wo 2010/016062 A2 | I IO AT 0O 0RO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(9) World Inclecual Property Organizaon /552 N N DA 0
International Bureau S,/)
3\ g 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
11 February 2010 (11.02.2010) PCT WO 2010/016062 A2
(51) International Patent Classification: NOAM, Yair [IL/IL]; 29 Hibat Zion street, 52391 Ra-
GOG6F 9/445 (2006.01) mat-Gan (IL).
(21) International Application Number: (74) Agent: APPELFELD ZER FISHER; B.S.R. Tower 1,
PCT/IL2009/000762 Floor 16, 2 Ben Gurion road, 52573 Ramat-Gan (IL).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
4 August 2009 (04.08.2009) kind of national protection available). AE, AG, AL, AM,
28) Filine L . Enelish AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: nglis CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FIL, GB, GD, GE, GH, GM, GT,
o HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/085,877 4 August 2008 (04.08.2008) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant (for all designated States except US): RED NO, NZ, OM, PE, PG, P11, PL, PT, RO, RS, RU, SC, SD,
BEND LTD. [IL/IL]; Neve Ne'eman B.LZ, 4 Hacharash SE, 8G, SK, SL, SM, ST, SV, 8Y, TJ, TM, TN, TR, TT,
street, 45240 Hod Hasharon (IL). TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and (84) Designated States (unless otherwise indicated, for every
(75) Inventors/Applicants (for US oniy): MELLER, Evyatar kind of regional protection available): ARIPO (BW, GH,
[IL/IL]; 23c Hashahaf street, 76812 Yad Binyamin (IL). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: UPDATING CONTENT WITHOUT USING A MINI OPERATING SYSTEM

(57) Abstract: A method of in-place updating an original

300 version of content to an updated version of content, in a
\ non-volatile memory storage device, wherein the storage
device comprises a non-paged part of the content, where-
360 in the non-paged memory part includes an original update
\\ library, and wherein the storage device is being used in a
Non-paged Core | normal mode of operation or in an update mode of opera-

332~ Flag Update Package giikup Buffer(s) tion, the method includes: obtaining an update package
required for updating the original version of content to

362*’{\530kup UAL 364 ‘ | 323 the updated version of content; obtaining a new update li-

1 brary; storing the new update library in a second non-

334—1~Update package \352 Svst volatile storage; and updating the original version of con-
336—|—~Core (paged) | Flle System tent to the updated yersiog of content, in a non-Volatil.e
™~320 memory storage device, using the at least new update li-

brary and the update package.

Core 368
3661 4~
(non-paged) AL 318
Y370 \a72

34817 T~ Boot Loader 319

k310

‘ Volatile Memory 1\350
BOG—J
[Executor J\sgo
Figure 3

WO 2010/016062 A2 I W00 0)00 0T AU A

ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Published:
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

UPDATING CONTENT WITHOUT USING A MINI OPERATING SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/085,877
filed on August 4®, 2008, which is incorporated herein by reference.

BACKGROUND
1. TECHNICAL FIELD

[0002] This invention relates to updating content stored in a storage memory device. More
specifically, this invention relates to in-place updating an original version of content in a non-

volatile storage to an updated version.

2. DISCUSSION OF RELATED ART

[0003] 1t is sometimes required to update content stored in a storage device. For example, if the
content is a program (such as an éxecutable file), it is sometimes required to fix a bug existing
therein or introduce new features thereto. Yet, the latter example is non-limiting and other types
of content may also require updates, such as text, data stored in a database, etc. The terms “old
version” or “original version™ refer to a version of content before update, and the terms “new
version” or “updated version” refer to a version that includes already updated content. In other
words, an original (or old) version includes "original (or old) content" while an updated (or new)
version includes-"updated (or new) content”. It should be noted that updated content can be
further updated. In case of a second update, for example, the updated content of the first update
turns to be original content of the second update while new updated content is generated by the
second update etc.

[0004] A process during which original content is updated, yielding updated content is referred
to as an "update process". The update process usually requires instructions on how to perform the
update. Such instructions constitute together an "update package", wherein each instruction
included therein constitutes an "update command". That is, an update package is obtained as
input, and during the update process original content is updated to updated content in accordance
therewith. This is non-limiting though and sometimes more than one update package can be

obtained which together allow the updating of content. Alternatively, instead of an update

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

package being obtained, an update package (or a set of update commands) may be retrieved from
a storage or from a database etc. Hence, hereinafter, when referring to the term "obtaining an
update package" it should be appreciated that the update package can be passively obtained or
actively retrieved, or sometimes an embedded package (e.g., a hard coded set of update
commands) can be activated.

[0005] One way to update an original version to an updated version is storing the updated
version in the storage in addition to the original version. For example, a computer program
"prog.exe" is activated whenever a user presses a certain icon on the PC (Personal Computer)
windows desktop. In order to update prog.exe it is possible to store the updated version of this file
in a different location than the present (original) version, and then reset the path associated with
the icon so as to activate the updated version instead of the original version. Later, when it is
ascertained that the update process completed successfully, the original version can be deleted
safely, releasing the space occupied thereby. In addition to increasing storage consumption, this
latter update method requires that the complete updated version be provided to the update
process, e.g., in the update package.

[0006] One way for reducing the size of an update package is by including in it information
representing the differences between the original and updated content. Such an update package is
sometimes referred to also as a “difference”, a “difference result” or a “delta”. The update
process, upon operating in accordance with a delta, applies it to the original content, hence
produciﬁg the updated content. Deltas may be produced using the known in the art differencing
algorithms (such as "GNU diff") in a naive manner, though such deltas tend to be rather large.
[0007] The size of the delta being considered, there are methods trying to reduce the size thereof.
For example, US 6,546,552 (“Difference extraction between two versions of data-tables
containing intra-references”, published 2003) discloses a method for generating a compact
difference result between an old program and a new program. Each program includes reference
entries that contain references that refer to other entries in the program. According to the method
of US 6,546,552, the old program is scanned and for each reference entry, the reference is
replaced by a distinct label mark, whereby a modified old program is generated. In addition,
according to US 6,546,552, the new program is scanned and for each reference entry the
reference is replaced by a distinct label mark, whereby a modified new program is generated.
Thus, utilizing directly or indirectly the modified old program and modified new program, the
difference result is generated.

[0008] WO 2004/114130 (“Method and system for updating versions of content stored in a

storage device”, published 2004) discloses another system and method for generating a compact

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

update package between an old version of content and a new version of content. The system of
WO 2004/114130 includes a conversion element generator for generating a conversion element
associated with the old version and new version. It also includes a modified version generator for
generating a modified version, and an update package generator for generating the compact
update package. The compact update package includes the conversion element and a modified
delta based on the modified version and the new version.

[0009] WO 2005/003963 (“Method and system for updating versions of content stored in a
storage device”, published 2005) discloses a System and method for updating versions of content
stored in a storage. The system of WO 2005/003963 includes an update module for obtaining a
conversion element and a small delta. It also includes a converted old items generator for
generating converted old items by applying the conversion element to items of an old version, a
data entries generator for generating data entries based on the modified data entries and on the
converted old item, and a new version generator for generating a new version of content by
applying the commands and the data entries to the old version.

[0010] It was noted before that a certain type of update package is sometimes referred to as a |
delta, however, this is non-limiting, and as it appears from WO 2004/114130 and WO
2005/003963, an update package may sometimes include a delta therewith, or as another example
the update package may include the entire updated version.

Other methods exist in the art which take care of additional considerations involved in the update.

Prior to elaborating on other methods these considerations should be pointed out.

[0011] It is appreciated that content is normally stored in a storage. A storage can include
volatile memory, i.e. volatile storage (such as Random Access Memory RAM, etc.) and/or non-
volatile memory, i.e. non-volatile storage (such as a hard disk, flash memory, EPROM (Erasable
Programmable Read-Only Memory) and/or EEPROM (Electrically EPROM), etc).

[0012] There are storages that are organized in.discrete areas, referred to, e.g., as blocks or
sectors, wherein one block can include content belonging to more than one file. Hence, if there
are, for example, two files stored in a storage, a single block can include several ('x') bytes
belonging to a first of the two files, as well as several ('y') bytes belonging to a second of the two
files. If the size of a block is 'z’ bytes, it is clear that z>=x+y. Yet, those versed in the art would
appreciate that writing content into a block affects other content stored therein. That is, if it is
required to re-write the content stored in the x bytes of the first file (e.g., during update thereof),
due to storage limitations it may be impossible to write only those x bytes, and it may be

necessary to write the content of all the z bytes to the storage. This can be done, for example, by

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

reading content stored in the z bytes from the non-volatile storage to a volatile storage not
including blocks, such as RAM, updating only the content stored in the x bytes in the volatile
storage (that is, the content of the other z-x bytes is left unaffected therein) and then writing the
content of the z bytes back to the non-volatile storage. This limitation characterizes flash memory,
for example, wherein it is required to completely delete the present content of a block, before new
content (including updated content) can be written thereto, and hard disks where it is not
obligatory to delete the complete sector before writing data thereto, but it is required to write the
complete content of a block in one writing operation (e.g., it is impossible to write only x bytes
when leaving the content stored in the z-x bytes unaffected. In order to leave the z-x bytes
unaffected, it is required to store the content thereof in the volatile memory and write them back
into the block, together with the x bytes). Hence, the update procedure may require many write
operations to the storage including blocks, and it is appreciated that if it is desirable to achieve an
efficient update, the update should better be optimized. For example, if x equals, for example, two
bytes, than these two bytes should better be updated together, instead of updating the first byte
and then the second byte, writing these two bytes separately into the block.

