Title: VALVE DRIVING MECHANISM FOR-INTERNAL COMBUSTION ENGINES

Abstract

In an internal combustion engine in which the opening and closing of rotary suction and exhaust valves, each of which has a spherical valve body, are controlled in accordance with the movement of a piston via a valve driving mechanism, the rotary suction and exhaust valves (10, 20; 110, 120; 210, 220; 310, 310', 320, 320') are in a fully-opened position, in which suction and exhaust passages (7, 8; 107, 108; 207, 208; 307, 307'; 308, 308') are opened, at the suction and exhaust strokes of an engine (1; 101; 201; 301); and in a fully-closed position at an explosion stroke of the engine. In these fully-opened and fully-closed positions, the rotary suction and exhaust valves (10, 20; 110, 120; 210, 220; 310, 310', 320, 320') are kept stopped for a predetermined period of time by the intermittently operating functions of a valve driving mechanism (30; 130; 230; 330).
（57）要約

球状の弁体を有する吸、排気用回転弁がピストンの動きに連動して動弁機構を介して開閉制御される内燃機関において、前記吸、排気用回転弁（10, 20; 110, 120; 210, 220; 310, 310', 320, 320')はそれぞれ機関（1; 101; 201; 301）の吸気行程及び排気行程で吸、排気通路（7, 8; 107, 108; 207, 208; 307, 307', 308, 308')を開口する全開位置を占め、爆発行程では全閉位置を占め、それら全開、全閉位置で吸、排気用回転弁（10, 20; 110, 120; 210, 220; 310, 310', 320, 320')は動弁機構（30; 130; 230; 330）の間歇作動機能により停止状態に所定時間保持される。
明細書

発明の名称

内燃機関の動弁装置

技術分野

本発明は内燃機関の動弁装置に関し、特に動弁系に球状の回転弁を用いた内燃機関の動弁装置に関する。

技術的課題

一般的な内燃機関の動弁系に使用されているボペットバルブ（弁弁）は、そのシール性の良好なことから現在殆どの内燃機関に採用されている。しかしながら、ボペットバルブは内燃機関のより以上の性能向上を図る場合、燃焼室中に焼き伝排気弁が熱を出し、爆発（デトネーション）や早期点火（プレイグニッション）の発生を助長すること、弁軸、弁弁が通路中に存在するため通気抵抗となり吸排気効率を損なうこと、弁軸、弁弁を有するために吸、排気通路は弁の近傍で彎曲され吸、排気効率を損なうこと、弁軸により往復運動するためにその運動方向に長いスペースを必要としエンジンが大型化すること及び弁の開閉は往復運動によりなされるためにシーティング時（閉弁時）に衝撃音を発する等の不具合がある。

そこで、ボペットバルブの欠点を解消するために、従来からス
リープ弁や回転弁が数多く提案されており、特に、球状弁、円筒弁、円錐弁、円盤弁等の回転弁が研究されている。
しかしながら、現在迄に提案されている回転弁のシステムは、往復運動を避けるべくその全てが連続的に回転運動を与えられ、爆発時もその爆発力を受けながら弁体が回転運動する構造であるために、フリクションの増大及びシールの不完全さを解消することが出来ないこと、及び前記システムの構造上、吸気時及び排気時においても弁体が回転し続ける為に有効な開口時間が正確に得られず、それを得るためには開口部の開口のタイミングをより正確にすると共に開口面積を広げる必要があり、このように開口部の形状に変化を与えると、吸、排気ポートに広がり損失が生じて吸、排気効率を損なうこととなる等の問題があり、実用化が妨げられている。

発明の開示

本発明は上述の点に鑑みてなされたもので、特に球状の回転弁の弁体を開弁時及び爆発時といった機関の特定の行程で不動（停止）状態に保持することにより、開弁時の単位時間当たりの開口面積の増大、爆発時のシール性の向上及びフリクションの低減を図り、これに加えて、エンジンのコンパクト化、動弁機構等の組付性の向上等を図ることを目的とする。
上記目的を達成するために、本発明によれば、内燃機関の燃焼室に連通する吸、排気通路にそれぞれ各別に配設され、これらの吸、排気通路をそれぞれ開閉する球状の弁体を備えた吸気用及び排気用回転弁と、これら吸、排気用回転弁の弁体を内燃機関のピストンの動きに連動して回転駆動して前記吸、排気用回転弁の開閉制御を行い、且つそれら回転弁を開弁位置及び閉弁位置に所定時間保持する間歇作動機能を有する動弁機構とからなる内燃機関の動弁装置が提案される。

かかる構成することにより、回転弁はその開弁位置、閉弁位置で所定時間停止されるので、球状弁体の回転による静粛な作動を確保しながら、吸、排気通路と燃焼室との連通及び連通遮断をより確実に得ることができる。従って、従来技術の欠点は解消されるものである。

ここで、内燃機関の吸、排気行程において、吸、排気通路を全開する位置に回転弁を所定期間停止させるようにすれば、吸、排気通路は吸、排気行程において何ら障害物で塞がれるようなことはなく、吸気通路から燃焼室への混合気の供給、燃焼室から排気通路への排気の吐出が極めて効率よく行なわれるもので、従来の弁装置と比べて回転弁の開弁時の単位時間当たりの開口面積が増大し、よって吸、排気効率が上昇し、内燃機関の出力が向上する。
また、例えば内燃機関の爆発行程において吸、排気用回転弁を
閉状態に所定期間停止させるようにすれば、即ち、各弁体の摺動
面で吸、排気通路の開口端を塞ぐ位置に所定期間停止させること
で、爆発時の大きな荷重を前記摺動面全体で受けることができ、
その結果、爆発行程時におけるシール性の向上が図れる。しかも
弁体は球状であるため、従来と比較して爆発によるフリクション
の発生の低減を図ることができる。

