
US 2015 002O198A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0020198 A1

Mirski et al. (43) Pub. Date: Jan. 15, 2015

(54) METHODS OF DETECTION OF SOFTWARE (52) U.S. Cl.
EXPLOITATION CPC G06F 2 1/566 (2013.01)

USPC .. 726/23
(71) Applicant: ESET, spol, s r.o., Bratislava (SK)

(57) ABSTRACT

A method for detecting software exploitation broadly com
prises the steps of gathering information about processes and
threads executing on a computing device, monitoring instruc
tions executed by a thread that is currently running, perform

(72) Inventors: Pawel Mirski, Szczecin (PL); Peter
Hlavaty, Bratislava (SK); Peter
Kosinar, Bratislava (SK)

(21) Appl. No.: 13/942,385 ing the following steps if a function to create a process or a
function to load a library is called, examining a thread infor

(22) Filed: Jul. 15, 2013 mation block, determining whether an address included in a
stack pointer of the thread is in a range of addresses for a stack

Publication Classification specified by the thread information block, and determining
whether a first plurality of no-operation instructions is fol

(51) Int. Cl. lowed by shell code that is followed by a second plurality of
G06F 2/56 (2006.01) no-operation instructions.

O1
GATHER INFORMATIONABOUT PROCESSES, THREADS, AND LOADED

MODULES

102 MONTOR THE INSTRUCTIONS THAARE EXECUTED BY THE CURRENT
PROCESS TO DETERMINE WHETHERFUNCTIONS O CREATE A

PROCESS OR LOADA BRARY ARE CALLED

O3
DETERMINE WHETHER ASTACKPONER OF A CURRENTHREADS

NARANGE SPECIFIED BY ATHREAD INFORMATION BOCK

104
EXAMINE THE CONTENTS OF THE SACKAND DETERMINE THE

NSTRUCTIONS THAT PLACED ITEMS ON THE STACK

DETERMINE WHETHER THE INSTRUCTIONS INCLUDEAVALID 105
SUBROUTINE CALLS

DETERMINE WHETHER THE RETURN ADDRESSES FROM THE 106
SUBROUTINE CALS ARE LOCATED IN ANADDRESS SPACE FOR

EXECUTABLE CODE

DETERMINE WHETHER THE STACK INCLUDES THE RETURN ADDRESS
OF THE DLL THAT CREATED THE THREAD

DETERMINE WHETHER THE BOTTOM OF THE STACK INCLUDES THE
HREAD STARADDRESS

EXAMINEACHAN OF EXCEPTION HANDLERS AND DETERMINE
WHETHER A POINTERTO THENEX EXCEPTION HANDLERS OUTSIDE

OF THE STACK

DETERMINE WHETHER THE EXCEPTION HANDLER SLOCATED IN AN
ADDRESS SPACE FOR EXECUTABLE COE

TO 111

107

108

109

110

Patent Application Publication Jan. 15, 2015 Sheet 1 of 3 US 2015/002O198A1

III -

III E

PROCESSING MEMORY
ELEMENT ELEMENT

FIG. 2

Patent Application Publication Jan. 15, 2015 Sheet 2 of 3 US 2015/002O198A1

101
GATHER INFORMATIONABOUT PROCESSES, THREADS, AND LOADED

MODULES

MONITOR THE INSTRUCTIONS THAT ARE EXECUTED BY THE CURRENT 102
PROCESS TO DETERMINE WHETHER FUNCTIONS TO CREATE A

PROCESS OR LOAD A LIBRARY ARE CALLED

103
DETERMINE WHETHER A STACKPOINTER OF A CURRENT THREADS

NARANGE SPECIFIED BY A THREAD INFORMATION BLOCK

104
EXAMINE THE CONTENTS OF THE STACK AND DETERMINE THE

NSTRUCTIONS THAT PLACED ITEMS ON THE STACK

DETERMINE WHETHER THE INSTRUCTIONS INCLUDE AWALD 105
SUBROUTINE CALLS

DETERMINE WHETHER THE RETURN ADDRESSES FROM THE 106
SUBROUTINE CALLS ARE LOCATED IN AN ADDRESS SPACE FOR

EXECUTABLE CODE

DETERMINE WHETHER THE STACK INCLUDES THE RETURN ADDRESS 107
OF THE DLL THAT CREATED THE THREAD

DETERMINE WHETHER THE BOTTOM OF THE STACKINCLUDES THE
THREAD START ADDRESS stuntwist gigocuse 108

109
EXAMINE A CHAIN OF EXCEPTION HANDLERS AND DETERMINE

WHETHER A POINTER TO THE NEXT EXCEPTION HANDLER IS OUTSIDE
OF THE STACK

DETERMINE WHETHER THE EXCEPTION HANDLER IS LOCATED IN AN 110
ADDRESS SPACE FOR EXECUTABLE CODE

TO 111

FIG. 3A

Patent Application Publication Jan. 15, 2015 Sheet 3 of 3 US 2015/0020198 A1

TO 110

DETERMINE WHETHER THE CHAIN OF EXCEPTION HANDLERS FORMS
A LOOP