[0013] Furthermore, when in-place updating an original version (including original content) to
an updated version (including updated content), there are sometimes update commands that use
original content in order to generate updated content. For example, it is possible to copy original
content from one place to a different place in the storage, wherein this copied content, in its
destination place, forms part of the updated version. When copying content to a destination place
it should be appreciated that this destination place could have been used before for storing other
content (possibly also being part of the original version). Hence, the copied content can overwrite
the original content at the destination place. Still further, it is possible that there is another update
command that uses the destination place's original content in order to generate updated content. If
this other update command is called further to operating in accordance with the first copy
command, the destination place's original content can be already overwritten. This situation
constitutes a "write before read conflict". Herein below unless otherwise noted the term "conflict"
is used for short for "write before read conflict".

[0014] Write before read conflicts are a known problem in the art and US 6,018,747 tries to cope
therewith.

[0015] US 6,018,747 ("Method for generating and reconstructing in-place delta files", published
2000) discloses a method, apparatus, and article of manufacture for generating, transmitting,
replicating, and rebuilding in-place reconstruct software updates to a file from a source computer

to a target computer. US 6,018,747 stores the first version of the file and the updates to the first

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

version of the file in the memory of the source computer. The first version is also stored in the
memory of the target computer. The updates are then transmitted from the memory of the source
computer to the memory of the target computer. These updates are used at the target computer to
build the second version of the file in-place.

[0016] According to US 6,018,747, when a delta file attempts to read from a memory offset that
has already been overwritten, this will result in an incorrect reconstruction since the prior version
data has been overwritten. This is termed a write before read conflict. US 6,018,747 teaches how
to post-process a delta file in order to create a delta file, minimize the number of write before read
conflicts, and then replace copy commands with add commands to eliminate conflicts, thus
converting a delta file to an equivalent but larger delta file. A digraph is generated, for
representing the write before read conflicts between copy commands. A schedule is generated
that eliminates write before read conflicts by converting this digraph into an acyclic digraph.
[0017] Another known problem in the art is reliability of the update process, or fail safe update.
This problem occurs, for example, when a process of updating an original version is interrupted
before its normal termination, such as in a power failure. In such a case, there is a possibility that
the content of the block which was being updated during the interruption may become corrupted
and contain unexpected content.

It was already mentioned before that when in-place updating blocks of content, an original
content of a block sometimes forms part of the input used by the update process. In such a case, if
the original block (which is corrupted due to interruption) is required, the update process may be

unable to resume. It can be impossible to re-update the corrupted block.

[0018] US 6,832,373 (“System and method for updating and distributing information”, published
2004), for example, tries to provide a fail safe update. It discloses devices, systems and methods
for updating digital information sequences that are comprised by software, devices, and data. In
addition, these digital information sequences may be stored and used in various forms, including,
but not limited to files, memory locations, and/or embedded storage locations. Furthermore, the
devices, systems, and methods described in US 6,832,373 provide a developer skilled in the art
with an ability to generate update information as needed and, additionally, allow users to proceed
through a simplified update path, which is not error-prone, and according to US 6,832,373's
inventors, may be performed more quickly than through the use of technologies existing when US
6,832,373 was filed.

[0019] That is, US 6,832,373 describes using an auxiliary backup block, while all block update

operations are performed thereby using two phases 'two-phase protocol' or 'two-phase commit'.

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

According to US 6,832,373, in a first phase of updating a block, the update process writes the
updated content to the auxiliary backup block and verifies that the content is correctly stored. In a
second phase, the update process writes the updated content into its target block to form the
updated content of the updated target block (thereby overwriting the original content of the target
block). Yet, variations of the same fnethod exist, such as copying the original content of the
target block into the auxiliary backup block in the first phase, and in the second phase in-place
updating the target block to store the updated content.

[0020] The two phase commit (whether the backed up content is the original content or the
'updated content) can use only one additional backup block, yet, it is time consuming, since every
write operation requires performing two operations (for the two phases) . In addition, according to
US 6,832,373 every backup operation backs up the complete (original or updated) content of a
block in the auxiliary backup block, and hence if the number of blocks whose content is updated
by the update process is n, the total number of operations required for the update process
(including update operations and write operations into the auxiliary backup block) cannot be
smaller than 2n. If there are blocks in which content is stored in more than one write operation,
the number of operations that the update process is required to perform will be even larger than
2n.

[0021] WO 2007/023497 (“Method and system for in-place updating content stored in a storage
device”, published 2007) discloses a system and method for reliable in-place update, performing
m block storage operations, including write operations and backup operations, wherein 2<=m<2n.
WO 2007/023497 protects before updating all the original content requiring protection, using a
protection buffer (also known as a backup buffer) and the delta file. Thus, WO 2007/023497
resolves write before read conflicts as well as maintaining reliable update.

[0022] During an update process some or all of the stored original content of the updatable
device is updated. The term "updatable device" or "device" refers to any device that is associated
‘with a storage and which allows updating content stored therein. Typically, the stored original
content of the updatable device includes software for normal mode process(es), that is for
process(es) unrelated to the updating of the content (called here software for the core).
Additionally, the stored original content includes software for the update process which is
executed during the update mode, that is software related to updating the stored original content
(called here software for the "miniOS", mini-operating system). During the update process, some
or all of the stored software for the core and/or for the miniOS is updated. It is noted however that
there are certain task(s) which is/are neither exclusive to the update process nor to the other

unrelated process(es), and therefore may potentially be required both during the update process

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

and during other unrelated process(es) performed by the updatable device. Such task(s) may
include for example non-volatile memory read/write, basic user interface such as keyboard
functions, etc. Since the core software is subject to updates, in order for an update task to be
executable both by the core and the miniOS, the software procedure defining the update-task must
be duplicated and stored twice, both as part of the software for the core and as part of the software
for the miniOS, being capable of re-writing the core in-place during the update process. In some
cases, each storage of the (duplicated) procedure(s) which may potentially be required both
during the update process and during other process(es) necessitates about 5 Megabytes. It is noted
that the miniOS also performs tasks unique to the update process (and which are typically not
executed by the core), and therefore the miniOS also includes modules such as an update agent
(UA) and update installer (UPI) which typically operate only during the update process. However,
in some cases the software for the UA and UPI together have a size of between 200 and 400
Kbytes, and therefore the duplicated procedure(s) comprised in the miniOS typically take(s) up a
more substantial part of storage than the UA and UPL

[0023] Refer to Figure 1 which shows a simplified layout of a non-volatile memory 110
comprised in a storage associated with an updatable device. As illustrated in Figure 1, non-
volatile memory 110 includes a section 112 for storing software for a boot loader, a "critical”
section 116 for storing software for the miniOS, a backup section 114 for storing a backup of
software for the miniOS, a section 118 for storing the software for the non-paged part of the core,
a section 120 for storing the software for the paged part of the core, a file system section 122 for
storing inter-alia an update package, and a section with one or more backup buffer(s) 124 for
storing a normal mode/update mode flag and possibly other data. The stored software for the
miniOS includes: software for the UA, software for the UPI, non-volatile memory read/write
drivers, and any other "duplicated”" procedure(s) for tasks that may potentially be required both
during the update process and during other unrelated process(es).

[0024] In operation, when an updatable device is reset, the boot loader checks a normal/update
flag in a designated backup buffer 124. As mentioned above, in this configuration the update
process is performed only during the update mode, and any process which is unrelated to the
update process is performed during normal mode. It is noted that in this configuration the boot
loader is kept minimal with the boot loader capable of writing to volatile memory but not to non-
volatile memory 110 and with the boot loader incapable of even accessing file system 122.

If the flag indicates "normal" mode, the boot loader loads the software for the non-paged core to
volatile memory. The non-paged core then starts the normal mode of operation of the updatable

device as is known in the art.

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0025] If instead the flag indicates update mode, the boot loader loads the (original) software for
the miniOS to volatile memory. Subsequently the boot loader invokes the original UA (whose
software, being part of the miniOS software, is now in volatile memory). The UA then obtains an
update package from the location where the update package was previously stored by a device
management application. The update package relates to updating some or all of the software for
the non-paged core and/or paged core, and optionally relates to updating some or all of the
software for the miniOS (It should be understood therefore that an updated version of software
may in some cases include some identical content as in the original version.) The UA then stores
the obtained update package in file system 122.

[0026] If update of the miniOS software is required, the UA invokes the UPI (whose software,
being part of the miniOS software, is now in volatile memory) to update the software of the
miniOS, and the UA stores a backup of the updated miniOS software in backup 114. It is noted
that for reliability purposes critical section 116 is not updated in-place. Rather, the updated
software for the miniOS is written to backup 114 and not immediately to critical section 116 so
that if during the writing there is an interruption which erases the volatile memory, the update
may be reliably resumed with the original version of the software for the miniOS still stored in
critical section 116. Once the updated software for the miniOS has been completely written to
backup section 114, the UA overwrites the original version of the software for the miniOS in
critical section 116 with the updated backup of the software for miniOS (thereby causing critical
section 116 to also contain updated software for the miniOS). Assuming that the software for the
miniOS has been updated in critical section 116, the boot loader then loads the updated software
for the miniOS from critical section 116 to volatile memory and invokes the updated UA (whose
software, being part of the miniOS software is now in volatile memory).

[0027]) The invoked UA (updated or original as described above) then invokes the UPI (updated
or original) to update in-place the non-paged core and paged core in sections 118 and 116
respectively (and optionally to update other content in non-volatile memory 110). Once the
update has been finished, the UA replaces the update mode flag with the normal mode flag in the
designated backup buffer 124. The boot loader then loads the updated software for the non-paged
core to volatile memory, invokes the updated non-paged core, and the updated non-paged core
starts the normal mode of operation of the updatable device as is known in the art.

[0028] What are needed in the art are methods, apparatuses, and memories which avoid storage
duplication of procedure(s) which define(s) task(s) that may potentially be required both during

the update process and during other unrelated process(es) performed by the updatable device.

