

DOMANDA DI INVENZIONE NUMERO	102020000002647
Data Deposito	11/02/2020
Data Pubblicazione	11/08/2021

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
G	06	K	19	08
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
G	06	K	19	02
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
A	45	С	11	16
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
Sezione B	Classe 42	Sottoclasse D	Gruppo 25	Sottogruppo 305
В	42	D	25	
В	42	D	25	305
B Sezione G	42 Classe 01	D Sottoclasse N	25 Gruppo 21	305 Sottogruppo

Titolo

CARD MULTIUSO E SISTEMA DI LETTURA PER DETTA CARD MULTIUSO

CARD MULTIUSO E SISTEMA DI LETTURA PER DETTA CARD MULTIUSO

La presente invenzione si riferisce ad una card multiuso.

Più in particolare, la presente invenzione si riferisce alla struttura di una card multiuso comprendente una pietra semitrasparente o trasparente, in particolare una pietra preziosa sfaccettata quale un diamante.

Con card multiuso si intende una card preferibilmente in materiale plastico che può essere utilizzata per differenti scopi, in funzione di come è stata configurata.

Ad esempio, detta card può essere utilizzata come borsellino elettronico oppure come carta di credito oppure come assegno circolare oppure come strumento di identificazione e di memorizzazione di informazioni personali oppure come titolo di viaggio elettronico oppure come mezzo di accesso ad una predeterminata area (che può essere ad esempio una stanza di albergo) oppure come una fiche di casinò oppure come mezzo per abilitare il funzionamento di un apparecchio elettronico, come ad esempio un computer.

Inoltre, detta card multiuso può essere dotata di un circuito integrato in grado di memorizzare e gestire informazioni. Tale circuito integrato può essere una memoria controllata da una logica dedicata, che fornisce servizi di diverso tipo (ad esempio accesso mediante un PIN) oppure può essere un microprocessore.

In alternativa al circuito integrato o in combinazione con detto circuito integrato, detta card multiuso può essere dotata di una banda magnetica e/o di un codice QR e/o un codice a barre e/o un codice leggibile in chiaro, e/o una etichetta RFID, a seconda dell'uso cui è destinata la card.

Tecnica anteriore

Attualmente, sono note diverse card.

Ad esempio, sono note card che sono utilizzate come carte di credito oppure con carte prepagate oppure per accedere a uno specifico servizio.

Tuttavia, le card di tipo noto hanno lo svantaggio che possono essere "clonate", ad esempio replicando il loro circuito elettronico.

Di conseguenza, mediante una ulteriore card che è un duplicato della card originale, è possibile accedere in modo illegale ai servizi offerti dalla card originale.

La domanda di brevetto internazionale WO2015/126697 A2 descrive una card in cui sono annegati uno o più diamanti, la quale è in grado di comunicare con uno smartphone. Insieme ai diamanti sono incluse particelle di materiale colorato, per formare una figura unica da rilevare otticamente per autenticare la carta. La rilevazione ottica risulta però difficoltosa, a causa dello scattering della luce tra il diamante e le altre particelle. La rilevazione quindi è soggetta ad errori ad esempio perché troppo dipendente dalle condizioni di luce.

La domanda di brevetto GB 2218044 A descrive una carta di credito in cui sono alloggiati in posizione fissa uno o più diamanti, la carta avendo un fondo opaco ed una zona superiore trasparente attraverso cui acquisire un'immagine dei diamanti. Contrariamente alla soluzione della precedente tecnica anteriore citata, è il diamante stesso a fornire l'unicità necessaria. Proprio per questo, il suddetto problema dello scattering e degli errori di acquisizione delle immagini è ancora più critico.

Scopo dell'invenzione

Scopo della presente invenzione è fornire una card multiuso, e/o un metodo e/o un sistema di lettura della card che risolva in tutto o in parte i problemi della tecnica anteriore, e ne superi in tutto o in parte gli inconvenienti.

Oggetto dell'invenzione

È oggetto della presente invenzione una card multiuso come definito in una o più delle allegate rivendicazioni da 1 a 7.

È ulteriore oggetto specifico della presente invenzione un metodo di lettura della card multiuso di cui sopra, come definito nella rivendicazione 8 o nella rivendicazione 9.

È ancora oggetto specifico della presente invenzione un sistema di lettura della card multiuso di cui sopra, come definito in una o più delle allegate rivendicazioni da 10 a 13.

Le rivendicazioni formano parte integrante della presente descrizione.

Descrizione dettagliata dell'invenzione

La presente invenzione verrà ora descritta, a titolo illustrativo, ma non limitativo, secondo una sua forma di realizzazione, con particolare riferimento alle figure allegate, in cui:

la figura 1 è una vista prospettica di una prima forma di realizzazione di una card multiuso comprendente un diamante, oggetto dell'invenzione;

la figura 2 è una vista dal basso della card multiuso di figura 1;

la figura 3 è una vista schematica della sezione trasversale della card multiuso di figura 1;

la figura 4 mostra la card multiuso di figura 3 quando una radiazione luminosa entra nella card stessa;

la figura 5 è una vista schematica di una variante della card multiuso mostrata in figura 1;

la figura 5b è una vista schematica di un'ulteriore variante della card multiuso mostrata in figura 1;

la figura 6 è una vista prospettica di una seconda forma di realizzazione di una card multiuso comprendente un diamante, oggetto dell'invenzione;

la figura 7 è una vista schematica della sezione trasversale della card multiuso di figura 6;

la figura 8 mostra la card multiuso di figura 7 quando una radiazione luminosa entra nella card stessa;

la figura 9 mostra un sistema di lettura configurato per leggere la card di figura 1;

la figura 10 è una vista schematica frontale del sistema di figura 9;

la figura 11 mostra, con riferimento al diamante della card multiuso di figura 1, una pluralità di parti interne, ciascuna delle quali è disposta ad una rispettiva altezza di detto diamante;

la figura 12 mostra una ulteriore forma di realizzazione della card multiuso secondo la presente descrizione;

la figura 13 mostra il sistema di lettura di figura 9 in uso quando la card multiuso di figura 1 è inserita nel dispositivo di ricezione di detto sistema di lettura;

la figura 14 è una vista schematica del sistema di lettura di figura 9 in uso quando la card multiuso di figura 6 è inserita nel dispositivo di ricezione di detto sistema di lettura.

Nelle forme di realizzazione che si descrivono di seguito, con riferimento alle figure allegate, detta pietra è un diamante. Tuttavia, la stessa card può comprendere una qualsiasi pietra semitrasparente o trasparente, ad esempio una preziosa sfaccettata diversa dal diamante. La card secondo la presente descrizione può avere una pluralità di diamanti utilizzati nelle stesse modalità dell'unico diamante illustrato.

Inoltre, si farà nel seguito riferimento alla luce, ma si deve intendere che ciò che sarà esposto vale anche per qualsiasi altra radiazione elettromagnetica o in generale qualsiasi tipo di radiazione con gli adattamenti del caso.

La card multiuso

Configurazione di base in un sol blocco

Con riferimento alle figure 1-4, si descrive una card multiuso in una prima forma realizzativa.

Detta card multiuso può convenientemente essere una card in materiale plastico, ad esempio ABS o policarbonato, avente un predeterminato spessore, preferibilmente compreso tra 0,3mm e 7mm.

Tuttavia, detta card può essere in un materiale scelto nel seguente gruppo: materiale plastico, materiale metallico (ad esempio rame), materiale in fibra di carbonio e resina, vetroresina, oppure una combinazione di due o più di detti materiali, senza per questo uscire dall'ambito dell'invenzione.

Con riferimento alle dimensioni di lunghezza e larghezza, detta lunghezza può essere di circa 85,60 mm e detta larghezza può essere di circa 53,98 mm.

Con riferimento al diamante, esso ha delle superfici denominate: tavola, corona, cintura, e padiglione, quest'ultimo terminando nella cosiddetta "punta".