EXAMINE THE CONTENTS OF MEMORY ADDRESSES COMMONLY USED
BY HEAP SPRAYS AND DETERMINE WHETHER TWO NOPSLEDS ARE

SEPARATED BY SHELLCODE

EXAMINE ANY FILE CREATED BY AN APPLET AND DETERMINE
WHETHER T S BEING EXECUTED OR LOADED ASA LIBRARY

UTILIZE A PROGRAMMING INTERFACE TO DETERMINE WHETHERA
SYSTEMSETSECURITYMANAGER(NULL) CALL WAS MADE FOLLOWED

BY APROCESSORBUILDER.START() CALL

111

112

113

114

FIG. 3B

US 2015/002O198A1

METHODS OF DETECTION OF SOFTWARE
EXPLOITATION

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 Embodiments of the current invention relate to the
detection of malicious computer Software.
0003 2. Description of the Related Art
0004 Software exploitation, also known as computer
viruses, malware, spyware, adware, worms, and the like, is
utilized by an attacker to gain access to a user's computer
system in order to obtain sensitive information, monitor the
activities of the user, or control the operation of the system.
The exploitation often occurs when the user receives data
from other parties or external systems such as while browsing
the Internet or receiving email. The exploitation may take
advantage of security defects in the programming of applica
tions such as web browsers or email readers.

SUMMARY OF THE INVENTION

0005 Embodiments of the current invention solve the
above-mentioned problems and provide a distinct advance in
the art of the detection of malicious computer software.
0006. A first embodiment of the invention provides a
method for detecting Software exploitation broadly compris
ing the steps of gathering information about processes and
threads executing on a computing device, monitoring instruc
tions executed by a thread that is currently running, perform
ing certain steps if a function to create a process or a function
to load a library is called. The steps performed may include
examining a thread information block, determining whether
an address included in a stack pointer of the thread is in a
range of addresses for a stack specified by the thread infor
mation block, and determining whether a first plurality of
no-operation instructions is followed by shell code that is
followed by a second plurality of no-operation instructions.
0007. A second embodiment of the invention provides a
method for detecting Software exploitation broadly compris
ing the steps of gathering information about processes and
threads executing on a computing device, monitoring instruc
tions executed by a thread that is currently running, perform
ing certain steps if a function to create a process or a function
to load a library is called. The steps performed may include
examining a plurality of items on a stack, determining
instructions that placed items on the stack, determining
whether the instructions include valid subroutine calls, and
determining whether the instructions are located in an address
space for executable code.
0008. A third embodiment of the invention provides a
method for detecting Software exploitation broadly compris
ing the steps of gathering information about processes and
threads executing on a computing device, monitoring instruc
tions executed by a thread that is currently running, perform
ing certain steps if a function to create a process or a function
to load a library is called. The steps performed may include
examining a plurality of items on a stack, examining a chain
of exception handlers, each exception handler including a
first address pointing to the next exception handler and a
second address pointing to instructions for handling an
exception, and determining for each exception handler
whether the second address is located in an address space for
executable code.