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

BRIEF SUMMARY

[0029] According to the present invention, there is provided a method of in-place updating an
original version of content to an updated version of content, in a non-volatile memory storage
device, wherein the storage device comprises a non-paged part of the content , wherein the non-
paged memory section comprises an original update library, and wherein the storage device is
being used in a normal mode of operation or in an update mode of operation, the method
comprising: obtaining an update package required for updating the original version of content to
the updated version of content; obtaining a new update library; storing the new update library in
a second non-volatile storage; and updating the original version of content to the updated version
of content, in a non-volatile memory storage device, using the at least new update library and the
update package.

[0030] According to the present invention, there is also provided a system for updating an
original version of content to an updated. version of content, in a non-volatile memory storage
device enabling a normal mode and an update mode, the system comprising: a non-paged
memory part on a non-volatile memory, wherein the non-paged memory part comprises an update
library and an update agent; and a boot loader, wherein the update agent is arranged to: obtain an
update package comprising a update file that comprises commands and data required for updating
an original version of content to an updated version of content; derive, from the update file, a
library file comprising commands and data required for at least updating the update library on
the non-paged memory section; store the library file on a non-volatile memory; wherein the boot
loader is arranged to: obtain a new update library to the volatile memory; and store the new
update library on the non-volatile backup buffer.

[0031] According to the present invention, there is further provided an apparatus for updating
content in-place, comprising: a non-volatile memory configured to store content; a non-paged
core configured to update content in-place in the non-volatile memory and configured to perform .
tasks unrelated to updating content; and a boot loader configured to invoke the non-paged core in
update mode and in normal mode of operation of a device associated with the non-volatile
memory.

[0032] According to the present invention, there is still further provided a non-volatile memory
associated with a device which stores original content that is updated in an in-place update
process to yield updated content, comprising: a section for storing software for a non-paged core,
the software including at least a procedure defining a task potentially required for the update

process but never for any process unrelated to the update process, a procedure defining a task

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

potentially required for a process unrelated to the update process but never for the update process,
and a procedure defining a task potentially required both for the update process and for another
process unrelated to the update process. V

[0033] According to the present invention, there is provided a program storage device readable
by machine, tangibly embodying a program of instructions executable by the machine to perform
method steps for operating a device, including an update process for updating in-place original

content stored in a non-volatile memory associated with the device to yield updated content, the

“method steps comprising: providing a non-paged core which is capable of performing tasks

related to the update process and tasks unrelated to the update process; the non-paged core
performing at least one task unrelated to the update process in normal mode of the device; and
the non-paged core performing at least one task relating to the update process in update mode of
the device.

[0034] According to the present invention, there is also provided a program storage device

~ readable by machine, tangibly embodying a program of instructions executable by the machine to

perform method steps for resuming an in-place update process which updates original content
stored in a non-volatile memory associated with a device to yield updated content, comprising:
backing up in non-volatile memory an updated version of software for at least part of a non-paged
core which is capable of performing both tasks related to the update process and tasks unrelated
to the update process; and after an interruption which erases volatile memory when the non-
volatile memory includes original software content for the non-paged core which still needs to be
replaced during the update process, performing the following: loading the backed up updated
version to volatile memory; if the updated version includes updated software for only part of the
non-paged core then invoking the part in order to construct in volatile memory or load into
volatile memory an updated version of software for the non-paged core, and invoking the updated
non-paged core to complete a replacement in non-volatile memory of all original software content
for the non-paged core which is required to be replaced with updated content during the update
process.

[0035] According to the present invention, there is further provided a computer program
comprising computer program code means for performing a method of the invention when the
program is run on a computer. According to the present invention, there is yet further provided a
computer program embodied on a computer readable medium.

[0036] These, additional, and/or other aspects and/or advéntages of the present invention are: set
forth in the detailed description which follows; possibly inferable from the detailed description;

and/or learnable by practice of the present invention.

10

10

15

20

25

WO 2010/016062 PCT/IL2009/000762

BRIEF DESCRIPTION OF THE DRAWINGS -

[0037] The present invention will be more readily understood from the detailed description of
embodiments thereof made in conjunction with the accompanying drawings of which:

Figure 1 is a simplified layout of a conventional non-volatile memory;

Figure 2 is a schematic illustration of a system for updating content in a cellular network, in

accordance with an embodiment of the invention;

Figure 3 is a simplified layout of an apparatus for updating content in-place, in accordance with

an embodiment of the present invention;

Figure 4 is a flowchart of a method for updating content in-place, in accordance with an

embodiment of the present invention; and -

Figure 5 is a flowchart of a method for resuming an in-place update process, in accordance with

an embodiment of the present invention.

DETAILED DESCRIPTION

[0038] Before explaining at least one embodiment of the invention in detail, it is to be
understood that the invention is not limited in its application to the details of construction and the
arrangement of the components set forth in the following description or illustrated in the
drawings. The invention is applicable to other embodiments or of being practiced or carried out in
various ways. Also, it is to be understood that the phraseology and terminology employed herein
is for the purpose of description and should not be regarded as limiting.

[0039] Figure 2 is a schematic illustration of a system 201 for updating content in a cellular
network, in accordance with one embodiment of the invention. Cellular telephones 202,
associated with storages 203 execute software that enable operation of the cellular telephones
and/or updating of the cellular telephones. Storages, such as storages 203, are sometimes referred
to also as "memories" or "memory units". Software for a particular cellular telephone 202 is
normally stored in associated storage 203. Some or all of storage 203 associated with a particular
cellular telephone 202 may be coupled to the cellular telephone and therefore detachable from the

cellular telephone. The coupled storage may be local and/or remote to the cellular telephone.

11

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

Additionally or alternatively, some or all of storage 203 associated with a cellular telephone 202
may be inside the cellular telephone.

[0040] It is noted that for simplicity of illustration and description only one storage 203 is
illustrated and described per cellular telephone 202 , but the reader should understand that any
particular associated storage 203 may comprise one or more divisible units. In embodiments
where there is a plurality of divisible units comprised in storage 203, the plurality of units may
all be detachable from associated cellular telephone 202, may all be within associated cellular
telephone 202 or may be divided between unit(s) which are detachable and unit(s) which are
within associated cellular telephone 202.

[0041] It also should be noted that the system 201 illustrated in Figure 2 is a non-limiting
example and the invention is not limited to updating software. Many other types of content stored
in storages require update, such as text, data stored in databases, files stored in the storages etc.
The version of the software currently executing on a cellular telephone or any other content
currently applicable to the cellular telephone is referred to, hereinafter, as an "old version", "old

content", "original version" "original content", or variations thereof.

[0042] Sometimes there is a need to update the software in order for a telephone 202 to execute a
newer version thereof, or to update any other content to a newer version, with the new version
referred to, hereinafter as an "updated version", "updated content", "new version", "new content"”,
or variations thereof. Such an updated version is generated in accordance with an update package
(which in some examples includes a "delta file") that the telephone receives.

[0043] According to the invention, an update package is generated in an update package
generator 204, operating, for example, in a personal computer (PC) or in any other type of
computer. The update package is stored in an update server 205 and transmitted, via a transmitter
206 to the cellular telephones 202. Hence it is clear that the update server, or the update generator
includes or has access to a non-volatile memory on which the update package can be stored.
[0044] In the same way, the invention is not limited to cellular networks and/or to cellular
telephones 202. It should be appreciated that cellular telephones belong to a group referred to as
embedded devices. There are other embedded devices, such as Personal Digital Assistants
(PDAs), set-top boxes and other consumer electronic devices that are associated with storages for
storing content, and sometimes it is required to update the content stored therein. Yet, it is
possible to update also content stored in storages associated with non-embedded devices, such as

PCs or other computers. Storages 203 can include volatile memory (such as Random Access

Memory RAM, etc) and/or non-volatile memory (such as a hard disk drive, flash memory unit,

12

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

EPROM (Erasable Programmable Read-Only Memory) and/or EEPROM (Electrically EPROM),
etc).

[0045] For example, a PC, or any other computer, can store files that include data required for its
operation or for operation of software executing therein (such as “info files” or "dot files" known
for those versed in the art). Sometimes it is required to update this data, for example, via
communication lines, e.g., via the Internet or via any other communication means.

[0046] Understanding this, the term “content” will be used to mean any type of content including
inter-alia software, text, data stored in databases, files stored in the storage, etc. Moreover, instead
of using terms such as "telephones", "PDAs" "consumer electronic devices", "computers”, "PCs",
etc., the term "updatable devices" or "devices" will be used hereinafter, and it should be noted as
mentioned above that the term "updatable device" or "device" as used herein can refer to any
device that is associated with a storage 203 and allows updating content stored therein.

[0047] It was previously explained that in order to update content stored in storages 203, update
packages are generated, stored in the update server 205 and conveyed to the updatable devices
(such as the cellular telephones 202) and the storages 203 associated therewith. Alternatively, it
is possible to convey an update package without storing it first in an update server 205. For
example, it is possible to convey the update package directly from the update package generator
where it is generated. In such a case the machine where the update generator operates, or the
update generator itself is considered as the update server 205.

[0048] Furthermore, in the example illustrated in Figure 2 the update package is conveyed via
the transmitter 206. This is also non-limiting and any other way applicable for conveying the
update package can be used. For example, it is possible to store the update package on a portable
storage 203 such as a compact disk or disk-on-key thus allowing an updatable device (such as the
telephones 202) to access the update package by reading it therefrom. Herein below, for
simplicity of description, storage 203 and/or the updatable device (such as cellular telephone 202)
will be written without reference numerals.

[0049] It is noted that the single form of update package used herein refers both to embodiments
where a single update package provides instructions for an update process and where a plurality
of update packages together provide instructions for an update process. '
[0050] Figure 3 illustrates a simplified layout of an apparatus 300 for updating content in-place,
according to an embodiment of the present invention. For example, an updatable device (along
with associated storage) may comprise apparatus 300.

