display "RUN" in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. IF). In this example, at the time of depression of set key 16, if ROR9=0, ROR1=0, then equation EQU75 would be calculated by program flow (FIG. IF) and resultant variable assigned ROR1 to key register 16. This variable would be displayed in display 14 (sections 16, 17.20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for total gain/loss follow this same logic, depending on whether ROR9 and ROR1 are > or = to zero (refer to FIG. IF and EQU75-78).

```
<table>
<thead>
<tr>
<th>TABLE-US-00024</th>
<th>EQU75 ROR4-[[ROR7-ROR8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OPTS)-ROR1</td>
<td>times.</td>
</tr>
</tbody>
</table>

Example 5

[0142] What is my current yield on dividends after taxes?

[0143] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax%=28%, total fees=$400).

[0144] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the YLD % key 16. At this point, the calculator would display "RUN" in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. IF). In this example, at the time of depression of key 16, if ROR9=0, then equation EQU79 would be calculated by program flow (FIG. IF) and resultant variable assigned ROR3 to key register 16. This variable would be displayed in display 14 (sections 16, 17.20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for total gain/loss follow this same logic, depending on whether ROR9 and ROR1 are > or = to zero (refer to FIG. IF and EQU75-78).
details on program flow and key depression sequence. Other examples for yield % follow this same logic, depending on whether or not ROR9 is > or = to zero (refer to FIG. 1F and EQU79-80).

\[
\text{Example 6}
\]

[0145] What are my total dividends received after taxes?
[0146] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax %=28%, total fees=$400).
[0147] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the D V D S key 20. At this point, the calculator would display “RUN” in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. 1F). In this example, at the time of depression of key 20, if ROR9=0, then equation EQU81 would be calculated by program flow (FIG. 1F) and resultant variable assigned ROR6 to key register 20. This variable would be displayed in display 14 (sections 16,17,20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for total dividends follow this same logic, depending on whether or not ROR9 is > or = to zero (refer to FIG. 1F and EQU81-82).

\[
\text{Example 7}
\]

[0148] What is my total dividend reinvested income after taxes?
[0149] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax %=28%, total fees=$400).
[0150] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the D V D S key 14. At this point, the calculator would display “RUN” in display 14 (section 18), then calculate the appropriate equation selected by program flow (FIG. 1F). In this example, at the time of depression of key 14, if ROR9=0, then equation EQU83 would be calculated by program flow (FIG. 1F) and resultant variable assigned ROR19 to key register 14. This variable would be displayed in display 14 (sections 16,17,20, 21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for total dividend reinvested income follow this same logic, depending on whether or not ROR9 is > or = to zero (refer to FIG. 1F and EQU83-84).

\[
\text{Example 8}
\]

[0151] What is my internal rate of return after taxes if I sell now?
[0152] My dividends are reinvested at 5%. (purchase price=$30.00/share, current price=$36.00/share, number of shares=200, avg. quarterly dividend=$100, term/months owned=60, total tax %=28%, total fees=$400).
[0153] In this example, all known data would be entered by the user, stored in the associated key register, and assigned an internal variable. The user would then depress the I R R % set key 13. At this point, the calculator would display “RUN” in display 14 (section 18), then calculate the appropriate equation selected by program flow. (FIG. 1F) The resultant variable assigned ROR10 would be stored in key register set 13. This variable would be displayed in display 14 (sections 16,17,20,21). Please refer to Rate of Return Mode Section IV for more details on program flow and key depression sequence. Other examples for internal rate of return follow this same logic (refer to FIG. 1F and EQU87-88).
[0154] Note: I R R % equations still being developed, and will be added on completion.
[0155] INVESTMENT MODE—EXAMPLES [“BASIC/CORE CONCEPT MODEL” (as amended in FIGS. A through O; see Table 2 keys for the “Basic/Core Concept Model”).

\[
\text{Example 9}
\]

[0156] If I sell now at $12.63, what will my profit be?