Jan. 15, 2015

0009. A fourth embodiment of the invention provides a
method for detecting Software exploitation broadly compris
ing the steps of gathering information about processes,
threads, and applets executing on a computing device, moni
toring instructions executed by processes, threads, and
applets that are currently running, monitoring any file that is
created by the applets, determining whether the file is being
executed as an additional process, and determining whether
the file is being loaded as a library.
0010. A fifth embodiment of the invention provides a
method for detecting Software exploitation broadly compris
ing the steps of gathering information about processes,
threads, and applets executing on a computing device, moni
toring instructions executed by processes, threads, and
applets that are currently running, utilizing a programming
interface, and determining whether a system.setSecurityman
ager(null) call is made followed by a processbuilderstart()
call.

0011. This summary is provided to introduce a selection of
concepts in a simplified form that are further described below
in the detailed description. This summary is not intended to
identify key features or essential features of the claimed sub
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter. Other aspects and advantages of
the current invention will be apparent from the following
detailed description of the embodiments and the accompany
ing drawing figures.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

0012 Embodiments of the current invention are described
in detail below with reference to the attached drawing figures,
wherein:

0013 FIG. 1 is a view of a plurality of computing devices
for detecting software exploitation, as constructed in accor
dance with various embodiments of the current invention;
0014 FIG. 2 is a block schematic diagram of a processing
element and a memory element, which are components of the
computing devices of FIG. 1;
0015 FIG. 3A is a flow diagram of a first portion of the
steps of a method for detecting Software exploitation in accor
dance with another embodiment of the current invention; and
0016 FIG. 3B is a flow diagram of a second portion of the
steps of the method of FIG. 3A.
0017. The drawing figures do not limit the current inven
tion to the specific embodiments disclosed and described
herein. The drawings are not necessarily drawn to scale,
emphasis instead being placed upon clearly illustrating the
principles of the invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

0018. The following detailed description of the invention
references the accompanying drawings that illustrate specific
embodiments in which the invention can be practiced. The
embodiments are intended to describe aspects of the inven
tion in sufficient detail to enable those skilled in the art to
practice the invention. Other embodiments can be utilized and
changes can be made without departing from the scope of the
present invention. The following detailed description is,
therefore, not to be taken in a limiting sense. The Scope of the