[0051] Apparatus 300 includes, inter-alia, an executor 380 which is configured to execute
software, and a memory 305. Memory 305 comprises volatile memory 350 (e.g. RAM) and non-

13

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

volatile memory 310 (e.g. Flash). For example, executor 380 may comprise any suitable hardware
capable of carrying out task(s) as defined in software which is stored in non-volatile memory 310
and loaded to volatile memory 350 during the methods described herein. Memory 305 is
comprised in the storage associated with the updatable device (although the associated storage
may in some cases include additional memory which is irrelevant to described embodiments of
the invention and therefore neither illustrated nor described). In the illustrated embodiment, non-
volatile memory 310 includes a section 312 for storing software for boot loader 348, sections 318
and 320 for respectively storing software for a non-paged core 366 and a paged core 336, a file
system section 322 for storing inter-alia an update package 334, a section 323 for backing up
software for an update agent library (UAL) 362, and one or more backup buffers 324 for storing
inter-alia any of the following: a normal mode/update mode of operation flag 332 and a non-
paged core update package 360 (i.e. the part of update package 334 which relates to the non-
paged core). In one embodiment, the software for non-paged core 366 and the software for paged
core 336 are dissimilar in that the software for non-paged core 366 may be loaded in its entirety
from non-volatile memory 310 to volatile memory 350. However, in this embodiment software
for paged core 336 may not be loaded in its entirety to volatile memory 350 but various "pages"
of paged core 336 are instead loaded into (or swapped out of) volatile memory 350 as needed, as
is known in the art.

[0052] When executor 380 runs software which has been loaded to volatile memory 350, one or
more task(s) which are defined in the software are carried out by the hardware comprised in
executor 380. A single executor 380 is illustrated, for simplicity of illustration but it is possible
that in some embodiments, different executors run different software.

[0053] It is evident thus that the combination of executor 380 and particular software comprises
a module capable of performing one or more tasks (AKA one or more operations). Practically,
therefore, apparatus 300 may be considered to have a configuration comprising the following
modules, inter-alia: boot loader 348, non-paged core 366, paged core 336, non-volatile memory
310 and volatile memory 350. Certain tasks assigned to non-paged core 366 are in fact performed
by the following (sub) modules of non-paged core 366: update agent "UA" 368 and update agent
library "UAL" 370 (wrapping update installer "UPI" module 372). In order to avoid confusion,
the UAL module and the wrapped UPI are instead labeled respectively with the numbers 362 and
364 (rather than 370 and 372) when the software running is the backup version. Non-paged core
366 may in some cases comprise other sub-modules, any of which is only described below if
necessary for the understanding of the invention. In other embodiments, there may be fewer, more

and/or different modules in apparatus 300 than listed above.

14

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0054] In this configuration of apparatus 300, each of boot loader 348, non-paged core 366,
paged core 336, update agent 368, update agent library 370/362 and update installer 377/364
modules may comprise any combination of hardware, software and/or firmware capable of
performing the tasks defined and described herein.

[0055] In the illustrated embodiment, the core perfonné tasks vital for the updatable device, and
therefore a user typically although not necessarily does not have permission to change the
software for the core, but the core may be updated in an update process.

[0056] For example, in the illustrated embodiment, non-paged core 366 is capable of performing
task(s) unrelated to the updating of content in non-volatile memory 310 during the update
process, as well as task(s) relating to the updating of content in non-volatile memory during the
update process. The stored software for non-paged core 366 may therefore include software
procedures defining tasks which may potentially be required for the update process and/or for
process(es) unrelated to the update processes (i.e. the stored software for non-paged core 366
includes procedure(s) defining task(s) which may potentially be required only during the update
process, procedure(s) defining task(s) which may potentially be required only for one or more
processes unrelated to the update process, and procedure(s) defining task(s) which may
potentially be required both during the update process and during one or more processes unrelated
to the update process). Therefore, in the illustrated embodiment, there is no need to duplicate
storage in non-volatile memory 310 for a procedure which defines a task that may potentially be
required both during the update process and during process(es) unrelated to the update process.
Similarly, in the illustrated embodiment, there is no need to have separate modules for updating
content and for unrelated processes where both would be capable of performing a particular task
which could be potentially be required both when updating content and during unrelated
process(es).

[0057]) For instance, driver(s) for reading from and writing to non-volatile memory 310 may
vpotentially be required both during the update process and during other processes unrelated to the
update process. Software for such driver(s) can be stored only once as part of the stored software
for non-paged core 366, with non-paged core 366 performing the reading and writing to non-
volatile memory 310 both during the update process and during unrelated processes. These
drivers may be considered a sub-module of non-paged core 366 and may comprise any
combination of hardware, software and/or firmware capable of reading and/or writing to non-
volatile memory 310.

[0058] UA 368 (which may be considered a sub module of non-paged core 366) performs certain

tasks assigned to non-paged core 366. For example, in one embodiment UA 368 may perform any

15

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

of the following: reading update package from non-volatile memory, reading/writing to volatile
memory, reading/writing to non-volatile memory (by invoking the aforementioned non-volatile
memory driver(s)), calling the UAL, accessing file system 322, etc. More details on certain tasks
performed by UA 368 in some embodiments will become apparent from the description.

[0059] UAL 362 or 370 (also a sub module of non-paged core 366) performs certain tasks
assigned to non-paged core 366. For example, in one embodiment UAL 362/370 may perform
any of the following: wrap a UPI to enable unified access to the UPI by the update agent or the
boot loader, receive pointers to any modules to be invoked by the UAL, etc. Continuing with the
example, in some cases the UAL may receive a pointer to the non-volatile memory read or write
driver(s) in non-paged core 366 from UA 368, and then invoke the non-volatile memory read or
write driver(s). More details on certain tasks performed by the UAL in some embodiments will
become apparent from the description.

[0060] UPI 372 or 364 (wrapped by UAL 370 or 362) performs certain tasks assigned to non-
paged core 366. For example, in one embodiment UPI 372 or 364 may perform any of the
following: update content, ask UAL to perform read and/or write operations, etc. More details on
certain tasks performed by the UPI in some eﬂlbodiments will become apparent from the
description.

[0061] In the illustrated embodiment, boot loader 348 loads software from non-volatile memory
310 to volatile memory 350 when the updatable device is reset, and invokes the module whose
software has been loaded (for example by causing executor 380 to run the loaded software). In
one embodiment, boot loader 348 may be capable of writing to volatile memory 350 but not to
non-volatile memory 310, and may not have access to file system 322. More details on certain
tasks performed by the boot loader in some embodiments will become apparent from the
description. ‘

[0062] It should be understood that non-volatile memory 310 is shown divided into the sections
illustrated in Figure 3 in order to facilitate the reader’s understanding of the methods that will be
described herein for updating content. In other embodiments, non-volatile memory 310 may
“include more, less and/or different sections of memory than illustrated in Figure 3. In other
embodiments, additionally or alternatively non-volatile memory 310, may be divided differently
than shown in Figure 3. In other embodiments, additionally or alternatively non-volatile .memory
310 may store less, more and/or different elements than illustrated in Figure 3. In other
embodiments, additionally or alternatively, the order of the sections illustrated in non-volatile

memory may be changed and/or the sections may not be contiguous. |

16

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0063] Figure 4 is a flowchart of a method 400 for in-place updating content stored in the storage
associated with an updatable device, in accordance with an embodiment of the present invention.
In other embodiments, there may be more, less and/or different stages than illustrated in Figure 4, -
the stages may be performed in a different order, and/or stages shown as sequential (or in parallel)
may be performed in parallel (or sequentially).

[0064] It is assumed that at stage 402, the updatable device is in the normal mode of operation.
For example, upon reset of the updatable device, boot loader 348 may have checked flag 332 and
because flag 332 showed normal mode, boot loader 348 would have loaded the software for the
non-paged core 366 from section 318 to volatile memory 350, invoked non-paged core 366, and
non-paged core 366 would have started the normal mode of operation of the updatable device as
is known in the art. It is also assumed that the device management application of the updatable
device has previously obtained an update package 334 and stored update package 334 in non-
volatile memory 310, for example in file system 322.

[0065] As mentioned above with respect to Figure 3, non-paged core 366 is capable of
performing tasks which are unrelated to the updating of content during the update process, as well
as tasks relating to the updating of content during the update process. Therefore, in contrast to the
prior art where during normal mode tasks solely related to the updating of content are typically
although not necessarily not performed, it is assumed herein that once the non-paged core 366 has
been invoked in normal mode, any tasks performable by non-paged core 366 may hypothetically
be executed. Exémples of tasks which may be performed in normal mode include inter-alia tasks
not required for the update process, tasks performed by the UA, UAL or UPL, and/or
reading/writing to non-volatile memory.

[0066] However, in the illustrated embodiment of method 400, only the first part of the update
process for updating content in-place in non-volatile memory 310 is executed during the normal
mode of operation, with the remainder of the update process executed during a subsequent update
mode of operation. In the illustrated embodiment, the part of the update process executed during
the normal mode of operation includes the backing up of the non-paged core update package and
the backing up of the software for the updated UAL, as will be described now. Not all content in
the original version of the software for the UAL is necessarily changed and therefore some of the
content in the original and updated versions of the software of the UAL may be identical. It is
noted that the part of the update process executed in normal mode does not update the software
for the core stored in sections 318 and 320 and therefore does not hinder processes executable by

the updatable device during the normal mode.

