发明名称 金属型材连续成型机

摘要

一种金属型材连续成型机，属于轧钢机械技术领域。用于对金属轧材的连续轧制成型。其特征在于由内外
幅轴座 7 和 6 装在轧头支架 8 上的内轧辊 4 和外轧
幅 5 所组成的轧制单元体，外幅轴座 6 通过压下螺丝 15
与轧头支架 8 联结，内轧辊 4 支承在中心轮 3 上，并连
同内幅轴座 7 在轧头支架 8 内沿轨道滑动，还与以销轴
9 的轴心 O' 为中心进行摆动的轧头支架 8 通过销轴 9 联
结在主支架 1 上。同现有同类设备比较，具有设备数量
减少，吨位减少，占地面积少，厂房设备投资费用少，而
且还能提高机器的刚度，减小机器零部件的尺寸，以及
省去了复杂的电控设备等。
权利要求书

1、一种金属型材连续成型机，一是由动力及传动系统和若干个轧制单元体（即轧头组件）所组成，将一个由动力传动系统带动的中心轮（3）安装在固定的机架（1）上，再将若干个靠中心轮（3）摩擦传动的轧制单元体的内轧辊（4）串列安装在中心轮（3）的圆周面上。其特征在于所述的轧制单元体，是通过内外轴座（7）和（6）安装在轧头支架（8）上的内外轧辊（4）和（5）所组成的部件，外轴轴座（6）通过压下螺栓（15）与轧头支架（8）联接，内轧辊（4）支撑在中心轮（3）上，并连同内轴轴座（7）在轧头支架（8）内沿轨道滑动，还与以销轴（9）的轴心（O’）为回转中心进行摆动的轧头支架（8）通过销轴（9）联接在主机架（1）上。

2、如权利要求1所述的金属型材连续成型机，其特征在于内轧辊的直径可为外轧辊直径的1/2—2/3。

3、如权利要求1所述的金属型材连续成型机，其特征在于各轧制单元体的内轧辊的轧制直径依轧制道次的增加而逐渐增大，即 d1 ≤ d2，…，≤ d8。

4、如权利要求1所述的金属型材连续成型机，其特征在于中心轴上并列安装两台或更多台连续成型轧机。
说明

金属型材连续成型机

本发明属于冶金机械领域，具体涉及一种中小型金属型材或线材连续成型设备。

目前，国内外广泛应用的中小型金属型材连续成型设备都是采用将若干个轧制单元体按串列形式在地面上排成一条连续轧制的生产线，轧材依次通过各个轧制单元体轧制成型。这种排列形式的轧制单元体组合，其驱动方式可以采用各个单元体单独传动或者采用各单元体集体统一传动，前者可以单独调节每个单元体间轧材的张力，但电气控制系统很复杂，造价也昂贵，后者虽然其控制系统比较简单，但是增加了机械传动系统的复杂性，而且一般不能自动调节各轧制单元体间轧材的张力。另外，这种在地面上串列的连轧机组，其设备数量多、吨位重、占地面积大、投资费用也大。

本发明目的就是为了改善上述金属型材连续成型机的缺点，而提供一种全新式的新型金属型材连续成型机。

本发明目的就是这样实现的：新的金属型材连续成型机，是由动力及传动系统和若干个轧制单元体（即轧头组件）所组成，将一个由动力传动系统带动的中心轮安装在固定的机架上，再将若干个靠中心轮摩擦传动的轧制单元体的内轧辊串列安装在中心轮的圆周面上，其特征在于所述的轧制单元体是通过内外辊轴座安装在轧头支架上的内外轧辊所组成的部件，安装外轧辊的外轴座通过压下螺丝与轧头支架连接，内轧辊支承在中心轮的圆周面上，并连同内侧轴座在轧头支架内沿滑道滑动，还与以轴棱的轴心为回转中心进行摆动的轧头支架通过销轴连接在主机架上，外轧辊是被动转动的，进行对金属轧材的连续轧制成型。