US 2015/002O198A1

present invention is defined only by the appended claims,
along with the full scope of equivalents to which Such claims
are entitled.
0019. In this description, references to “one embodiment,
“an embodiment’, or "embodiments' mean that the feature or
features being referred to are included in at least one embodi
ment of the technology. Separate references to “one embodi
ment”, “an embodiment’, or "embodiments' in this descrip
tion do not necessarily refer to the same embodiment and are
also not mutually exclusive unless so stated and/or except as
will be readily apparent to those skilled in the art from the
description. For example, a feature, structure, act, etc.
described in one embodiment may also be included in other
embodiments, but is not necessarily included. Thus, the cur
rent technology can include a variety of combinations and/or
integrations of the embodiments described herein.
0020 Computing devices 10 for detecting software
exploitation, constructed in accordance with various embodi
ments of the current invention, are shown in FIG. 1. The
computing devices 10 may include devices such as a server
computer, a desktop computer, a work station computer, a
laptop computer, and the like. Certain embodiments of the
current invention may be implemented in hardware, firm
ware, Software, or combinations thereof. Each computing
device 10 may comprise a processing element 12 coupled
with a memory element 14, as shown in FIG. 2.
0021. The processing element 12 may include processors,
microprocessors, microcontrollers, digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), analog
and/or digital application-specific integrated circuits
(ASICs), and the like, or combinations thereof. The process
ing element 12 may generally execute, process, or run instruc
tions, code, code segments, software, firmware, programs,
applications, apps, processes, services, daemons, or the like,
or may step through states of a finite-state machine.
0022 Typically, the processing element 12 comprises pro
cessors with an x86 type architecture that includes compo
nents such as general purpose registers, index registers, seg
ment registers, base pointers, stack pointers, and the like. The
processing element 12 may utilize an instruction set that
includes instructions from the x86 instruction set. Further
more, the processing element 12 may execute a Windows.(R)-
based operating system, produced by the Microsoft Corpora
tion in Redmond, Wash., although other operating systems
are also possible.
0023 The memory element 14 may include data storage
components such as read-only memory (ROM), program
mable ROM, erasable programmable ROM, random-access
memory (RAM), hard disks, floppy disks, optical disks, flash
memory, thumb drives, universal serial bus (USB) drives, and
the like, or combinations thereof. The memory element 14
may include, or may constitute, a “computer-readable
medium' or “computer-readable storage medium' that is
non-transitory in nature. The memory element 14 may store
the instructions, code, code segments, Software, firmware,
programs, applications, apps, services, daemons, or the like
that are executed by the processing element 12. The memory
element 14 may also store settings, data, documents, Sound
files, photographs, movies, images, databases, and the like.
The processing element 12 may be in communication with
the memory element 14 through address busses, data busses,
control lines, and the like.
0024. The memory element 14 may include a physical
address space and at least a portion of a virtual address space

Jan. 15, 2015

and may be used to implement a file system. The memory
element 14 may also be utilized to form one or more stacks,
one or more heaps, and other data storage structures. A stack
may include a plurality of data storage units (typically
memory address locations) that operate as a last-in, first-out
(LIFO) component. The stack may include a top address and
a bottom address. The Stack typically stores data associated
with function and Subroutine calls. A stack pointer may be
used in conjunction with the stack, such that the Stack pointer
usually contains the address of the next available location in
the stack. A heap may include a plurality of data storage units
that operate as a random-access storage area. The heap may
be utilized for processing of data that is input from users or
other sources.

0025. At least a portion of the steps of a method 100 for
detecting software exploitation, in accordance with an
embodiment of the current invention, is shown in FIGS. 3A
and 3B. The method 100 may be partially or wholly imple
mented as a program that is generally stored in the memory
element 14 on a computer-readable medium and executed by
the processing element 12 in the computing device 10 when
the computing device 10 is powered on. Typically, a user is
not aware that the method 100 is executing. The method 100
may be included in at least one process that is running con
tinuously on the computing device 10, although portions of
the method 100 may be executed only when certain events
occur. For example, some steps of the method 100 may be
executed only when a running application attempts to execute
another application, load a dynamically linked library (DLL),
or perform a similar action that introduces new code to be
executed. The steps may be performed in the order as shown
in FIGS. 3A and 3B, or they may be performed in a different
order. Furthermore, some steps may be performed concur
rently as opposed to sequentially. In addition, some steps may
be omitted.

0026. With reference to step 101, information is gathered
about currently running processes, threads, and loaded mod
ules. A process may be an instance of a program or application
that is running. Threads and modules may be portions of a
program, and each program may include a plurality of both
threads and modules. In various embodiments, the method
100 gather information about all processes that are currently
running. In other embodiments, the method 100 may gather
information about processes that receive data from or com
municate with Sources external to the computing device 10,
Such as a local, metro, or wide area network, or the Internet.
For example, the method 100 may gather information about
Internet access or browsing programs, electronic mail pro
grams, or the like. Each process, thread, and module may
include an executable code section and a data section. The
information gathered may include information that is avail
able in a thread information block (TIB), also known as a
thread environment block (TEB), which is created by the
operating system. The TIB may include data Such as a pointer
to a structured exception handling frame, addresses of the top
and the bottom of the stack, identification data (e.g., process
ID, thread ID), and the like. This information is specific to
each thread and does not change during the execution of the
thread.