17

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0067] In stage 404, UA 368 (for which original version software was loaded to volatile memory
350 upon reset in normal mode as part of the loaded original software for non-paged core 366)
obtains a non-paged core update package 360, for example by extracting the part of the update
package relating to the non-paged core from update package 334 which is stored in file system
322. In another example, a separate update package for the non-paged core 360 may have been
received and stored in file system 322 and in stage 404 UA 368 may read the received non-paged
core update package 360. In stage 406, UA 368 stores non-paged core update package 360 in
backup buffer 324. It is noted that in the illustrated embodiment, non-paged core update package
360 is stored in backup buffer 324 because conventionally boot loader 348 can not access file
system 322, but boot loader 348 may read from backup buffer 324. Boot loader 348 may
therefore conventionally provide the capability of reading non-paged core update package 360
from backup buffer 324 to a module which boot loader 348 invokes (see below). It is also noted
that in the illustrated embodiment, UA 368 may write to non-volatile memory 310 in method 400,
for example writing non-paged core update package 360 to backup buffer 324 in stage 406, by
invoking the non-volatile memory read/write drivers of non-paged core 366. Therefore boot
loader 348 does not need to have non-volatile memory write capabilities to perform method 400
because any writing to non-volatile memory 310 in method 400 may rely on the non-volatile
memory write drivers in non-paged core 366. In other embodiments, stages 404 and 406 may be
omitted. For example, in one embodiment where boot loader 348 has the capability of accessing
file system 322, stages 404 and 406 may be omitted.

[0068] Depending on the embodiment, the updated software for the UAL may be extracted from
the update package or may be constructed using the appropriate delta for the UAL software.
Assuming first that an update package includes the new version of the software for the UAL (yes
to stage 408), then in stage 410 UA 368 extracts the updated software for the UAL from the
update package (e.g. from update package 334 or 360) and in stage 430 backs up the updated
software for UAL 362 to non-volatile memory 310, for example to section 323.

[0069] Assuming instead that the update package includes the delta for the UAL software (no to
stage 408), then in stage 412 UA 368 invokes UAL 370 (for which original version software was
loaded to volatile memory 350 upon reset in normal mode as part of the loaded original software
for non-paged core 366). In stage 414, UAL 370 calls UPI 372 (for which original version
software was also loaded to volatile memory 350 upon reset in normal mode as part of the loaded
original software for non-paged core 366). In stage 416, UPI 372 asks UAL 370 for input. In
stage 418, UAL 370 reads the stored original version of the software for UAL from non-volatile

meémory 310, for example from section 318. Alternatively, stage 418 may be omitted because the

18

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

original software for UAL was previously loaded to volatile memory 350 upon reset in normal
mode as part of the loaded original software for non-paged core 366. In stage 420, UAL 370
reads the delta for the software for the UAL from the update package (e.g. from non-paged core
update package 360 stored in backup buffer 324 or from update package 334 stored in file system
322). In stage 422, UPI 377 constructs in volatile memory 350 an updated version of the software
for the UAL, using the read delta and original version of the software for the UAL. In stage 430,
UA 368 backs up the updated version of the software for UAL 362 to non-volatile memory 310,
for example to section 323.

[0070] In the illustrated embodiment, the original version of the software for UAL 370 stored in
section 318 is not overwritten during normal mode so as to avoid operating in normal mode with
a non-paged core comprising partially original and partially updated content. Therefore section
318 retains the original version of the software for UAL 370 even after stage 430 has been
performed. It is noted that UA 368 backs up the updated version of the software for UAL 362 to
non-volatile memory 310, for example to section 323 by invoking the non-volatile memory
read/write drivers of non-paged core 366. It is also noted that besides the use of updated UAL 362
later in method 400, the backup updated software for UAL 362 can be retrieved in some cases
where the update process has been interrupted in order to resume the update process (see, for
example, the description of method 500 below).

[0071} In another embodiment, an updated version of the sdftware for the entire updated non-
paged core may be extracted or constructed and in stage 430 backed up to section 323 but the
advantage of backing up only the updated software for the UAL is the small size of the software
for the UAL, typically although not necessarily about 128 kilobytes. Similarly to the embodiment
where the updated software for the UAL is extracted or constructed, in this embodiment, not all
content in the original version of the software for the non-paged core is necessarily changed and
therefore some of the content in the original and updated versions may be identical.

[0072] In stage 432, flag 332 is set to update mode by UA 368. In stage 434 the updatable device
resets and enters the update mode of operation. Depending on the embodiment, the updatable
device may reset immediately after flag 332 is set to update mode, may reset when convenient to
the user, or may reset at a later time. For example in one embodiment, the user may be asked via a
user interface of the updatable device whether or not the user is currently ready to update the
updatable device. If the user indicates that the user is not ready, then in this embodiment the
updatable device remains in normal mode, resetting is deferred, and the updatable device may
repeat the question at a later time. It is assumed in this embodiment that either the first time the

user is asked or during a subsequent time that the user is asked, the user will agree to a device

19

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

reset in order to update the device. However, in one embodiment it is possible that the user does
not wish to update the device and wishes to retain the original content and stage 434 is therefore
deferred indefinitely. As another example, in one embodiment, the updatable device may proceed
directly to resetting stage 434 after stage 432, with or without prior notice to the user that the
device will be reset. Alternatively, in another example the updatable device may determine when
the device should be reset without first consulting the user, and the resetting may occur with or
without prior notice to the user. Continuing with the example in one embodiment, the updatable
device may reset during the next recharging a non-empty battery of the updatable device, and not
necessarily soon after stage 432.

[0073] In the illustrated embodiment, tasks which are completely unrelated to the update process
are typically (although not necessarily) not performed during update mode. In stage 436, boot
loader 348 loads the backup updated version of the software for UAL 362 (including the updated
version of the software for UPI 364) from non-volatile memory 310, for example from section
323, into volatile memory 350. In stage 438, boot loader 348 invokes updated UAL 362.
Assuming that boot loader 348 has the conventional capability to read from backup buffer 324,
boot loader 348 provides to invoked updated UAL 362 the capability of reading non-paged core
update package 360 from backup buffer 324.

[0074] Depending on whether the update package for the non-paged core includes an updated
version of the software for the non-paged core, or does not include the updated version of the
software but does include the delta, the updated version of the software for the non-paged core
may be loaded or constructed. Assuming first that non-paged core update package 360 (stored for
example in backup buffer 324) includes an updated version (yes to stage 440), then in stage 442,
updated UAL 362 loads the updated software for the non-paged core from non-paged core update
package 360 (stored for example in backup buffer 324) into volatile memory 350.

[0075] Assuming instead that the non-paged core update package does not include the updated
version but does include the delta (no to stage 440), then in stage 444, updated UAL 362 calls
updated UPI 364. In stage 446, updated UPI 364 asks updated UAL 362 for input. In stage 448,
updated UAL 362 reads the stored original version of the software for non-paged core 366 from
non-volatile memory 310, for example from section 318. In stage 450 updated UAL 362 reads the
delta for the software for the non-paged core from non-paged core update package 360, stored for
example in backup buffer 324. In stage 452, updated UPI 364 constructs in volatile memory 350
an updated version of the software for the non-paged core, using the read delta and the original

version of the non-paged core.

20

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0076] In another embodiment, in stage 442, updated UAL 362 loads the updated software for
the non-paged core except for the updated software for the UAL from non-paged core update
package 360 in backup buffer 324 to volatile memory 350. Alternatively in this embodiment,
updated UAL 362 reads the stored original version of the software for non-paged core except for
the original version of the software for the UAL from section 318 in stage 448, reads the delta for
the software for the non-paged core except for the delta for the software for the UAL in stage 450
from non-paged core update package 360 stored in backup buffer 324, and in stage 452 UPI 364
constructs in volatile memory 350 an updated version of the software for the non-paged core
(excluding the updated UAL), using the read delta and original version of the software for the
non-paged core (excluding the UAL). In this embodiment, the backed-up updated software for
UAL 362 which was loaded for example from backup buffer 323 into volatile memory 350 in
stage 436 supplements the loaded or constructed updated software for the non-paged core
(excluding for the UAL).

[0077] It is noted that in alternative embodinients, updated UAL 362 may instead respectively
read the delta in stage 450 or load the updated version in stage 442 of the software for the non-
paged core from update package 334 stored in file system 322, and the decision of stage 440
would relate in these alternative embodiments to whether or not the updated software for the non-
paged core is in update package 334. These alternative embodiments may apply for any reason,
for example in the case where stages 404 and 406 were omitted because boot loader 348 has the
capability of accessing file system 322 and can provide the capability to invoked updated UAL
362 and there was therefore no separate backing up of a non-paged core update package.

[0078] In another embodiment where the updated software for the entire non-paged core was
extracted or constructed and in stage 430 backed up to section 323, then stages 436 to 452 may be
omitted. Instead, in this embodiment, boot loader 354 loads the backed-up updated software for
the non-paged core from non-volatile memory 310 (for example from section 323) to volatile
memory 350 after stage 434 and before stage 454.

[0079] In stage 454, boot loader 348 invokes the updated non-paged core whose software has
come to be located in volatile memory 350 due to any of the various embodiments described
above. It is noted that the updated non-paged core comprises inter-alia an updated UA and an
updated UAL (which includes an updated UPI).

[0080] In stage 456, the software for the paged core 336 and the software for the non-paged core
366 which are located in sections 320 and 318 respectively of non-volatile memory 310, are
updated in place (i.e. so that updated content overwrites original content), using any suitable in-

place updating techniques. In one embodiment of stage 456, the updated UA invokes the updated

21

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

UAL to load into and/or construct in volatile memory 350 the updated software for the paged core
and the updated software for the non-paged core and to write in-place the updated software to
sections 320 and 318 respectively of non-volatile memory 310. In another embodiment of stage
456, the updated UA copies the updated version of the software for the non-paged core which is
already located in volatile memory 350 to section 318 of non-volatile memory 310 (replacing the
original version of the software). In this embodiment, the updated UA invokes the updated UAL
to load into or construct in volatile mémory 350 the updated software for the paged core and to
write the updated software in place to section 320 of non-volatile memory 310. For example, the
updated UAL may load into or construct in volatile memory the updated software for the paged
core (and optionally for the non-paged core) by performing stages 440 to 452 for the paged core
and optionally for the non-paged core. In this example, if construction of the updated software
(for the paged core and optionally for the non-paged core) is required, the updated UAL will call
the updated UPI, the updated UPI will ask the updated UAL for input, the updated UAL will read
the original version of the software and the delta, and the UPI will construct the updated version
of the software in volatile memory 350. As mentioned above, the updated UAL may write to non-
volatile memory 310 by invoking the non-volatile memory read or write driver(s) after receiving
a pointer to the non-volatile memory read or write driver(s) from the updated UA. It should be
understood that when loading into or constructing in volatile memory 350 software for the paged
core, the software for the paged core is typically although not necessarily not all loaded into
and/or constructed in volatile memory 350 at one time due to the large size thereof.