La card multiuso 1, comprende una prima superficie 1A, una seconda superficie 1B, disposta frontalmente a detta prima superficie 1A, uno strato 1C, disposto tra detta prima superficie 1A e detta seconda superficie 1B, nonché un diamante 2 (o una pietra almeno semitrasparente ad una radiazione elettromagnetica, in particolare alla luce), in posizione fissa (tramite ad esempio uso di un collante e/o mediante una pluralità di fermi) e almeno

parzialmente in una sede 10 almeno parzialmente in detto strato 1C.

Nel caso del diamante, una porzione della cosiddetta tavola 21 ed eventualmente anche una porzione della cosiddetta "corona" 22 possono essere al di fuori della sede.

In ogni caso, una porzione della tavola deve essere visibile da o comunque a contatto con l'esterno della card multiuso 1.

Vantaggiosamente, la card multiuso può comprendere un elemento di copertura della porzione di diamante che fuoriesce dal piano della card.

Secondo un aspetto della presente descrizione, nella card 1, la prima superficie 1A può comprendere:

- o una o più prime aree frontali 1A-F con un grado di trasparenza frontale, posizionate di fronte a o comprendenti porzioni di detto diamante 2;
- o una o più prime aree laterali 1A-L con un primo grado di trasparenza laterale, posizionate fuori di dette una o più prime aree frontali 1A-F.

Secondo un aspetto della presente descrizione, detto primo grado di trasparenza frontale è maggiore di detto primo grado di trasparenza laterale.

Secondo un aspetto della presente descrizione, nella card 1 la seconda superficie 1B può comprendere:

- o una o più seconde aree frontali 1B-F con un secondo grado di trasparenza frontale, posizionate di fronte a detto diamante 2;
- o una o più seconde aree laterali 1B-L con un secondo grado di trasparenza laterale,

posizionate al di fuori di dette una o più seconde aree frontali 1B-F.

Secondo un aspetto della presente descrizione, detto secondo grado di trasparenza frontale è minore di detto secondo grado di trasparenza laterale.

Quando si parla di aree si includono sia zone in cui la prima o la seconda superficie hanno un'apertura, sia zone in cui esse sono piene, sia zone in cui si incontra il diamante, in quanto sporgente da una sede nella card. Nel caso un'apertura nella prima o seconda superficie, l'area è una superficie ideale che congiunge i bordi di ogni singola apertura.

Quando si parla di aree laterali al di fuori delle aree frontali, si intende al di fuori di una regione che comprende tutte le aree frontali. In particolare, l'area frontale è una sola. Ancora, l'area laterale può essere una unica area che circonda l'area frontale.

In generale nella presente descrizione, diamante 2 è disposto in modo tale che la proiezione di detta prima parte (visibile dall'esterno della card multiuso 1) di detto diamante 2 lungo un perpendicolare a detta prima superficie 1A ed a detta seconda superficie 1B, cada su una porzione 1B-F di detta seconda superficie 1B, sicché la luce (totalmente o in aggiunta alla luce ambiente) può solo arrivare attraverso le seconde porzioni laterali 1B-L.

L'apice 24 di detto diamante 2 è preferibilmente disposto su detta area o porzione 1B-F di detta seconda superficie 1B.

La trasparenza sopra menzionata si riferisce alla luce (e più in generale ad una qualsiasi radiazione elettromagnetica o altra radiazione).

Il primo grado di trasparenza frontale ed il secondo grado di trasparenza laterale devono essere tali da consentire una quantità di radiazione sufficiente per l'acquisizione di un'immagine del diamante, come spiegato nel seguito.

Secondo una variante della presente descrizione, le aree 1A-L e 1B-F sono in materiale schermante la radiazione, ad esempio opache.

Secondo la presente descrizione, nella card 1 lo strato 1C comprende, lungo un insieme di cammini ottici (più in generale relativi ad una radiazione, ad esempio elettromagnetica) tra dette una o più seconde aree laterali 1B-L e almeno una porzione di superficie di detta sede 10, un mezzo interposto 12 almeno semitrasparente a detta radiazione elettromagnetica, configurato per lasciar passare la luce fino a detta sede 10.

I vari gradi di trasparenza menzionati possono non essere uniformi nelle parti corrispondenti. In questo caso, il confronto tra i gradi di trasparenza è effettuato rispetto ad una trasparenza media o rispetto ad una trasparenza calcolata sulla base delle singole trasparenze.

Il diamante sfaccettato (o di altra pietra preziosa sfaccettata) ha già una trasparenza sufficiente ai fini della presente descrizione. Nel caso generale di una pietra qualsiasi, essa deve avere un grado di trasparenza

sufficientemente elevato da permettere di registrare la figura di scattering quando illuminata da una sorgente di radiazione elettromagnetica.

Il mezzo interposto 12 almeno semitrasparente può essere costituito da vuoto, da aria, da un collante o da altri materiali, anche uno di seguito all'altro o in altra combinazione, che garantisca il passaggio di almeno una porzione di radiazione proveniente dalle una o più seconde aree laterali, cosicché la radiazione possa poi arrivare nella sede, propagarsi attraverso la il diamante, e fuoriuscire fino ad arrivare ad un sistema di lettura della figura di scattering. Nel caso di radiazione in zona ottica, i cammini elettromagnetici saranno cammini ottici.

Il mezzo interposto 12 può essere almeno parzialmente in contatto con la superficie del diamante e/o con le pareti della sede 10, ovvero nell'esempio del diamante, con il padiglione 23 ed eventualmente con la corona 22.

Facendo specifico riferimento alla figura 4, la radiazione che raggiunge il diamante 2 entra nello stesso diamante e attraversa la tavola 21 del diamante stesso.

Facendo specifico riferimento alla figura 5, secondo una ulteriore forma di realizzazione, una o più prime aree frontali 1A-F comprendono almeno un'area ideale di confine di detta sede 10 (nella figura, non mostrata, una linea ideale che continua la superficie 1A anche laddove risulta aperta), ed in cui:

 nella zona in cui il diamante 2 attraversa detta area ideale di confine di detta cavità 10, il primo grado di trasparenza frontale è il grado di trasparenza del diamante 2;

- nella zona in cui il diamante 2 è incluso totalmente in detta cavità 10 (come illustrato in figura), il primo grado di trasparenza frontale è il grado di un mezzo che si trova al di sopra del diamante 2 lungo detta prima superficie 1A.

Il diamante 2 è disposto almeno parzialmente all'interno di detta sede 10 in detta card multiuso 1, la quale ha delle pareti 10B tali che:

- circondano totalmente il diamante 2 e sono distanziate rispetto ad ogni lato 22,23,25 del diamante 2;
- definiscono alle loro estremità una base maggiore 1B-F più vicina a detta seconda superficie 1B e una base minore 1A-F su detta prima superficie 1A;
- detta base minore 1A-F è più piccola di almeno una sezione del diamante 2 parallela alla base minore e passante all'interno di detta sede 10.

La sezione è lungo la cintura se si tratta di diamante o di un'altra pietra preziosa. Nelle figure, la base maggiore coincide con la seconda superficie, ma ciò non è obbligatorio.

In un esempio, il mezzo al di sopra del diamante è l'aria (ed in questo caso la trasparenza è massima), in un ulteriore esempio è un materiale 3 che copre il diamante fino ad almeno la prima superficie (ed in questo caso la trasparenza dipende dal materiale scelto, dovrà essere sufficientemente ovviamente esso trasparente da poter acquisire un'immagine diamante), in un terzo esempio è il diamante stesso che fuoriesce dal piano della card ed in questo caso la trasparenza è quella del diamante.

Configurazione di base inserita in una card più grande Quanto sopra descritto può essere variato per costruire una card in cui lo strato 1C si estende anche al di sotto della seconda superficie 1B.