0027. The information gathered may also include a list of
modules that are components of each process along with an
address range or position of the code section and the data
section of each module within the virtual address space
assigned to the process. The information on modules may

US 2015/002O198A1

also include the location of the module in the file system. This
information may be utilized to exclude certain applications
from being subjected to other steps of the method so as to
avoid any potential false positive exploitation detection
results. The information gathered may further include a list of
exported functions from each module and their addresses
within the code section of the module.

0028. With reference to step 102, the instructions that are
executed by the current process are monitored to determine
whether functions to create a process or load a library are
called. Examples of the functions include “CreateProcess”
and "LoadLibrary” that are used in a Windows(R)-based pro
gramming environment. If either function is called, then at
least a portion of the remaining steps of the method is per
formed.
0029. With reference to step 103, the stack pointer of the
current thread is examined to determine whether it is pointing
outside of the range specified in the TIB. The range of virtual
address locations for the stack of the current thread may be
listed in the TIB. If the stack pointer contains an address that
is not within the TIB listed range, then it may be noted in an
internal log that the address in the stack pointer pointed out
side of the range listed in the TIB. In some embodiments, a
message may also be displayed to the user that a possible
exploit has been detected. In other embodiments, the call to
create a new process or to load a library may be automatically
blocked, or the process may also be terminated. Unless the
process is terminated, at least a portion of the remaining steps
of the method 100 are performed to provide additional analy
sis. If the stack pointer includes a valid address within the TIB
listed range, then at least a portion of the remaining steps of
the method 100 are performed.
0030. With reference to step 104, the contents of the stack
are examined and the instructions that placed items on the
stack are determined. Typically, when a process calls a Sub
routine, several items are placed on the stack between bound
aries known as a frame. The frame is created when the sub
routine is called and destroyed when the subroutine is
complete. At least one of the items in the frame is a return
address to which the flow of execution returns after the sub
routine is complete. Usually, the return address is directly
after the address of the command that called the subroutine.

0031. With reference to step 105, the method 100 deter
mines whether the instructions include valid subroutine calls.
The command or instruction at the address before the return
address may be examined. Since Subroutines may call other
Subroutines, the return address in each frame, starting with
the most recent one, is followed to examine the instruction at
the address before the return address. If any of the instructions
is not a valid Subroutine call, then it may be noted in an
internal log that at least one instruction the addresses before
return addresses is not a valid Subroutine call. In some
embodiments, a message may also be displayed to the user
that a possible exploit has been detected. In other embodi
ments, the call to create a new process or to load a library may
be automatically blocked, or the process may also be termi
nated. Unless the process is terminated, at least a portion of
the remaining steps of the method 100 are performed to
provide additional analysis. If all of the instructions in the
addresses before return addresses are valid subroutine calls,
then at least a portion of the remaining steps of the method
100 are performed.
0032. With reference to step 106, the method 100 deter
mines whether the instructions are located in an address space

Jan. 15, 2015

for executable code. The return address in each frame is
examined. If any return address is not in an executable code
section of the process, then it may be noted in an internal log
that at least one return addresses is not located in an execut
able code section. In some embodiments, a message may also
be displayed to the user that a possible exploit has been
detected. In other embodiments, the call to create a new
process or to load a library may be automatically blocked, or
the process may also be terminated. Unless the process is
terminated, at least a portion of the remaining steps of the
method 100 are performed to provide additional analysis. If
all of the instructions in the return addresses are located in
valid executable code sections, then at least a portion of the
remaining steps of the method 100 are performed.
0033. With reference to step 107, the method 100 deter
mines whether the stack includes the return address of the
DLL that created the thread. Typically, this may be NTDLL.
dII, although other dynamic link libraries may be used. If the
return address is not found, then it may be noted in an internal
log that the return address of the DLL that created the thread
was not found. In some embodiments, a message may also be
displayed to the user that a possible exploit has been detected.
In other embodiments, the call to create a new process or to
load a library may be automatically blocked, or the process
may also be terminated. Unless the process is terminated, at
least a portion of the remaining steps of the method 100 are
performed to provide additional analysis. If the return address
of the DLL that created the thread is found, then at least a
portion of the remaining steps of the method 100 are per
formed.