[0081] It is noted that not all content in the original version of the software for the non-paged
core 366 and paged core 336 is necessarily changed and therefore some of the content in the
original and updated versions may be identical. In some embodiments, other content which is not
part of the software for the core may additionally or alternatively be updated in-place in stage
456. For example some or all of the content in file system 322 may be updated in-place to new
content.

[0082] As mentioned above, the invention does not limit the type of in-place update performed
in stage 456 to any particular in-place update, and depending on the embodiment, any suitable in-
place update may be performed. For example, US Patent No. 6,018,747 to Burns et al., and US
Publication Number 20070050330 describe examples of various techniques for in-place updating
and are incorporated by reference herein, although the invention is not limited to these examples.
[0083] In some embodiments of stage 456, assuming non-volatile memory 310 is organized in
discrete areas, referred to, e.g., as blocks or sectors, the first block of content to be updated may

be dynamically selected, or may be the first in an update sequence specified in the update

22

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

package. The update sequence specified in the update package may have been decided randomly,
‘may be based on the order of the blocks in non-volatile memory 310, may have been selected in
order to limit the potential number of write before read conflicts, or for any other reason. For
example, the aforementioned US Patent No. 6,018,747 to Burns et al., and US Publication
Number 20070050330 to Meller et al. describe determination of update sequences in update
packages. Similarly, in embodiments with dynamic selection, the dynamic selection may be
random, may be based on the order of the blocks in non-volatile memory 310, may be made in
order to limit the potential number of write before read conflicts, or may be made for any other
reason.

[0084] In some embodiments of stage 456, the updating may include storage of data into a
designated non-volatile back-up buffer, for example one of backup buffers 324. Examples of
what may be stored in buffer(s) 324 include inter-alia: original or updated block(s) (at least until
the corresponding updated block has been safely written to non-volatile memory 310), any part
of original block(s) which is needed for later updating of other block(s) (thereby preventing write
before read conflicts) and/or data which will allow a continuation of the update process if there is
an interruption which erases volatile memory. The storage in backup buffer(s) 324 may occur
immediately prior to the overwriting of the related original block in non-volatile memory 310(or
of the first of a plurality of related original blocks) and/or may occur earlier on, for example prior
to overwriting any original content in non-volatile memory 310. However in other embodiments,
the update process may not include storage of data in a designated backup buffer. It should be
noted that although storage in backup buffer(s) 324 may enhance reliability of the update process
in case of interruption and/or prevent write before read conflicts, in other embodiments, other
techniques may be used additionally or alternatively. For example, another technique which may
increase reliability of the update process and/or prevent write before read conflicts is the storing
of data in the update package which itself is stored in non-volatile memory 310, for example in
file sysfem 322. Examples of data which may be stored in the update package include inter-alia:
add commands which were converted from copy commands, and data which will allow a
continuation of the update process if there is an interruption which erases volatile memory. It
should be understood that the storage in backup buffer 324 and/or in the update package is not
required by all embodiments of the invention.

[0085] With the completion of the update process after stage 456, flag 332 is set by updated UA
368 to normal mode in stage 458. In one embodiment, boot loader 348 loads the updated software
for non-paged core 366 from section 318 in non-volatile memory 310 to volatile memory 350 and

invokes the updated non-paged core 366. The updated non-paged core (whose software was

23

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

loaded in stage 458 or whose software was already in volatile memory 350 prior to stage 458)
then starts the normal mode of operation of the updatable device as is known in the art. Method
400 then ends.

[0086] It is noted that an update process is considered "reliable", provided that the update
process can be resumed even subsequent to an interruption which caused volatile memory to be
erased and possibly a block in storage to be corrupted. It should be appreciated that the content of
this block is sometimes corrupted during the interruption and sometimes not. Yet, because it is
sometimes impossible to determine or to be certain whether the content thereof is corrupted or
not, the content stored in this block is considered as undependable content. It will now be shown
how the update process described herein can be resumed in case of interruption.

[0087] If there is an interruption which erases volatile memory 350 prior to the completion of

' the storage of non-paged core update package 360 in backup buffer 324 in stage 406, then in one

embodiment upon resumption method 400 may be restarted from the beginning. If instead there is
an interruption which erases volatile memory 350 subsequent to the completion of stage 406 but
prior to the completion of the storage of a backup of the updated software for at least part of the
non-paged core (for example the UAL) to section 323 in stage 430, then in one embodiment upon
resumption, method 400 may be re-executed beginning with stage 408 or beginning with any
stage of method 400 earlier than stage 408. If instead there is an interruption which erases volatile
memory 350 subsequent to the completion of stage 430 but prior to overwriting any original
content in stage 456, then in one embodiment upon resumption, method 400 may be re-executed
beginning with stage 432 or beginning with any stage of method 400 earlier than stage 432. If
there is instead an interruption which erases volatile memory subsequent to the completion of
stage 456, then in one embodiment upon resumption either normal mode may be started or
normal mode may be continued with the updated version.

[0088] Figure 5 is a flowchart of a method 500 for resuming the in-place update process after an
interruption which occurred during stage 456 when only part of the original content to be updated
had been overwritten in non-volatile memory 310, in accordance with an embodiment of the
present invention. In other embodiments, there may be more, less and/or different stages than
illustrated in Figure 5, the stages may be performed in a different order, and/or stages shown as
sequential (or in parallel) may be performed in parallel (or sequentially).

[0089] Method 500 assumes that the interruption erased volatile memory 350 and occurred
during stage 456 when non-volatile memory 310 includes both original content which still

requires update and updated content.

24

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0090] In the embodiment of method 500 illustrated in Figure 5, it is assumed that in stage 456
of method 400 the original version of the software for non-paged core 366 in non-volatile
memory 310, for example in section 318, is first overwritten with the updated version and only
afterwards, the original version of the software for paged core 336 in non-volatile memory 310,
for example in section 320, and any other (non-core) content to be updated in non-volatile
memory 310 is overwritten with the updated version. However, the reverse order is also possible
and discussed further below.

[0091] In the illustrated embodiment of Figure S5, upon resumption, the resume point is
determined in stage 502 as is known in the art. The resume point may be determined for example
as in US Published Application Number 20050216530 to Meller et al, which is incorporated by
reference herein.

[0092] If the resume point is not in the non-paged core (no to stage 504), it is assumed that the
software for the non-paged core has already been updated because as stated above it is assumed
that the software for the non-paged core is updated first. Therefore in stage 506, boot loader 348
loads the updated software for the non-paged core 366 from non-volatile memory 310, for
example from section 318, to volatile memory 350. In stage 508, boot loader 348 invokes updated
non-paged core 366. In stage 510, updated UA 368 invokes updated UAL 370 to begin updating
in-place the software for the paged core (and any other content in non-volatile memory 310 that
still requires updating), at least from the resume point, where the in-place updating that is
performed may use any appropriate in-place updating techniques as discussed above with
reference to stage 456. Although content before the resume point does not need to be updated in
place (since the content has already been updated prior to the interruption), the invention does not
preclude the possibility of rewriting such content during stage 510. In stage 512, after the
completion of the update process, flag 332 is set to normal mode by updated UA 368. Updated
non-paged core 366 then starts the normal mode of operation of the updatable device as is known
in the art. Method 500 then ends.

[0093] If instead, the resume point is in the non-paged core (yes to stage 504), then in stage 516,
boot loader 348 loads the backed-up updated software for UAL 362 (including the updated
version of the software for UPI 364) from non-volatile memory 310 (for example from section
323) into volatile memory 350. In stage 518, boot loader 348 invokes updated UAL 362.
Assuming that boot loader 348 has the conventional capability to read from backup buffer 324,
boot loader 348 provides to invoked updated UAL 362 the capability of reading non-paged core
update package 360 from backup buffer 324.

25

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0094] Depending on whether the update package for the non-paged core includes an updated
version of the software for the non-paged core or does not include the updated version of the
software but does include the delta, the updated version of software for the non-paged core may
be loaded or constructed. Assuming first that non-paged core update package 360 (stored for
example in backup buffer 324) includes an updated version (yes to stage 520), then in stage 522,
updated UAL 362 loads the updated software for the non-paged core from non-paged core update
package 360 (stored for example in backup buffer 324) to volatile memory 350.

[0095] Assuming instead that the non-paged core update package does not include the updated
version but does include the delta (no to stage 520), then in stage 526, updated UAL 362 calls
updated UPI 364. In stage 528, updated UPI 364 asks updated UAL 362 for input. In stage 530,
updated UAL 362 reads from the resume point the stored original version of the software for the
non-paged core from non-volatile memory 310, for example from section 318. In stage 532
updated UAL 362 reads the delta for the software for the non-paged core from non-paged core
update package 360 stored for example in backup buffer 324. In stage 534, updated UPI 364
constructs in volatile memory 350 an updated version of the software for the non-paged core
from the resume point, using the read delta from the interrupted instruction and the original
version of the non-paged core from the resume point.