本发明的优点及积极效果是：

1、由于采用了将多个轧制单元体串列安装在同一个主机架的圆周上，由一个动力传动系统带动进行连续轧制成型，所以它具有轧制设备数量少、吨位轻、占地面积小、投资费用少等优点。

2、由于各轧制单元体串列安装在同一个主机架的圆周上，所以，各道轧制力在其主机架与中心轮上是沿圆周径向分布的，可以相互抵消，大大地降低了设备的承栽负荷，故可使机器的刚度大大地提高，也可减小机器零件的尺寸。

3、由于各轧制单元体是由一台电动机通过减速器及动力分配系统对各轧制单元体内工作辊进行驱动，故不需要复杂昂贵的电气控制系统，可大大地节省设
备的投时。

附图说明：
图 1 为本发明正视的示意图
图 2 为本发明的侧视图
图 3 为内外型岩缝隙调节示意图
图 4 为内外型岩缝隙调节示意图
图 5 为双列型岩机结构图
图中 1-主机架 2-中心轴 3-中心轮 4-内型岩 5-外型岩
6-外型岩轴 7-内型岩轴 8-轴头支架 9-轴头
11-减速器 12-电动机 13-弹性组件 14-型岩 15-压下螺栓
F1、F2……F8 一各型岩单元体
0—中心轴 2 和中心轴 3 的轴心 0’—销轴 9 的轴心 θ—调节转角
22’—以 0’为中心的弧段 1'—以 0 为中心的弧段
d1、d2……d8 一各型岩单元体型岩的型制直径

实施例说明：

如图 1、图 2 所示，主机架 1 安装在底架 10 上。F1、F2……F8 分别代表各个型制单元体（即型岩组件），它是通过内外型岩轴 7 和 6 安装在轴头支架 8 上的内外型岩 4 和 5 所组成的部件，内外型岩轴 6 通过压下螺栓 15 与轴头支架 8 联接，型岩 4 支承在中心轮 3 上，并连同型岩轴 7 在轴头支架 8 内沿轨道滑动，还与以销轴 9 的轴心 0’为回转中心进行摆动的轴头支架 8 通过销轴 9 联接在主机架 1 上。当开动电动机 12 通过减速器 11 带动中心轴 2 及中心轴 3 转动时，再通过中心轮 3 与型岩 4 的摩擦作用，带动内工作型 4 转动，便可将型岩 14 咬入进行连续型岩制成型。

弹性组件 13，围绕安装在各型制单元体上，当需要对内外型岩缝隙进行调整时，如图 3 所示以调整型岩 F6 为例，在调整之前，先通过调节弹性组件 13 的拉力，将 F6 的轴头向开口方向（即右方）摆动一个角度 θ，当进行型制时，如果 F6、前后张力相等时，型制系统处于平衡状态，当前后张力不相等时，譬如说前张力大于后张力，这说明 F5 与 F6 之间型岩金属储量减少了，而 F6 与 F7 之间型岩金属储量增加了，这时 F6 轴头在前后张力差作用下以 0’为中心向开口方向摆动，外型岩随轴头一起以 0’为中心向右摆动，其型岩中心摆动的轨迹为一弧段 22’，而内型岩是靠中心轮 3 支承者，又可在轴头支架 8 内滑动，故它是以中心轮轴心 0 为回转中心摆动，其摆动的摆动轨迹是弧段 11’，摆动的结果是内外型岩之间的型缝减小，使 F5 与 F6 间金属流出量和 F6 与 F7 之间金属
流入量均减少，使 F6 前后张力趋于相等，最终达到新的平衡。这个调态系统完全是自动的，其输入信号来自整个前后张力，调整弹性件 13 可以控制系统的灵敏程度，无需复杂的电气控制系统。

内轧辊的直径，一般可为外轧辊直径的 1/2—2/3，这是因为内轧辊是支承在中心轴上，内轧辊直径减小，有利于轧制变形。

图 4 表示内轧辊的轧制直径随轧制道次的增加而增大，即 d1≤d2≤…≤d8。

图 5 所示为根据工艺的需要，在中心轴 2 上可以安装两台或多台连续成型机。