In tal caso, e facendo ora riferimento alla figura 12, la seconda superficie 1B è più piccola della prima superficie 1A.

Lo strato 1C si estende fino ad una terza superficie 1D posta a distanza di fronte alla seconda superficie 1B dalla parte opposta rispetto alla prima superficie 1A. Inoltre, nello strato 1C essendo definito un volume V che:

- comprende quanto si trova tra dette una o più prime aree frontali 1A-F e laterali 1A-L e dette una o più seconde aree frontali 1B-F e laterali 1B-L;
- ha un fondo costituito almeno da o affacciato a detta seconda superficie (1B);

Come specificato, la card multiuso è formata in un sol blocco oppure detto volume V è ottenuto fissando un elemento prefabbricato in una rientranza di detta card multiuso 1, i cui contorni sono chiaramente deducibili dalla figura 12. È chiaro che la seconda superficie 1B può far parte del pezzo prefabbricato oppure può essere formata al fondo della rientranza. In quest'ultimo caso, il fondo può essere distanziato dalla seconda superficie

1B, in tale spazio può essere presente un qualsiasi mezzo almeno semitrasparente.

Configurazione autobloccante

Con riferimento ad un solo aspetto della figura 5b applicabile anche alle altre forme realizzative, detta sede 10 potrà avere una forma a tronco di cono o più in generale una forma che include un tronco di cono, e la parte con diametro minore potrà essere più vicina alla parte superiore esterna, in modo tale da impedire l'uscita del collante solidificato in detta sede ed inglobante il diamante.

In tal caso, le pareti verticali 10B di detta sede 10 sono inclinate in modo che la sede abbia una sezione, lungo piano verticale che si estende un longitudinalmente, svasata verso il basso. In altre parole, il lato "superiore" è di area minore del lato inferiore. Una tale sezione può essere convenientemente quella di un tronco di cono, o comunque comprendere un tronco di cono, in modo tale che non tocchi la cintura 25 del diamante 2 e quindi lo spazio tra la corona 22 e la parete 10B sia comunicante con lo spazio tra il padiglione 23, la parete 10B e la porzione di superficie inferiore 1B-F. Ouesta comunicazione serve a far scorrere il collante di cui sopra.

In questo caso, il processo di inserzione del diamante 2 avviene con la card capovolta, ovvero con la prima parte visibile dall'esterno poggiata su una superficie. A questo punto, il diamante viene inserito nella sede 10 in modo che la tavola 21 poggi su tale

superficie. Si fa colare la colla attraverso lo spazio che sarebbe occupato dalla parete 1B-F fino a che non riempia tutti gli spazi, anche tra la superficie 10B di appoggio e la corona 22 e il padiglione 23 del diamante. Una volta che la resina si è indurita, a causa del posizionamento delle stesse faccette, il diamante 2 non si muoverà più. Si potrà girare di nuovo la carta 1 e applicare le porzioni di superficie 1B-F, 1B-L, oppure mettere la porzione lavorata all'interno di una sede in una card più grande, come spiegato nel seguito.

Configurazione con polvere colorata

In una forma realizzativa che si focalizza su ed isola un aspetto della figura 5b, detta almeno una parte di detta sede 10 può essere ad una predeterminata distanza da almeno una porzione del padiglione 23. Di conseguenza, uno spazio può essere presente tra detta almeno una parte di detta sede 10 e detta almeno una porzione del padiglione 23.

In particolare, una polvere di materiale colorato o una miscela di polveri di materiali colorati e/o un pigmento colorato (liquido o solido) o una miscela di pigmenti colorati (liquidi o solidi) e/o una polvere di pietra preziosa/semipreziosa colorata (quale ad esempio rubino o smeraldo o zaffiro) o una miscela di polveri di pietre preziose e/o semipreziose colorate (quale ad esempio una miscela di polvere di rubino, polvere di smeraldo, polvere di zaffiro) possono essere disposte all'interno di detto strato 1C, senza per questo uscire dall'ambito della presente descrizione.

In altre parole, detta polvere di materiale colorato o detta miscela di polveri di materiali colorati e/o detto pigmento colorato o detta miscela di pigmenti colorati e/o detta polvere di pietra preziosa/semipreziosa colorata o detta miscela di polveri di pietre preziose/semipreziose colorate possono parzialmente o completamente riempire detto strato 1C.

La presenza di una polvere di materiale colorato o una miscela di polveri di materiali colorati o un pigmento colorato o una miscela di pigmenti colorati o una polvere di materiale colorato o una polvere di pietra preziosa/semipreziosa colorata o una miscela di polveri di pietre preziose/semipreziose colorate consente ad una radiazione luminosa di cambiare colore prima di entrare nel diamante.

La variazione cromatica di tale radiazione luminosa permette di ottenere tramite mezzi di acquisizione di immagini (configurati per acquisire una o più immagini di detto diamante) una o più immagini del diamante con contenuto cromatico maggiore. In questo mediante dette una o più immagini (ottenute tramite mezzi di acquisizione di immagini) è possibile ottenere un maggiore numero di dati, così che il grado di attendibilità di riconoscimento di detto diamante aumenti.

Detta polvere di materiale colorato o detta miscela di polveri di materiali colorati e/o detto pigmento colorato o detta miscela di pigmenti colorati e/o detta polvere di pietra preziosa/semipreziosa colorata o detta miscela di polveri di pietre preziose/semipreziose

colorate sono mescolate con un ulteriore collante, quale ad esempio resina epossidica bicomponente, così da occupare una posizione fissa rispetto a detto spazio.

Configurazione con markers

Facendo riferimento alle figure da 5b a 8, in una differente aspetto della presente descrizione applicabile anche alle altre forme realizzative descritte e/o rivendicate, la prima superficie comprende ulteriormente una o più prime di riferimento 1A-R con un primo grado di trasparenza di riferimento, posizionate all'interno di dette una o più prime aree laterali 1A-L.

Vantaggiosamente secondo la presente descrizione, il primo grado di trasparenza di riferimento è maggiore del primo grado di trasparenza laterale.

Le prime aree di riferimento sono preferibilmente disposte attorno a detto diamante in modo tale da formare una rispettiva figura geometrica simmetrica rispetto ad una posizione centrale occupata dal diamante. La figura geometrica essere una poligonale chiusa e/o simmetrica rispetto ad una posizione centrale occupata dal diamante.

Si possono avere una pluralità di una o più prime aree di riferimento 1A-R, disposte anche in gruppi ed anche in maniera concentrica a distanza da detto diamante 2. L'importante è che il materiale di dette prime aree di riferimento sia scelto in modo tale che detto primo grado di trasparenza di riferimento sia sufficientemente

elevato da consentire il passaggio di una quantità di radiazione luminosa.

Le aree di riferimento 1A-R servono come riferimento per mettere a fuoco un predeterminato strato del diamante 2, disposto ad una predeterminata distanza da mezzi di acquisizione di immagini di un sistema di lettura configurato per leggere detta card multiuso, come spiegato più avanti.

Come spiegato più avanti, una volta messo a fuoco detto predeterminato strato, è possibile variare la profondità di campo di detti mezzi di acquisizione di immagini per ottenere una immagine di una parte interna del diamante comprendente uno o più strati adiacenti a detto predeterminato strato.

Inoltre, ciascuna area di riferimento 1A-R di materiale trasparente o semitrasparente può essere utilizzata per delimitare la(e) immagine(i) da acquisire da parte di detti mezzi di acquisizione di immagini così che detta(e) immagine(i) possa(no) essere utilizzata(e) per il confronto con ulteriori immagini di predeterminati diamanti di predeterminate card multiuso, memorizzate nella banca dati di detto sistema di lettura.