0034. With reference to step 108, the method 100 deter
mines whether the bottom of the stack includes the address of
the start of the thread. If the bottom of the stack does not
include the address of the start of the thread, then it may be
noted in an internal log that the bottom of the stack does not
include the thread start address. In some embodiments, a
message may also be displayed to the user that a possible
exploit has been detected. In other embodiments, the call to
create a new process or to load a library may be automatically
blocked, or the process may also be terminated. Unless the
process is terminated, at least a portion of the remaining steps
of the method 100 are performed to provide additional analy
sis. If the bottom of the stack does include the thread start
address, then at least a portion of the remaining steps of the
method 100 are performed.
0035. With reference to step 109, a chain of exception
handlers is examined and it is determined whether any excep
tion handler is outside the stack. An exception handler is a set
of instructions for handling unusual situations during the
execution of a process, such as performing an indeterminate
math function, receiving unexpected data from the user, or the
like. Typically, the exception handlers are stored on the stack
in a linked list fashion. Thus, each exception handler may
include a pointer to the set of executable instructions, in the
executable code section, as well as a pointer to the next
handler. The method 100 may determine whether all pointers
to the next handlerpoint within the stack. If any pointers to the
next handler point outside of the stack, then it may be noted in
an internal log that a pointer to the next exception handler in
the chain of exception handlers points outside of the stack. In
Some embodiments, a message may also be displayed to the
user that a possible exploit has been detected. In other
embodiments, the call to create a new process or to load a
library may be automatically blocked, or the process may also

US 2015/002O198A1

be terminated. Unless the process is terminated, at least a
portion of the remaining steps of the method 100 are per
formed to provide additional analysis. If all of the next excep
tion handler pointers point inside the stack, then at least a
portion of the remaining steps of the method 100 are per
formed.

0036. With reference to step 110, the method 100 deter
mines whether all of the pointers to the exception handler set
of executable instructions are located in the executable code
section. If any exception handler pointer does not point to the
executable code section, then it may be noted in an internal
log that at least one exception handler pointer does not point
to the executable code section. In some embodiments, a mes
sage may also be displayed to the user that a possible exploit
has been detected. In other embodiments, the call to create a
new process or to load a library may be automatically
blocked, or the process may also be terminated. Unless the
process is terminated, at least a portion of the remaining steps
of the method 100 are performed to provide additional analy
sis. If all of the exception handler pointers point to the execut
able code section, then at least a portion of the remaining steps
of the method 100 are performed.
0037. With reference to step 111, the method 100 deter
mines whether the chain of exception handlers forms a loop.
In other words, it is determined whether any pointers to the
next exception handler point to previous exception handlers.
If so, then it may be noted in an internal log that a pointer to
the next exception handler in the chain of exception handlers
points to a previous exception handler. In some embodiments,
a message may also be displayed to the user that a possible
exploit has been detected. In other embodiments, the call to
create a new process or to load a library may be automatically
blocked, or the process may also be terminated. Unless the
process is terminated, at least a portion of the remaining steps
of the method 100 are performed to provide additional analy
sis. If none of the next exception handler pointers point to
previous exception handlers, then at least a portion of the
remaining steps of the method 100 are performed.
0038. With reference to step 112, the memory addresses
commonly used by heap sprays are examined and the method
determines whether two nopsleds are separated by shellcode.
A heap spray is a technique that places a certain sequence of
instructions at a predetermined location in the address space.
Exemplary predetermined addresses may include
0x09090909 and 0x0C0C0COC. The instructions may
include a plurality of no operation (NOP) instructions that
form a “nopsled' or a “nopslide'. Heap spraying may further
involve placing a first nopsled followed by shellcode fol
lowed by a second nopsled. The shellcode may include com
mands that an attacker wishes to execute. If two nopsleds are
found that are separated by shellcode, then it may be noted in
an internal log that two nopsleds have been found that are
separated by shellcode. In some embodiments, a message
may also be displayed to the user that a possible exploit has
been detected. In other embodiments, the call to create a new
process or to load a library may be automatically blocked, or
the process may also be terminated. Unless the process is
terminated, at least a portion of the remaining steps of the
method 100 are performed to provide additional analysis. If
the nopsled-shellcode-nopsled sequence is not found, then at
least a portion of the remaining steps of the method 100 are
performed.
0039. With reference to step 113, any file that is created by
an applet is examined to determine whether it is being