[0157] BUY (key 7) previously entered & stored amount=$10.30
[0158] CASH (key 9) previously entered & stored amount=$10,000.00 [$10,000.00 divided by $12.63] times. [$12.63–$10.30]=$1,844.82 This example is a gain/or loss calculation in actual dollars, not expressed as a percent. The BUY price and CASH amount being traded/invested would be entered by the user, stored in the associated key register(s), and assigned an internal variable. The trader or investor would then depress the PROFIT key 8. At this point, the calculator would display “RUN”, then determine and store the resultant variable in PROFIT key register 8, and also display this variable. PROFIT key 8 internal calculations are determined as a gain/or loss calculation in dollars; profit determined as a percent is performed through PROFIT % set key 8. Profit amounts stored in PROFIT key 8 or PROFIT % set key 8 can be positive or negative numbers (−33.50%, −180.23%, for example). It should also be noted that stored variables can be entered through the keypad (keys 30) or selected and entered into key registers via Selection Mode subroutine 300. In this example, CASH2 set key 9 could have been used instead of CASH key 9; CASH2 is a second pre-set for the amount being traded or invested. BUY, SELL, PROFIT, PROFIT %, CASH, and CASH2 keys stores trading and investment data entered by the user, and the calculator then solves for the unknown/or not stored variable. Modes of operation and specific key indicators would also be displayed (please refer to FIGS. A through O; “Basic/Core Concept Model”). Please refer to Investment Mode subroutine 400 for more details on program flow. Other examples for Investment Mode follow this same logic, and include solving for indi-
individual variables such as: If I sell now at $12.63, what will my profit percent be? [I bought for $20.00 and have $15,000.00 in cash]. If I want to make a profit of $3,000.00, what price/premium would I need to sell at? [I bought for $15.00 and have $5,000.00 in cash]. If I want to make a profit of $3,000.00 and want to sell at $32.50, what price/premium do I need to buy at? [I have $5,000.00 in cash]. If I buy for $5.00 and sell for $10.00, and want to make a profit of $25,000.00, how much cash do I need to trade or invest? Again, in these examples, either pre-set CASH1 or CASH2 could be selected for the cash amount, with the corresponding key indicator shown in the display (CAS#1, CAS#2, for example). MULTIPLIER1 (set key 6) and MULTIPLIER2 (set key 7) are both used as pre-sets for an options or trade contract multiplier when in Order Size Mode (please refer to subroutine 200). If an amount is stored by the trader or investor in MULTIPLIER1 or MULTIPLIER2 (MP1 or MP2 shown as a key indicator in display), then subroutine 200 determines the number of trade contracts instead of an order size.

0159] VII. Conclusion

0160] The manner and process of making the invention will follow traditional handheld calculator manufacturing processes including overall circuit board design, layout, prototype, and construction. The best mode contemplated in order to carry out the invention will be to obtain patents, and then license these patents to leading specialty calculator manufacturers who are experts in bringing handheld calculators to market. The above description is that of a preferred embodiment of the invention. Various changes and alterations can be made without departing from the spirit and broader aspects of the invention as set forth in the appended claims, which are to be interpreted in accordance with the principles of patent law, including the doctrine of equivalents. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to limit the invention to the particular forms and examples disclosed. On the contrary, the invention includes any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit or scope of this invention, as defined by the following claims. Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.

11. An electronic hand held calculator comprising:

An input means,
A processor, said processor configured to execute at least one of equations EQU1 through EQU11; EQU15; EQU23 through EQU29; EQU33 through EQU38; EQU51 through EQU84; and
A display to provide answers to trading and investment calculations.

42. An electronic hand held calculator of claim 11, where the hand held electronic calculator is a cellular telephone.

43. An electronic hand held calculator of claim 42, where the hand held electronic calculator is a cellular telephone where the input device includes the keypad normally used for dialing telephone numbers.

44. An electronic hand held calculator of claim 11, where the hand held electronic calculator is a personal organizer.

45. An electronic hand held calculator of claim 11, where the hand held electronic calculator is a pager.

46. An electronic hand held calculator of claim 11, where the hand held electronic calculator has an display screen comprising a touch sensitive screen that allows inputs to be received by touching the screen with a finger or touch wand.