La figura 8 mostra come una quantità di radiazione luminosa (prodotta ad esempio da una sorgente artificiale o aggiuntiva rispetto alla luce naturale) che attraversa la seconda area laterale 1B-L di materiale trasparente o semitrasparente, e raggiunge il diamante 2 e la prima area laterale di riferimento 1A-L di materiale trasparente o semitrasparente tramite il materiale interposto 12 trasparente o semitrasparente.

La quantità di radiazione luminosa che raggiunge il diamante 2 entra nel diamante e attraversa la tavola 21 del diamante stesso e la quantità di radiazione luminosa che raggiunge la prima porzione di riferimento 1A-R in materiale trasparente o semitrasparente attraversa quest'ultima.

Secondo una variante della presente descrizione, almeno una parte delle prime aree di riferimento 1A-R possono essere costituite dai solchi che normalmente sono sulla superficie di un chip comunemente utilizzati nelle smartcard (ad esempio carte di credito), solchi necessari per isolare elettricamente le piazzole dei contatti del chip tra di loro. In altre parole, il diamante verrebbe inserito all'interno di un chip che fungerebbe da unità di processamento della carta. I solchi suddetti fornirebbero la necessaria griglia di riferimento semitrasparente per la carta.

Configurazione con codice identificativo

Secondo un aspetto ulteriore non illustrato, e applicabile anche alle altre forme realizzative, almeno un codice identificativo univoco di card CD_1 , $CD_2...CD_N$ è:

- stampato su detta prima superficie 1A e/o su detta seconda superficie 1B; e/o
- memorizzato in un dispositivo di memorizzazione dati incorporato in detta card multiuso 1.

In una prima alternativa, detto codice identificativo univoco può essere memorizzato in un circuito integrato o in una banda magnetica o in una etichetta RFID.

Tale circuito integrato può essere una memoria controllata da una logica dedicata, che fornisce servizi di diverso tipo (ad esempio accesso mediante un PIN) oppure può essere un microprocessore.

Ad esempio, detta card può essere configurata per aprire la porta di una stanza di albergo oppure può essere configurata per essere utilizzata come una carta di credito.

In una seconda alternativa, detto codice identificativo univoco può essere memorizzato in un codice QR o in un codice a barre.

Il codice identificativo univoco può essere ad esempio una sequenza di simboli. Ad esempio, detta sequenza di simboli può essere una sequenza di simboli alfanumerici oppure una sequenza di simboli numerici. Tuttavia, ciascun simbolo può essere un segno composto da una o più porzioni di un numero, senza per questo uscire dall'ambito delle invenzioni.

Metodo di lettura

La card sopra descritta permette un metodo innovativo di lettura, nel caso in cui almeno un codice identificativo univoco di card CD_1 , $CD_2...CD_N$ è:

- stampato sulla prima superficie 1A e/o su detta seconda superficie 1B; e/o
- memorizzato in un dispositivo di memorizzazione dati incorporato nella card multiuso 1.

Secondo il metodo, sono eseguite le seguenti fasi successive (non illustrate come tali):

- A. posizionare la card multiuso 1 in una posizione fissa rispetto ad un sistema di riferimento spaziale predeterminato (ad esempio al sistema di riferimento del sistema di lettura, ai mezzi di acquisizione immagini ecc.);
- B. inviare una radiazione elettromagnetica (ad esempio la luce) sulle una o più seconde aree laterali 1B-L;
- C. acquisire almeno una immagine di detto diamante 2 sulla base di una radiazione elettromagnetica uscente da dette una o più prime aree frontali 1A-F;
- D. confrontare detta almeno una immagine con un insieme di immagini di riferimento di detto diamante 2 associate a rispettive card multiuso pre-registrate (o pre-determinate) CD₁, CD₂...CD_N;
- E. determinare il grado di somiglianza tra detta almeno una immagine e le immagini di detto insieme di immagini di riferimento,
- F. identificare detta card multiuso 1 in detto insieme di card multiuso preregistrate, sulla base del grado di somiglianza della fase E.
- Il grado di somiglianza viene determinato per compensare ad esempio errori di misura che possono affliggere le immagini di riferimento.

La fase F di identificazione può comprendere le seguenti sottofasi:

F1. identificare una immagine di riferimento in detto insieme immagini di riferimento avente il massimo grado di somiglianza con detta almeno una immagine,

- F2. verificare se detto massimo grado di somiglianza è superiore ad un predeterminato valore di soglia, e nel caso positivo:
- F3. identificare detta card multiuso 1 con la preregistrata card multiuso CD_1 , CD_2 ... CD_N avente un predeterminato diamante D_1 , D_2 ... D_N la cui immagine di riferimento ha il massimo grado di somiglianza con detta almeno una immagine.

Con particolare riferimento al confronto di immagini nella fase D, il confronto di immagini può essere fatto tra la(e) immagine(i) di una parte interna di detto diamante 2, acquisita(e) da specifici detti mezzi di acquisizione di immagini (103, si veda la descrizione del sistema di lettura), e la(e) ulteriori immagini di una predeterminata parte interna di detti predeterminati diamanti D1, D2...DN, è basato sulla correlazione statistica tra detta almeno una immagine e detta almeno una ulteriore immagine.

In questo caso specifico, il grado di somiglianza è il coefficiente di correlazione statistico tra l'immagine acquisita e l'ulteriore immagine memorizzata in una banca dati (DB, si veda nel seguito).

In una alternativa, il confronto di immagini tra la(e) immagine(i) di una prima parte di detto diamante 2, e la(e) ulteriori immagini di una predeterminata parte interna di detti predeterminati diamanti D1, D2...DN può essere basato sulla sottrazione di pixel a pixel tra detta(e) immagine(i) e detta(e) ulteriori immagini. In tale alternativa, il grado di somiglianza è dato dal numero di pixel uguali.

In ogni caso, il confronto di immagini tra detta(e) immagine(i) e detta(e) ulteriore(i) immagine(i) al fine di misurare il grado di somiglianza può essere basato su un qualsiasi metodo di tipo noto o futuro, senza per questo uscire dall'ambito dell'invenzione.

Con riferimento a detto predeterminato valore di soglia, detto predeterminato valore di soglia può essere 0,5 (i.e. un valore compreso tra 0 e 1, dove 0 significa che non vi è correlazione di immagini ed 1 significa identità di immagini), nel caso di un confronto di immagini basato sulla correlazione statistica, o il 50%, nel caso di un confronto di immagini basato sulla sottrazione di pixel a pixel.

Sistema di lettura

La presente invenzione si riferisce anche ad un sistema di lettura configurato per leggere detta card multiuso, che realizzi il metodo sopra descritto.

Come riferimento alle figure 9-13, detto sistema di lettura 100 comprende:

- un dispositivo di ricezione 101 per ricevere una card multiuso 1 con i codici identificativi descritti sopra nel metodo di lettura;
- mezzi di illuminazione 102 configurati per illuminare (in generale irradiare con una radiazione, in particolare elettromagnetica) detto diamante 2, e disposti rispetto a detto dispositivo di ricezione 101 in modo tale che, quando detta card multiuso 1 è inserita in detto dispositivo di ricezione 101, la

luce incida su dette una o più seconde aree laterali 1B-L;

- mezzi di acquisizione di immagini 103 configurati per acquisire almeno una immagine di detto diamante (o altra pietra almeno semitrasparente) sulla base di una radiazione luminosa proveniente da almeno una di dette una o più prime aree frontali 1A-F;
- una banca dati DB nella quale sono memorizzati i seguenti dati:
 - uno o più codici identificativi univoci di diamante ID_1 , ID_2 ... ID_N di rispettivi uno o più predeterminati diamanti D_1 , D_2 ... D_N ;
 - almeno un'immagine di riferimento di diamante per ciascuno di detti rispettivi uno o più predeterminati diamanti D_1 , D_2 ... D_N ;
 - uno o più codici identificativi univoci di card CD_1 , $CD_2...CD_N$ di rispettive card multiuso 2 preregistrate (o pre-determinate), ciascuno associato ad almeno uno di detti uno o più codici identificativi di diamante ID_1 , $ID_2...ID_N$;
- una unità logica di controllo 105, collegata a detto dispositivo di ricezione 101, a detti mezzi di acquisizione di immagini 103 e a detti mezzi di illuminazione 102.