[0096] In another embodiment, in stage 522, updated UAL 362 loads the updated software for
the non-paged core except for the updated software for the UAL from non-paged core update
package 360 in backup buffer 324 to volatile memory 350. Alternatively in this embodiment, in
stage 530 updated UAL 362 reads from the resume point the stored original version of the
software for the non-paged core (except for the original version of the software for the UAL)
from section 318, reads in stage 532 the delta for the software for the non-paged core except for
the delta for the software for the UAL from non-paged core update package 360 stored in backup
buffer 324, and in stage 534 UPI 364 constructs in volatile memory 350 an updated version of
the software for the non-paged core (excluding the updated UAL) from the resume point, using
the read delta from the interrupted instruction and the original version of the software for the non-
paged core (excluding the UAL) from the resume point. In this embodiment, the backed-up
updated software for UAL 362 which was loaded for example from backup buffer 323 into
volatile memory 350 in stage 516 supplements the read or constructed updated software for the
non-paged core (excluding for the UAL).

[0097] It is noted that in alternative embodiments, updated UAL 362 may instead respectively
read the delta in stage 532 or load the updated version in stage 522 of the software for the non-
paged core from update package 334 stored in file system 322, and the decision of stage 520

26

10

15

20

25

30

WO 2010/016062 _ PCT/IL2009/000762

would relate in these alternative embodiments to whether or not the updated software for the non-
paged core is in update package 334. These alternative embodiments may apply for any reason,
for example in the case where stages 404 and 406 were omitted because boot loader 348 has the
capability of accessing file system 322 and can provide the capability to invoked updated UAL
362 and there was therefore no separate backing up of a non-paged core update package.

[0098] In another embodiment where the updated software for the entire non-paged core was
extracted or constructed and in stage 430 backed up to section 323, then stages 516 to 534 may be
omitted. Instead, in this embodiment, boot loader 354 loads the backed up updated software for
the non-paged core from non-volatile memory 310 (for example from backup buffer 323) to
volatile memory 350 after a yes to stage 504 and before stage 540.

[0099] In stage 540 boot loader 348 invokes the updated non-paged core whose software has

come to be located in volatile memory 350 due to any of the various embodiments described

_ above. It is noted that the updated non-paged core includes inter-alia an updated UA and an

updated UAL (which includes an updated UPI).

[0100] In stage 542, the updated UA and the updated UAL update in-place, software content
for the non-paged core at least from the resume point and then software content for the paged core
(and any other content in non-volatile memory 310 that needs to be updated), where the in-place
updating that is performed may use any appropriate in-place updating techniques as discussed
above with reference to stage 456 of method 400. For example, in one embodiment of the in-
place update, the updated software for the non-paged core in volatile memory 350 is first copied
by the updated UA to section 318 of non-volatile memory 310, beginning at least with the resume
point. In this embodiment after the copying, the updated UA invokes the updated UAL to
construct or load updated software content for the paged core (and any other content in non-
volatile memory 310 that needs to be updated) in volatile memory 350 and write the updatedw
content in-place to section 320 and to any other relevant section of non-volatile memory 310. As
another example, in one embodiment of the in-place update, the updated UA invokes the updated
UAL to construct and/or or load in volatile memory 350 software content for the non-paged core,
paged core, and any other content in non-volatile memory 310 that needs to be updated, and to
write the updated content in-place, where for the non-paged core the in-place updating is at least
from the resume point. Although content before the resume point does not need to be updated in
place (since the content has already been updated prior to the interruption), the invention does not
preclude the possibility of rewriting such content during stage 542.

[0101] In stage 544, after the completion of the update process, flag 332 is set to normal mode
by updated UA 368. In one embodiment, boot loader 348 loads the updated software for non-

27

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

paged core 366 from section 318 in non-volatile memory 310 to volatile memory 350 and invokes
the updated non-paged core 366. The updated non-paged core (whose software was loaded in
stage 544 or was already in volatile memory 350 prior to stage 544) then starts the normal mode
of operation of the updatable device as is known in the art. Method 500 then ends.

[0102] In other embodiments, it is assumed that in stage 456 the original version of the software
for paged core 336 in non-volatile memory 310 , for example in section 320 (and any other
content in non-volatile memory that requires to be updated and is not part of the software for the
core) is overwritten with the updated version before the original version of the software for non-
paged core 366 in non-volatile memory 310, for example in section 318, is overwritten with the
updated version. In these embodiments, regardless of where the resume point is, stages 516 to 544
are performed, and therefore stages 504 to 512 may be omitted. In some of these embodiments
where the resume point is in the paged core (or in content unrelated to the core), the updated UA
and the updated UAL update in-place in stage 542, software content for the paged core (and any
other content in non-volatile memory 310 that needs to be updated) at least from the resume point
and then software content for the non-paged core, where the in-place updating that is performed
may use any appropriate in-place updating techniques as discussed above with reference to stage
456 of method 400. For example in one of these embodiments in stage 542 the updated UA,
invokes the updated UAL to construct or load software for the paged core (and any other non-
core content in non-volatile memory 310 that needs to be updated) and to write the updated
content in-place to non-volatile memory 310 at least from the resume point. The updated UA,
then copies the updated non-paged core in volatile memory 350 to section 318 of non-volatile
memory 310, or the updated UA invokes the updated UAL to construct or load updated software
content for the non-paged core and to write the updated content in-place to section 318. In some
of these embodiments where the resume point is instead in the non-paged core, in stage 542, the
updated UA and the updated UAL update in-place, software content for the non-paged core (at
least from the resume point), where the in-place updating that is performed may use any
appropriate in-place updating techniques as discussed above with reference to stage 456 of
method 400. For example, in one of these embodiments, in stage 542 the updated UA copies the
updated non-paged core in volatile memory 350 to section 318 of non-volatile memory 310 (at
least from the resume point), or the updated UA invokes the updated UAL to construct or load
updated software content for the non-paged core and to write the updated content in-place (at
least from the resume point) to section 318. Although content before the resume point does not
need to be updated in place (since the content has already been updated prior to the interruption),

the invention does not preclude the possibility of rewriting such content during stage 542.

28

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

Similarly to what was described above, in embodiments where the software for the paged core is
updated in place prior to the software of the non- paged core, in stage 544, with the completion of
the update process, flag 332 is set to normal mode. In one of these embodiments, boot loader 348
loads the software for updated non-paged core 366 from non-volatile memory 310, for example
from section 318, to volatile memory 350 and invokes the updated non-paged core 366. The
updated non-paged core (whose software was loaded in stage 544 or already in volatile memory
350 prior to stage 544) starts the normal mode of operation of the updatable device as is known in
the art. Method 500 then ends.

[0103] 1t should be understood that in various embodiments of the methods discussed above,
when loading into or constructing in volatile memory 350 software for the paged core, the
software for the paged core is typically although not necessarily not all loaded into and/or
constructed in volatile memory 350 at one time due to the large size thereof.

[0100] In the same way, the invention is not limited to cellular networks and/or to cellular
telephones 102. It should be appreciated that cellular telephones belong to a group referred to as
embedded devices. There are other types of embedded devices, for example: Personal Digital
Assistants (PDAs), set-top boxes and other consumer electronic devices which are controlled and
operated by a CPU and software and therefore are associated with storages for storing content,
and sometimes it is required to update the content stored therein. Such consumer electronic device
can be Cameras, e-book readers, Mobile Internet Devices (MID), Navigation systems, car
infotainment systems, and more. Embedded device can be also general utility home appliances
which are electronically controlled by a CPU and Software, such as washing machines, DVD
players, Blue-ray players and other home entertainment systems. Furthermore, embedded devices
can medical devices which are controlled by CPU and software, whether outside the human body
or inside the human body, such as pacemakers. Embedded devices can also be part of avionic and
aerospace control systems involved in guidance and other functions of the craft in which they are
embedded in. All these examples of embedded device represent devices associated with storage
holding content which sometimes may require updating. There are many more examples of
embedded devices and the above provided examples just demonstrate the possible variety and
should not be construed as a concise list. Yet, it is possible to update also content stored in
storages associated with non-embedded devices, such as PCs or other general purpose computers.

[0101] For example, a PC, or any other computer, can store files that include data required for its
operation or for operation of programs executing therein (such as “info files” or "dot files" known
for those versed in the art). Sometimes it is required to update this data, for example, via

communication lines, e.g., via the Internet or via any other communication means.

29

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[00100] Understanding this, instead of using terms such as "telephones”, "PDAs" "consumer
electronic devices", "computers”, "PCs", etc., the term "updatable devices" or "devices" will be
used hereinafter, and it should be noted that the term "updatable device" or "device" as used
herein can refer to any device that is associated with a storage 107 and allows updating content
stored therein.

[0104] In the above description, an embodiment is an example or implementation of the
inventions. The various appearances of "one embodiment,” "an embodiment" or "some
embodiments" do not necessarily all refer to the same embodiments.

[0105] Although various features of the invention may be described in the context of a single
embodiment, the features may also be provided separately or in any suitable combination.
Conversely, although the invention may be described herein in the context of separate
embodiments for clarity, the invention may also be implemented in a single embodiment.

[0106] Reference in the specification to "some embodiments", "an embodiment", "one
embodiment" or "other embodiments" means that a particular feature, structure, or characteristic
described in connection with the embpdiments is included in at least some embodiments, but not
necessarily all embodiments, of the inventions.

[0107] It is to be understood that the phraseology and terminology employed herein is not to be
construed as limiting and are for descriptive purpose only.

[0108] The principles and uses of the teachings of the present invention may be better
understood with reference to the accompanying description, figures and examples.

[0109] It is to be understood that the details set forth herein do not construe a limitation to an
application of the invention.

[0110] Furthermore, it is to be understood that the invention can be carried out or practiced in
various ways and that the invention can be implemented in embodiments other than the ones
outlined in the description above.

[0111] It is to be understood that the terms “including”, “comprising”, “consisting” and
grammatical variants thereof do not preclude the addition of one or more components, features,
steps, or integers or groups thereof and that the terms are to be construed as specifying
components, features, steps or integers.

[0112] If the specification or claims refer to "an additional" element, that does not preclude there
being more than one of the additional element.