47. An electronic hand held calculator of claim 46, where the hand held electronic calculator has an input device that is a simulated keypad displayed on the touch sensitive screen.

48. An electronic hand held calculator of claim 11, where the hand held electronic calculator performs math operations to calculate stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, or interest rate trading and investment variables, in addition to more common investment calculations such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.

49. An electronic hand held calculator of claim 11, where the hand held electronic calculator has a set of instructions or computer program and, when executed, causes a processor to calculate and display trading and investment variables on the display screen.

50. An electronic hand held calculator of claim 50, where the hand held electronic calculator determines COST, SELL, and MARGIN variables.

51. An electronic hand held calculator of claim 50, where the hand held electronic calculator determines COST, SELL, and MARGIN variables where the user can enter variables or numbers through buttons/ or key registers, and then depress one of the buttons to solve for the unknown variable and display this variable on the display screen.

52. An electronic hand held calculator of claim 51, where the hand held electronic calculator determines COST, SELL, and MARGIN variables based on internal profit or return rate calculations executed by the processor, and then displayed on the display screen.

53. An apparatus and method for trading and investment comprising:

An input means,
A processor, said processor configured to execute at least one of equations EQU1 through EQU11; EQU15; EQU23 through EQU29; EQU33 through EQU38; EQU51 through EQU84; and
A display to provide answers to trading and investment calculations.

54. An electronic hand held device comprising:

An input means,
A processor, said processor configured to execute at least one of equations EQU1 through EQU11; EQU15; EQU23 through EQU29; EQU33 through EQU38; EQU51 through EQU84; and
A display to provide answers to trading and investment calculations.

55. An electronic hand held device of claim 54, where the hand held electronic device is a cellular telephone.
56. An electronic hand held device of claim 54, where the hand held electronic device is a cellular telephone, where the input device includes the keypad normally used for dialing telephone numbers.

57. An electronic hand held device of claim 54, where the hand held electronic device is a personal organizer.

58. An electronic hand held device of claim 54, where the hand held electronic device is a pager.

59. An electronic hand held device of claim 54, where the hand held electronic device has a display screen comprising a touch sensitive screen that allows inputs to be received by touching the screen with a finger or touch wand.

60. An electronic hand held device of claim 59, where the hand held electronic device has an input device that is a simulated keypad displayed on the touch sensitive screen.

61. An electronic hand held device of claim 54, where the hand held electronic device performs math operations to calculate stock, futures, options, mutual funds, indexes, exchange traded funds, currency, commodities, or interest rate trading and investment variables, in addition to more common investment calculations such as gain/loss (dollars & percent), gross/net profit (dollars & percent), return rate, yield, cash flow, income, costs/fees, dividends, dividend reinvested income, reinvestment percent, average quarterly dividends, taxes, before/after taxes, before/after costs and fees, share volume, term, margin, short & long-term capital gains/losses, cost per share, basis per share, adjusted basis, total basis, buy & sell price, cash amounts, breakeven price, total cost, order sizes by price, number of contracts by premium, leverage ratios, liquidity ratios, operations ratios, profitability ratios, and display these variables resulting from the math operation(s) on the display screen simultaneously along with descriptive acronyms.

62. An electronic hand held device of claim 54, where the hand held electronic device has a set of instructions or computer program and, when executed, causes a processor to calculate and display trading and investment variables on the display screen.

63. An electronic hand held device of claim 54, where the hand held electronic device determines COST, SELL, and MARGIN variables.

64. An electronic hand held device of claim 63, where the hand held electronic device determines COST, SELL, and MARGIN variables where the user can enter variables or numbers through buttons or key registers, and then depress one of the buttons to solve for the unknown variable and display this variable on the display screen.

65. An electronic hand held device of claim 64, where the hand held electronic device determines COST, SELL, and MARGIN variables based on internal profit or return rate calculations executed by the processor, and then displayed on the display screen.

66. An electronic hand held calculator comprising:

 An input means,

 A processor, said processor configured to execute trading and investment equations, and

 A display to provide answers to trading and investment calculations.