Secondo un aspetto della presente descrizione:

- il dispositivo di ricezione 101 è configurato per:
 - ricevere detta card multiuso 1, ad esempio in una posizione fissa rispetto a detti mezzi di acquisizione di immagini 103 e a detti mezzi di illuminazione 102, ed

- inviare un segnale a detta unità logica di controllo 105, quando detta card multiuso 1 è inserita in detto dispositivo di ricezione 101,
- l'unità logica di controllo 105 è configurata per:
 - ricevere detto segnale da detto dispositivo di ricezione 101;
 - pilotare i mezzi di illuminazione 102 e i mezzi di acquisizione di immagini 103 per effettuare le fasi B e C secondo il metodo della sezione precedente;
 - effettuare le fasi da D a F secondo il metodo della sezione precedente.

del posizionamento della Al fine card, con riferimento specifico alla figura 10, il dispositivo di ricezione 101 comprende mezzi di inserimento 101A per inserire detta card multiuso 1 in detto dispositivo di ricezione 101 e mezzi di posizionamento 101B per posizionare detta card multiuso 1 in detta posizione fissa rispetto a detti mezzi di acquisizione di immagini 103 ed a detti mezzi di illuminazione in modo tale che, asse ottico A del come detto, un sistema sia perpendicolare a dette una o più parti interne PI1, PI2,...PIN di detto diamante 2 e la radiazione luminosa emessa da detti mezzi di illuminazione raggiunga detta seconda porzione laterale 1B-L di materiale trasparente o semitrasparente della seconda superficie 1B di detta card multiuso 1.

Con particolare riferimento a detti mezzi di inserimento 101A, detti mezzi di inserimento 101A comprendono una bocchetta.

Con particolare riferimento a detti mezzi di posizionamento 101B, detti mezzi di posizionamento 101B comprendono un primo elemento di guida sagomato a "C", indicato con G1, un secondo elemento di guida sagomato a "C", indicato con G2, ciascuno dei quali è disposto del dispositivo di all'interno ricezione rispettivamente su una prima parete e su una seconda (opposta a detta prima parete) di dispositivo di ricezione 101, e mezzi di finecorsa F, disposti su una terza parete che unisce detta prima parete e detta seconda parete. In particolare, nella forma di realizzazione che si descrive, detti mezzi di finecorsa sono configurati per rilevare il finecorsa di detta card ed inviare un segnale a detta unità logica di controllo (che come detto sopra, sarà descritta più avanti) quando detta card 1 ha contattato detti mezzi finecorsa F.

Riguardo ai mezzi di illuminazione, essi possono comprendere almeno una sorgente luminosa, preferibilmente LED, o una matrice di LED o una matrice di LED ed un elemento diffusore per diffondere la radiazione luminosa.

Il sistema di lettura 100 può essere configurato in modo tale che:

- il sistema 100 stesso comprende un lettore per leggere detto codice identificativo univoco di detta card multiuso 1, il lettore essendo connesso a detta unità logica di controllo 105;
- l'unità logica di controllo 105 è configurata per:

- acquisire il codice identificativo univoco di detta card multiuso 1,
- effettuare un confronto di codici tra il codice identificativo univoco di detta card multiuso 1 con gli uno o più codici identificativi di card CD_1 , $CD_2...CD_N$ di rispettive card multiuso 2 preregistrate memorizzati nella banca dati DB,
- identificare la pre-registrata card multiuso CD_1 , $CD_2...CD_N$ avente il codice identificativo univoco uguale al codice identificativo univoco di detta card multiuso 1.

In questa variante, il confronto di immagini della fase D è tra detta almeno una immagine, acquisita da detti mezzi di acquisizione di immagini 103, ed una o più immagini di riferimento memorizzate in detta banca dati DB e associate a detta predeterminata card multiuso CD_1 , $CD_2...CD_N$ avente il codice identificativo univoco uguale al codice identificativo univoco di detta card multiuso 1.

Secondo un aspetto della presente descrizione, detta almeno un'immagine di riferimento di diamante comprende immagini di predeterminate parti interne PI1, $PI_2 \dots PI_N$ del diamante 2, dove ciascuna predeterminata parte interna PI₁, PI₂ ... PI_N è disposta ad una rispettiva predeterminata altezza h₁, h_2 , h_N di . . . detto predeterminato diamante D_1 , $D_2...D_N$ lungo un asse predefinito. In particolare, le parti interne l'"apice" strati successivi tra la "tavola", perpendicolarmente all'asse ottico predefinito, particolare perpendicolare alla tavola. Le parti interne a loro volta comprendono ciascuna una rispettiva pluralità di strati S_{11} , S_{12} , ... S_{1N} , S_{21} , S_{22} , ... S_{2N} , ... S_{N1} , S_{N2} , ... S_{NN} sovrapposti tra loro, come in figura 11. In questo caso, i mezzi di acquisizione di immagini 103 sono configurati per focalizzare una porzione di uno strato di detta pluralità di strati. Tale porzione è rappresentata con un segmento in grassetto in figura 11.

Il numero di strati di una rispettiva parte interna PI_1 , $PI_2...PI_N$ (di cui è stata acquisita una immagine o più immagini) dipende dalla profondità di campo di detti mezzi di acquisizione di immagini.

Con particolare riferimento alla figura 11, ad esempio, con riferimento ad una prima pluralità di strati $S_{11},\ S_{12}...S_{1N}$ riferiti alla prima parte interna PI_1 è focalizzata una porzione disposta su un secondo strato S_{12} .

Con riferimento ad una seconda pluralità di strati S_{21} , S_{22} ... S_{2N} riferiti alla seconda parte interna PI_2 è focalizzata una porzione disposta su un primo strato S_{21} .

Con riferimento ad una ennesima pluralità di strati S_{N1} , S_{N2} ... S_{NN} riferiti alla ennesima parte interna PI_N è focalizzata una porzione disposta su un terzo strato S_{13} .

Secondo una forma realizzativa della presente descrizione, i mezzi di acquisizione di immagini 103 comprendono:

- un sensore ottico o pellicola;
- un gruppo ottico comprendente almeno un gruppo-lenti, dove detto almeno un gruppo-lenti è disposto ad una prima distanza da detto sensore ottico o pellicola e detto gruppo ottico è disposto in modo tale che,

quando detto gruppo ottico è in uso, è ad una seconda distanza da detto diamante 2, detta prima distanza e detta seconda distanza essendo regolabili;

- un diaframma con apertura regolabile tra un primo valore ed un secondo valore di apertura, dove detto secondo valore è maggiore di detto primo valore.

In questo caso la profondità di campo di detti mezzi di acquisizione di immagini 103 dipende da detta prima distanza, da detta seconda distanza e dal valore dell'apertura di detto diaframma. Inoltre, ciascuna immagine di riferimento è ottenuta con una predeterminata profondità di campo.

Infatti, come è noto, con riferimento a detti mezzi di acquisizione di immagini, che possono essere digitali (come ad esempio una macchina fotografica digitale) o analogici (come ad esempio una macchina fotografica analogica) è possibile variare la prima distanza (i.e. la distanza tra detto almeno un gruppo-lenti e detto sensore ottico o tra detto almeno un gruppo ottico e detta pellicola), la seconda distanza (i.e. la distanza tra detto gruppo ottico e detto diamante), nonché l'apertura del diaframma.

Di conseguenza, con una prima profondità di campo è possibile acquisire una o più immagini di una prima parte interna PI1 del diamante 2, con una seconda profondità di campo, diversa da detta prima profondità di campo, è possibile acquisire una o più immagini di una seconda parte interna PI2 del diamante 2, ecc.