Jan. 15, 2015

executed or loaded as a library. The applet may be a subpro
gram or Subprocess that is typically launched by an existing
process as opposed to being directly executed by the user. For
example, the user may execute a web browser which in turn
may launch applets depending on the content of the web page
being viewed. An exemplary platform for launching applets is
JavaTM produced by Oracle Corporation of Redwood Shores,
Calif. The applet may create or receive a file to be stored in the
file system. If the file is subsequently executed as an addi
tional process or loaded as a library, then it may be noted in an
internal log that an applet-created file has been executed or
loaded as a library. In some embodiments, a message may
also be displayed to the user that a possible exploit has been
detected. In other embodiments, the call to create a new
process or to load a library may be automatically blocked, or
the process may also be terminated. Unless the process is
terminated, at least a portion of the remaining steps of the
method 100 are performed to provide additional analysis. If
the applet-created file is not executed or loaded as a library,
then at least a portion of the remaining steps of the method
100 are performed.
0040. With reference to step 114, a programming interface

is utilized to determine whether system.setSecuritymanager
(null) is called followed by processbuilderstart(). The pro
gramming interface may allow a process to inspect the state of
and control the execution of applications running in a JavaTM
Virtual Machine, which is a run-time environment in which
JavaTM byte code can be executed. An exemplary program
ming interface is the JavaTM virtual machine tool interface
(JVMTI). The function system.setsecuritymanager(null)
may remove or turn off JavaTM security measures for the
process. The function processbuilder. Start() may create a new
process instance. If these two functions are called in Succes
Sion, then it may be noted in an internal log that system.
setsecurity manager(null) was called followed by process
builder. Start(). In some embodiments, a message may also be
displayed to the user that a possible exploit has been detected.
In other embodiments, the call to create a new process or to
load a library may be automatically blocked, or the process
may also be terminated. If the functions are not called, then no
further actions may be taken.
0041 Although the invention has been described with ref
erence to the embodiments illustrated in the attached drawing
figures, it is noted that equivalents may be employed and
Substitutions made herein without departing from the scope
of the invention as recited in the claims.

Having thus described various embodiments of the inven
tion, what is claimed as new and desired to be protected by
Letters Patent includes the following:

1. A non-transitory computer-readable storage medium
with an executable program stored thereon for detecting soft
ware exploitation, wherein the program instructs a processing
element to perform the following steps:

gathering information about processes and threads execut
ing on a computing device;

monitoring instructions executed by a thread that is cur
rently running; and

performing the following steps if a function to create a
process or a function to load a library is called
examining a thread information block,
determining whether an address included in a stack

pointer of the thread is in a range of addresses for a
stack specified by the thread information block,

US 2015/002O198A1

examining the contents of a plurality of memory
addresses, and

determining whether a first plurality of no-operation
instructions is followed by shell code that is followed
by a second plurality of no-operation instructions.