上記構成に加えて、前記動弁機構により回転弁の弁体を一方向
に回転駆動させれば、爆発行程時には各弁体の摺動面全体が吸、
排気通路の開口端を塞ぐようにして燃焼室内に順次噴されること
になるので、弁体の温度分布が全体に均一化されてその熱による
変形が一様となり、シール性がより向上すると共に、部分的高温
に起因する弁体の焼付き現象を抑えられる。

また、上記構成に加えて、前記吸、排気通路の軸心をピストン
の摺合するシリンダの軸心に対して燃焼室から離れるにつけで遠
ざかるように傾斜して設ければ、吸気側と排気側の回転弁の間隔
を広くとることが可能となるので、各回転弁及び動弁機構等のレ
イアウトの自由度が増し、エンジンの高さが抑えられそのコンパ
クトな設計が可能になる。また、前記回転弁や動弁機構等の組付
性も向上する。
更に、前記吸気側と排気側の回転弁の間隔が広くとることで、回転弁本体の大型化が図れ、これに伴い有効ポート径が増大され、排気効率がより向上する。

図面の簡単な説明

第1図ないし第9図は本発明の第1実施例を示すもので、第1図はこの実施例の動弁機構を適用した内燃エンジンを示す概略斜視図、第2図は第1図に示す回転弁の閉弁状態を示す断面図、第3図は第2図に示す回転弁の開弁状態を示す断面図、第4A、4B図は回転弁の弁座部材と弁体との断面図、第5図は第1図に示す動弁機構のカムの一実施例を示す平面図、第6図及び第7図は第5図のカムとアームとの関係を示す図、第8図及び第9図はクラック角対回転弁の開口面積の関係を示す特性図、第10図ないし第15図は本発明の第2実施例を示すもので、第10図はこの実施例の動弁機構を適用した内燃エンジンを示す概略斜視図、第11図は第10図に示す動弁機構の要部端面図、第12図ないし第15図は第10図に示す吸、排気用回転弁の作動状態を示す断面図、第16図ないし第18図は本発明の第3実施例を示すもので、第16図はこの実施例を適用した内燃エンジンを示す概略斜視図、第17図は第16図に示す回転弁の閉弁状態を示す断面図、第18図は第17図に示す回転弁の開弁状態を示す断面図、第1
9 図ないし第 2 4 図は本発明の第 4 実施例を示すもので、第 1 9
図はこの実施例を適用した内燃エンジンを示す要部断面図、第 2
0 図は第 1 9 図の X X - X X 線断面図、第 2 1 図は第 1 9 図の X
X I - X X I 線端面図、第 2 2 図は第 1 9 図の要部拡大断面図、
第 2 3 図及び第 2 4 図は第 2 2 図に示す回転弁の作動説明図であ
る。

発明を実施するための最良の形態

以下本発明の幾つかの実施を添付図面に基づいて説述する。

先ず第 1 図ないし第 9 図により本発明の第 1 実施例を説明する。

第 1 図は本発明に係る動弁装置を適用した内燃エンジンの概略構
造を示し、エンジン 1 のクランク軸 2 にはコンロッド 3 を介して
図示しないシリンジに摺合するピストン 4 が結合され、このピス
トーン 4 の上端面とシリンジヘッド 5 (第 2 図、第 3 図) との間に
燃焼室 6 (第 2 図、第 3 図) が作成される。シリンジヘッド 5 の
上面にはヘッドカバー 9 がボルトによって重合結着される。ヘッ
ドカバー 9 には燃焼室 6 の上部と後述する吸、排気用回転弁 1 0 ,
2 0 を介してそれぞれ連通する吸気通路 7 及び排気通路 8 が形成
される。これら吸、排気通路 7, 8 の燃焼室 6 側開口端に隣接し
てシリンジヘッド 5 にはそれぞれ吸気用回転弁 1 0、排気用回転
弁 2 0 が配設され、これらの各回転弁 1 0, 2 0 はクランク軸 2
により駆動される後述する動弁機構 30 に連結される。

回転弁 10、20 は球状弁で、吸気用回転弁 10 は第 1 図及び第 2 図に示すように、弁座部材 11、12、弁体 13、シールスプリング 14 等で構成される。この回転弁 10 の弁座部材 11、12 はそれぞれ円盤状をなし対向する各一端面には所定の曲率半径を以て球面状の弁面 11a、12a が窪んで設けられ、中央には吸気通路 7 の内径と同径の孔 11b、12b が穿設されている。これらの各弁座部材 11、12 は耐熱性、耐摩耗性に優れた例えばセラミック部材で形成される。弁体 13 は球体をなし、その半径は前記弁座面 11a、12a の曲率半径と同一に設定され、その摂動面としての外周面 13a は各弁座面 11a、12a に密着するように形成されている。この弁体 13 の軸芯には一直径方向に吸気通路 7 の内径と同径の孔 13b が穿設されている。この弁体 13 は耐熱性及び耐摩耗性に優れた金属部材例えばステンレス部材で形成される。

弁体 13 の外径（直径）D と孔（ポート）13b の内径 d との関係は第 4 A、4B 図に示すように、シール性、フリクション、出力性能等を考慮して最適な値に設定される。因に、弁体 13 の外径 D と孔径 d との関係は、D : d = 1.5 ～ 2.5 : 1 の範囲が最も良い組み合わせである。
回転弁10は第2図に示すようにシリンダヘッド5内において、燃焼室6側からシールスプリング14、弁座部材11、弁体13及び弁座部材12の順に配設され、シリンダヘッド5に螺着されるヘッドカバー9が弁座部材12の上面に当接して固定される。

この装着状態において、弁体13の外周面13aはシールスプリング14のばね力により弁座部材11、12の各弁座面11a、12aに回転可能に摺接する。弁体13の孔13bが吸気通路7と直交した位置にあるときに当該通路7は完全に燃焼室6から閉塞され、一致した位置にあるときに通路7は完全に燃焼室6に開口される。

回転弁20も回転弁10と全く同様に構成され、前記シリンダヘッド5内において排気通路8の燃焼室6側開口端に配設される。而して、この排気用回転弁20の排気通路8に対する開閉作動も上述の吸気用回転弁10と同様である。

動弁機構30の吸気用カム軸31、排気用カム軸32はそれぞれシリンダヘッド5に回転可能に軸支され、これらカム軸31、32の一端には被動スプロケット33、34が固着され、他端にはカム35、36が固着或いはカム軸と一体成形することにより取付けられる。これらの被動スプロケット33、34とクランク軸2に固着された駆動スプロケット37との間には伝動帯、例え
ばチェーン38が巻回される。第1回転軸40, 41はそれぞれシリングヘッド5に回転可能に軸支され、それぞれの一端には略L字状をなすアーム42, 43が固着される。前記シリングヘッド5には更に駆動軸としての第2回転軸44, 45が回転可能に軸支され、それぞれの一端にはギヤ46, 47が固着され、第2回転軸44, 45の他端には回転弁10, 20の各弁体13, 23がそれぞれ一体回転し得るように固着される。

アーム42, 43の各一端42a, 43aは扇形に広がり、その円弧状をなす外周面にはそれぞれ歯が刻設されて変形歯車42c, 43cを構成している。それら歯車42c, 43cは第2回転軸44, 45に固着された前記各歯車46, 47に嚙合される。アーム42, 43の各他端42b, 43bはそれぞれリターンスプリング48, 49を介してシリングヘッド5或いは他の固定構造に支持されており、そのリターンスプリング48, 49から受ける弾発力によってカム35, 36の各カム面に圧接する。第2回転軸44, 45はそれぞれ弁体13, 23に各孔13b, 23bと直交する方向に固着される。従って第2回転軸、即ち駆動軸44, 45がそれぞれの軸心回りで回動すれば、各孔13b, 23bはそれぞれの位置する平面上で回転するものである。

カム35のカム面は第5図に示すような概ね卵形に形成され、
- 10 -

吸気用カルム軸 3 1 の所定の回転角 α に対応する区間 P 1 ～ P 2 の
第 1 カルム面 3 5 a は半径 r の円弧をなし、この第 1 カルム面 3 5 a
に連設されカルム軸 3 1 の所定の回転角 β に対応する区間 P 2 ～ P 3 の第 2 カルム面 3 5 b は曲率半径が半径 r から後述する半径 R
(> r) まで連続的に増加しながら変化する円弧をなし、第 2 カル
ム面 3 5 b に連設され第 1 カルム面 3 5 a の反対側に位置し、カルム
軸 3 1 の所定の回転角 r に対する区間 P 3 ～ P 4 の第 3 カルム面 3
5 c は第 1 カルム面 3 5 a の半径 r よりも大きい所定の半径 R (> r)
の円弧をなし、第 3 カルム面 3 5 c に連設され第 2 カルム面 3 5
b の反対側に位置するカルム軸 3 1 の前記回転角 β に対応する区間
P 4 ～ P 1 の第 4 カルム面 3 5 d は第 2 カルム面 3 5 b と逆にその曲
率半径が前記半径 R から r まで連続的に減少しながら変化する円
弧をなしっている。即ち、カルム 3 5 は第 1 、第 3 カルム面を通過する
直線に対し左右対称に形成される。排気用カルム 3 6 のカルム面もカ
ルム 3 5 のカルム面と同様に形成されている。これらの 2 つのカルム 3
5 と 3 6 とは互いに所定の回転位相角をなしして各カルム軸 3 1 、3
2 に固着されている。

以下にこの第 1 実施例の作動を説明する。

第 1 図に示すようにクラシック軸 2 が矢印 C で示す時計方向に回
転すると、これに伴い吸、排気用カルム軸 3 1 、3 2 も駆動スプロ
ケット37、チェーン38、被動スプロケット33、34を介して時計方向に回転する。尚、カム軸31、32上の被動スプロケット33、34とフランク軸2上の駆動スプロケット37とのギャ比例2:1に設定されており、フランク軸2が2回転すれば各カム軸31、32はそれぞれ1回転する。アーム42の他端42bがカム35の第1カム面35aに当接している間、当該アーム42はリターンスプリング48のばね力により第6図に示すように時計方向に最大位置まで回動され且つ当該位置に保持され、これに応じて回転弁10の弁体13は第2図に示すように孔13bが水平位置に保持され吸気通路7を燃焼室6から完全に閉塞した状態にする。即ち、回転弁10はアーム42の他端42bが第1カム面35aに当接する区間P1〜P2においてはカム軸31の回転にもかかわらず吸気通路7を全閉状態に保持する。

カム軸31が更に回転し、アーム42の他端42bに対するカム35の当接面が第1カム面35aの終点P2を過ぎて第2カム面35bに移ると、当該アーム42はリターンスプリング48のばね力に抗して反時計方向（第7図の矢印CC方向）に回動されるため、これに伴いアーム42の一端42aの歯42cと噛合する歯車46を介して第2回転軸44が時計方向に回動される。弁

体13はこの第2回転軸44と共に時計方向に回動して孔13b
は水平位置から直立位置へと移動するため、これに伴い吸気通路
7は孔13bを介して燃焼室6に対し徐々に開口されることになる。アーム42の他端42bが第2カム面35bの終点P3に達
するとき第3図に示すように弁体13の孔13bは吸気通路7と完
全に一致し、その開口面積が最大となる。ひき続きカム軸31が
回転するのに伴いアーム42の他端42bは点P3の位置から第
3カム面35cとの当接状態に入り、第7図に示すようにこの第
3カム面35cに当接している間第2回転軸44の回動が停止さ
れ弁体13も回動を停止する。アーム42の他端42bが第3カ
ム面35cの終点P4に達するまでの間、弁体13の孔13bは
第3図の直立位置に保持される。即ち、回転弁10はアーム42
の他端42bが第3カム面35cに当接する区間P3～P4において吸気通路7を全閉にした状態で停止される。この結果、吸
気通路7から供給される混合気は効率良く燃焼室6に送り込まれ、
その吸入効率が大幅に向上する。

アーム42の他端42bが第3カム面35cの終点P4を過ぎ
て第4カム面35dに当接すると、カム35の回転に伴い当該ア
ーム42がリターンスプリング48のばね力により時計方向に回
動し、第2回転軸44が反時計方向に回動する。弁体13はこの
第2回転軸44と共に反時計方向に回動し、従って孔13bが水
平位置へと戻ることにより徐々に閉弁され、これに伴い吸気通路7が徐々に燃焼室6から閉塞される。そして、アーム42の他端42bが第4カム面35dの終点Pに達すると再び弁体が第2図に示すように完全に閉弁され、吸気通路7が完全に閉塞される。

このように、カム軸31の1回転の間に、アーム42が揺動し、これに伴い弁体13が時計方向及び反時計方向に間歇的に回動されてその孔13bが水平位置と直立位置との間を往復動することで回転弁10が開閉制御され、且つ開弁時及び閉弁時においてはクランク軸2の回転速度に合わせて所定時間弁体13の動きが停止され、開弁位置及び閉弁位置に保持される。

排気用回転弁20も吸気用回転弁10と同様に作動し、且つこれらの回転弁10と20とはクランク軸2の所定の回転角度に互いに位相がずれて作動する。それらの位相は、エンジンの吸気行程時には吸気用回転弁10が所定区間全開位置で停止すると共に排気用回転弁20が閉弁状態にあり、爆発行程時にはこれらの両方の回転弁10、20が共に全閉位置で停止し、排気行程時には回転弁10が開弁状態にあり且つ回転弁20が所定区間全開位置に停止するように設定される。

従って、上記実施例によれば、回転弁10、20の開弁時の単位時間当りの開口面積を従来のものよりも増大することができ、
これに伴い吸、排気効率の向上が図られ、エンジンの出力が向上する。

第8図はクランク角と回転弁の開口面積との関係を示す特性図で、曲線Iは弁体が連続的に回転する従来の回転弁の特性を、曲
線IIは本発明に係る弁体が間歇的に回転する回転弁の特性を示し、これらの特性曲線I, IIから明らかなように本発明の動弁装置によれば吸、排気効率が約2倍程度向上する。また、第9図は通路（ポート）径を同一にした場合のクランク角と、ポペット弁及び
回転弁の開口面積との関係を示す特性図で、曲線IIIはポペット弁の特性を、曲線IVは本発明に係る回転弁の特性を示す。これらの
特性曲線III, IVから明らかなように、本発明の動弁装置はポペット弁に比して吸、排気効率が約2倍程度向上する。

更に、上述のように回転弁10, 20の弁体13, 23に球状弁を使用すると共に、これらの弁体13, 23にはクランク軸2
からの連続的な回転を本発明による動弁機構を介して間歇的な往復動として伝達するので、エンジンの爆発行程時の大きな荷重を、停止した球状弁体13, 23の外周面13a, 23aで受けることができ、その結果、爆発行程時におけるシール性の向上及びフリクションの低減を図ることができる。また球弁による回転慣性
質量の極小化も可能となる。
尚、本実施例においては回転弁の駆動方法としてクランク軸の回転より直接駆動するチェーンタイプのものを記述したが、これに限るものではなく、他にクランク軸の回転を電気的に行うステップモータ等の電気的な駆動方法を用いてもよい。

次に第10図ないし第15図により本発明の第2実施例について説明する。

この実施例では、動弁機構として前述のカム機構に代えてゼネバストップ機構130を使用しており、ゼネバストップ機構130以外のその他の構成は前記第1実施例と同様であるので、それらの説明は省略する。

本実施例によるゼネバストップ機構130はシリンダヘッド105等の固定構造に回転可能に軸支された主軸131を有し、この主軸131の一端には被動スプロケット132が固着される。主軸131はクランク軸102の一端に固着された駆動スプロケット137と被動スプロケット132との間に巻回された伝動帯、例えばチェーン138を介してクランク軸102により回転駆動される。主軸131の他端には駆動車133が固着される。シリンダヘッド105等の固定構造には駆動軸としての回転軸134、136が回転可能に軸支され、それら回転軸134、136の一端にそれぞれ被動車135、137が固着される。第11図に示
すように駆動車１３３の一端面周縁には同一円周上に所定の間隔で２本のピン１３３ａ、１３３ｂが植設され、他端面周縁にも同一円周上に所定の間隔で２本のピン１３３ｃ、１３３ｄ（破線で示す）が植設されている。一方、被動車１３５、１３７にはそれぞれ周方向に９０°の等間隔をなして半径方向に４つの溝１３５ａ～１３５ｄ、１３７ａ～１３７ｄが設けられている。これらの駆動車１３３、被動車１３５、１３７が固着される主軸１３１、回転軸１３４、１３６は所定の間隔で平行に配置され、また、被動車１３５は駆動車１３３の一端面側に、被動車１３７はその他の端面側に互いに軸方向にずれて配置されることにより、駆動車１３３の各ピン１３３ａ、１３３ｂは被動車１３５の各溝１３５ａ～１３５ｄに、ピン１３３ｃ、１３３ｄは被動車１３７の各溝１３７ａ～１３７ｄに係合可能とされる。

駆動車１３３が第１１図において矢印Ｃで示す時計方向に回転すると、ピン１３３ａが被動車１３５の１つの溝１３５ａと係合した時から当該溝１３５ａから抜け出て係合が解除するまでの間、当該被動車１３５が矢印ＣＣで示す反時計方向に回転され、次にピン１３３ｂが次の溝１３５ｂに係合する迄の間当該被動車１３５が停止する。この結果、駆動車１３３の２回転に対して、被動車１３５が間歇的に４回休止（停止）しながら１回転する。被動
車137も被動車135と同様にビン133c, 133dと溝137a～137dとの係合により駆動車133の2回転に対して間歇的に4回休止（停止）しながら1回転する。尚、吸気用回転弁110の弁体113及び排気用回転弁120の弁体123は回転軸134, 136の他端にそれぞれ一体回転し得るように固定される。

以下第2実施例の作動を説明する。

第10図に示すようにクランク軸102が時計方向に回転すると、これに伴い主軸131が時計方向Cに回転する。今、駆動車133、被動車135, 137が第11図に示すような位置関係にある場合、駆動車133の吸気用回転弁110の開弁用ビン133aが被動車135の溝135aに係合する以前、開弁用ビン133bが溝135dから抜け出した後の状態にあり、このときには弁体113は第12図で示すように吸気通路107を閉塞し、回転弁110は完全に閉弁された状態で停止（休止）している。この時には弁体113の一側壁113cが燃焼室106に臨んでいる。

一方、駆動車133の排気用回転弁120の開弁用ビン133cが被動車137の溝137aから抜け出しあつある状態にあり、且つ開弁用ビン133dが溝137bに係合する以前の状態にあ
る時には回転弁１２０の弁体１２３は第１４図に示すように排気通路１０８を開口し、該回転弁１２０は完全に閉弁された状態で停止（休止）している。

駆動車１３３が続いて回転すると、開弁用ピン１３３ａが被動車１３５の溝１３５ａに係合してから抜け出す迄の間に弁体１１３が反時計方向に９０°回転されて孔１１３ｂが直立状態となり、第１３図に示すように完全に開弁される。一方、閉弁用ピン１３３ｄが被動車１３７の溝１３７ｂに係合してから抜け出す迄の間に弁体１２３が反時計方向に９０°回転されてその孔１２３ｂが第１５図に示すように水平位置を占め完全に排気通路１０８を閉塞し、回転弁１２０は完全に閉弁された状態で停止する。このときに弁体１２３の一側壁１２３ｃが燃焼室１０６に臨んでいる。

回転弁１１０は駆動車１３３の開弁用ピン１３３ｂが被動車１３５の溝１３５ｂに係合する迄の間前記完全に開弁した状態で停止している。

駆動車１３３の開弁用ピン１３３ｂが被動車１３５の溝１３５ｂに係合してから抜け出す迄の間に弁体１１３が反時計方向に９０°回転して再び第１２図に示すように完全に閉弁される。そして、回転弁１１０が開弁開始された時から閉弁される迄の間に吸気が行なわれる。この吸気の期間内において或る区間前述したよ
うに回転弁110が完全に閉弁した状態で停止するので、効果的な混合気の吸入行程が行なわれる。

駆動車133の開弁用ピン133cが被動車137の溝137cに係合する迄の間、2つの回転弁110, 120は完全に閉弁された状態で停止されこの間にエンジン1の圧縮、爆発の各行程が行なわれる。次いで駆動車133の開弁用ピン133cが被動車137の溝137cに係合してから抜け出す迄の間に弁体123が反時計方向に90°回転されて再び第14図に示すような完全な開弁状態となり、閉弁用ピン133dが溝137dに係合する迄の間回転弁120は完全に閉弁された状態に停止する。そして、回転弁120が開弁開始された時から閉弁される迄の間に排気が行なわれる。この排気の期間の或る区間前述したように回転弁120は完全に開弁した状態で停止し、この結果、効果的な排気が行なわれる。

上述の作動が繰返して行われ、これらの各回転弁110, 120の弁体113, 123は一方向（反時計方向）に間歇的に回転され、吸、排気通路107, 108を開、閉制御する。そして、エンジン101の爆発行程では、回転弁110, 120の各弁体113, 123の側壁113c, 113d, 123c, 123dがそれぞれ交互に燃焼室6に臨む。この結果、この第2実施例で
は弁体113, 123の温度分布が全体に均一化されてその熱による変形が一様となり、シール性がより向上すると共に、部分的高温に起因する焼き付き現象が抑えられる。

上記の通り、第2実施例においてはクランク軸102の連続的な回転が本発明による動弁機構としてのゼネパストップ機構130を介して間歇的な回転運動として回転弁110, 120にそれぞれ伝達されることになり、エンジンの作動に合わせた極めて効率的な吸、排気通路107, 108の開閉制御が行なわれるものである。

次に第16図ないし第18図により本発明の第3実施例について説明する。

この実施例では、回転弁210, 220の構成及び吸、排気通路207, 208のシリンダヘッド205に対する取付状態が第1実施例のものと異なっており、それ以外の構成は動弁機構を含めて第1実施例と同様である。

回転弁210, 220は球状弁で、吸気用回転弁210は第16図及び第17図に示すように、弁座部材211, 212、弁体213、シールスプリング214等で構成される。この回転弁210の弁座部材211, 212はそれぞれ円盤状をなし対向する各一端面には所定の曲率半径を以て球面状の弁座面211a, 2
12aが窪んで設けられ、中央には吸気通路207の内径と同径の孔211b、212bが穿設されている。これらの各弁座部材211、212は第1実施例同様、耐熱性、耐摩耗性に優れた例えばセラミック部材で形成される。弁体213は球体をなし、その半径は前記弁座面211a、212aの曲率半径と同一に設定され、その外周面213aは各弁座面211a、212aに密着するように形成される。該弁体213には孔213bが穿設されており、この孔213bは吸気通路207と同径であり、当該弁体213の中心を通るが、所定の曲率半径で彎曲し、両端がそれぞれ外周面213aの所定箇所に開口する円弧状をなしている。

シリンダヘッド205は上頚に一対の勾配面205a（第17、18図に一方のみ図示）を備えた屋根形をなしており、前記吸、排気通路207、208を設けられたヘッドカバー209が勾配面205aに取付けられた状態では、吸、排気通路207、208の各軸線lはこの実施例においてはシリンダ軸線と合致する鉛直線mに対して適宜の角度（ポート角）θを有している。

吸気用回転弁210は第17図に示すようにシリンダヘッド205内で吸気通路207の開口端側から、弁座部材212、弁体213、弁座部材211及びシールスプリング214の順に配設され、シリンダヘッド205に螺着されるヘッドカバー209に
より固定される。この装着状態において、弁体２１３の外周面２１３ａはシールスプリング２１４のばね力により弁座部材２１１、２１２の各弁座面２１１ａ、２１２ａに回転可能に摺接する。弁体２１３の孔２１３ｂが吸気通路２０７と略直交したときに当該通路２０７が完全に閉塞され（第１７図）、一致したときに通路２０７が完全に開口される（第１８図）。

排気用回転弁２２０も吸気用回転弁２１０と全く同様に構成され、前記シリンダヘッド２０５内で排気通路２０８の燃焼室２０６側開口端に配設される。

尚、この実施例の作動は第１実施例と全く同様であるのでその説明は省略する。

而して、この実施例では、吸、排気通路２０７、２０８にポート角度θをもたせたので、即ち、シリンダヘッド２０５上でこれら吸、排気通路をシリンダ軸線に対し或る角度で傾斜させて配置したので、弁体中心に対し、吸、排気通路を自由に配すことができ、各回転弁及び動弁機構等のレイアウトの自由度が向上し、その結果エンジンの高さを低くすることができるのでそのコンパクトな設計が可能となる。

次に、第１９図ないし第２４図により、本発明の第４実施例について説明する。
この実施例では本発明による動弁装置を4弁式のエンジンに適用したものが示されている。

第19図ないし第24図において301は4弁式のエンジンを示し、該エンジン301のクランク軸302にはコンロッド302aを介してピストン305が連結され、このピストン305の上端面とシリンダヘッド304（第22図）の凹部304cとの間に断面V字型の燃焼室306が画成され、この燃焼室306の上部に連通開口する吸気通路307、排気通路308の前記燃焼室306側開口端近傍にはそれぞれ2つの吸気用回転弁310、310'、2つの排気用回転弁320、320'が配置され、これらの各回転弁310、310'、320、320'はクランク軸302により駆動される動弁機構としてのゼネバストップ機構330に連結される。

第20図に示すシリンダヘッド304は2つのヘッド部分304a、304bから成り、これらのヘッド部分304a、304b内において吸気通路307、排気通路308は第19図及び第22図に示すように直線状に形成され、且つこれらの各直線部分の中心線はシリンダ軸線から外方にそれぞれ等角度で対称に傾斜して所定の角αをなして拡開している。

2つの吸入用回転弁310、310'及び2つの排気用回転弁
320, 320' はそれぞれの球状弁体の中心がヘッド部分 304a, 304b の合わせ面上に位置するように両ヘッド部分間に介装保持されている。

動弁機構としてのゼネラストップ機構 330 の部分を構成する主軸 331（第21図）はシリンダヘッド 304 に回転可能に軸支され、一端には被動スプロケット 332 が他端には駆動車 333 が固着されている。被動スプロケット 332 は中間スプロケット 340 と傷合し、中間スプロケット 340 と同軸上に且つ一体的に設けられ、シリンダブロック 303 に回転可能に支持された別の中間スプロケット 341（第20図）とクラウン軸 302 の一端に固着された駆動スプロケット 336 との間には伝動帯、例えばチェーン 338 が巻回される。中間スプロケット 341 と駆動スプロケット 336 とのギヤ比は 2：1 に、中間スプロケット 340 と被動スプロケット 332 とのギヤ比は 1：1 に設定されており、従って、クラウン軸 302 の 2 回転に対して主軸 331 が 1 回転する。回転軸 334, 335 はそれぞれシリンダヘッド 304 に回転可能に軸支され、各一端には被動車 335 及び 337 が固着され、各他端には回転弁 310, 310' 及び 320, 320' の弁体 313, 313', 323, 323' が一体回転し得るようにオルダム絶手で互いに結合される。回転軸 334,
336は回転弁310, 310'の弁体313, 323に孔313b, 323bと直交する方向に連結される。
ゼネバストップ機構330の駆動車333, 被動車335, 337は本発明の第2実施例のものと全く同一の構成であるのでその説明は省略する。
次に、この第4実施例の作動について説明する。
クラック軸302が反時計方向Cに回転すると、この回転は駆動スプロケット336、チェーン338、中間スプロケット341, 340及び被動スプロケット332を介して主軸331に伝達され、これにより主軸331が時計方向に回転する。
この主軸331の時計方向への連続的な回転は動弁機構としてのゼネバストップ機構330を介して各回転軸334, 336から一組の吸気用回転弁310, 310'及び一組の排気用回転弁320, 320'へと間歇的な回転運動として伝えられることになる。従って、吸気用回転弁310, 310'及び排気用回転弁320, 320'は互いに時期をずらしながらオルダム結合によってそれぞれ吸気用回転弁、排気用回転弁同士が一体となって回動し、吸気通路307, 307'及び排気通路308, 308'の開閉制御を行なう。
第23図は一方の吸気用回転弁310が全開位置をとり、吸気
通路307を燃焼室306に連通させた状態を示し、第24図はその吸気用回転弁310が全開位置をとった状態を示す。

そこで、この実施例では吸気通路307, 307', 排気通路308, 308'は第19図に示すように直線状をなして外方に所定の角度αで互いに拡開して傾斜しているために、これらの各通路307, 307', 308, 308'の開口端307a, 307'a, 308a, 308'a側に配設する吸気側回転弁310, 310'と排気側回転弁320, 320'との間の間隔を広くとることが可能となり、これに伴い、これらの各回転弁310, 310', 320, 320'の大型化を図ることが可能となる。

更に、回転弁本体の大型化が可能となるので、これに伴い有効ポート径が増大され吸、排気効率も向上する。
請求の範囲

1. 内燃機関（1:101;201;301）の燃焼室（6;106;206;306）に連通する吸、排気通道（7,8;107,108;207,208;307,307',308,308')にそれぞれ各別に配設され、これらの吸、排気通道をそれぞれ開閉する球状の弁体（113,23;113,123;213,223;313,313',323,323'）を備えた吸気用及び排気用回転弁（10,20;110,120;210,220;310,310',320,320'）と、これら吸、排気用回転弁の弁体を内燃機関（1:101;201;301）のピストン（4;104;204;304）の動きに連動して回転駆動して前記吸、排気用回転弁（10,20;110,120;210,220;310,310',320,320'）の開閉制御を行い、且つそれら回転弁を開弁位置及び閉弁位置に所定時間保持する間歇作動機能を有する動弁機構（30;130;230;330）とからなる、内燃機関の動弁装置。

2. 特許請求の範囲第1項において、前記動弁機構（30;230）は前記吸、排気用回転弁（10,20;210,220）を内燃機関（1;201）のピストン（4;204）の動きに連動して所定角度内で往復回転させてなる、内燃機関の動弁装置。
3. 特許請求の範囲第1項において、前記動弁機構（130；330）は前記吸、排気用回転弁（110；120；310；310'；320；320'）を内燃機関（101；301）のピストン（104；305）の動きに連動して一方向に回転駆動させる、内燃機関の動弁装置。

4. 特許請求の範囲第1項において、前記吸気通路（207；307；307'）及び排気通路（208；308；308'）はそれぞれ軸心を有し、それら軸心は前記ピストン（204；305）の摺合するシリンダの軸心に対して前記燃焼室（206；306）から離れるにつれて互いに遠ざかるように傾斜して設けられる、内燃機関の動弁装置。

5. 特許請求の範囲第1項或いは第2項において、前記動弁機構（30；230）はクランク軸（2；202）により回転される吸、排気用カム軸（31，32；231，232）と、該カム軸とそれぞれ一体のカム（35，36；235，236）と、回転可能な第1回転軸（40，41；240，241）と、それら第1回転軸に固着されると共に前記カム（35，36；235，236）の回転により対応する第1回転軸（40，41；240，241）回りにそれぞれ揺動し得るアーム（42，43；242，243）と、該アームにそれぞれ形成される歯車（42c，43

20
c ; 2 4 2 c , 2 4 3 c) と嚙合する歯車 (4 6 , 4 7 ; 2 4 6 , 2 4 7) を一端に固着され、他端には前記吸、排気用回転弁 (1 0 , 2 0 ; 2 1 0 , 2 2 0) の球状弁体 (1 3 , 2 3 ; 2 1 3 , 2 2 3) を固着される回転可能な第 2 回転軸 (4 4 , 4 5 ; 2 4 4 , 2 4 5) とからなる、内燃機関の動弁装置。

6. 特許請求の範囲第 1 項又は第 3 項において、前記動弁機構 (1 3 0 ; 3 3 0) はクラウン軸 (1 0 2 ; 3 0 2) により回転される主軸 (1 3 1 ; 3 3 1) と、該主軸に固着され、その両端面にピン (1 3 3 a , 1 3 3 b , 1 3 3 c , 1 3 3 d) を備えた駆動車 (1 3 3 ; 3 3 3) と、該駆動車の前記ピンとそれぞれ係合し得る溝 (1 3 5 a , 1 3 5 b , 1 3 5 c , 1 3 5 d , 1 3 7 a , 1 3 7 b , 1 3 7 c , 1 3 7 d) を有し、前記駆動車 (1 3 3 ; 3 3 3) の回転により、これらのピン及び溝が順次係合及び係合解除をなすことにより間歇的に回転する被動車 (1 3 5 , 1 3 7 ; 3 3 5 , 3 3 7) と、これらの被動車をそれぞれ一端に固着され、前記吸、排気用回転弁 (1 1 0 , 1 2 0 ; 3 1 0 , 3 1 0', 3 2 0 , 3 2 0') の球状弁体 (1 1 3 , 1 2 3 ; 3 1 3 , 3 1 3', 3 2 3 , 3 2 3') をそれぞれ他端に固着された回転可能な回転軸 (1 3 4 , 1 3 6 ; 3 3 4 , 3 3 6) とからなる、内燃機関の動弁装置。
7. 特許請求の範囲第1項又は第4項において、前記吸気通路（307, 307'）及び排気通路（308, 308'）はそれぞれ複数設けられ、これら複数の吸、排気通路に対応して吸気用回転弁（310, 310'）及び排気用回転弁（320, 320'）がそれぞれ複数個配設され、これら複数個の吸、排気用回転弁はそれぞれが同期して作動されることを特徴とする、内燃機関の動弁装置。

8. 特許請求の範囲第7項において、前記複数個の吸気用回転弁（310, 310'）の弁体（313, 313'）同士及び排気用回転弁（320, 320'）の弁体（323, 323'）同士はそれぞれがオーバム継手で連結される、内燃機関の動弁装置。

9. 特許請求の範囲第1項において、前記吸、排気用回転弁（10, 20; 110, 120; 210, 220; 310, 310', 320, 320'）は前記内燃機関（1, 101; 201; 301）の爆発行程において全閉位置で所定時間、停止状態に保持される、内燃機関の動弁装置。

10. 特許請求の範囲第1, 2又は第3項において、前記弁体（13, 23; 113, 123; 313, 313', 323, 323'）は孔（13b; 113b, 123b; 313b, 323b）を有し、この孔は直線状に形成される、内燃機関の動弁装置。
11. 特許請求の範囲第1、2或いは第4項において、前記弁体（213、223）は孔（213b）を有し、この孔は彎曲した形状とされる、内燃機関の動弁装置。
第21図
INTERNATIONAL SEARCH REPORT

International Application No. PCT/JP86/00161

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Int.Cl</th>
<th>F01L7/10</th>
</tr>
</thead>
</table>

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>F01L7/00 - 7/18</td>
</tr>
<tr>
<td></td>
<td>F16K31/44, F16K11/087, F16D3/04</td>
</tr>
</tbody>
</table>

Documented Searches other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

| Jitsuyo Shinan Koho | 1926 - 1985 |
| Kokai Jitsuyo Shinan Koho | 1971 - 1985 |

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, Y</td>
<td>JP, A, 60-26111 (Yugen Kaisha Syowa Jidosha) 9 February 1985 (09. 02. 85) Page 2, columns 3 to 4, Fig. 1 (Family: none)</td>
<td>1 - 11</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3.730.161 (Harold A. Bishop) 1 May 1973 (01. 05. 73) Column 4, line 66 to column 5, line 12, Fig. 2</td>
<td>1 - 11</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 3.526.216 (Jean Fernand Emile Ghislain Henvaux) 1 September 1970 (01. 09. 70) Fig. 1, Fig. 8</td>
<td>1, 3, 6, 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP, U, 56-92706 (Niigata Tekkosho Kabushiki Kaisha) 23 July 1981 (23. 07. 81) Fig. 3, Fig. 4 (Family: none)</td>
<td>1, 2, 5, 7, 10</td>
</tr>
<tr>
<td>Y</td>
<td>JP, U, 58-148372 (Yakura Kazuyuki and five others) 5 October 1983 (05. 10. 83) (Family: none)</td>
<td>8</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 19, 1986 (19. 05. 86)</td>
<td>June 9, 1986 (09. 06. 86)</td>
</tr>
</tbody>
</table>

International Searching Authority

Japanese Patent Office

Signature of Authorized Officer
国際調査報告
国際出願番号：PC1/JP 86/00161

I. 発明の属する分野の分類
国際特許分類（IPC）: Int. Cl.
F01L7/10

II. 国際調査を行った分野
調査を行った最小限資料

<table>
<thead>
<tr>
<th>分類体系</th>
<th>分類記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>F01L7/00-7/18</td>
</tr>
<tr>
<td></td>
<td>F16K31/44, F16K11/087</td>
</tr>
<tr>
<td></td>
<td>F16D3/04</td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行ったもの

| 日本国実用新案公報 | 1926-1985年 |
| 日本国公開実用新案公報 | 1971-1985年 |

III. 関連する技術に関する文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, Y</td>
<td>JP, A, 60-26111 (有限会社 昭和自動車) 9月 2日 1985 (09.02.85)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>第2頁, 第3-4欄, 第1図 (ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3730161 (Harold A. Bishop) 5月 1月 1973 (01.05.73)</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>第4欄, 第6-6行-第5欄, 第12行, Fig.2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 3526216 (Jean Fernand Emile Ghislain Henvaux) 9月 1月 1970 (01.09.70)</td>
<td>1, 3, 6, 9</td>
</tr>
<tr>
<td></td>
<td>Fig.1, Fig.8</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, U, 56-92706 (株式会社 新春鉄工所) 7月 2月 1981 (23.07.81)</td>
<td>1, 2, 5, 7, 10</td>
</tr>
<tr>
<td></td>
<td>第3図, 第4図 (ファミリーなし)</td>
<td></td>
</tr>
</tbody>
</table>

※引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」先行文献ではあるが、国際出願日以後に公表されたもの
「L」優先権主張を認義を提出する文献又は他の文献の発行日若しくは他の特段理由を確立するために引用する文献
（理由を付す）
「O」口頭による説明、使用、展示等に言及する文献
「P」国際出願日からかつ優先権の主張の基礎となる出願の日
の後に公表された文献

IV. 証明

国際調査を完了した日: 19.05.86
国際調査報告の発送日: 09.06.86

国際調査機関
日本国特許庁(ISA/JP)

特許庁審査官: 羅輪安夫

様式PCT/ISA/210(第2ページ) (1981年10月)
<table>
<thead>
<tr>
<th>第2ページから続く情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>（ FIG 極の続き）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP, U, 5.8-148372 (矢倉和数 外5名)</td>
</tr>
<tr>
<td>5.10月, 1983 (05.10.83) (ファミリーなし)</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

V. 一部の請求の範囲について国際調査を行わないときの意見

次の請求の範囲については特許協力条約に基づく国際出願等に関する法律第8条第3項の規定によりこの国際調査報告を作成しない。その理由は、次のとおりである。

1. □ 請求の範囲_________は、国際調査をすることを要しない事項を内容とするものである。

2. □ 請求の範囲_________は、有効な国際調査をすることはできる程度にまで所定の要件を満たしていな国際出願の部分に係るものである。

3. □ 請求の範囲_________は、従属請求の範囲でありかつPCT規則6.4(a)第27文の規定に従って起草されていない。

VI. 発明の単一性の要件を満たしていないときの意見

次に述べるようにこの国際出願には三以上の発明が含まれている。

1. □ 追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は、国際出願のすべての調査可能な請求の範囲について作成した。

2. □ 追加して納付すべき手数料が指定した期間内に一部しか納付されなかったので、この国際調査報告は、手数料の納付があった発明に係る次の請求の範囲について作成した。

3. □ 追加して納付すべき手数料が指定した期間内に納付されなかったので、この国際調査報告は、請求の範囲に最初に記載された発明に係る次の請求の範囲について作成した。

4. □ 追加して納付すべき手数料を要求するもんどなく、すべての調査可能な請求の範囲について調査することができたので、追加して納付すべき手数料の納付を命じなかった。

追加手数料異議の申立てに関する注意

□ 追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされた。
□ 追加して納付すべき手数料の納付に際し、追加手数料異議の申立てがされなかった。