Inoltre, con riferimento ad una prima parte interna PI1, è sufficiente variare un parametro di detta prima

profondità di campo per ottenere una ulteriore prima profondità di campo per focalizzare una qualsiasi porzione di un qualsiasi strato di una prima pluralità di strati $S_{11},\ S_{12}...S_{1N}$ appartenenti a detta prima parte interna PI1.

Con riferimento ad una seconda parte interna PI_2 , è sufficiente variare un parametro di detta seconda profondità di campo per ottenere una ulteriore seconda profondità di campo per focalizzare una qualsiasi porzione di un qualsiasi strato di una seconda pluralità di strati $S_{21}, S_{22}...S_{2N}$ appartenenti a detta seconda parte interna PI_2 .

Lo stesso dicasi per le altre parti interne del diamante.

È preferibile che i mezzi di acquisizione di immagini digitali siano configurati per acquisire una o più immagini di una parte interna del diamante che si trova a metà dell'altezza del diamante stesso. In altre parole, detta parte interna è posizionata su un piano parallelo a detta tavola, equidistante tra detta tavola e detto apice.

È ulteriormente preferibile che siano acquisite una o più immagini con diversi predeterminati valori di apertura di diaframma in modo tale da ottenere immagini diverse tra loro. Ciò è dovuto alla natura tridimensionale del diamante osservato.

La tabella seguente riporta il codice identificativo univoco ID1, ID2...IDN e le immagini relative alle parti interne PI11, PI12 ...PI1N, PI21, PI22...PI2N,...PIN1,PIN2...PINN di ciascun predeterminato

diamante D1, D2...DN, nonché il codice identificativo univoco di predeterminate card multiuso CD1, CD2,...CDN, ciascuno dei quali è associato ad un rispettivo codice di identificazione univoco ID1, ID2...IDN di un predeterminato diamante D1, D2...DN.

Diamante	Codice identificativo univoco diamante	Immagini	Codice identificativo univoco carta multiuso
\mathcal{D}_i	ID,	P ₁₁₀ P ₁₂₀ P ₁₈₁	CD,
ρţ	ID _{3.}	P ₂₀ P ₂₀ ,P ₂₀	co _s
	<i>.</i> ,,	SSS:	8,1
D _{is}	ID _k	P _{NI,} P _{N2,} P _{NN}	ĊO _N

La figura 14 è una vista schematica del sistema, di cui soltanto detti mezzi di acquisizioni di immagini 103 sono visibili, quando la seconda forma di realizzazione della card multiuso (i.e. una card multiuso comprendente almeno un gruppo di terze porzioni di materiale trasparente o semitrasparente e detto gruppo di terze porzioni comprende almeno una terza porzione di materiale trasparente o semitrasparente), mostrata nelle figure 6-8, è inserita nel dispositivo di ricezione di detto sistema.

Come può essere visto nella figura 14, quando una card multiuso è dotata di almeno un gruppo di terze porzioni di materiale trasparente o semitrasparente, è

possibile mettere a fuoco un predeterminato strato di detto diamante 2 secondo la seguente formula:

$$S = SQRT (B^2 + C^2) - B$$

dove

S è la distanza tra il centro della tavola 21 del diamante 2 ed il centro di un predeterminato strato di detto diamante 2,

B è la distanza tra il centro del gruppo-lenti di detti mezzi di acquisizione di immagini ed il centro della tavola 21 del diamante 2,

C è la distanza tra il centro della tavola 21 del diamante 2 ed un punto della terza porzione 13 di materiale trasparente o semitrasparente messo a fuoco.

Il risultato della radice quadrata SQRT è il raggio R di una circonferenza CR avente come centro il centro di detto gruppo-lenti. Detto raggio R è anche uguale alla somma delle distanze indicate con B e con S.

Quindi, è sufficiente che al valore del raggio R sia sottratto il valore della distanza tra il centro del gruppo-lenti di detti mezzi di acquisizioni di immagini ed il centro della tavola del diamante, indicata con B, per ottenere il valore della distanza tra il centro della tavola del diamante ed il centro di un predeterminato strato di detto diamante, indicata con S.

Come sopra detto, ciascuna porzione 1A-R di materiale trasparente o semitrasparente funge da riferimento per mettere a fuoco un predeterminato strato del diamante 2, dove la distanza tra il centro di detto predeterminato strato ed il centro della tavola è ottenuta secondo la formula sopra menzionata.

Di conseguenza, per mettere a fuoco un predeterminato strato di una predeterminata parte interna del diamante 2, è sufficiente verificare che sia messo a fuoco il punto della porzione 1A-R di materiale trasparente o semitrasparente la cui distanza dal centro della tavola è indicata con C nella formula sopra menzionata.

Vantaggiosamente, come già detto, la card multiuso, oggetto dell'invenzione, può essere utilizzata per diverse finalità.

Il fatto che la card incorpori un diamante (o una qualsiasi altra pietra preziosa sfaccettata in maniera varia) rende la card non soggetta ad una clonazione.

Inoltre, il sistema di lettura permette di leggere la card multiuso per verificare se il diamante di cui è dotata è un diamante memorizzato in una banca dati e per verificare se il codice identificativo univoco di detto diamante è associato al codice identificativo univoco della card multiuso.

La presente invenzione è stata descritta a titolo illustrativo, ma non limitativo, secondo una sua forma preferita di realizzazione, ma è da intendersi che variazioni e/o modifiche potranno essere apportate dagli esperti del ramo senza per questo uscire dal relativo ambito di protezione, come definito dalle rivendicazioni allegate.

RIVENDICAZIONI

1. Card multiuso (1), comprendente una prima superficie (1A), una seconda superficie (1B), disposta frontalmente a detta prima superficie (1A), uno strato (1C), disposto tra detta prima superficie (1A) e detta seconda superficie (1B), nonché una pietra (2) almeno semitrasparente ad una radiazione elettromagnetica, in posizione fissa e almeno parzialmente in una sede (10) almeno parzialmente in detto strato (1C); caratterizzata

dal fatto che:

- la prima superficie (1A) comprende:
 - o una o più prime aree frontali (1A-F) con un grado di trasparenza frontale a detta radiazione elettromagnetica, posizionate di fronte a o comprendenti porzioni di detta pietra (2);
 - o una o più prime aree laterali (1A-L) con un primo grado di trasparenza laterale a detta radiazione elettromagnetica, posizionate fuori di dette una o più prime aree frontali (1A-F);

in cui detto primo grado di trasparenza frontale è maggiore di detto primo grado di trasparenza laterale;

- la seconda superficie (1B) comprende:
 - o una o più seconde aree frontali (1B-F) con un secondo grado di trasparenza frontale a detta radiazione elettromagnetica, posizionate di fronte a detta pietra (2);
 - o una o più seconde aree laterali (1B-L) con un secondo grado di trasparenza laterale a detta

radiazione elettromagnetica, posizionate al di fuori di dette una o più seconde aree frontali (1B-F);

in cui detto secondo grado di trasparenza frontale è minore di detto secondo grado di trasparenza laterale;

- lo strato (1C) comprende, lungo un insieme di cammini elettromagnetici tra dette una o più seconde aree laterali (1B-L) e una porzione di superficie di detta sede (10), un mezzo interposto (12) almeno semitrasparente a detta radiazione elettromagnetica, configurato per lasciar passare la luce fino a detta sede (10).
- 2. Card multiuso (1) secondo la rivendicazione 1, in cui detta prima superficie (1A) comprende ulteriormente:
 - o una o più prime aree di riferimento (1A-R) in un materiale con un primo grado di trasparenza di riferimento, posizionate all'interno di dette una o più prime aree laterali (1A-L);

in cui detto primo grado di trasparenza di riferimento è maggiore di detto primo grado di trasparenza laterale.

- 3. Card multiuso (1) secondo la rivendicazione 1 o 2, in cui dette una o più prime aree frontali (1A-F) comprendono almeno un'area ideale di confine di detta sede (10), ed in cui:
 - nella zona in cui detta pietra (2) attraversa detta area ideale di confine di detta cavità (100), il primo grado di trasparenza frontale è il grado di trasparenza di detta pietra (2);

- nella zona in cui detta pietra (2) è inclusa totalmente in detta cavità (10), il primo grado di trasparenza frontale è il grado di un mezzo che si trova al di sopra di detta pietra (2) lungo detta prima superficie (1A).
- 4. Card multiuso (1) secondo una o più delle rivendicazioni da 1 a 3, in cui detta pietra (2) è disposta almeno parzialmente all'interno di detta sede (10) in detta card multiuso (1), la quale ha delle pareti (10B) tali che:
- circondano totalmente detta pietra (2) e sono distanziate rispetto ad ogni lato (22,23,25) di detta pietra (2);
- definiscono alle loro estremità una base maggiore (1B-F) più vicina a detta seconda superficie (1B) e una base minore (1A-F) su detta prima superficie (1A);
- detta base minore (1A-F) è più piccola di almeno una sezione di detta pietra (2) parallela alla base minore e passante all'interno di detta sede (10).
- 5. Card multiuso (1) secondo una o più delle rivendicazioni precedenti, in cui almeno un codice identificativo univoco di card $(CD_1,\ CD_2...CD_N)$ è:
- stampato su detta prima superficie (1A) e/o su detta seconda superficie (1B); e/o
- memorizzato in un dispositivo di memorizzazione dati incorporato in detta card multiuso (1).

- 6. Card multiuso (1) secondo una o più delle rivendicazioni precedenti, in cui detta radiazione elettromagnetica è nello spettro del visibile e/o detta pietra è una pietra preziosa sfaccettata, in particolare un diamante.
- 7. Card multiuso (1) secondo una o più delle rivendicazioni precedenti, in cui:
 - lo strato (1C) si estende al di là della seconda superficie (1B) fino ad una terza superficie (1D) posta a distanza di fronte alla seconda superficie (1B) dalla parte opposta rispetto alla prima superficie (1A);
 - nello strato (1C) essendo definito un volume (V)
 che:
 - comprende quanto si trova tra dette una o più prime aree frontali (1A-F) e laterali (1A-L) e dette una o più seconde aree frontali (1B-F) e laterali (1B-L);
 - ha un fondo costituito almeno da o affacciato a detta seconda superficie (1B);

in cui detta card multiuso è formata in un sol blocco oppure detto volume (V) è ottenuto fissando un elemento prefabbricato in una rientranza di detta card multiuso (1).

8. Metodo di lettura di una card multiuso (1), in cui sono eseguite le seguenti fasi successive:

- A. posizionare una card multiuso (1) secondo la rivendicazione 5 in una posizione fissa rispetto ad un sistema di riferimento spaziale predeterminato;
- B. inviare una radiazione elettromagnetica su dette una o più seconde aree laterali (1B-L);
- C. acquisire almeno una immagine di detta pietra (2) sulla base di una radiazione elettromagnetica uscente da dette una o più prime aree frontali (1A-F);
- D. confrontare detta almeno una immagine con un insieme di immagini di riferimento di detta pietra (2) associate a rispettive card multiuso preregistrate (CD_1 , CD_2 ... CD_N);
- E. determinare il grado di somiglianza tra detta almeno una immagine e le immagini di detto insieme di immagini di riferimento,
- F. identificare detta card multiuso (1) in detto insieme di card multiuso preregistrate, sulla base del grado di somiglianza della fase E.
- 9. Metodo di lettura di una card multiuso (1) secondo la rivendicazione 8, in cui la fase F comprende le seguenti sottofasi:
- F1. identificare una immagine di riferimento in detto insieme immagini di riferimento avente il massimo grado di somiglianza con detta almeno una immagine,
- F2. verificare se detto massimo grado di somiglianza è superiore ad un predeterminato valore di soglia, e nel caso positivo:

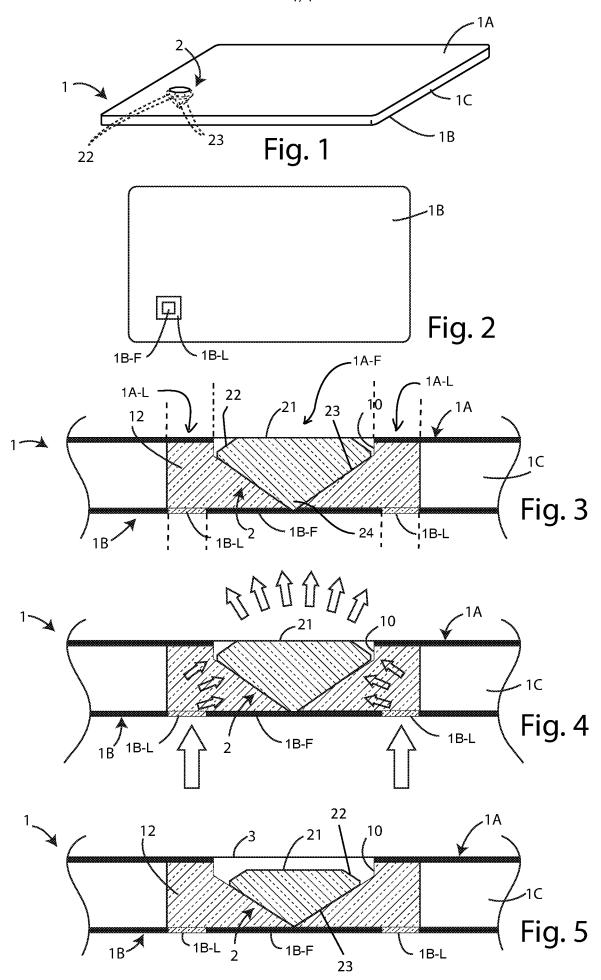
- F3. identificare detta card multiuso (1) con la preregistrata card multiuso (CD_1 , CD_2 ... CD_N) avente una predeterminata pietra preziosa sfaccettata (D_1 , D_2 ... D_N) la cui immagine di riferimento ha il massimo grado di somiglianza con detta almeno una immagine.
- 10. Sistema di lettura (100) per leggere una card multiuso (1), detto sistema di lettura comprendendo:
- un dispositivo di ricezione (101) per ricevere una card multiuso (1) secondo la rivendicazione 5;
- mezzi di irradiazione (102) configurati per irradiare con una radiazione elettromagnetica detta pietra (2), e disposti rispetto a detto dispositivo di ricezione (101) in modo tale che, quando detta card multiuso (1) è inserita in detto dispositivo di ricezione (101), detta radiazione elettromagnetica incida su dette una o più seconde aree laterali (1B-L);
- mezzi di acquisizione di immagini (103) configurati per acquisire almeno una immagine di detta pietra (2) sulla base di una radiazione elettromagnetica proveniente da almeno una di dette una o più prime aree frontali (1A-F);
- una banca dati (DB) nella quale sono memorizzati i seguenti dati:
 - uno o più codici identificativi univoci di pietra $(ID_1, ID_2 \dots ID_N)$ di rispettive una o più predeterminate pietre $(D_1, D_2 \dots D_N)$;

- almeno un'immagine di riferimento di pietra per ciascuna di dette rispettive una o più predeterminate pietre $(D_1, D_2...D_N)$;
- uno o più codici identificativi univoci di card $(CD_1, CD_2...CD_N)$ di rispettive card multiuso (2) pre-registrate, ciascuno associato ad almeno uno di detti uno o più codici identificativi di pietra $(ID_1, ID_2...ID_N)$;
- una unità logica di controllo (105), collegata a detto dispositivo di ricezione (101), a detti mezzi di acquisizione di immagini (103) e a detti mezzi di irradiazione (102);

in cui in detto sistema di lettura (100):

- il dispositivo di ricezione (101) è configurato per:
 - ricevere detta card multiuso (1) in una posizione fissa rispetto a detti mezzi di acquisizione di immagini (103) e a detti mezzi di illuminazione (102), ed
 - inviare un segnale a detta unità logica di controllo (105), quando detta card multiuso (1) è inserita in detto dispositivo di ricezione (101),
- l'unità logica di controllo (105) è configurata per:
 - ricevere detto segnale da detto dispositivo di ricezione (101),
 - pilotare i mezzi di irradiazione (102) e i mezzi di acquisizione di immagini (103) per effettuare le fasi B e C secondo la rivendicazione 6 o 7;
 - effettuare le fasi da D a F secondo la rivendicazione 8 o 9.

- 11. Sistema di lettura (100) secondo la rivendicazione 10, caratterizzato dal fatto che:
- detto sistema (100) comprende un lettore per leggere detto codice identificativo univoco di detta card multiuso (1), il lettore essendo connesso a detta unità logica di controllo (105);
- detta unità logica di controllo (105) è configurata
 per:
 - acquisire il codice identificativo univoco di detta card multiuso (1),
 - effettuare un confronto di codici tra il codice identificativo univoco di detta card multiuso (1) con gli uno o più codici identificativi di card $(CD_1, CD_2...CD_N)$ di rispettive card multiuso (2) pre-registrate memorizzati in detta banca dati (DB),
 - identificare la pre-registrata card multiuso (CD_1 , $CD_2...CD_N$) avente il codice identificativo univoco uguale al codice identificativo univoco di detta card multiuso (1),


in cui detto confronto di immagini della fase D è tra detta almeno una immagine, acquisita da detti mezzi di acquisizione di immagini (103), ed una o più immagini di riferimento memorizzate in detta banca dati (DB) e associate a detta predeterminata card multiuso (CD₁, CD₂...CD_N) avente il codice identificativo univoco uguale al codice identificativo univoco di detta card multiuso (1).

- 12. Sistema secondo la rivendicazione 10 o 11, in cui detta radiazione elettromagnetica è nello spettro del visibile e i mezzi di acquisizione di immagini (103) comprendono:
- un sensore ottico o pellicola;
- un gruppo ottico comprendente almeno un gruppo-lenti, dove detto almeno un gruppo-lenti è disposto ad una prima distanza da detto sensore ottico o pellicola e detto gruppo ottico è disposto in modo tale che, quando detto gruppo ottico è in uso, è ad una seconda distanza da detta pietra (2), detta prima distanza e detta seconda distanza essendo regolabili;
- un diaframma con apertura regolabile tra un primo valore ed un secondo valore di apertura, dove detto secondo valore è maggiore di detto primo valore,

ed in cui:

- la profondità di campo di detti mezzi di acquisizione di immagini (103) dipende da detta prima distanza, da detta seconda distanza e dal valore dell'apertura di detto diaframma,
- ciascuna immagine di riferimento è ottenuta con una predeterminata profondità di campo.
- 13. Sistema secondo una o più delle rivendicazioni da 10 a 12, in cui detta almeno un'immagine di riferimento di pietra comprende immagini di predeterminate parti interne (PI_1 , PI_2 ... PI_N) di detta pietra (2), dove ciascuna predeterminata parte interna (PI_1 , PI_2 ... PI_N) è disposta ad una rispettiva predeterminata altezza (h_1 ,

 h_2 , ... $h_N)$ di detta predeterminata pietra (D_1, D_2...D_N) lungo un asse predefinito.

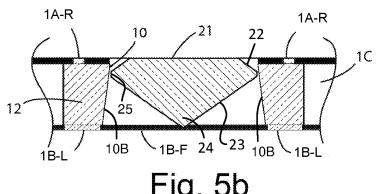


Fig. 5b

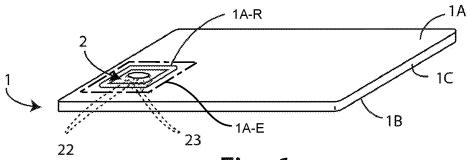


Fig. 6

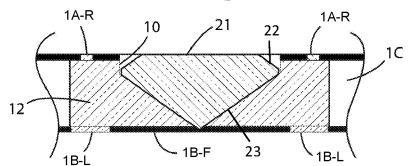
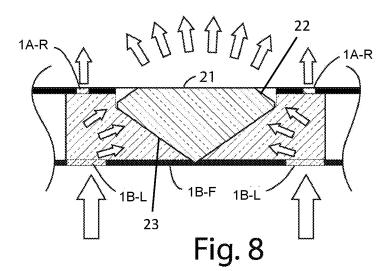
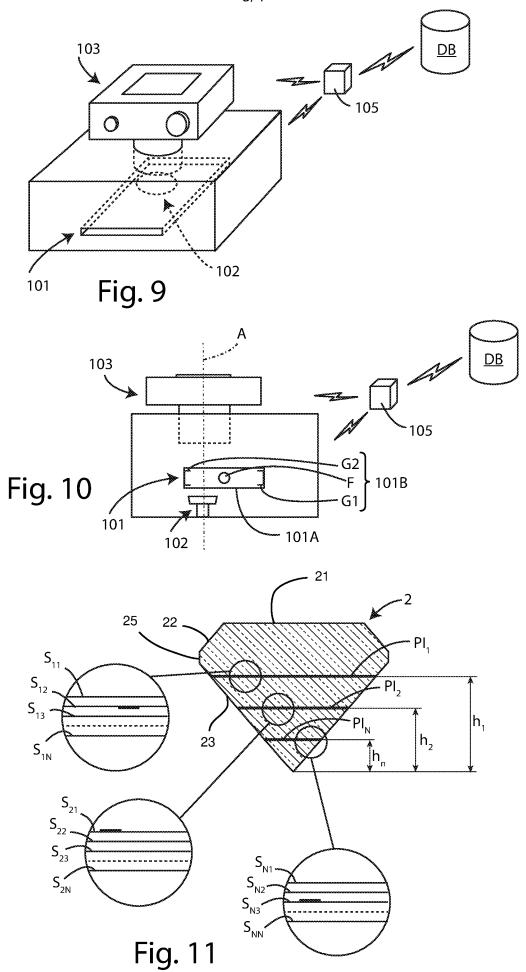




Fig. 7

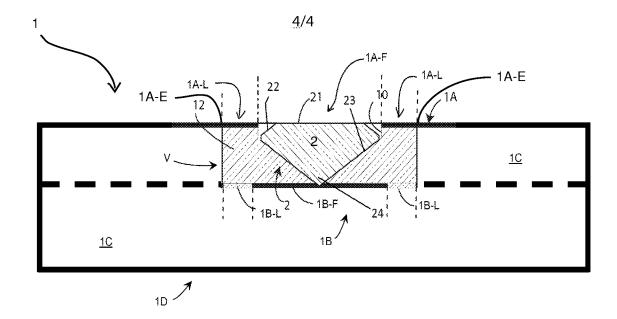


Fig. 12

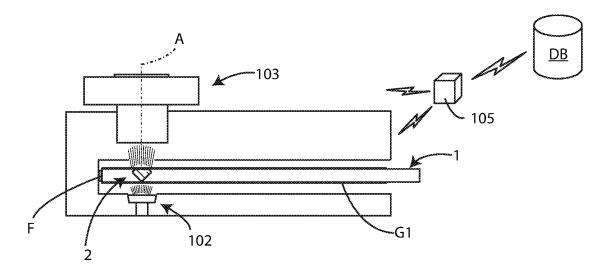
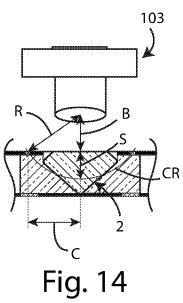



Fig. 13