2. The computer-readable storage medium of claim 1,
wherein the information includes the starting address of the
thread.

3. The computer-readable storage medium of claim 1,
wherein the program further comprises the step of recording
in an internal log that the address included in the Stackpointer
is not in the range of stack addresses if the address included in
the stack pointer is not in the range of Stack addresses.

4. The computer-readable storage medium of claim 1,
wherein the program further comprises the step of displaying
a message to a user that a possible Software exploit has been
detected if the address included in the stack pointer is not in
the range of stack addresses.

5. The computer-readable storage medium of claim 1,
wherein the program further comprises the step of recording
in an internal log that the first plurality of no-operation
instructions followed by shell code followed by the second
plurality of no-operation instructions was detected if the first
plurality of no-operation instructions followed by shell code
followed by the second plurality of no-operation instructions
was detected.

6. The computer-readable storage medium of claim 1,
wherein the program further comprises the step of displaying
a message to a user that a possible software exploit has been
detected if the first plurality of no-operation instructions fol
lowed by shell code followed by the second plurality of no
operation instructions was detected.

7. A non-transitory computer-readable storage medium
with an executable program stored thereon for detecting soft
ware exploitation, wherein the program instructs a processing
element to perform the following steps:

gathering information about processes and threads execut
ing on a computing device;

monitoring instructions executed by a thread that is cur
rently running; and

performing the following steps if a function to create a
process or a function to load a library is called
examining a plurality of items on a stack,
determining instructions that placed items on the stack,
determining whether the instructions include valid sub

routine calls, and
determining whether the instructions are located in an

address space for executable code.
8. The computer-readable storage medium of claim 7.

wherein the items placed on the stack include return
addresses for Subroutine calls and for each return address,
examining an address before the return address and determin
ing whether the address includes a valid subroutine call.

9. The computer-readable storage medium of claim 7.
wherein the program further comprises the step of determin

Jan. 15, 2015

ing whether the Stack includes a return address for a dynamic
link library that created the thread.

10. The computer-readable storage medium of claim 7.
wherein the program further comprises the step of determin
ing whether a first address of the stack includes a start address
of the thread.

11. A non-transitory computer-readable storage medium
with an executable program stored thereon for detecting soft
ware exploitation, wherein the program instructs a processing
element to perform the following steps:

gathering information about processes and threads execut
ing on a computing device;

monitoring instructions executed by a thread that is cur
rently running; and

performing the following steps if a function to create a
process or a function to load a library is called
examining a plurality of items on a stack,
examining a chain of exception handlers, each exception

handler including a first address pointing to the next
exception handler and a second address pointing to
instructions for handling an exception, and

determining for each exception handler whether the sec
ond address is located in an address space for execut
able code.

12. The computer-readable storage medium of claim 11,
wherein the program further comprises the step of determin
ing for each exception handler whether the first address is
within the stack.

13. The computer-readable storage medium of claim 11,
wherein the program further comprises the step of determin
ing for each exception handler whether the first address points
to a previous exception handler.

14. A non-transitory computer-readable storage medium
with an executable program stored thereon for detecting soft
ware exploitation, wherein the program instructs a processing
element to perform the following steps:

gathering information about processes, threads, and
applets executing on a computing device;

monitoring instructions executed by processes, threads,
and applets that are currently running;

monitoring any file that is created by the applets;
determining whether the file is being executed as an addi

tional process; and
determining whether the file is being loaded as a library.
15. A non-transitory computer-readable storage medium

with an executable program stored thereon for detecting soft
ware exploitation, wherein the program instructs a processing
element to perform the following steps:

gathering information about processes, threads, and
applets executing on a computing device;

monitoring instructions executed by processes, threads,
and applets that are currently running;

utilizing a programming interface; and
determining whether a system.setSecuritymanager(null)

call is made followed by a processbuilderstart() call.
k k k k k