[0113] It is to be understood that where the claims or specification refer to "a" or "an" element,

such reference is not be construed that there is only one of that element.

30

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

[0114] It is to be understood that where the specification states that a component, feature,
structure, or characteristic "may", "might", "can" or "could" be included, that particular
component, feature, structure, or characteristic is not required to be included.

[0115] Where applicable, although state diagrams, flow diagrams or both may be used to
describe embodiments, the invention is not limited to those diagrams or to the corresponding
descriptions. For example, flow need not move through each illustrated box or state, or in exactly
the same order as illustrated and described.

[0116] Methods of the present invention may be implemented by performing or completing
manually, automatically, or a combination thereof, selected steps or tasks.

[0117] The term "method" may refer to manners, means, techniques and procedures for
accomplishing a given task including, but not limited to, those manners, means, techniques and
procedures either known to, or readily developed from known manners, means, techniques and
procedures by practitioners of the art to which the invention belongs.

[0118] The descriptions, examples, methods and materials presented in the claims and the
specification are not to be construed as limiting but rather as illustrative only. Meanings of
technical and scientific terms used herein are to be commonly understood as by one of ordinary
skill in the art to which the invention belongs, unless otherwise defined.

[0119] The present invention may be implemented in the testing or practice with methods and
materials equivalent or similar to those described herein.

[0120] Any publications, including patents, patent applications and aﬁicles, referenced or
mentioned in this specification are herein incorporated in their entirety into the specification, to
the same extent as if each individual publication was specifically and individually indicated to be
incorporated herein. In addition, citation or identification of any reference in the description of
some embodiments of the invention shall not be construed as an admission that such reference is
available as prior art to the present invention.

[0121] While the invention has been described with respect to a limited number of embodiments,
these should not be construed as limitations on the scope of the invention, but rather as
exemplifications of some of the preferred embodiments. Other possible variations, modifications,
and applications are also within the scope of the invention. Accordingly, the scope of the
invention should not be limited by what has thus far been described, but by the appended claims

and their legal equivalents.

31

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

CLAIMS

What is claimed is:

1. A method of in-place updating an original version of content to an updated version of content,
in a non-volatile memory storage device, wherein the storage device comprises a non-paged part
of content, wherein the non-paged part comprises an original update library, and wherein the
storage device is being used in a normal mode of operation or in an update mode of operation, the
method comprising:

obtaining an update package required for updating the original version of content to the
updated version of content;

obtaining a new update library;

storing the new update library on a second non-volatile storage; and

updating the original version of content to the updated version of content, in a non-

volatile memory storage device, using the new update library and the update package.

2. The method of claim 1, wherein obtaining the new update library comprises extracting the new

update library from the update package.

3. The method of claim 1, wherein obtaining a new update library comprises:

deriving from the update package, a part required for at least updating the original update
library to the new update library;

storing the part of the update package on a third non-volatile storage; and

generating the new update library using the original update library from the non-paged
part and the part of the update package from the third non-volatile storage.

4. The method according to claim 1, wherein the updating comprises:
in update mode, providing in a volatile memory associated with the device, an updated

version of the non-paged memory part.

5. The method according to claim 1, wherein the updating further comprises invoking the updated

version of the non-paged part in the volatile memory.

32

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

6. The method according to claim 4, wherein the providing of an updated version of the non-
paged content further comprises:

invoking the new update library; and

generating in the volatile memory an updated version of the non-paged content using the
original non-paged content in the non-volatile memory and the update package wherein the
generating is such that the updated version of the non-paged part does not override the new

update library on the volatile memory.

7. The method of claim 4, wherein the providing of the updated version of the non-paged
memory further comprises: loading into the volatile memory an updated version of part of the
non-paged content and invoking said part, wherein said invoked part constructs in volatile

memory or loads into volatile memory an updated version of said non-paged content.

8. The method of claim 4, wherein said providing of an updated version of the non-paged content

further comprises: loading into the volatile memory an updated version of the non-paged content.

9. The method of claim 4, wherein the providing of the updated version of the non-paged content
further comprises: loading into the volatile memory an updated version of part of said non-paged
content and invoking said part, wherein said invoked part constructs in the volatile memory or

loads into the volatile memory an updated version of the non-paged content excluding said part.

10. A system for updating an original version of content to an updated version of content, in a
non-volatile memory storage device that enables a normal mode and an update mode, the system
comprising;

a non-paged memory part on a non-volatile memory, wherein the non-paged memory part
comprises an update library and an update agent; and

a boot loader,

wherein the update agent is arranged to:

obtain an update package comprising a update file that comprises commands and data
required for updating an original version of content to an updated version of content;

derive, from the update file, a library file comprising commands and data required for at
least updating the update library on the non-paged memory part of content;

store the library file on a non-volatile memory;

wherein the boot loader is arranged to:

obtain a new update library to the volatile memory; and

33

10

15

20

25

30

WO 2010/016062 PCT/IL2009/000762

store the new update library on the non-volatile backup buffer.

11. The system according to claim 10, wherein the update agent and the boot loader are arranged,
in cooperation, to update the original version of content to the updated version of content, in the
non-volatile memory storage device, using the new update library, stored on the non-volatile

memory.

12. The system according to claim 10, wherein the update agent obtains the new update library by
extracting the new update library from the update package.

13. The system according to claim 10, wherein in obtaining a new update library, the update agent
is further arranged to:

derive from the update package, a part required for at least updating the original update
library to the new update library; '

store the part of the update package in a third non-volatile storage; and

generate the new update library using the original update library from the non-paged
memory part of content and the part of the update package from the third non-volatile storage.

14. The system according to claim 11, wherein in updating, the update agent and the boot loader
are arranged, in cooperation, to provide in a volatile memory associated with the device, an

updated version of the non-paged part.

15. The system according to claim 14, wherein the update agent and the boot loader are further
arranged, in cooperation, to:

invoke the new update library;

generate in the volatile memory an updated version of the non-paged content using the
original non-paged content in the non-volatile memory and the update package wherein the
generating is such that the updated version of the non-paged part does not override the new

update library on the volatile memory.

34

WO 2010/016062

117

110

~

PCT/IL2009/000762

124 BACKUP

FLAG

BUFFER(S)

UPDATE PACKAGE

122 FILE
SYSTEM

CORE (PAGED)

120

CORE (NON-PAGED)

%
%
/~
% 118

MINOS |UA || UP

~ 116 CRITICAL
SECTION

BACKUP MINIOS

L~ 114

BOOT LOADER

L~ 112

PRIOR ART

FIG. 1

WO 2010/016062 PCT/IL2009/000762

207~\\\§
203

202

203

/,205 //206

IS TRANSMITTER

204

UPDATE
PACKAGE 202 ECTC]
GENERATOR 4y
\E==S)

FIG.2

WO 2010/016062

317

300\

PCT/IL2009/000762

360
\

332 FI Non-pe\xged Core 324
ag 1T
Y Update Package Backup Buffer(s)
362+ T~Backup UAL 364UPI 323
334—~Update package | 322
File System
336—7—Core (paged) . |
(paged) 20
3g5—r—Core 368 | R
|l (non-paged) UA l/JAL L'JPI 318
\370 \372
348—T —— Boot Loader T~~312
L310
Volatile Memory —350
BOS—J
Executor —~380

Figure 3

WO 2010/016062 PCT/IL2009/000762

417

400\ CSTARD

Device is in normal mode of operation

402

404~ UA obtains update package for non-paged core

406 UA backs up update package for non-paged core

Is updated
software for UAL in update
package?

i

| UA extracts updated
- software for UAL from
412 UA !nVOkeS UAL update package

No

41OJ

14 UAL calls UPI

416~ UPl asks UAL for input

UAL reads original software for UAL

4187

UAL reads delta for software for UAL

4207

UAL constructs updated software for

422 CU
UAL from original software and delta

r
UA backs up updated software for UAL

430
r

Flag set to update mode

to step 434
Fig.4 (Cont.)

43277

A Figure 4

WO 2010/016062 PCT/IL2009/000762

57

400\
' from

A step 432 Fig.4
434~ Device resets and enters update mode

436-—Boot loader loads backup updated software for UAL

Boot loader invokes updated UAL

438
440
Is updated
software for non-paged core in yes _ 449
update package? —] /
UAL loads updated
No software for
444 UAL calls UPI non-paged core from
update package
446~ UPI asks UAL for input
)
448 UAL reads original software for non-paged core
450~ UAL reads delta for software for non-paged core
| .
452-— UPI constructs updated software for
| non-paged core

454-—| Boot loader invokes updated non-paged core

Updated UA/UAL update content in non-volatile memory

456

455-— _ Flag set to normal mode. Device enters normal mode

END Figure 4 (Cont.)

WO 2010/016062

500
‘\ START

PCT/IL2009/000762

6/7

5021

Determine resume point

506/\

resume point in non-paged

Boot loader loads updated

non-volatile memory

software for non-paged core from

508~ |

Boot loader invokes non-paged core

510~

from resume point

Updated UA/UAL updates content
in-place in non-volatile memory

-512/\

enter normal mode

Flag set to normal mode. Device

END

5167

Boot loader loads backup updated
software for UAL

- 518

Boot loader invokes updated UAL

Figure 5

to step 520

A Fig.5 (Cont.)

WO 2010/016062 PCT/IL2009/000762

717

from step 518
Fig.5

520

500
N A

Is updated
software for non-paged core in
update package?

Yes

| /522

UAL loads updated

No software for

526~ - UAL calls UPI . non-paged core from
update package

508 UPI asks UAL for input
530~ UAL reads original software for non-paged core
530 UAL reads delta for software for non-paged core
534~ UPI constructs updated software for non-paged core
540-—_Boot loader invokes updated non-paged core

Updated UA/UAL updates content in-place in

542 | : .
non-volatile memory from resume point

544 Flag set to normal mode. Device enter normal mode

END

—Figure 5 (Cont.)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings

