(21) International Application Number: PCT/IB2016/001650

(22) International Filing Date: 20 October 2016 (20.10.2016)

(25) Filing Language: English

(26) Publication Language: English

(74) Agent: CHAPMAN, Paul; Marks & Clerk LLP, Atholl Exchange, 6 Canning Street, Edinburgh EH3 8EG (GB).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, TR, UA).

(51) International Patent Classification:
- G01N 33/569 (2006.01)
- C12N 5/00 (2006.01)
- C12N 5/0775 (2010.01)

(54) Title: METHODS FOR CULTURING CELLS AND KITS AND APPARATUS FOR SAME

(57) Abstract: Provided herein are methods for culturing cells, including stimulating or expanding (proliferating), a plurality of cells in a composition of cells such as a population of lymphocytes. In some aspects, provided methods and reagents for the culturing, such as stimulation or expansion (proliferation), of cell populations involve binding of agents to a molecule on the surface of the cells, thereby providing one or more signals to the cells. In some cases, the reagents are multimerization reagents and the one or more agents are multimerized by reversibly binding to the reagent. In some aspects, the multimerized agent can provide for expansion or proliferation or other stimulation of a population of cells, and then such stimulatory agents can be removed by disruption of the reversible bond. Also provided are compositions, apparatus and methods of use thereof.

Declarations under Rule 4.17:
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
— with sequence listing part of description (Rule 5.2(a))
METHODS FOR CULTURING CELLS AND KITS AND APPARATUS FOR SAME

Cross-Reference to Related Applications

[0001] This application claims priority from U.S. provisional application No. 62/245,249 filed October 22, 2015, entitled "Methods for Culturing Cells and Kits and Apparatus for Same," which is incorporate by reference in its entirety.

Incorporation by Reference of Sequence Listing

[0002] The present application is being filed with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 735042002740SeqList.txt, created on October 17, 2016, which is 39,887 bytes in size. The information in electronic format of the Sequence Listing is incorporated by reference in its entirety.

Field

[0003] The present disclosure relates in some aspects to the incubation or culturing of cells, e.g., target cells, and compositions thereof, as well as to the enrichment, separation and/or selection of cells, including target cells used in such incubations, from other components, such as from other cells in a composition. Incubation and separation steps may be performed in various orders or may overlap temporally. The methods typically involve the use of reagents, agents, and complexes that (and/or that contain components that) reversibly bind to one another, where such binding is generally reversible by the addition of a substance. Thus, in some embodiments, following or during incubation and/or selection, reagents can be dissociated by addition of a substance, to allow downstream processing, subsequent rounds of stimulation or separation, and/or to control signaling quality or quantity received by the cells. In some aspects, the methods involve binding of agents to a molecule on the surface of the cells, thereby providing one or more signals to the cells. The methods generally use reagents that contain a plurality of binding sites for agents, such as multimerization reagents, and thus the one or more agents are multimerized by reversibly binding to the reagent, e.g., thereby creating a stimulatory reagent (multimerized agent) and/or a selection reagent (multimerized selection agent), having stimulatory or selection agents multimerized thereon. In some embodiments, the incubation is carried out in the presence of a support, such as a stationary phase or solid phase, which in some
cases is a stationary phase or solid phase to which selection agents are bound. In some embodiments, the cells to be stimulated are immobilized, generally indirectly, via provided reagents, to the stationary phase. Also provided are compositions, apparatus and methods of use thereof.

Background

[0004] Various strategies are available for stimulating and/or enriching cells and cell populations in vitro. Available strategies include those for enriching and/or expanding antigen-specific T cells in vitro for use in adoptive cellular immunotherapy or cancer therapy in which infusions of such T cells have been shown to have anti-tumor reactivity in a tumor-bearing host or for use in administration to patients with viral infections. Improved strategies are needed for culturing and enriching and selecting cells and populations in vitro, including for research, diagnostic and therapeutic purposes. Provided are reagents, methods, articles of manufacture and kits that meet such needs.

Summary

[0005] Provided are methods involving the manipulation, culture, and/or processing of cells, such as target cells, and/or compositions thereof. Also provided are compositions, agents, reagents, and apparatuses, and articles of manufacture for use in the methods, such as in any of the methods. The methods generally involve the incubation (e.g., culturing) of the cells, for example, to stimulate the cells.

[0006] For example, in some embodiments, the methods include incubating a composition comprising target cells, in the presence of a stimulatory agent that is reversibly bound to a reagent. In some aspects, the reagent includes a plurality of stimulatory agent-binding sites capable of reversibly binding to the stimulatory agent. The incubation may be carried out under conditions whereby the stimulatory agent specifically binds to a molecule expressed on the surface of the target cells, thereby inducing or modulating a signal in the target cells.

[0007] In some embodiments, the methods further include enriching or selecting cells and compositions thereof, such as target cells to be stimulated and/or having been or being so-stimulated. In some embodiments, the methods involve both incubation (e.g., for stimulation) and enrichment or selection of cells, for example to select a particular population of target cells and to stimulate or otherwise culture such cells, either after or contemporaneously with the
selection. In some embodiments, the enrichment or selection and the stimulation are carried out sequentially, in any order, overlap at least in part temporally, or are carried out simultaneously.

[0008] In some embodiments, various steps of the methods (and/or the methods in their entirety) are carried out in a closed system, such as a sterile system; among the provided apparatuses and articles are those for use in performing the methods in such closed or sterile systems. In some embodiments, the cells are T cells.

[0009] In some aspects the method involves incubating a composition containing T cells in the presence of an agent (which in some cases may be referred to as a first agent, for example, to distinguish it from additional agents, e.g., second, third, etc., agents used in the methods or reagents), and/or a complex containing the same, such as a multimerized agent or reagent containing agents in multimerized form. The immobilization of the agent to the reagent may be reversible. In some aspects, the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, CI; and/or the stimulatory agent further comprises one or more of the binding partner, CI. In some aspects, the plurality of stimulatory agent-binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, CI; and/or the stimulatory agent comprises two or more of the binding partner, CI. The stimulatory agent may further include a binding site, B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.

[0010] In some aspects, the agent is a receptor-binding agent, e.g., a stimulatory agent, such as one capable of delivering or inducing or modulating a signal to the target cell. The receptor-binding agent (e.g., stimulatory agent) may be reversibly bound to a reagent containing a plurality of binding sites capable of reversibly binding to the receptor-binding agent and thus capable of acting as a multimerizing reagent, to form multimers of the agent on an oligomeric reagent. In some aspects, the receptor-binding agent is capable of specifically binding to a molecule on the surface of the cells, e.g., T cells, such as in a manner that induces or modulates a signal in the cells, e.g., the T cells, in the composition.

[0011] In some embodiments, the reagent bound to the stimulatory agent (the complex thereof which in some cases can be referred to as a stimulatory reagent) is oligomeric in nature yet is soluble, not bound to a solid support, bead, rigid particle, spherical or substantially
spherical particle, or stationary phase. In some aspects, the reagent has a size that is less than 20 nm, less than 10 nm, less than 5 nm or less than 1 nm. In some instances, the reagent has a density of less than 1.2 g/cm3 or less than 1.0 g/cm3.

[0012] In some embodiments, such stimulatory agent (e.g., first agent) is not, and is not bound to or associated with, a solid support, stationary phase, a bead, a microparticle, a magnetic particle, and/or a matrix during said incubation, and/or is flexible, does not contain a metal or magnetic core, is comprised entirely or primarily of organic multimer, is not spherical, is not substantially spherical or uniform in shape, and/or is not rigid.

[0013] In some embodiments, including such embodiments where the reagent is not bound to a solid phase or bead or other component as described, the stimulation is nonetheless carried out in the presence of a support, such as a stationary phase and/or a solid phase. In some aspects, at least a plurality of the target cells are immobilized on such a support during at least a portion of the incubation. The immobilization is optionally reversible.

[0014] In some embodiments, stimulation and reversible immobilization on the support is via the same reagent, such that a reagent is used for separation and stimulation. For example, the methods may include (a) combining a composition comprising target cells and a stimulatory agent reversibly bound to a reagent that is immobilized on a support, wherein the reagent comprises a plurality of stimulatory agent-binding sites, each capable of reversibly binding to the stimulatory agent, and is capable of specifically binding to a molecule expressed on the surface of the target cells, thereby immobilizing the target cells on the support; and (b) separating or removing, from the immobilized target cells, other cells of the composition; and (c) incubating at least some of the immobilized target cells in the presence of the stimulatory agent, under conditions whereby a signal is induced or modulated in at least a plurality of the target cells.

[0015] In some cases, the support is or comprises a stationary phase; and/or the support is or comprises a solid support. In some aspects, the stimulatory agent is a first agent and the at least a portion of the incubation is carried out in the presence of a second reagent, which is immobilized on the support, and a selection agent that is reversibly bound to said second reagent and is also capable of binding to a molecule on the cells, thereby facilitating the reversible immobilization of the cells during the incubation on the support. The second reagent can include a plurality of selection agent-binding sites, such as one or more of (e.g., two or more of)
a binding site, Yl, each capable of reversibly binding to the selection agent, such as via a binding partner, Dl, which is contained in the selection agent. In some embodiments, the selection agent further includes a binding site Y2, which is also capable of binding to Dl. In some embodiments, the selection agent further comprises a binding site, B1, for example, such that the specific binding between the selection agent and the selection marker comprises interaction between B1 and the selection marker.

[0016] In some embodiments, the second reagent and the selection agent are reversibly bound together in a complex at the time of said combining, wherein the combining is carried out by combining the cells with the complex. In other embodiments, the second reagent and the selection agent are not in a complex at the time of said combining, wherein the combining is carried out by separate addition of the second reagent and selection agent. Thus the agents may be pre-bound or not prior to combining with the cells or other compounds or compositions.

[0017] In some embodiments, the methods further include enrichment or selection, such as by combining at least a plurality of the target cells; a selection agent that (i) is capable of specifically binding to a selection marker expressed by one or more of the at least a plurality of the target cells of the plurality and (ii) is immobilized, or is capable of being immobilized, on a support, directly or indirectly; and (c) a support, whereby one or more target cells of the at least a plurality become immobilized on the support via the selection agent.

[0018] The methods further may include combining, separating and/or removing, from the immobilized target cells, other cells of the composition, performing a wash step, which may be carried out prior to initiation of said incubation.

[0019] The support may be comprise a stationary phase and/or is or comprises a solid support.

[0020] In some aspects, the enrichment and stimulation are carried out sequentially or simultaneously or partially overlap; in some aspects, incubating is carried out and/or is initiated prior to the combining; or the incubating is carried out and/or is initiated subsequently to the combining. In some aspects the combining is carried out during at least a portion of the incubation.

[0021] In some aspects, the reversible binding between various of the components in the embodiments (e.g., between the first or stimulatory agent and the reagent, e.g., multimerization reagent, and/or between the selection agent and the second reagent, or any or all described as
reversibly binding) is capable of being disrupted by the addition of a substance. In some aspects, the substance is or comprises a free binding partner; or the substance is or comprises a competition agent; and/or the substance effects a change that disrupts the binding, other than by competition for said binding. Thus disrupting by the substance may be by way of competition, such as by competing for binding with one component to another, e.g., with a more favorable binding property thereto. In some aspects, the substance is one that is not detrimental to the target cells or is not detrimental to a majority of the target cells, such that the cells may be used in certain desired downstream applications. In some cases, the addition of the substance to the target cells, in an amount sufficient to effect said disruption, does not reduce the survival and/or proliferative capacity of the cells by less than at or about 90 %, 80 %, 70 %, 60 %, or 50 %, as compared to the absence of the substance under the otherwise same conditions. Exemplary are substances that are or include a peptide or polypeptide, such as those that bind to streptavidin or streptavidin muteins and/or to biotin-binding sites thereof.

[0022] The substance may include a molecule from the group consisting of: streptavidin-binding molecules; biotin; D-biotin; biotin analogs; biotin analogs that specifically bind to streptavidin or a streptavidin analog having an amino acid sequence Val^{44}.Thr^{45}.Ala^{46}.Arg^{47}, or Ile^{44}.Gly^{45}.Ala^{46}.Arg^{47}, at sequence positions corresponding to positions 44 to 47 of a wild type streptavidin; and peptides comprising or consisting of a sequence set forth in any of SEQ ID NO: 1, 4, 5, and 7. In other embodiments the substance is or includes a metal chelator, which is optionally EDTA or EGTA.

[0023] In some aspects, the agents are monomeric, such as where they only include one of a given binding site, such as stimulatory agents including only one of the site, B2 and/or selection agents including only one of B1. For example in some cases, the stimulatory agent comprises only a single binding site that specifically binds to the molecule, the stimulatory agent specifically binds to the molecule in a monovalent manner, and/or includes only a single binding site that specifically binds to the selection marker; and/or the selection agent specifically binds to the selection marker in a monovalent manner.

[0024] The binding sites for reversible binding on the stimulatory reagent/agent (e.g., C and Z) can be the same or different, respectively, or disruptable by the same substance, or not, to those on the selection reagent/agent (e.g., D and Y binding sites). The first and second reagents
may be substantially the same, and optionally other than one (e.g., the selection agent-binding reagent) being immobilized on the support.

[0025] Also provided are the agents, reagents, complexes, and compositions or articles of manufacture, e.g., kits, containing the same, such as those for carrying out any of the embodiments of the methods. For example, provided is a composition comprising the stimulatory agent reversibly bound to the multimerization reagent, which is optionally a first reagent, wherein the stimulatory agent is capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell.

[0026] In some embodiments, the composition and/or article further includes the support; a second reagent immobilized on the support; and a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on the target cell.

[0027] The composition may further include the target cell and/or a non-target cell, which does not express the (first) selection marker and/or second selection marker, and the target cell optionally comprises a recombinant molecule or nucleic acid expressing a recombinant molecule, which optionally is a chimeric receptor. The composition may further include the substance capable of disrupting the binding.

[0028] In some embodiments, the article of manufacture includes the stimulatory agent, the reagent that reversibly binds thereto, and optionally the second reagent, that binds to the selection agent, and optionally the selection agent, and optionally further the support, with or without the reagent pre-immobilized thereto. The components may be in separate containers or the same containers or combinations thereof. The reagents capable of reversible binding may be in the article of manufacture pre-bound, or separated for later functionalization of the reagents with the agents. In some aspects, the support and second support are present in separate containers, wherein said different containers are optionally fluidly connected to one another, permitting passage of cell suspension through or past one of the supports, followed by the other; the article further includes a substance capable of disrupting the reversible binding between one or more of the reagents and one or more of the agents.

[0029] In some embodiments, the second reagent is further comprised within the container; and/or the (first) selection agent and/or second selection agent are further comprised in the container; and/or the article of manufacture further comprises a second container, optionally
containing the (first) stimulatory agent and/or second stimulatory agent, and/or the first reagent; and/or the article further comprises a third container in which the second selection agent and/or the third reagent are comprised; and/or the article further comprises a fourth container, in which the substance is comprised.

[0030] Also provided are apparatuses for carrying out the provided methods, such as any of the provided embodiments of the methods. Such an apparatus may in some embodiments include any of the provided compositions or provided articles of manufacture. The apparatus may include or further include a fluid inlet, such as one being fluidly connected to the composition or to one or more component of the apparatus, and/or a fluid outlet, being fluidly connected to the composition and/or to one or more component of the apparatus.

[0031] In some embodiments, the apparatus includes (a) the stimulatory agent capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell; (b) a first reagent, which is capable of reversibly binding to the stimulatory agent; (c) a second reagent; (d) a support, (e) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on a target cell. The components in (a)-(e) are in some aspects present in a plurality of containers, at least some of which are in fluid connection, optionally in a closed or sterile system, whereby one or more of the components pass from one container to another within the apparatus. The apparatus in some aspects further includes a sample outlet, such as one fluidly connected to at least one support, e.g., stationary phase for chromatography.

[0032] In some embodiments, the article of manufacture or apparatus is a functionally closed system. The apparatus may further include one or more controls, capable of regulating or adjusting one or more feature of the environment in which one or more various steps are carried out such as pH, pO$_2$, pCO$_2$, and/or thermostatic control of one or more containers or components thereof and/or of at least one of the at least one stationary phase for chromatography.

[0033] The article or apparatus may further include a fluid connection to a container containing medium and/or one or more nutrients and/or one or more carbon sources, whereby the connection is capable of delivering such medium, nutrients, and/or carbon sources to cells within the apparatus, optionally when said cells are immobilized on the stationary phase for chromatography. In some aspects, the container is an output or formulation container, e.g., containing buffers or other components suitable for formulation of cells. In some aspects, at
least one of the recited components and/or a container including or for housing the same is
detachable from the apparatus in a sterile or aseptic fashion.

[0034] In some embodiments, the methods are carried out all or partly in an automated
fashion. Thus in some embodiments, the apparatus or article is capable of carrying out the
method in an automated fashion, such as in a way that reduces or eliminates the need for user
control or interaction during one or more step.

[0035] In some embodiments, the incubation is carried out subsequently to said combination
and the method further comprises transferring target cells of the composition to a different
environment, said environment being suitable for cell culture or expansion. In some cases, the
cells are transferred within a closed system or closed container to the different environment; or
wherein the transfer comprises removing the cells so transferred from a first container and
transferring the cells to a second container. The different environment may be within an
incubator. The transfer in some aspects is carried out within a closed system, wherein said
transfer comprises transfer of a steriley-sealed container containing the cells to a sterile
environment or to the different environment within the sealed container, and/or wherein said
transfer is carried out within a sterile environment or under sterile conditions.

[0036] In some embodiments, following transfer, the cells are detached from the stationary
phase by disrupting said reversible binding and optionally removing said cells from the presence
of the stationary phase. In some cases, the removed cells are further expanded. In some aspects,
environment, e.g., pH, pO₂, pCO₂, and/or temperature is controlled, and/or nutrients are fed to
cells comprised in the at least one of the at least one stationary phase for chromatography while
being in the environment suitable for expansion, during at least a portion of said incubation,
optionally in an automated fashion. Transfer for expansion to the suitable environment can
include detaching the stationary phase from the cells, while said stationary phase is present in
the apparatus.

[0037] In some embodiments, the methods involve features, such as particular steps,
selection of particular agents and/or selection of particular reagents, which allow the control or
adjustment of the type or strength or duration of the signal received or modulated via the
reagent, and/or of properties of the output composition or cell population(s) ultimately generated
by the methods. In some embodiments, such features are possible due to advantageous
properties of the agents and reagents, such as the reversibility of binding of the individual
components of the agents or reagents, and thus, the reversibility of the binding of the multimerized agents and the cells. Such properties of the reagents can be exploited to achieve control in a number of ways. For example, in some embodiments, the methods, via reversibility of binding, include exerting temporal control of the signal, controlling the duration of the period in which the cells are in contact with the multimerized agents, and/or the duration of the signaling induced thereby.

[0038] In some embodiments, the methods involve control, e.g., precise control, of the length of the time period under which such agents are bound to cells. For example, this may be done by actively reversing such binding at a particular timepoint, and in some cases while still maintaining the cells for an additional time period other culture conditions, such as incubation at a physiological temperature and/or with various nutrients. Thus, as opposed to other methods which simply involve the termination of all or substantially all signals received by the cells, the provided methods in some aspects allow the specific termination or disruption of signals delivered by particular reagents.

[0039] Likewise, in some embodiments, the reversibility allows the reagents to be modular in nature, permitting the substitution of one or more components thereof without engineering or new reagents, e.g., by simply reversing binding and combining with additional agents or reagents, under conditions where reversible binding is induced. For example, by being able to reversibly bind various stimulatory agents to the same multimerization reagent, either at the same time or at different times, the user of the provided methods and compositions may adjust the nature of the particular signal being delivered, e.g., by substituting one or more stimulatory agent for another one or more stimulatory agent, such as to induce a stronger or weaker or qualitatively different signal, depending on the desired outcome.

[0040] In some embodiments, temporal control and modularity are used in combination, e.g., by incubating cells in the presence of one agent for a certain period of time, inducing reversal of binding by disruption, followed by incubation in the presence of other or more different agents or reagents. For example, in one embodiment, T cells are initially stimulated with a reagent to deliver a particular strength or quality of signal, and after a certain period of time, such signal is disrupted and a qualitatively or quantitatively different (e.g., stronger or weaker or activating different signaling pathways or known to be important for different differentiation pathways) signal is substituted. In some embodiments, such control provides
advantages, for example, allowing the user to maximize desired outcomes (e.g., expansion or persistence) while avoiding undesirable outcomes such as exhaustion or anergy.

[0041] In some embodiments, temporal control is achieved by disrupting the reversible binding of the reagents or agents, such as by the addition of a substance. For example, in some embodiments, within a period of time, e.g., within 5 days after initiation of the incubation, and/or within a certain percentage of the total length of the incubation, such as within 1/5, 1/4, 1/3, or 1/2 of the time, the reversible binding between the receptor-binding agent and the reagent is disrupted. Thus, in some cases the method results in the generation of cultured T cells.

[0042] In some aspects, the incubation is performed under conditions in which the receptor-binding agent specifically binds to the molecule, thereby inducing or modulating the signal in one or more T cells in the composition.

[0043] In some embodiments, the disruption of the binding between the receptor-binding agent and the reagent is effected more than 30 minutes after the initiation of the incubation. For example, in some aspects, the disruption of the binding between the receptor-binding agent and the reagent is effected between 1 hour and 4 days after initiation of the incubation, between 6 hours and 3 days after initiation of the incubation, between 12 hours and 2 days after initiation of the incubation, or between 1 day and 3 days after initiation of the incubation. In some cases, the disruption of the binding between the receptor-binding agent and the reagent is effected between about 1 hour and about 4 days after initiation of the incubation, between about 6 hours and about 3 days after initiation of the incubation, between about 12 hours and about 2 days after initiation of the incubation, or between about 1 day and about 3 days after initiation of the incubation. In some aspects, the disruption is effected greater than or equal to about 1 hour after initiation of said incubation and within 1 day, 2 days, 3 days or 4 days after initiation of the incubation.

[0044] In some embodiments, the receptor-binding agent is capable of initiating a TCR/CD3 complex-associated signal in the T cells. In some aspects, the receptor-binding agent specifically binds to a member of a TCR/CD3 complex. In some instances, the receptor-binding agent specifically binds to CD3.

[0045] In some embodiments, the molecule (the molecule on the surface of the T cells) is a component of the TCR/CD3 complex or is CD3. In some aspects, the molecule is a first molecule and the receptor-binding agent is further capable of specifically binding to a second
molecule on the surface of one or more of the T cells. In some cases the second molecule is capable of inducing or enhancing, dampening, or modifying a signal delivered through the first molecule in the T cells.

[0046] In some aspects, the receptor-binding agent includes a binding partner CI. In some aspects, the plurality of binding sites contained by the reagent includes two or more binding sites, Zl. In some instances, the two or binding sites Zl each are capable of binding to the binding partner CI to form the reversible bond between the receptor-binding agent and the reagent.

[0047] In some embodiments, the disruption of the binding between the receptor-binding agent and the reagent includes introducing to the cells a composition containing a substance capable of reversing the bond between the receptor-binding agent and the reagent.

[0048] In some cases, the receptor-binding agent is a first receptor-binding agent and the incubation is further carried out in the presence of a second receptor-binding agent. In some such cases, the second receptor-binding agent is capable of specifically binding to a second molecule on the surface of one or more of the T cells. In some aspects, the second molecule is capable of enhancing, dampening, or modifying a signal delivered through the first molecule in the T cells.

[0049] In some embodiments, the reagent contains a plurality of binding sites capable of reversibly binding to the second receptor-binding agent. In some such cases, the second receptor-binding agent is reversibly bound to the reagent. In some aspects, the plurality of binding sites capable of reversibly binding to the first receptor-binding agent and the plurality of binding sites capable of reversibly binding to the second receptor-binding agent can be the same or can be different.

[0050] In some aspects, the second receptor-binding agent includes a binding partner CI or C2, which is capable of reversibly binding to the two or more binding sites Zl. In some such instances, the first and second receptor-binding agents are reversibly bound to the reagent via the two or more binding sites Zl. In some cases, the second receptor-binding agent contains a binding partner C2 and the reagent further contains a plurality of binding sites Z2. The plurality of binding sites Z2 may be capable of binding to the binding partner C2 to form the reversible bond between the second receptor-binding agent and the reagent. In some aspects, C2 and CI are the same or substantially the same, or contain the same or substantially the same moiety. In
some instances, Z1 and Z2 are the same or substantially the same or contain the same or substantially the same moiety.

[0051] In some cases, the reagent is a first reagent and the incubation is carried out in the presence of at least a second reagent which is reversibly bound to the second receptor-binding agent.

[0052] In some embodiments, the incubation is performed under conditions in which the second receptor-binding agent specifically binds to the second molecule. In some such aspects, the bind of the second receptor-binding agent to the second molecule induces or modulates a signal, e.g., that enhances, dampens, or modifies a signal delivered through the first molecule in the T cells.

[0053] In some of any such embodiments, disruption of the binding between the first and second receptor-binding agents and the reagent terminates or lessens the signal induced or modulated by the first receptor-binding agent and terminates or lessens the signal induced or modulated by the second receptor-binding agent.

[0054] Provided herein in some embodiments is a method for culturing T cells that includes incubating a composition containing T cells in the presence of a first receptor-binding agent that is capable of specifically binding to a first molecule expressed on the surface of the T cells. In some aspects, the binding of the first receptor-binding agent to the first molecule induces or modulates a TCR/CD3 complex-associated signal in the T cell. In some such embodiments, the composition further is incubated in the presence of a second receptor-binding agent that is reversibly bound to a reagent containing a plurality of binding sites capable of reversibly binding to the second receptor-binding agent. In some aspects, the second receptor-binding agent is capable of specifically binding to a second molecule on the surface of the T cells. In some cases, the binding of the second receptor-binding agent to the second molecule induces or modulates a second signal in the T cell, such as to enhance, dampen or modify a signal delivered through the first molecule. In some aspects, within 5 days after initiation of the incubation, the reversible binding between the second receptor-binding agent and the reagent is disrupted, thereby generating cultured T cells.
In some embodiments, the incubation is performed under conditions in which the first receptor-binding agent specifically binds to the first molecule and/or the second receptor-binding agent specifically binds to the second molecule, thereby inducing or modulating one or more signals in the T cells.

In some embodiments, the second receptor-binding agent includes a binding partner CI. In some such embodiments, the plurality of binding sites contained by the reagent includes two or more binding sites, Z1, which each are capable of binding to the binding partner CI to form the reversible bond between the second receptor-binding agent and the reagent.

In some aspects, the second signal is a signal other than a TCR/CD3 complex-associated signal. In some cases, the second signal is capable of enhancing or potentiating a TCR/CD3 complex-associated signal.

In some embodiments, the second molecule is a costimulatory molecule, accessory molecule, cytokine receptor, chemokine receptor, immune checkpoint molecule or is a member of the TNF family or the TNF receptor family. In some instances, the second molecule is CD28, CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-IBB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some such instances, the second molecule is CD28. In some embodiments, the modular nature of the reagents allows substitution of one or more costimulatory and/or activating reagents, including temporally during a given incubation. For purposes of selection, modularity can also allow serial selection and/or stimulation, where reagents are removed between steps.

In some aspects, disruption of the binding between the second receptor-binding agent and the reagent (which can be the second reagent) includes introducing to the cells a composition containing a substance capable of reversing the bond between the second receptor-binding agent and the reagent, which can be the second reagent. In some embodiments, the disruption terminates or lessens the signal induced or modulated by the second receptor-binding agent or the additional molecule is CD28 and the disruption terminates or lessens the CD28 costimulatory signal in the T cells.

In some aspects, after the disruption, the composition containing the T cells is further incubated. In some such aspects, the incubation and further incubation are carried out in the same vessel. In some cases, the further incubation is carried out in the presence of the substance. In some instances, the method does not include removing the substance, receptor-
binding agent, second receptor-binding agent and/or reagent from the cell composition prior to the further incubation. In some embodiments, the incubation and/or further incubation is carried out at or about 37 °C ± 2 °C. In some cases, the incubation and/or further incubation is carried out in the presence of a further agent that is capable of delivering a signal to T cells. In some embodiments, the further agent is capable of enhancing or inducing proliferation of T cells, CD4+ T cells and/or CD8+ T cells. In some aspects, the further agent is a cytokine, such as IL-2, IL-15 or IL-7. In some embodiments, the further incubation is carried out for a time that is no more than 14 days, no more than 12 days, no more than 10 days, no more than 8 days or no more than 6 days.

[0061] Provided herein in some embodiments is a method for culturing T cells including incubating a composition containing T cells in the presence of a receptor-binding agent that specifically binds to a CD28 molecule on the surface of T cells under conditions to effect signaling through CD28 in the cells. In some such aspects, within 5 days after initiation of said incubation, the binding of the receptor-binding agent and the CD28 molecule is eliminated or reduced, whereby the CD28 signaling is terminated or lessened in the cells, thereby generating cultured T cells.

[0062] In some instances, the elimination or reduction is effected within 4 days, within 3 days, within 2 days or within 1 day after initiation of the incubation. In some cases, the eliminating or reducing includes washing the cells, whereby any receptor-binding agent that is not specifically bound to CD28 is removed or reduced from the composition. In some aspects, the eliminating includes reversing the binding interaction between the receptor-binding agent and the CD28 molecule, further including washing the cells to remove or reduce the receptor-binding agent from the composition.

[0063] In some aspects, during at least a portion of the incubation and/or subsequent to the incubation, T cells in the composition are incubated in the presence of an agent that specifically binds a molecule of the TCR/CD3 complex, whereby a TCR/CD3 complex-associated signal is induced or modulated in the cells.

[0064] Provided herein in some aspects is a method for culturing T cells including incubating a composition containing T cells in the presence of a receptor-binding agent. In some embodiments, the receptor-binding agent is reversibly bound to a reagent containing a plurality of binding sites capable of reversibly binding to the receptor-binding agent. In some
cases, the receptor-binding agent is capable of specifically binding to a molecule on the surface of the T cells other than CD28 or CD3 in a manner that induces or modulates a signal in T cells, thereby generating cultured T cells.

[0065] In some aspects, the incubation is performed under conditions in which the receptor-binding agent specifically binds to the molecule, thereby inducing or modulating the signal in the T cells. In some embodiments, the signal is not a TCR/CD3 complex-associated signal.

[0066] In some embodiments, the receptor-binding agent includes a binding partner CI. in some such embodiments, the plurality of binding sites of the reagent includes two or more binding sites, ZI, which each are capable of binding to the binding partner CI to form the reversible bond between the receptor-binding agent and the reagent.

[0067] In some embodiments, the receptor-binding agent is a second receptor-binding agent and the molecule is a second molecule. In some such embodiments, the incubation is further carried out in the presence of a first receptor-binding agent, which is capable of specifically binding to a first molecule on the surface of one or more of the T cells, which first molecule is capable of inducing or modulating a first signal in one or more T cells in the composition. In some aspects, the first receptor-binding agent is reversibly bound to the reagent, and the reagent contains a plurality of binding sites for the first receptor-binding agent and the second receptor-binding agent. In some instances, the first receptor-binding agent is reversibly bound to a second reagent containing a plurality of binding sites capable of reversibly binding to the first receptor-binding agent.

[0068] In some embodiments, the first receptor-binding agent is capable of initiating a TCR/CD3 complex-associated signal in the T cells. In some aspects, the first receptor-binding agent specifically binds to a member of a TCR/CD3 complex. In some cases, the first receptor-binding agent specifically binds to CD3.

[0069] In some embodiments, the specific binding of the second receptor-binding agent to the second molecule is capable of enhancing, dampening or modifying a signal delivered through the first molecule. In some cases, the specific binding of the second receptor-binding agent to the second molecule is capable of enhancing or potentiating a TCR/CD3 complex-associated signal.
[0070] Provided herein in some embodiments is a method for culturing T cells, which method includes incubating a composition containing T cells in the presence of a first receptor-binding agent which is reversibly bound to a reagent containing a plurality of binding sites capable of reversibly binding to the first receptor-binding agent. In some cases, first receptor-binding agent is capable of specifically binding to a first molecule on the surface of the T cells, such as to induce or modulate a TCR/CD3 complex-associated signal in T cells in the composition. In some embodiments, the method includes incubating the composition containing the T cells in the presence of a second receptor-binding agent which may be reversibly bound to the reagent further containing a plurality of binding sites for the second receptor-binding agent or to a second reagent containing a plurality of binding sites capable of reversibly binding to the second receptor-binding agent. In some aspects, the second receptor-binding agent is capable of specifically binding to a second molecule on the surface of T cells such as to induce or modulate a second signal in T cells in the composition. In some aspects, the second molecule is other than CD28. In some embodiments, the incubation is performed under conditions in which the signal and/or second signal are induced or modulated in T cells in the composition, thereby generating cultured T cells.

[0071] In some embodiments, the first receptor-binding agent specifically binds to a member of a TCR/CD3 complex and/or the first receptor-binding agent specifically binds to CD3. In some instances, the specific binding of the second receptor-binding agent to the second molecule is capable of inducing or modulating a signal other than a TCR/CD3 complex-associated signal. In some aspects, the specific binding of the second receptor-binding agent to the second molecule is capable of enhancing, dampening or modifying a signal delivered through the first molecule. In some embodiments, the specific binding of the second receptor-binding agent to the second molecule is capable of enhancing or potentiating a TCR/CD3 complex-associated signal.

[0072] In some embodiments, the molecule, which can be the second molecule, is CD90 (Thy-1), CD95 (Apo-/Fas), CD137, (4-lBB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some aspects, the receptor-binding agent, which can be the second receptor-binding agent, specifically binds to CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-lBB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some embodiments, the molecule, which can be a
second molecule, is not CD137 and/or the receptor-binding agent, which can be the second receptor-binding agent, does not specifically bind to CD137.

[0073] In some aspects, the first receptor-binding agent and the second receptor-binding agent reversibly bind to the reagent. In some embodiments, the first receptor-binding agent and second receptor-binding agent each individually include a binding partner CI, and the plurality of binding sites includes two or more binding site, Zl, which each are capable of binding to the binding partner CI to form the reversible bond between the first and second receptor-binding agent and the reagent. In other embodiments, the first receptor-binding agent includes a binding partner CI, the second receptor-binding agent includes a binding partner C2, and the plurality of binding sites includes two or more binding sites, Zl, which each are capable of binding to the binding partner CI and the binding partner C2 to form the reversible bond between the first and second receptor-binding agent and the reagent. In still further embodiments, the first receptor-binding agent includes a binding partner CI, the second receptor binding agent includes a binding partner C2, and the plurality of binding sites includes two or more binding site, Zl, which each are capable of binding to the binding partner CI to form the reversible bond between the first receptor-binding agent and the reagent and two or more binding site, Z2, which each are capable of binding to the binding partner C2 to form the reversible bond between the second receptor-binding agent and the reagent.

[0074] Provided herein in some embodiments is a method for culturing target cells, which method includes incubating a composition containing target cells in the presence of a receptor-binding agent. The receptor-binding agent may be reversibly bound to a reagent that is a streptavidin analog or mutein containing a plurality of binding sites capable of reversibly binding to the receptor-binding agent. In some cases, the receptor-binding agent is capable of specifically binding to a molecule on the surface of the target cells, such as to induce or modulate a signal in target cells in the composition. In some aspects, the mutein streptavidin includes a net negative charge.

[0075] Provided herein in some aspects is a method for culturing target cells, the method including incubating a composition containing target cells in the presence of a receptor-binding agent that is reversibly bound to a reagent that is a streptavidin analog or mutein containing a plurality of binding sites capable of reversibly binding to the receptor-binding agent. In some embodiments, the receptor-binding agent is capable of specifically binding to a molecule on the
surface of the target cells in a manner that induces or modulates a signal in target cells in the composition. In some cases, the streptavidin analog or mutein exhibits a higher affinity for a streptavidin-binding peptide containing the sequence of amino acids Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8) than a streptavidin or mutein containing the sequence of amino acids set forth in any of SEQ ID NOS: 1-6, thereby generating cultured target cells.

[0076] In some embodiments, the incubation is performed under conditions in which the receptor-binding agent specifically binds to the molecule, thereby inducing or modulating the signal in one or more target cells in the composition.

[0077] In some instances, the plurality of binding sites of the reagent includes two or more binding sites, Zl. In some cases, the receptor-binding agent includes a binding partner Cl, which is capable of reversibly binding to the binding site Zl, wherein the reversible binding between Cl and Zl affects the reversible binding between the receptor-binding agent and the reagent. In some embodiments, the streptavidin analog or mutein includes a plurality of binding sites Zl, and a plurality of receptor-binding agents are reversibly bound to the reagent.

[0078] In some embodiments, the target cells include blood cells, leukocytes, lymphocytes, B cells, a B cell population, T cells, a T cell population, and/or natural killer (NK) cells. In some embodiments, the target cells include antigen-specific T cells or a population thereof, a T helper cell or population thereof, a cytotoxic T cell or population thereof, a memory T cell or population thereof, a regulatory T cell or population thereof, an NK cell or population thereof, antigen-specific B cells or a population thereof, a memory B cell or population thereof, or a regulatory B cell or population thereof. In some aspects, the target cells are T cells.

[0079] In some embodiments, the molecule is present on the surface of T cells, and the receptor-binding agent is capable of inducing or modulating a signal in T cells in the composition. In some aspects, the receptor-binding agent is capable of initiating a TCR/CD3 complex-associated signal in the T cells and/or the receptor-binding agent specifically binds to a member of a TCR/CD3 complex. In some cases, the receptor-binding agent, specifically binds to CD3. In some instances, the molecule is a first molecule and the receptor-binding agent is capable of specifically binding to the first molecule and, in some cases, a second molecule on the surface of one or more of the target cells. In some embodiments, binding to the second molecule is capable of enhancing, dampening, or modifying a signal delivered through the first molecule.
In some instances, the receptor-binding agent is a first receptor-binding agent and the incubation is further carried out in the presence of a second receptor-binding agent. The second receptor-binding agent may be capable of specifically binding to a second molecule on the surface of one or more of the target cells. In some cases, binding of the second receptor-binding agent to the second molecule is capable of inducing or modulating a signal to enhance, dampen, or modify a signal delivered through the first molecule.

In some embodiments, the incubation is performed under conditions in which the second receptor-binding agent specifically binds to the second molecule, thereby inducing or modulating a signal in target cells in the composition to enhance, dampen or modify a signal delivered through the first molecule. In some embodiments, the streptavidin mutein or analog includes a plurality of binding sites capable of reversibly binding to the second receptor-binding agent, whereby the second receptor-binding agent is reversibly bound to the streptavidin mutein or analog.

In some embodiments, the second receptor-binding agent includes a binding partner C1 or C2, which is capable of reversibly binding to the two or more binding sites Z2 present in the streptavidin analog or mutein.

In some cases, the additional molecule is CD28, CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-1BB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some embodiments, the second receptor-binding agent specifically binds to CD28, CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-1BB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some aspects, the additional molecule is CD40 and CD137. In some instances, the second receptor-binding agent specifically binds to CD40 or CD137.

In some embodiments, the second receptor-binding agent includes a plurality of different receptor-binding agents, each of which is capable of individually binding to the same or different second molecule on the surface of T cells in the composition to collectively induce or modulate one or more signals in the cells.

In some embodiments, the method further includes disrupting the reversible binding between the first and/or second receptor-binding agent and the reagent. In some aspects, the disruption is effected within 14 days after initiation of the incubation, within 12 days after initiation of the incubation, within 10 days after initiation of the incubation within 8 days after initiation of the incubation or within 6 days after initiation of the incubation.
[0086] In some embodiments, at least a portion of the incubation is carried out in the presence of a further agent that is capable of delivering a signal to T cells. In some cases, the further agent is capable of enhancing or inducing proliferation of T cells, CD4+ T cells and/or CD8+ T cells. In some embodiments, the further agent is a cytokine such as IL-2, IL-15 or IL-7. In some instances, the further agent does not specifically bind to CD28 and/or induce CD28 signaling.

[0087] In some embodiments, the T cells or target cells are primary cells from a subject. In some cases, the T cells or target cells are directly isolated from a subject. In some embodiments, the T cells are unfractionated T cells, are enriched or isolated CD3+ T cells, are enriched or isolated CD4+ T cells, or are enriched or isolated CD8+ T cells. In some embodiments, prior to the incubating the T cells are not enriched for CD62L+ cells and/or are not enriched for naïve T cells. In some cases, the T cells or target cells are human cells.

[0088] In some embodiments, the reagent is not bound to a support or a solid support during said incubation. In other embodiments, the reagent is bound to a support during at least a portion of the incubation, whereby a plurality of the T cells or target cells are reversibly immobilized on the support during at least a portion of the incubation. In some such embodiments, the support is a solid support or a stationary phase.

[0089] In some embodiments, the receptor-binding agent, which can be the first receptor-binding agent, contains only one binding site, such as B2. In some aspects, the receptor-binding agent, which can be the first receptor-binding agent, specifically binds to the molecule in a monovalent manner. In some embodiments, the second receptor-binding agent contains only one binding site, such as B4. In some cases, the second receptor-binding agent specifically binds to the molecule in a monovalent manner. In some embodiments, the binding site, such as B2 or B4, contains an antibody combining site.

[0090] In some aspects, the receptor-binding agent, which can be a first receptor-binding agent, and/or the second receptor-binding agent each individually is an antibody fragment, a monovalent antibody fragment, a proteinaceous binding molecule with antibody-like binding properties, a molecule containing Ig domains, a cytokine, a chemokine, an aptamer, or MHC molecule or binding fragments thereof. In some such aspects, the receptor-binding agent, which can be the first receptor-binding agent, and/or the second receptor-binding agent include an antibody fragment, a Fab fragment, a divalent antibody fragment such as a (Fab)2'-fragment or a
divalent single-chain Fv (scFv) fragment. In some cases, the receptor-binding agent, which can be the first receptor-binding agent, and/or the second receptor-binding agent is a monovalent antibody fragment such as a Fab fragment, an Fv fragment or an scFv fragment. In some instances, the receptor-binding agent, which can be the first receptor-binding agent, and/or the second receptor-binding agent is a proteinaceous binding molecule with antibody-like binding properties, such as an aptamer, mutein based on a polypeptide of the lipocalin family, glubody, protein based on the ankyrin scaffold, protein based on the crystalline scaffold, adnectin or an avimer.

[0091] In some embodiments, the receptor-binding agent, which can be the first receptor-binding agent, includes an agent that specifically binds to CD3. The agent that specifically binds CD3 can be an anti-CD3-antibody, a divalent antibody fragment of an anti-CD3 antibody, a monovalent antibody fragment of an anti-CD3-antibody, or a proteinaceous CD3 binding molecule with antibody-like binding properties. In some embodiments, the second receptor-binding agent includes an agent that specifically binds to CD28, CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 and/or HVE. The agent that specifically binds to CD28, CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 and/or HVE can be an anti-CD28-antibody, a divalent antibody fragment of an anti-CD28 antibody, an antibody fragment of an anti-CD28-antibody, a proteinaceous CD28 binding molecule with antibody-like binding properties, an anti-CD90-antibody, an antibody fragment of an anti-CD90 antibody, an antibody fragment of an anti-CD90-antibody, a proteinaceous CD90 binding molecule with antibody-like binding properties, an anti-CD95-antibody, a divalent antibody fragment of an anti-CD95 antibody, an antibody fragment of an anti-CD95-antibody, a proteinaceous CD95 binding molecule with antibody-like binding properties, an anti-CD154-antibody, a divalent antibody fragment of an anti-CD154 antibody, a monovalent antibody fragment of an anti-CD154-antibody, a proteinaceous CD154 binding molecule with antibody-like binding properties, an anti-CD137-antibody, a divalent antibody fragment of an anti-CD137 antibody, a monovalent antibody fragment of an anti-CD137-antibody, a proteinaceous CD137 binding molecule with antibody-like binding properties, an anti-ICOS-antibody, a divalent antibody fragment of an anti-ICOS antibody, an antibody fragment of an anti-ICOS-antibody, a proteinaceous ICOS binding molecule with antibody-like binding properties, an anti-LAT-antibody, a divalent antibody fragment of an anti-LAT antibody, an antibody fragment of an anti-LAT-antibody,
proteinaceous LAT binding molecule with antibody-like binding properties, an anti-CD27-antibody, a divalent antibody fragment of an anti-CD27 antibody, an antibody fragment of an anti-CD27-antibody, a proteinaceous CD27 binding molecule with antibody-like binding properties, an anti-OX40-antibody, a divalent antibody fragment of an anti-OX40 antibody, an antibody fragment of an anti-OX40-antibody, a proteinaceous OX40 binding molecule with antibody-like binding properties, an anti-HVEM-antibody, a divalent antibody fragment of an anti-HVEM antibody, an antibody fragment of an anti-HVEM-antibody, a proteinaceous HVEM binding molecule with antibody-like binding properties, 4-IBB ligand, or any mixture thereof.

[0092] In some embodiments, the reagent is or contains streptavidin, avidin, an analog or mutein of streptavidin that reversibly binds biotin, a biotin analog or a biologically active fragment thereof; an analog or mutein of avidin or streptavidin that reversibly binds a streptavidin-binding peptide; a reagent that includes at least two chelating groups K, wherein the at least two chelating groups are capable of binding to a transition metal ion; an agent capable of binding to an oligohistidine affinity tag; an agent capable of binding to a glutathione-S-transferase; calmodulin or an analog thereof; an agent capable of binding to calmodulin binding peptide (CBP); an agent capable of binding to a FLAG-peptide; an agent capable of binding to an HA-tag; an agent capable of binding to maltose binding protein (MBP); an agent capable of binding to an HSV epitope; an agent capable of binding to a myc epitope; or an agent capable of binding to a biotinylated carrier protein.

[0093] In some embodiments, the reagent is or contains a streptavidin analog or mutein or an avidin analog or mutein that reversibly binds biotin or a biologically active fragment; a streptavidin analog or mutein or an avidin analog or mutein that reversibly binds to a biotin analog or a biologically active fragment; and/or a streptavidin analog or mutein or an avidin analog or mutein that reversibly binds to a streptavidin-binding peptide.

[0094] In some embodiments, the reagent is an oligomer or polymer of streptavidin, avidin, an analog or mutein of streptavidin that reversibly binds biotin or a biologically active fragment; a streptavidin or avidin analog or mutein that reversibly binds a streptavidin-binding peptide; a reagent that includes at least two chelating groups K, wherein the at least two chelating groups are capable of binding to a transition metal ion; an agent capable of binding to an oligohistidine affinity tag; an agent capable of binding to a glutathione-S-transferase; calmodulin or an analog
thereof; an agent capable of binding to calmodulin binding peptide (CBP); an agent capable of binding to a FLAG-peptide; an agent capable of binding to an HA-tag; an agent capable of binding to maltose binding protein (MBP); an agent capable of binding to an HSV epitope; an agent capable of binding to a myc epitope; or an agent capable of binding to a biotinylated carrier protein.

[0095] In some embodiments, the reagent includes an oligomer or polymer of streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein. In some aspects, individual molecules of the oligomer or polymer are crosslinked by a polysaccharide or a bifunctional linker.

[0096] In some embodiments, the plurality of binding sites Z include at least 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72 or more binding sites.

[0097] In some aspects, the streptavidin-binding peptide is Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)3-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) or Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19).

[0098] In some embodiments, the reagent includes a streptavidin analog or mutein containing the amino acid sequence Val44-Thr45-Ala46-Arg47 or Ile44-Gly45-Ala46-Arg47 at sequence positions corresponding to positions 44 to 47 with reference to positions in streptavidin in the sequence of amino acids set forth in SEQ ID NO: 1. In some embodiments, the streptavidin analog or mutein includes the amino acid sequence Val44-Thr45-Ala46-Arg47 at sequence positions corresponding to positions 44 to 47 with reference to positions in streptavidin in the sequence of amino acids set forth in SEQ ID NO: 1.

[0099] In some embodiments, the streptavidin analog or mutein includes the sequence of amino acids set forth in any of SEQ ID NOS: 3-6. In some aspects, the streptavidin analog or mutein includes a sequence of amino acids that exhibits at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to any of SEQ ID NOS: 3-6 and contains the amino acid sequence corresponding to Val44-Thr45-Ala46-Arg47 or Ile44-Gly45-Ala46-Arg47. In some embodiments, the streptavidin analog or mutein reversibly binds to biotin or a biologically active form thereof, a biotin analog or mutein or a biologically active fragment thereof or a streptavidin-binding peptide. In some
embodiments, the streptavidin analog or mutein binds a functional fragment of any of the above sequences that reversibly binds to biotin or a biologically active form thereof, a biotin analog or mutein or a biologically active fragment thereof or a streptavidin-binding peptide.

[0100] In some embodiments, the streptavidin analog or mutein further contains an amino acid replacement or replacements at a position corresponding to 117, 120 and/or 121 with reference to positions in streptavidin in the sequence of amino acids set forth in SEQ ID NO: 1. In some embodiments, the amino acid replacement or replacements are selected from among Glul7, Asp17, Arg17, Ser120, Ala120, Gly120, Trp121, Tyr121 or Phe121. In some embodiments, the amino acid replacement or replacements are Glu 17, Gly120 or Tyr121.

[0101] In some embodiments, the streptavidin analog or mutein contains the sequence of amino acids set forth in SEQ ID NO: 27 or 28. In some aspects, the streptavidin analog or mutein contains a sequence of amino acids that exhibits at least 85%, 86%, 87%, 88%, 89%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NOS:28 and contains the amino acid sequence corresponding to Val44, Thr45, Ala46, Arg47, Glul 17, Gly120 and Tyr121. In some embodiments, the streptavidin analog or mutein reversibly binds to biotin or a biologically active fragment, a biotin analog or mutein or a biologically active fragment thereof or a streptavidin-binding peptide. In some embodiments, the streptavidin analog or mutein reversibly binds a functional fragment any of the above sequences that reversibly binds to biotin or a biologically active fragment, a biotin analog or mutein or a biologically active fragment thereof or a streptavidin-binding peptide.

[0102] In some embodiments, the binding partner C1 and/or the binding partner C2, independently, includes a streptavidin-binding peptide such as Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)3-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) or Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19);

[0103] In some embodiments, the disruption includes introducing to the cells a composition containing a substance capable of reversing the bond between the receptor-binding agent, which can be the first receptor-binding agent, and/or the second-receptor-binding agent and the reagent. In some embodiments, the substance is a free binding partner and/or is a competition agent. In some embodiments, the substance in the composition is not detrimental to the T cells or to the
target cells. In some aspects, the addition of the substance does not reduce the percentage of surviving T cells or target cells to less than 90%, 80%, 70%, 60%, or 50%, as compared to incubation of the T cells or target cells, respectively, under comparable or the same conditions, without the substance. In some embodiments, the disruption terminates or lessens the signal induced or modulated by one or both of the receptor-binding agent or second receptor-binding agent in the T cells or the target cells.

[0104] In some embodiments, the reagent is or contains a streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein or biologically active fragments thereof. In some embodiments, the substance contains a streptavidin-binding peptide, biotin or a biologically active fragment, optionally a D-biotin, or a biotin analog or biologically active fragment.

[0105] In some embodiments, the substance is a streptavidin-binding peptide such as Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)3-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) or Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19). In some embodiments, the substance is C1 or an analog thereof or is C2 or an analog thereof.

[0106] In some embodiments, the dissociation constant (Kp) for the reversible binding between the binding site Z1 and the binding partner C1 and/or for the reversible binding between the binding site Z2 and the binding partner C2 is in the range of 10-2 M to 10-13 M.

[0107] In some embodiments, prior to the incubation, cells are contacted with a selection agent that specifically binds to a marker contained by T cells or target cells of the composition, thereby generating or obtaining the composition containing the T cells or target cells. In some embodiments, at least a portion of the incubation is carried out in the presence of a selection agent that specifically binds to a marker comprised by T cells or target cells of the composition, and the cultured T cells are enriched for T cells or target cells containing the marker.

[0108] In some embodiments, the selection agent is reversibly bound to the reagent, and the reagent further contains a plurality of binding sites capable of specifically binding the selection agent. In some aspects, the selection agent is reversibly bound to a second reagent containing a plurality of binding sites capable of specifically binding to the selection agent.
[0109] In some embodiments, the induction or modulation of the signal effects an increase in expansion (proliferation) and/or activation of the cultured T cells compared to incubation of T cells in the absence of the induction or modulation of the signal. In some embodiments, the increase is at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold or greater. In some embodiments, the induction or modulation of the additional or second signal increases expansion (proliferation) and/or activation of the T cells compared to incubation of T cells in the absence of the induction or modulation of the additional or second signal. In some embodiments, the increase is at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold or greater.

[0110] In some embodiments, the methods increase expansion and/or proliferation and/or survival and/or differentiation of T cells or particular subsets thereof in the composition, e.g., in the output composition generated by the methods, alter the metabolic profile of such T cells or subsets in the composition, alters the subset of CD8+ T cells in the composition; and/or increases the percentage of long-lived memory T cells in the composition. In some embodiments, such increase is as compared to the starting composition, e.g., to the cells prior to the incubation. In some aspects, it is as compared to similar stimulation carried out under conditions that are different in some specific way, such as those otherwise the same but in which binding is not disrupted until the end of the incubation (e.g., no temporal control) and/or those otherwise the same but in which a different combination of stimulatory agents are used, such as those in which a costimulatory agent is among the agents multimerized, and is different from one or more or any costimulatory molecule used in the stimulatory agent in question. For example, where the stimulatory agent in question includes a costimulatory agent other than a CD28-binding molecule, the comparison or analogous set of conditions may be those involving incubation with a stimulatory agent or reagent that does include an agent that specifically binds CD28 and/or induces or modulates CD28 signaling, and optionally includes another agent in common with the reagent in question, such as an anti-CD3 agent.

[0111] In some embodiments, the methods result in cultured T cells in which the number or percentage of CD3+ T cells, CD4+ T cells or CD8+ cells is increased at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold or 10-fold compared to the number or percentage of CD3+ T cells, CD4+ T cells or CD8+ T cells, respectively, in the composition prior to the incubation, subsequent to the incubation but in the absence of the disruption, or subsequent to
the analogous or comparative conditions incubation but performed in the presence of an agent that specifically binds CD28 and/or induces or modulates CD28 signaling.

[0112] In some embodiments, the methods result in cultured T cells in which the ratio of CD8+ T cells or the relative or normalized ratio of CD8+ T cells in the composition is increased at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold or 10-fold compared to the ratio or the relative or normalized ratio of CD8+ T cells in the composition prior to the incubation, subsequent to the incubation but in the absence of the disruption, or subsequent to an analogous or comparison incubation, e.g., in the presence of an agent that specifically binds CD28 and/or induces or modulates CD28 signaling.

[0113] In some embodiments, the methods result in a greater number or relative number (e.g., proportion) of cells having a particular phenotype, such as cells exhibiting properties of a longer-lived and/or less-differentiated population of cells, such as long-lived memory or stem-like populations, such as those expressing high levels of CD62L, CD127, CCR7, Seal, and/or CD27 and/or those expressing or containing indicators of proliferation and also indicators of naïve or resting phenotypes, such as any of the above with a phenotype that is low for T-bet staining, and/or is IL-7Ra+, CD95+, IL-2RP+, CXCR3+ and LFA-1+. In some aspects, the number or percentage of CD62L+, optionally long-lived memory T cells or memory stem cells (TSCM) in the composition is increased at least 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold or 10-fold compared to the number or percentage of the corresponding population of cells, either CD62L+, long-lived memory T cells or TSCM, in the composition prior to the incubation, subsequent to the incubation but in the absence of the disruption, or subsequent to an analogous incubation but in the presence of an agent that specifically binds CD28 and/or induces or modulates CD28 signaling. In some embodiments, the stimulation produces more cells of a less-differentiated longer-lived phenotype but that have expanded or persisted, such that a desired number of cells is generated, as compared to analogous methods or reagents.

[0114] In some embodiments, the cultured T cells contain greater than 35%, 40%, 45%, 50%, 60%, 70%, 80% or 90% of a T cell subset containing a phenotype that is surface positive for CD62L (CD62L+) as a percentage of the total T cells in the composition or the total cells in the composition.
[0115] In some embodiments, the T cell subset further includes a phenotype including CD127+; and/or any one or more of CD45RA+, CD45RO-, CCR7+ and CD27+ and any one or more of t-betlow, IL-7Ra+, CD95+, IL-2Rp+, CXCR3+ and LFA-1+.

[0116] In some embodiments, the T cell subset includes a low level of TCR rearrangement excisions circles (TREC); and/or expresses a proliferation marker, which can be Ki-67; and/or exhibits the capacity to proliferate in the presence of a stimulatory agent; and/or exhibits the capacity to produce a cytokine such as IFN-gamma, TNF or IL-2 in the presence of a stimulatory agent.

[0117] In some embodiments, the stimulatory agent is an antigen, a homeostatic cytokine, such as IL-15 and/or IL-17, or is an agent that is capable of initiating a TCR/CD3 complex-associated signal in the T cells.

[0118] In some embodiments, the T cell subset is or contains long-lived memory T cells. In some embodiments, the T cell subset is or includes T memory stem cells (TSCM).

[0119] In some embodiments, the method further includes introducing a recombinant nucleic acid molecule into T cells or target cells of the population. In some such aspects, the nucleic acid molecule may encode a recombinant protein, whereby cells express the recombinant protein. In some embodiments, the recombinant receptor is a chimeric antigen receptor or transgenic T cell receptor (TCR). In some aspects, the method is performed in vitro or ex vivo.

[0120] In some embodiments, the method further includes administering the cultured cells to a subject having a disease or condition.

[0121] Provided herein in some aspects is a composition containing a plurality of cultured T cells or target cells produced by the methods provided herein, and optionally a pharmaceutically acceptable excipient.

[0122] In some embodiments, after addition of the substance, the cells have not been incubated in vitro or ex vivo at a temperature greater than 30 °C for more than 24 hours, more than 48 hours, more than 72 hours or more than 96 hours.

[0123] Provided herein in some aspects is a reversible reagent, containing a reagent containing a plurality of binding sites capable of binding to a receptor-binding agent. In some embodiments, the receptor-binding agent is reversibly bound to the reagent and is capable of specifically binding to a molecule on the surface of T cells in a manner that induces or modulates a signal in T cells, such as wherein the molecule is not CD28 or CD3.
In some embodiments, binding the molecule induces or modulates a signal in a T cell other than a TCR/CD3 complex-associated signal; and/or binding the molecule enhances or potentiates a TCR/CD3 complex-associated signal.

In some embodiments, the molecule is CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-1BB), CD154 (CD40L), ICOS, LAT, CD27, OX40 or HVEM. In some cases, the molecule is not CD137.

In some embodiments, the reagents used in the methods and compositions are those that contain a streptavidin analog or mutein, and generally contain oligomers thereof, where the mutein contains a plurality of binding sites capable of binding to an agent, generally to reversibly binding to such agent. Also provided are such reagents. In some aspects, the streptavidin analog or mutein includes a net negative charge and/or exhibits a higher affinity for a streptavidin-binding peptide containing the sequence of amino acids Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8) than a streptavidin or mutein containing the sequence of amino acids set forth in any of SEQ ID NOS: 1-6. In some embodiments, one or more agent is reversibly bound to the reagent and is capable of specifically binding to a molecule on the surface of a cell. Also provided are such reagents, agents and complexes thereof.

In some embodiments, the receptor-binding agent includes a binding partner CI. In some aspects, the plurality of binding sites includes two or more binding sites, Z1, which each are capable of binding to the binding partner CI to form the reversible bond between the receptor-binding agent or agent and the reagent.

In some embodiments, the receptor-binding agent is a second receptor-binding agent and the molecule is a second molecule, and the reagent further includes: c) a plurality of binding sites capable of reversibly binding to a first receptor-binding agent and d) the first receptor-binding agent which i) is reversibly bound to the reagent and ii) is capable of specifically binding to a first molecule on the surface of a T cell.

In some embodiments, the agent or the first receptor-binding agent specifically binds to a member of a TCR/CD3 complex and/or the first receptor-binding agent specifically binds to CD3.

In some embodiments, the first receptor-binding agent and second receptor-binding agent each individually contains a binding partner CI, and the plurality of binding sites includes two or more binding site, Z1, which each are capable of binding to the binding partner CI to
form the reversible bond between the first and second receptor-binding agent and the reagent. In some aspects, the first receptor-binding agent contains a binding partner C1, the second receptor-binding agent contains a binding partner C2, and the plurality of binding sites include two or more binding sites, Z1, which each are capable of binding to the binding partner C1 and the binding partner C2 to form the reversible bond between the first and second receptor-binding agent and the reagent. In some embodiments, the first receptor-binding agent contains a binding partner C1, the second receptor binding agent contains a binding partner C2, and the plurality of binding sites includes two or more binding sites, Z1, which each are capable of binding to the binding partner C1 to form the reversible bond between the first receptor-binding agent and the reagent and two or more binding sites, Z2, which each are capable of binding to the binding partner C2 to form the reversible bond between the second receptor-binding agent and the reagent.

[0131] In some embodiments, the reagent has a size that is less than 20 nm, less than 10 nm, less than 5 nm or less than 1 nm. In some embodiments, the reagent has a density of less than 1.2 g/cm3 or less than 1.0 g/cm3. In some embodiments, the reagent is not bound to a support or solid support. In some instances, the reagent is bound or immobilized to a support. In some cases, the support is a solid support or a stationary phase. In some aspects, the support includes a bead, a particle, a nanoparticle or a microsphere.

[0132] In some embodiments, the agent, the receptor-binding agent, which can be a first receptor-binding agent, and/or the second receptor-binding agent each individually are an antibody fragment, a monovalent antibody fragment, a proteinaceous binding molecule with antibody-like binding properties, a molecule containing Ig domains, or binding fragments thereof.

[0133] In some embodiments, the agent, the receptor-binding agent, which can be the second receptor-binding agent, and/or the first receptor-binding agent contains an antibody fragment. In some aspects, the agent, the receptor-binding agent, which can be the second receptor-binding agent, and/or the first receptor-binding agent contains a Fab fragment. In some cases, the agent, the receptor-binding agent, which can be the second receptor-binding agent, and/or the first receptor-binding agent is a divalent antibody fragment such as a (Fab)2'-fragment or a divalent single-chain Fv (scFv) fragment. In some embodiments, the agent, the receptor-binding agent, which can be the second receptor-binding agent, and/or the first receptor-binding agent is a
monovalent antibody fragment selected from among a Fab fragment, an Fv fragment and an scFv fragment.

[0134] In some embodiments, the agent or first receptor-binding agent includes an agent that specifically binds to CD3. In some embodiments, the agent that specifically binds CD3 is an anti-CD3-antibody, a divalent antibody fragment of an anti-CD3 antibody, a monovalent antibody fragment of an anti-CD3-antibody, or a proteinaceous CD3 binding molecule with antibody-like binding properties. In some embodiments, the agent or receptor-binding agent, which can be the second receptor-binding agent, includes an agent that specifically binds to CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 and HVEM, such as an anti-CD90-antibody, a divalent antibody fragment of an anti-CD90 antibody, an antibody fragment of an anti-CD90-antibody, a proteinaceous CD90 binding molecule with antibody-like binding properties, an anti-CD95-antibody, a divalent antibody fragment of an anti-CD95 antibody, an antibody fragment of an anti-CD95-antibody, a proteinaceous CD95 binding molecule with antibody-like binding properties, an anti-CD154-antibody, a divalent antibody fragment of an anti-CD154 antibody, a monovalent antibody fragment of an anti-CD154-antibody, a proteinaceous CD154 binding molecule with antibody-like binding properties, an anti-CD137-antibody, a divalent antibody fragment of an anti-CD137 antibody, a monovalent antibody fragment of an anti-CD137-antibody, a proteinaceous CD137 binding molecule with antibody-like binding properties, an anti-ICOS-antibody, a divalent antibody fragment of an anti-ICOS antibody, a monovalent antibody fragment of an anti-ICOS-antibody, a proteinaceous ICOS binding molecule with antibody-like binding properties, an anti-LAT-antibody, a divalent antibody fragment of an anti-LAT antibody, a monovalent antibody fragment of an anti-LAT-antibody, a proteinaceous LAT binding molecule with antibody-like binding properties, an anti-CD27-antibody, a divalent antibody fragment of an anti-CD27 antibody, a monovalent antibody fragment of an anti-CD27-antibody, a proteinaceous CD27 binding molecule with antibody-like binding properties, an anti-OX40-antibody, a divalent antibody fragment of an anti-OX40 antibody, a monovalent antibody fragment of an anti-OX40-antibody, a proteinaceous OX40 binding molecule with antibody-like binding properties, an anti-HVEM-antibody, a divalent antibody fragment of an anti-HVEM antibody, a monovalent antibody fragment of an anti-HVEM-antibody, a proteinaceous HVEM binding molecule with antibody-like binding properties, or any mixture thereof.
[0135] In some embodiments, the reagent is or contains streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein. In some embodiments, the reagent includes an oligomer or polymer of streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein.

[0136] Provided herein in some aspects is a kit, including the reagent disclosed herein and optionally instructions for use. In some embodiments, the kit contains a substance capable of reversing the bond between the receptor-binding agent and the reagent. In some embodiments, the kit contains a reagent containing a plurality of binding sites capable of reversibly binding to a receptor-binding agent. In some aspects, the receptor-binding agent is reversibly bound to the reagent and is capable of specifically binding to a molecule expressed on the surface of target cells. In some instances, binding to the molecule induces or modulates a signal in the target cells. In some cases the kit contains a substance capable of reversing the bond between the receptor-binding agent and the reagent.

[0137] In some embodiments, the target cells are T cells. In some embodiments, the reagent is or includes streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein. In some embodiments, the reagent includes an oligomer or polymer of streptavidin, avidin, a streptavidin analog or mutein or and an avidin analog or mutein.

[0138] In some embodiments, the substance includes a streptavidin-binding peptide, biotin or a biologically active fragment, optionally a D-biotin, or a biotin analog or biologically active fragment.

[0139] In some embodiments, the reagent has a size that is less than 20 nm, less than 10 nm, less than 5 nm or less than 1 nm. In some embodiments, the reagent has a density of less than 1.2 g/cm3 or less than 1.0 g/cm3. In some embodiments, the reagent is not bound to a support or solid support.

[0140] Provided herein in some aspects is a composition including a plurality of T cells genetically engineered to express a recombinant receptor that specifically binds to a target antigen. In some cases, greater than 35%, 40%, 50%, 60%, 70%, 80% or 90% of the cells include a T cell subset containing a surface phenotype that is CD3+, CD4+ or CD8+ and CD62L+ and one or more of CD127+, CD45RA+, CD45RO-, CCR7+ and CD27+ and one or more of t-betlow, IL-7Ra+, CD95+, IL-2RP+, CXCR3+ and LFA-1+as a percentage of the total T cells in the composition or the total cells in the composition. In some embodiments, prior to
or during the genetic engineering, the plurality of T cells containing the T cell subset were not incubated in the presence of a GSK-P inhibitor; were not incubated in the presence of a recombinant homeostatic cytokine, optionally IL-7 or IL-15; or were not enriched for CD62L+ cells. In some embodiments, the composition does not contain a GSK-P inhibitor or a recombinant homeostatic cytokine, optionally IL-7 or IL-15.

[0141] In some embodiments, the T cell subset includes at least 5 X 10^6, at least 1 x 10^6 or at least 2 x 10^6 cells.

[0142] Provided herein in some embodiments is a composition including a plurality of T cells genetically engineered to express a recombinant receptor that specifically binds to a target antigen. In some aspects, the genetically engineered T cells are derived from transducing a population of T cells containing a T cell subset containing a surface phenotype that is CD3+, CD4+ or CD8+ and CD62L+ and one or more of CD127+, CD45RA+, CD45RO+, CCR7+ and CD27+ and one or more of t-betlow, IL-7Ra+, CD95+, IL-2Rp+, CXCR3+ and LFA-1+. In some embodiments, the T cell subset is present at a greater percentage of the total T cells in the population or a greater number of total T cells in the population compared to a population containing primary T cells that were isolated or enriched from a human subject based on surface expression of one or markers containing the phenotype. In some embodiments, the T cell subset is present at a greater percentage of the total T cells in the population or a greater number of total T cells in the population compared to a population of T cells that were incubated in the presence of a GSK-P inhibitor. In some embodiments, the T cell subset is present at a greater percentage of the total T cells in the population or a greater number of total T cells in the population compared to a population of T cells that were stimulated by anti-CD3 and anti-CD8, but in which the stimulation or activation was for greater than 1 day, 2 days, 3 days, 4 days or 5 days and/or the stimulation was not disrupted in the presence of biotin or a biotin analog.
[0143] In some embodiments, the T cell subset is present in the population at or about greater than 35%, 40%, 50%, 60%, 70%, 80% or 90% as a percentage of the total T cells in the population. In some embodiments, the T cell subset includes at least 5 x 10^6 cells, 1 x 10^6 cells, 2 x 10^6 cells or more.

[0144] In some embodiments, the composition is a pharmaceutical composition.

[0145] Provided herein in some aspects is a method of treatment including administering to a subject having a disease or condition a composition, e.g., pharmaceutical composition, as described herein.

[0146] In some embodiments, the cells include a recombinant receptor, such as a chimeric antigen receptor (CAR) or TCR. In some aspects, the recombinant receptor, such as CAR or transgenic TCR specifically binds to an antigen associated with the disease or condition.

[0147] In some embodiments, the disease or condition is a cancer, and autoimmune disease or disorder, or an infectious disease.

Brief Description of the Drawings

[0148] **FIG. 1A-E** provides schematic representations of exemplary embodiments.

[0149] **FIG. 1A** shows a schematic representation of a reagent (or representative portion thereof) with a plurality of binding sites for reversible binding to agents. In this case, the reagent is shown as capable of reversibly binding to two agents, each of which is capable of specifically binding to a molecule on a cell. The reagent has a plurality of binding sites, including a plurality of the binding site, Z1, each capable of reversibly binding to the agents. The first and second agents, which, in some cases, can be the same, in the schematic representation shown each contain at least one binding partner Cl. Binding partner Cl reversibly binds to binding site Z1. The first and second agents each also contain a binding site, B2, which can specifically bind to a molecule on the surface of a cell, which, in some cases, can be on the same cell. Here, the first and second agents are shown specifically binding to molecules on the same cell.

[0150] **FIG. 1B** shows a schematic representation of a reagent with a plurality of binding sites, capable of reversibly binding to a first and second agent, which agents are each capable of specifically binding to a molecule on a first and second cell, respectively. The reagent has a plurality of binding sites Z1, each capable of reversibly binding to an agent. The first and
second agents, which, in some cases, can be the same, each contain a binding partner CI, which reversibly binds to binding site Zl. The first and second agents each contain a binding site B2, which can specifically bind to a molecule on the surface of a cell, which, in some cases, can be on the same cell or a different cell. Here, the first agent is bound to a molecule on the surface of a first cell and the second agent is bound to a molecule on the surface of a second cell.

[0151] FIG. 1C shows a reagent capable of reversibly binding to a first and second agents, which agents are each capable of specifically binding to a molecule on a first and second cell, respectively. The reagent has a plurality of binding sites Zl and Z2, which can be the same or different, each capable of reversibly binding to one or both of the agents. The first agent contains a binding partner CI, which reversibly binds to Zl; the second agent contains a binding partner C2, which can reversibly bind to Z2. In some cases, CI and C2 are different. In some cases, CI and C2 are the same or substantially the same. The first agent contains a binding site Bl, which can specifically bind to a molecule on the surface of a cell and the second agent contains at least one binding site B3, which can specifically bind to a molecule on the surface of a cell. Binding sites Bl and B3 in some cases bind to two different cell surface molecules, or different epitopes on a single molecule, or the same or different molecules on the surface of different cells. Here, the first agent is shown as being bound, via Bl, to a molecule on the surface of a first cell, and the second agent is bound to a molecule on the surface of a second cell.

[0152] FIG. 1D shows a reagent capable of reversibly binding to a first and second agent, such as selection agents, which are each capable of specifically binding to a molecule on a cell. The reagent has a plurality of binding sites, including Zl and Z2, which can be the same or different, each capable of reversibly binding to an agent. The first agent contains a binding partner CI that can specifically bind to binding site Zl and the second agent contains at least one binding partner C2 that can specifically bind to binding site Z2. In some cases, CI and C2 are different. In some cases, CI and C2 are the same or substantially the same. The first agent contains a binding site Bl, which can specifically bind to a molecule on the surface of a cell and the second agent contains a binding site B3, which can specifically bind to a molecule on the surface of a cell. In some embodiments, the first agent and second agent can be a selection agent. Binding sites Bland B3 can bind the same or different molecules (e.g. receptor) on the surface of a cell, the same or different epitopes on a molecule, or the same or different molecules
on the surface of different cells. Here, the first agent is bound to a first molecule on the surface of a cell and the second agent is bound to a second molecule on the surface of the same cell.

[0153] FIG. 1E shows a reagent reversibly bound to a first and second agent, which agents are each capable of specifically binding to a molecule on a cell. The reagent has a plurality of binding sites, including Z1 and Z2, which can be the same or different, each capable of reversibly binding to an agent. The first agent contains a binding partner C1 that can reversibly bind to Z1 of the reagent and the second agent contains a binding partner C2 that can reversibly bind to Z2. In some cases, C1 and C2 are different. In some cases, C1 and C2 are the same or substantially the same. The first agent contains at least one binding site B2, which can specifically bind to a molecule on the surface of a cell and the second agent contains at least one binding site B4, which can specifically bind to a molecule on the surface of a cell. In some embodiments, the first agent and second agent can be stimulatory agents. Binding sites B2 and B4 can bind the same or different molecules on the surface of a cell, the same or different epitopes on a molecule, or the same or different molecules on the surface of different cells. Here, the first agent is bound to a first molecule on the surface of a cell and the second agent is bound to a second molecule on the surface of the same cell.

[0154] FIG. 2A-E, provide schematic representations of exemplary embodiments as shown in FIG. 1A-E, respectively, except that the depicted reagents are shown as being immobilized on a support, such as a stationary phase.

[0155] FIG. 3 provides a schematic representation of exemplary embodiments in which oligomeric reagents are used to multimerize stimulatory agents and the resulting complexes incubated with cells to deliver signals to the cells, followed by reversal of the binding. Panel A shows an oligomeric reagent 1, which is shown as not bound to any support and as being flexible. Stimulatory agents 2, which are shown here as Fab fragments and are capable of specifically binding to a molecule on the surface of a cell, are combined with the reagent. The agents comprise a binding partner (e.g. binding partner C) that is capable of reversibly binding to a binding site (e.g. binding site Z) on the reagent, multimerizing the agents. Panel B depicts the binding partner reversibly binding to a binding site on the reagent. Cells 3 are added to the system. Panel C depicts the multimerized agents (Fab fragments) specifically binding to the molecules 4 on the surface of a cell 3. In Panel C, the depicted agents are stimulatory receptor-binding agents, (e.g. a first receptor-binding agent and/or a second receptor-binding agent).
which can induce or modulate a signal in a cell upon binding of the agent, to the molecule on the cell. As shown in Panel D, a substance 5, such as a competitive reagent (e.g. biotin), is added to the composition, which can be a substance that exhibits a higher binding affinity for the binding site on the reagent than for the binding partner on the agent, thereby disrupting the reversible binding between the reagent 1 and the agent 2. In some cases, the agent, e.g., Fab fragment also can dissociate from its interaction with the molecule 4 on the cell 3. In some cases, this can disrupt, lessen and/or terminate the signaling in the cell.

[0156] FIG. 4 provides a schematic representation of exemplary embodiments of a reversible system attached to a support, such as a solid support or a surface, including a stationary phase. Panel A shows a support 6 containing the reagent 1. Agents 2, such as Fab fragments, that are capable of specifically binding to a molecule on the surface of a cell are added to the system. The agents 2, such as Fab fragments, comprise a binding partner (e.g. binding partner C) that is capable of reversibly binding to a binding site (e.g. binding site Z) on the reagent. Panel B depicts the binding partner reversibly binding to a binding site on the reagent. Cells 3 are added to the system. Panel C depicts the agents 2, e.g. Fab fragments, binding to the molecules 4 on the surface of a cell 3. In some embodiments, the scFvs comprise a receptor-binding agent or a selection agent. In some embodiments, the agents, e.g. Fab fragments, can be a receptor-binding agent or a selection agent. Panel C depicts an exemplary receptor-binding agent or agents (e.g. a first receptor-binding agent and/or a second receptor-binding agent), which can induce or modulate a signal in a cell upon binding of the agent, e.g. Fab fragment, to the molecule on the cell. A substance 5, such as a competitive reagent (e.g. biotin), is added, which can be a substance that exhibits a higher binding affinity for the binding site on the reagent than for the binding partner on the agent, e.g. Fab fragment, thereby disrupting binding between the reagent and the agent. Panel D depicts disruption of the binding between the agent 2, e.g. Fab fragment, and the reagent, thereby resulting in dissociation of the reagent from the agent, and thereby the cell. In some cases, the agent, e.g. Fab fragment, also can dissociate from its interaction with the molecule 4 on the cell 3. In some cases, this can disrupt, lessen and/or terminate the signaling in the cell.

[0157] FIG. 5 provides a schematic representation of an exemplary embodiment for stimulating and enriching for target cells, in which the stimulation is carried out by an incubation of the cells, which occurs, at least in part, in the presence of a support, 6, drawn here
as a stationary phase, having immobilized thereon component(s) of a reagent 1 for cell selection (Panel A), which has a binding site for a selection agent 2, which is capable of binding to a molecule 4 present on some or all of the target cells. The selection agent 2 is added to the support with immobilized reagent 1, under conditions whereby the reagent and agent reversibly bind, e.g., via binding sites, generating an oligomeric complex with the agent multimerized thereon (Panel B). The selection agent can include more than one agent. Alternatively, the reversibly bound complex of the agent and reagent may be added to the stationary phase as a complex for immobilization. As shown, cells 3, including target cells, are combined with the stationary phase and multimerized selection agent complex, whereby target cells become reversibly immobilized to the support 6, via the selection agent 2 and reagent 6 (Panel C). Optionally, cells not bound are removed, either prior to addition of stimulatory agents or subsequent thereto. A complex containing multimerized stimulatory agents 5 reversibly bound to an oligomeric reagent 7 is added, under conditions whereby the stimulatory agent 5 specifically binds to a molecule on the target cells, thereby inducing or modulating a signal in the immobilized target cells expressing the marker (Panel D). In some embodiments, where the reversible binding between the different agents and reagents is reversible by the same substance, the substance may be added to disrupt reversible binding to remove cells from the stationary phase and stop stimulation, e.g., by the addition of a single substance.

[0158] FIG. 6A shows a graph of total cell counts observed following (i) enrichment of PBMC samples for cells expressing one of various indicated selection markers (CD3+ enrichment, CD4+ enrichment, CD8+ enrichment), and (ii) incubation of the enriched cells in the presence of medium and IL-2, alone (open bars), or with a multimerization reagent reversibly bound to anti-CD3 and anti-CD28 Fab fragments (filled bars). The incubation was carried out on a column, in the presence of a stationary phase, on which the cells were reversibly immobilized via an agent specific for the relevant selection marker.

[0159] FIG. 6B depicts results for surface expression of CD45RA and CD45RO on CD4+ and CD8+ cells, following (i) enrichment of PBMC samples for cells expressing one of various indicated selection markers (CD3+ enrichment, CD4+ enrichment, CD8+ enrichment), and (ii) incubation of the enriched cells in the presence of medium and IL-2, alone (no stim), or with a multimerization reagent reversibly bound to anti-CD3 and anti-CD28 Fab fragments (a-CD3, a-CD28). The incubation was carried out on a column, in the presence of a stationary phase, on
which the cells were reversibly immobilized via an agent specific for the relevant selection marker. Top row shows staining prior to selection or incubation.

[0160] **FIG. 6C** depicts results for surface expression of CD62L and CD69 CD4+ and CD8+ cells, following (i) enrichment of PBMC samples for cells expressing one of various indicated selection markers (CD3+ enrichment, CD4+ enrichment, CD8+ enrichment), and (ii) incubation of the enriched cells in the presence of medium and 11-2, alone (no stim), or with a multimerization reagent reversibly bound to anti-CD3 and anti-CD28 Fab fragments (a-CD3, a-CD28). The incubation was carried out on a column, in the presence of a stationary phase, on which the cells were reversibly immobilized via an agent specific for the relevant selection marker.

[0161] **FIG. 7A-C** shows the results of an experiment in which CD3+ T responder cells were proliferated after being stimulated in vitro with aCD3 and aCD28 Fab fragments that were reversibly immobilized on beads coated with the streptavidin mutein Strep-tactin®. **FIG. 7A** is a histogram showing size-distribution (forward scatter) of stimulated cells, **FIG. 7B** depicts histograms representing the degree of proliferation according to the number of cells per cell division that are indicated on top of **FIG. 7B** (0 represents undivided cells; 5 represents cells that have gone through at least 5 divisions), and **FIG. 7C** shows a picture of the culture dish after 4 days of stimulation.

[0162] **FIG. 8A-E** shows the results of an experiment in which CD3+ T responder cells were proliferated after being stimulated in vitro with reversible aCD3/aCD28 Fab fragments that were reversibly immobilized on soluble oligomeric streptavidin mutein acting a soluble reagent. For the experiments the results of which are shown in **FIG. 8A-E**, 300,000 CD3+ responder T cells (Tresp) were labeled with 2μM Carboxyfluorescein succinimidyl ester (CFSE) and stimulated with varying amounts of a preparation of soluble oligomeric streptavidin mutein on which a combination of aCD3 Fab fragment and aCD28 Fab both carrying a Strep-tag as streptavidin binding peptide at the heavy chain were immobilized, ("lx" corresponds to 3μg oligomeric streptavidin mutein functionalized with 0μg aCD3 Fab and 0μg aCD28 Fab; numbers indicate fold amount of "lx"). Tresp cells either left unstimulated or were stimulated with blank oligomeric streptavidin muteins (no Fab) served as negative control. Tresp cells were seeded in duplicates in 48-well plates along with 300,000 CD3 negative autologous feeder cells (irradiated with 30Gy) in 1ml cell culture medium supplemented with 20U/ml interleukin 2 (IL-
2). Cells were incubated at 37°C without media exchange and proliferation was analyzed according to CFSE dilution after 5 days by FACS analysis (FIG. 8B). FIG. 8A shows size distribution of cells after 5 days in culture. Histograms show live CD3+ cells, while FIG. 8C shows cells after culture that were liberated by stimulation reagents after treated with ImM D-biotin and washed. The dissociation and removal of monomeric Fab fragments was analyzed by restaining with oligomeric streptavidin mutein labeled with phycoerythrine (ST-PE) as a fluorescent label and a representative histogram is shown. FIG. 8D shows the absolute number of live (trypan blue negative) cells after 5 days was counted using a Neubauer counting chamber and plotted against the respective stimulation condition. Median cell numbers are shown in FIG. 8D; error bars indicate standard deviation (SD). FIG. 8E shows a picture of the culture dish after 5 days of stimulation.

[0163] FIG. 9A-B shows the expansion kinetics of proliferation of purified CD4+ and CD8+ T responder cells (Tresp) that were stimulated in vitro either with aCD3/aCD28 Fab fragments or with aCD3/aCD28/aCD8 Fab that were reversibly immobilized on two kinds of a soluble oligomeric streptavidin mutein acting as soluble reagent. The first kind of oligomeric streptavidin mutein was the fraction of the oligomeric streptavidin mutein (n> 3) obtained in Example 3 (also referred herein as "conventional" or "smaller" oligomeric streptavidin mutein backbone, illustrated by the triangle symbol with the tip down in FIG. 9A-B), the second kind of this oligomeric streptavidin mutein used as soluble reagent was an oligomer that was obtained by reacting the soluble oligomeric streptavidin mutein with biotinylated human serum albumin (HSA). This HSA based soluble reagent is also referred herein as "larger" oligomeric streptavidin mutein backbone). In the experiments of FIG. 9A-B the expansion was carried out without medium exchange. The results for the CD4+ T responder cells are shown in FIG. 9A, the results for the CD8+ T responder cells are shown in FIG. 9B. In this context, it is noted that the experimentally used soluble reagents that were functionalized by reversibly binding first agents, and optionally second and third agents are referred to in the Figures as "multimerized agents."

[0164] FIG. 10A-B shows the expansion kinetics of proliferation of purified CD4+ and CD8+ T responder cells (Tresp) that were stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized fragments that were reversibly immobilized with two kinds of soluble oligomeric streptavidin mutein acting as soluble reagent. The first kind of oligomeric
Strep-tactin® was the fraction of the oligomeric streptavidin mutein (n> 3) obtained in Example 3 (also referred herein as "conventional oligomeric streptavidin mutein backbone", illustrated by the triangle symbol with the tip on top in FIG. 10A-B), the second kind of this oligomeric streptavidin mutein used as soluble reagent was the HSA based soluble reagent, the above-mentioned "large backbone"). In the experiments of FIG. 10A-B, the expansion was carried out with medium exchange. The results for the CD4+ T responder cells are shown in FIG. 10A, the results for the CD8+ T responder cells are shown in FIG. 10B.

[0165] FIG. 11A-B shows the combined data from the results obtained in FIG. 9-10 for the expansion kinetics of proliferation of purified CD4+ and CD8+ T responder cells, with FIG. 11A depicting the results for CD4+ T cells and FIG. 11B depicting the results for the CD8+ T cells. Straight lines are used for the culturing with medium exchange on day 3, while dashed lines depict the values obtained for the degree of expansion without media exchange on day 3. The data shown in FIG. 11A-B are normalized on the input cell number. Only data for the Tresp stimulated with the oligomeric streptavidin mutein (n> 3), the Tresp stimulated with the commercially available anti-CD3/anti-CD28 beads (positive control) and the unstimulated T cells (negative control) are shown but no data on the reagent with the "large backbone".

[0166] FIG. 12A-C shows the expansion kinetics and phenotype of CD3+ central memory T cells (T_{CM}) (CD3+CD62L+CD45RA-Tcm) polyclonally stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on the soluble oligomeric streptavidin mutein (with n≥ 3) described in Example 3. The graphs shown in FIG. 12A-B represent the degree of proliferation according to the number of cells harvested per time point, with FIG. 12A showing the proliferation in only IL-2 supplemented media and in FIG. 12B showing the proliferation in IL-2 and IL-15 supplemented media. FIG. 12C shows a flow-cytometric analysis of CD62L and CD127 surface expression after 14 days of culture in these variable cytokine milieus.

[0167] FIG. 13A-B shows the yield and phenotype of expansion of purified CD8+ T responder cells stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on two kinds of soluble oligomeric streptavidin muteins acting a soluble reagent. The first kind of oligomeric streptavidin mutein was the fraction of the oligomeric streptavidin mutein (obtained in Example 3 (conventional backbone), the second kind of this oligomeric streptavidin mutein used as soluble reagent was the soluble oligomer described above and referred herein as "large" backbone. In these experiments, the fraction of the oligomeric
conventional streptavidin mutein (n>3) was also used as a reagent that were either functionalized with single Fab fragments (third bar in FIG. 13A and FIG. 13B) or with a combination of aCD3 and aCD28 Fab-fragments. Furthermore to the combined stimulation with aCD3/aCD28 Fab fragments, also an additional aCD8 Fab fragment (commercially available from IBA GmbH, Gottingen, Germany) was immobilized in order to test whether it is possible to preferentially stimulate a specific T cell subpopulation. FIG. 13A shows a graph of bars that represent the degree of proliferation according to the number of cells harvested at day 6 compared to the negative controls (unstimulated purified CD8+ T responder cells) and normalized to the positive control (purified CD8+ T responder stimulated with commercially available anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized). FIG. 13B shows flow-cytometric analysis of the surface expression of CD8 and the T cell surface molecule CD45RO (that is indicative of T cell proliferation and activation) after cell culture. The various stimulating conditions were compared using one-way ANOVA and no significant difference (n.s.) was detected.

[0168] FIG. 14A-B shows the yield and phenotype for the expansion of purified CD8+ T responder cells stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on soluble oligomeric streptavidin mutein acting as a soluble reagent that were either functionalized with single Fab fragments or with a combination of Fab-fragments (as already described above). In these experiments, the CD8+ T responder cells were stimulated with the soluble reagent (the soluble oligomeric streptavidin mutein (1mg/ml) of Example 3) which was functionalized with varying amounts of aCD3 and aCD28 Fab fragments, optionally together with the aCD8 Fab fragment described above. The term "1x" corresponds to 1µg oligomeric streptavidin mutein functionalized with O^g aCD3 Fab fragment alone and 1µg oligomeric streptavidin mutein functionalized with O^g aCD3 Fab fragment alone, or 3µl of a preparation of oligomeric streptavidin mutein loaded with O^g aCD3 Fab fragment and O^g aCD28 Fab, or 4.5µl of a preparation of oligomeric streptavidin mutein loaded with O^g strep-tagged aCD3, O^g strep-tagged aCD8 and O^g strep-tagged aCD28 Fab. Accordingly, the term "2x" corresponds to 3.0 µg oligomeric streptavidin mutein functionalized with 1µg aCD3 Fab fragment alone and 3.0 µg oligomeric streptavidin mutein functionalized with 1µg aCD28 Fab alone, meaning that twice the amount of immobilized aCD3 Fab fragment was used. Untreated Tresp cells served as negative control and purified CD8+ T responder stimulated with
commercially available anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) as positive control. FIG. 14A shows a graph in which the bars represent the degree of proliferation according to the number of cells harvested at day 5 compared to the negative controls and normalized to the positive control. FIG. 14B shows FACS analysis of CD8 and CD45RO surface expression after cell culture.

[0169] FIG. 15A-B shows the expansion of purified CD3+ T responder cells stimulated *in vitro* with aCD3/aCD28 Fab fragments that were reversibly immobilized on the soluble oligomeric streptavidin mutein of Example 3 that served as a soluble reagent. In one experiment, in addition to aCD3/aCD28 Fab fragments, also an aCD8 Fab fragment commercially available from IBA GmbH, Gottingen, Germany (catalogue number 6-8000-203) was immobilized on the soluble oligomer of the streptavidin mutein in order to test whether it is possible to preferentially stimulate *in vitro* the CD8+ T cell subpopulation within the bulk CD3+ culture with a reagent having reversibly immobilized thereon also an aCD8 Fab fragment. In more detail, 500,000 purified CD3+ responder T cells (Tresp) were stimulated with 3µ1 of a preparation of oligomeric streptavidin mutein (1mg/ml) loaded with a combination of 0^g of the aCD3 Fab and 0^g of the aCD28 Fab. As an alternative approach, 4.5µ1 of the oligomeric streptavidin mutein were loaded with 0^g aCD3 Fab, 0^g aCD8 Fab and 0^g aCD28 Fab described above. Unstimulated Tresp cells served as negative control and Tresp stimulated with anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) served as positive control. Fig. 15A shows a graph of the the cell count (degree of expansion) in cultures in each condition. Fig. 15B shows the proportion of CD4+ and CD8+ cells in each stimulation condition.

[0170] FIG. 16A-B shows the results of the differential intracellular calcium mobilization in Jurkat cells that are either labelled with the aCD3 antibody OKT3 or with Fab fragments of OKT3 being multimerized with Strep-tactin® (also referred to as Fab multimers herein). For the experiments in FIG. 16A, Jurkat cells were loaded with the calcium-sensitive dye Indo-1-AM and calcium release was triggered by injection of either aCD3 mAb OKT3 (black squares) or aCD3 OKT3 Fab multimers (derived from the parental cell line OKT3) with or without prior D-biotin disruption (dark grey triangles and light grey circles respectively) compared to injection of PBS (inverted white triangles). Application of ionomycin served as positive control. Time-resolved changes in intracellular Ca2+ concentration were monitored by flow-cytometry based
on the change in FL6/FL7 ratio. For the experiment in FIG. 16B, Indo-l-AM-labeled Jurkat cells were activated by different aCD3 stimuli as described in Example 11; OKT3: upper graph and aCD3 Fab-multimer: middle graph) followed by subsequent (t=140s) D-biotin mediated disruption of aCD3 Fab-multimer signaling. aCD3 Fab-multimer pre-dissociated with D-biotin (lower graph and ionomycine served as negative or positive control. Data are representative of three different experiments.

[0171] FIG. 17 hows the result of the reversible staining of cells by anti-CD3 OKT3 Fab-multimers. Freshly isolated PBMCs were stained with either a monoclonal antibody (left dot plot, parental clone for the Fab-multimers) or cognate PE-labeled Fab-multimers and analyzed either before (second dot plot from the left) or after treatment with D-biotin (middle dot plot). Remaining Fab monomers were then detected after subsequent washing steps using fresh PE-labeled Strep-Tactin® (second dot plot from the right). Secondary Fab-multimer staining of reversibly stained cells served as control (right dot plot). Only live (pI^{\text{eladiv}}) cells are shown. Numbers in dot plots indicate the percentage of cells within gates.

[0172] FIG. 18 shows the isolation of cells by reversible binding of anti-CD28 Fab fragments multimerized with Sire/?-Tactin® labeled with phycoerythrin as a fluorescent label. CD28+ cells were selected/isolation by Fab-multimer magnetic cell selection from freshly isolated PMBCs as described in International Patent App. Pub. No. WO2013/011011. Before selection cells were control stained with either the cognate fluorescent aCD28-multimers (left dot plot) or with an antibody directed against the immunoglobulin kappa light chain (second dot plot from the left, a-Ig kappa mAb). After selection, cells were treated with D-biotin and subsequently washed to remove magnetic beads and Fab-monomers. Liberated CD28+ cells were subsequently (re-)stained either with aCD28 Fab-multimers (second dot plot from the right) or with the a-Ig kappa mAb (right dot plot) to detect potentially remaining Fab-monomers. Only live (pI^{\text{eladiv}}) CD3+ cells are shown. Numbers in dot plots indicate the percentage of cells within gates.

[0173] FIG. 19A-B shows early cluster formation of T cells after activation of purified CD4+ and CD8+ T responder cells stimulated in vitro with aCD3/aCD28. Fab fragments that were reversibly immobilized on the soluble oligomeric streptavidin mutein (n>3) described in Example 3. FIG. 19A depicts the results for CD4+ T cells and FIG. 19B depicts the results for the CD8+ T cells. Data for the Tresp stimulated with the soluble multimerization reagent (the
oligomeric streptavidin mutein), the Tresp stimulated with the commercially available anti-CD3/anti-CD28 beads (positive control) and the unstimulated T cells (negative control) are shown.

[0174] FIG. 20A-B shows the kinetics of selective antigen-specific (Ag-specific) expansion out of a bulk population of purified CD3+CD62L+CD45RA- T_{CM} responder cells that were stimulated in vitro with both a peptide:MHC molecule complex (that acts as first agent that provides a primary activation signal to the cells) and aCD28 Fab fragment (that acts as second agent that binds the accessory molecule on the surface of the cells) and unstimulated T cells (negative control) are shown. Both, the complex of antigen-specific peptide with the MHC molecule and the aCD28 Fab fragment were reversibly immobilized on the same soluble oligomeric streptavidin mutein (with n> 3) described in Example 3. The peptide used for the antigen-specific expansion in FIG. 20A was the peptide CRVLCCYVL (SEQ ID NO: 38), amino acids 309-317 of the immediate-early 1 protein restricted by the HLA-C702 MHC molecule (described in Ameres et al, PLOS Pathogens, May 2013, vol. 9, issue 5, e1003383) representing an HLA-C7/IE-1 epitope that is specific for cytomegalovirus (CMV). The MHC I molecule that presents the peptide carries at its C-terminus of the heavy chain the streptavidin binding peptide (SAWSHPQFEK(GGGS)$_2$GGSAWSHPQFEK (SEQ ID NO: 16), that is commercially available as "Twin-Strep-tag®" from IBA GmbH, Gottingen, Germany). FIG. 20A shows exemplary flow-cytometric analysis for the fraction of the Ag-specific cells that were proliferated using the peptide:MHC-I complex specific for this HLA-C7/IE-1 epitope as first agent that provides a primary activation signal to the cells reversibly immobilized on the soluble oligomeric streptavidin mutein. The graphs in FIG. 20B to FIG. 20E illustrates the expansion kinetics of further Ag-specificities according to the number of specific peptide:MHC I multimer-positive cells harvested per time point in analogy to FIG. 20A using distinct complexes of an antigen-specific peptide with the MHC I molecule as first agent that provides a primary activation signal to the cells reversibly immobilized on the soluble oligomeric streptavidin mutein. In more detail, FIG. 20B shows the expansion of Ag-specific cells that were expanded using the peptide:MHC-I complex specific for the pp65 epitope of CMV (amino acids 341-350 (QYDPVAALF)(SEQ ID NO: 39) restricted by HLA-A2402). FIG. 20C shows the expansion of Ag-specific cells that were expanded using another peptide:MHC-I complex specific for the pp65 epitope of CMV (amino acids 265-274 (RPHERNGFTV)(SEQ ID NO: 40).
restricted by HLA-B702), FIG. 20D shows the expansion of Ag-specific cells that were proliferated using the peptide:MHC-I complex specific for the hexon 5 epitope of adenovirus (amino acids 114-124 (CPYSGTAYNSL)(SEQ ID NO: 41) restricted by HLA-B702), FIG. 20E shows the expansion of Ag-specific cells that were proliferated using the peptide:MHC-I complex specific for the HLA-B7/IE-1309-317 epitope of CMV (exemplary FACS data see above FIG. 20A). All peptide:MHC molecules bearing the Twin Strep®-Tag are commercially available from IbaGmbH. In this context, the amino acid sequences of the HLA-A*2402, HLA-B*0702 and HLA-C*0702 molecules that carry the "Twin-Strep-tag®" as their C-terminus are shown as SEQ ID NO: 42, 43 and 44 in the accompanying Sequence Listings, while the amino acid sequence of the β2 microglobulin (which forms together with the α chain, that means the HLA encoded molecules the respective MHC I molecule) is shown as SEQ ID NO: 45 in the accompanying Sequence Listing. In addition, FIG. 20F shows exemplary flow-cytometric analysis of CD62L and CD127 surface expression after 14 days of culture for HLA-B7/Hexon5 114-124 stimulated/expanded cells from FIG. 20D.

[0175] FIG. 21 shows the kinetics of selective Ag-specific expansion out of purified CD3+CD62L+CD45RA-TCM responder cells that were stimulated in vitro with a) antigen specific peptide MHC I complexes and b) aCD28 Fab fragments that were reversibly immobilized as first and second agent on soluble oligomeric streptavidin muteins. For this purpose 500,000 CD3+CD62L+CD45RA- responder TCM cells (Tresp) were stimulated Ag-specifically using 3µl of a preparation of Streptactin multimerization reagent functionalized with 0^g peptide:MHC class I complexes equipped with a streptavidin binding peptide (the specific peptide represents amino acids 114-124 (CPYSGTAYNSL, SEQ ID NO: 41) of the Hexon 5 protein of the adenovirus restricted by HLA-B0702, see above) and 0^g aCD28 Fab. As an alternative, 4.5µl of a preparation of Streptactin multimerization reagent loaded with 0^g this peptide:MHC class I complex, 0^g aCD8 Fab and 0^g aCD28 Fab. For comparison, polyclonal stimulation was performed, using 3µl of a preparation of Streptactin multimerization reagent (1mg/ml) either loaded with a combination of 0^g aCD3 Fab and 0^g aCD28 Fab. Again as the alternative stimulation condition described above, 4.5µl of a preparation of Streptactin multimers loaded with 0^g aCD3 Fab, 0^g aCD8 Fab and 0^g aCD28 Fab was used. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated polyclonal with anti-CD3/anti-CD28 beads as positive control. Tresp cells were seeded in 48-
well plates in 1ml cell culture medium supplemented with 30U/ml IL-2 and 5ng/ml IL-15. Cells were incubated at 37°C with media exchange every 3 days and cell count was analyzed after 7 and 14 days. The photographs shown in FIG. 21 represent the degree of cluster formation on day 5 for Ag-specific stimulation as exemplified for the HLA-B7/Hexon 5 epitope of adenovirus.

[0176] FIG. 22A-B shows the activation of intracellular signaling cascades of transduced Jurkat cells that have been modified to express an aCD19 chimeric antigen receptor (CAR), and that were stimulated using the oligomeric Strep-tactin® of Example 3 as soluble multimerization reagent. The specificity of a CAR is typically derived from a scFv region assembled from the antigen-binding region of a monoclonal antibody (mAb) that specifically binds a target/tumor associated antigen such as CD19 and links it to T cell specific signaling (described in Hudecek et al, Clin Cancer Res. 2013 June 15; 19(12): 3153-3164. In the experiments the extracellular domain (ECD) of CD19, which contains the natural ligand of the aCD19 CAR as well as the polyclonal algG F(ab)2 fragment that recognizes the IgG4 spacer (donkey-anti-human F(ab)2 is commercially available from Jackson Immuno Research) within the aCD19-CAR were also used in this experiment as first agent that provides a primary activation signal to the jurkat cells. The reversibly immobilization to the soluble oligomeric streptavidin mutein was provided by the streptavidin peptide SAWSHPQFEK(GGGS)₂GGSAWSHPQFEK (SEQ ID NO: 16) that was fused to the C-terminus of the ECD of CD19 or by the biotinylated (Fab)2 fragment of the algG (since the streptavidin mutein "m2" binds biotin with reduced affinity, this binding is reversible and can for example be displaced by addition of an excess of free biotin). In the control experiment of FIG. 22A 300,000 CD3+ Jurkat responder cells (Jresp) were stimulated with varying amounts of a mixture of preparations of oligomeric Strepactin (lgm/ml) that was functionalized with the aCD3 Fab and the aCD28 Fab ("xl" corresponds to 3μg multimerized Strepactin functionalized with 0^g aCD3 Fab and 0^g aCD28 Fab - polyclonal multimerized agent). In the experiment of FIG. 22B 3μl of a preparation of the oligomeric Strepactin was functionalized with 0^g (xl) or 1μg (x2) of the extracellular domain (ECD) of CD19 or with 3μl of a preparation of the oligomeric Strepactin loaded with 0^g (xl) or 1μg (x2) algG that recognizes the IgG4 spacer (which are both CAR-specific multimerized agent). Jresp stimulated with anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) or PMA and ionomycin served as positive controls. Jresp cells were seeded in 1.5ml Eppendorf tubes in 200μl cell culture medium supplemented
with 30U/ml IL-2. Cells were incubated at 37°C and put on ice and lysed after 0 min to 20 min of stimulation. Detection of phosphorylated ERK indicates active MAPK signaling, staining of the housekeeper β-Actin indicates loading of equal amounts of total protein per condition and time point.

Detailed Description

[0177] Provided herein are methods for incubation (culturing), and/or enriching or selecting cells from, composition of cells. For example, among the provided embodiments are methods to expand, activate, promote survival or differentiation (or lack thereof) of, and/or to induce various other effects in, target cells; and/or to separate target cells from other cells and/or other components or to enrich them as compared to such other components. In some aspects, the cells are T cells, such as bulk T cells or cells of a particular subset of T cells.

[0178] All publications, including patent documents, scientific articles and databases, referred to in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication were individually incorporated by reference. If a definition set forth herein is contrary to or otherwise inconsistent with a definition set forth in the patents, applications, published applications and other publications that are herein incorporated by reference, the definition set forth herein prevails over the definition that is incorporated herein by reference. For example, the contents of International PCT Application No. PCT/EP2015/058339 is incorporated by reference in its entirety.

[0179] The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

1. OVERVIEW OF METHODS, SYSTEMS AND REAGENTS

[0180] Provided herein are methods for incubation (culturing) of cells to expand, activate, promote survival or differentiation (or lack thereof) of, and/or to induce various other effects in, target cells. In some embodiments, the provided methods also include one or more other processes steps, including one or more of selecting, isolating, enriching and/or selecting cells from a composition of cells and/or transducing cells. In some embodiments, the provided methods are performed in the presence of a multimerized agent in which one or more binding
agents (e.g. antibody fragments, such as a Fab) are reversibly bound to a multimerization reagent, for example an oligomeric streptavidin mutein reagent.

[0181] In some embodiments, the culturing and/or enriching of cells is carried out, in whole or in part, in the presence of and/or when cells are on a support, such as a stationary phase, and/or a solid support. In some embodiments, the support is a chromatography matrix, such as where the incubation is carried out when cells are within a column containing the stationary phase. In some embodiments, the methods are carried out when the cells are immobilized, generally indirectly, on the support, e.g., column. The immobilization is typically reversible, such that the cells may be removed from the support following incubation.

[0182] In some embodiments, the support provides the ability to enrich a composition with the cells or to select particular cells, either during, prior to or after incubation. For example, in some embodiments, a solid support functionalized with an agent specific for one or more of the target cells (e.g., a T cell marker such as CD3), is used, and the desired T cells are combined with the support and allowed to bind to the support, becoming indirectly immobilized. In some aspects, the target cells are stimulated while immobilized on the support, for example, by addition of multimerized reagents and/or via agents coupled to the support. Thus in some aspects, the provided methods and other embodiments are advantageous in that they allow multiple processing steps (e.g., stimulation and selection) to occur within the same container and/or closed system or system(s), which can provide increased efficiency and safety features. An exemplary embodiment is shown in FIG. 5.

[0183] In some embodiments, the methods relate to reversible reagent systems capable of binding to molecules on the surface of target cells, such as reagents including receptor binding molecules, e.g., stimulatory agents, which thereby can provide a signal to the cells, which, in some cases, can be a primary activation signal. In some embodiments, the methods employ reagents, which can be multimerization reagents having bound thereon one or more agents, e.g. stimulatory agent(s) such as a first agent, second agent, etc. that provides a signal to the cells, such as a primary activation signal and/or an accessory or costimulatory signal. In some embodiments, the primary activation signal may as such be sufficient to activate the cells to expand/proliferate. This first agent can either be bound reversibly or also irreversibly to the multimerization reagent. The multimerization reagent may have bound thereto also a second agent that stimulates an accessory molecule on the surface of the cells. The second agent, when
binding to the accessory molecule on the surface on the surface of the cells, may thereby
stimulate the activated cells to expand. Also this second agent can either be bound reversibly or
also irreversibly to the multimerization reagent. The multimerization reagent may either be
immobilized on a solid support or soluble. In some embodiments, the multimerization reagent is
on a support that is a stationary phase and at least a portion of the incubation is carried out
within a column containing the stationary phase.

[0184] In one aspect, the method disclosed herein is a serial expansion of a population of
cells in which a complete population of lymphocytes is stimulated/expanded, the reagents
necessary for the expansion are then removed by chromatography on a suitable stationary phase.
In some embodiments, the expanded/stimulated cells, which are the cultured cells, are
optionally transfected with e.g. a T cell receptor or a chimeric antigen receptor (CAR) and, in
some aspects, can be subjected to a second stimulation expansion with a different stimulatory
molecule that binds to the introduced T cell receptor or the chimeric antigen receptor.

[0185] Methods of expanding T cell populations in vitro in the absence of exogenous growth
factors or low amounts of exogenous growth factors are known in the art (see e.g. US Patent
6,352,694 B1 and European Patent EP 0 700 430 B1). In general, such methods employ a solid
phase surfaces of greater than 1 µM to which various bind agents (e.g. anti-CD3 antibody and/or
anti-CD28 antibody) are immobilized. For example, Dynabeads® CD3/CD28 (Invitrogen) are
commercially available reagents for T cell expansion, which are uniform, 4.5 µm
superparamagnetic, sterile, non-pyrogenic polystyrene beads coated with a mixture of affinity
purified monoclonal antibodies against the CD3 and CD28 cell surface molecules on human T
cells. However, in some cases, such magnetic beads are, for example, difficult to integrate into a
method to expand cells under conditions required for clinical trials or therapeutic purposes since
it has to be made sure that these magnetic beads are completely removed before administering
the expanded T cells to a patient.

[0186] In some embodiments, the methods provided herein address these concerns. In some
aspects, the provided reagents are reversible, such that the stimulating agents can be removed
from the cell composition. Also, in some aspects, the reagent, e.g. multimerization reagent, to
which the stimulating agents are bound is not immobilized on a support, such as not
immobilized on a solid support or surface. Thus, in some aspects, the reagent, e.g.
multimerization reagent, is flexible and not rigid. In some embodiments, the reagent can adapt
or conform to the cell surface. In some embodiments, it is possible to immobilize the reagent on a support, such as a solid support, including a stationary phase. In some embodiments, such methods can be used in concert with selection agents, using similar selection agents in which one or more target cells can be selected and, simultaneously or sequentially, exposed to the stimulatory agents. Hence, in some aspects, the stimulation of particular cells or subsets of cells can be biased by selection and isolation in together with stimulation.

[0187] In some embodiments, the provided methods involve culturing, e.g. contacting, a composition of cells with a reagent, e.g. multimerization reagent to which is bound one or more receptor-binding agents (e.g. stimulatory agents) (see e.g. FIG. 4A and B). In some embodiments, after contacting the cell composition with the multimerization reagent and usually incubating the cell population with the multimerization reagent, the population of cells forms complexes/is bound to the multimerization reagent via the first agent. The other cell populations contained in the initial sample that lack the specific cell surface molecule do not bind to the multimerization reagent. In this respect, it is noted that the cell population usually has multiple copies of the cell surface molecule on its surface and binding of these multiple copies is typically needed for stimulation or activation.

[0188] Thus, the multimerization reagent provide typically more than one binding site, e.g. Zl, in which, in some cases, a plurality of agents can be reversibly bound to present the first agent, second agent and/or other agents in a sufficient density to the population of cells. In this respect, it is noted that a multimerization reagent can as such have multiple binding sites, e.g., Zl, for example, a streptavidin mutein (being a homo-tetramer) in its native state has four such binding sites, e.g. Zl, and can further be oligomerized. In some cases, a reagent may have only one binding site, e.g. Zl, for the reversible binding of a binding partner, e.g. CI. Such an example is multimeric calmodulin. Calmodulin as such has only one binding site for calmodulin binding peptides. However, calmodulin can be biotinylated and then reacted with streptavidin-oligomers (see also below), thereby providing a multimerization reagent in which multiple calmodulin molecules are presented in high density on a "scaffold", thereby providing multimeric calmodulin.

[0189] In some embodiments, after incubation or other suitable time at which stimulation is desired to be disrupted, the binding between the binding partner C, e.g. CI of a reversibly bound agent and the binding site Z, e.g. Zl, of the multimerization reagent is disrupted by disrupting
the respective reversible bond. In some cases, the disruption may be achieved by adding a competitor to the incubation/reaction mixture containing the population of cells being bound to the multimerization reagent. For competitive disruption (which can be understood as being a competitive elution) of the reversible bond between the binding partner C, e.g. CI, of a reversibly bound agent and the binding site Z, e.g. ZI of the multimerization reagent, the incubation mixture/population of cells can be contacted with a free first binding partner C, e.g. CI, or an analog of said first binding partner C that is capable of disrupting the bond between the first binding partner and the binding site Z, e.g. ZI. In the example of the binding partner C, e.g. CI, being a streptavidin binding peptide that binds to biotin binding site of streptavidin, the first free partner may be the corresponding free streptavidin binding peptide or an analogue that binds competitively. Such an analogue can, for example, be biotin or a biotin derivate such as desthiobiotin.

[0190] In some embodiments, the addition of the free partner or the analog thereof results in displacement of the binding partner C, e.g. CI, from the multimerization reagent and thus, since the binding partner is comprised in the reversibly bound agent, displacement of such agent from the multimerization reagent is achieved. This displacement of the agent in turn results in a dissociation of the first agent from the cell surface molecule, in particular if the binding affinity of the bond between the first agent and the cell surface receptor has a dissociation constant (K_{d}) in the range of 10^{-2} \text{ M} to 10^{-13} \text{ M} and is thus also reversible. Due to this dissociation, in some aspects, the stimulation of the cell population is also terminated.

[0191] In some embodiments, the binding affinity of antibody molecules towards their antigen, including for example, a cell surface receptor molecule is usually in the affinity range of the K_{d} of 10^{-7} \text{ M} to about 10^{-13} \text{ M}. Thus, conventional monoclonal antibodies can be used as an agent (first or second, receptor-binding, e.g. stimulatory agent, or selection agent). In some embodiments, in order to avoid any unwanted avidity effects that lead to a stronger binding, monoclonal antibodies can also be used in form of their monovalent antibody fragments such as Fab-fragments or single chain Fv fragments.

[0192] Thus, the provided method has the advantage that the time period of the stimulation or expansion of the cell population can be exactly controlled and thus also the functional status of the cell population can be closely controlled. In some aspects, short-term activation of cells, such as T cells, by addition of a substance, such as a competitive agent (e.g. biotin or an analog)
within 5 days after stimulation results in proliferation and stimulation of cells, but alters one or more characteristics or features of the cells, such as CD4 or CD8 T cell percentage, CD8/CD4 ratio, phenotypic markers and/or differentiation state. For example, in some aspects, the ability to temporally control the signal using embodiments of the provided reagents can result in an increase in a less-differentiated, long-lived population T cells such as long-lived memory T cells. In some cases, temporal control of the signal, e.g., by disruption of multimerized agent binding using a competition substance, can be used to tailor or adjust the relative expansion and/or persistence of particular subpopulations compared to others (e.g., CD4+ vs CD8+).

[0193] In some embodiments, due to the dissociation of the reversibly bound agent or agents from the cell surface molecule, the provided method has the added advantage that the stimulated cell population is free of stimulating agents at the end of the stimulation period. Also, in some embodiments, all other reagents used in the method, namely the agents (e.g. first or second, receptor-binding agents, e.g. stimulatory agents, or selection agents) as well as the competition reagent of the binding partner C, e.g. CI, or the analog thereof can be easily removed from the stimulated cell population via a "removal cartridge" (see e.g. described in International patent application WO 2013/124474). In some cases, for example in which the multimerization reagent is immobilized on a solid support, such as a bioreactor surface or a magnetic bead, it is being held back. Thus, the use of a removal cartridge for removal of the free agent and the competition reagent, can include loading the elution sample (e.g. sample obtained after disruption of the reversible binding) onto a second chromatography column.

[0194] In some embodiments, this chromatography column has a suitable stationary phase that is both an affinity chromatography matrix and, at the same time, can act as gel permeation matrix. In some aspects, this affinity chromatography matrix has an affinity reagent immobilized thereon. In some embodiments, the affinity reagent may, for instance, be streptavidin, a streptavidin mutein, avidin, an avidin mutein or a mixture thereof. In some embodiments, the agent (e.g. first or second, receptor-binding agents, e.g. stimulatory agents, or selection agents), the competition reagent of the binding partner C, CI, bind to the affinity reagent, thereby being immobilized on the chromatography matrix. As a result the elution sample containing the isolated and expanded cell population is being depleted of the agent (e.g. first or second, receptor-binding agents, e.g. stimulatory agents, or selection agents) and the competition reagent. In some embodiments, the cultured composition is free of any reactants, which in some
aspects is an advantageous for use in connection with diagnostic applications (for example, further FACST™ sorting) or for any cell based therapeutic application.

[0195] In some embodiments, the ability to remove the reagent and other components from the composition has the further advantage of being able to avoid any solid support such as magnetic beads. In some embodiments, this means there is no risk or minimal risk of contamination of the activated T cells by such magnetic beads. In some embodiments, this also means that a process that is compliant with GMP standards can be more easily established compared to other methods, such as the use of Dynabeads® in which additional measures have to be taken to ensure that the final expanded T cell population is free of magnetic beads.

Furthermore, in some embodiments, the use of a soluble multimerization agent makes it much easier to remove the same from the activated cell population (T cells, B cells or also natural killer cells) since the cells can be simple sedimented by centrifugation and the supernatant, including the soluble multimerization reagent can be discarded. Alternatively, the soluble multimerization reagent can be removed from the expanded cell population in a gel permeations matrix of the removal cartridge, such as described above (e.g. International Patent Application Publication Number WO 2013/124474). In some embodiments, for example in those embodiments in which no solid phase (e.g. magnetic beads) are present also provided is an automated closed system for expansion of the cells that can be integrated into known cell expansion systems such as the Xuri Cell Expansion System W25 and WAVE Bioreactor 2/10 System, available from GE Healthcare (Little Chalfont, Buckinghamshire, United Kingdom) or the Quantum® Cell Expansion System, available from TerumoBCT Inc. (Lakewood, CO, USA).

In some embodiments, where a solid phase and/or stationary phase is used, the fact that the stimulation is carried out in the presence of the stationary phase or solid phase, or that the cells can be stimulated while immobilized, allows for the entire process of selection and/or stimulation to occur in a container, e.g., a column, in a sterile or closed system.

[0196] In some aspects, the methods provided herein can include a population of cells that carry at least two specific cell surface molecules. In some embodiments, a first cell surface molecule is involved in a primary activation signal to the cell population, while the second cell surface molecule is an accessory molecule on the cell surface that is involved in providing a stimulus to the cells. In some embodiments, the cell population is contacted with a multimerization reagent in which is reversibly bound a first agent that provides a primary
activation signal to the cells and a second agent that induces or modulates an additional signal, such as stimulates an accessory molecule on the surface of the cells. The population of cells may, for example, be a T cell population in which the cell surface molecule is a TCR/CD3 complex and the cell surface molecule is the accessory molecule CD28. Further, as described herein, targeting other accessory molecules also is contemplated, such as one or more of CD90 (Thy-1), CD95 (Apo-/Fas), CD137 (4-1BB), CD154 (CD40L), ICOS, LAT, CD27, OX40 and HVEM. In some aspects, stimulation through such other accessory molecules can result in result in an increase in a less-differentiated, and, in some cases, a long-lived population T cells such as long-lived memory T cells as compared to conventional stimulation through CD28. In some embodiments, binding of both the TCR/CD3 complex as the primary activation signal and binding of the accessory molecule (e.g. CD28 or other accessory molecule) can be necessary for expansion/proliferation of T cells.

[0197] In some embodiments, the multimerization reagent comprises at least one binding site Z, e.g. Zl, for the reversible binding of the first agent and the first agent also comprises at least one binding partner C, e.g. Cl, wherein the binding partner C, e.g. Cl, is able of reversibly binding to the binding site Z, e.g. Zl, of the multimerization reagent. Thus, the first agent, when contacted or incubated with the multimerization reagent, can be reversibly bound to the multimerization reagent via the reversible bond formed between the binding partner C, e.g. Cl, and the binding site Z, e.g. Zl. In addition, the second agent can comprises a binding partner C, e.g. C2, wherein the binding partner C2 is able of being reversibly bound to a binding site Z, e.g. 72, respectively, of the multimerization reagent. In some embodiments, the second agent, when it is contacted or incubated with the multimerization reagent, is reversibly bound to the multimerization reagent via the reversible bond formed between the binding partner C, e.g. CI and the binding site Z, e.g. 72. In some cases, CI and C2 can be the same or substantially the same and/or comprise the same or substantially the same moiety. In some cases, Z1 and Z2 can be the same or substantially the same and/or comprise the same or substantially the same moiety.

[0198] In some embodiments, using as binding partners CI and C2, moieties that bind to the same binding site of the multimerization reagent has the advantage that the same competition reagent (of the first binding partner CI and also of the second binding partner C2) or analog thereof can be used to disrupt, and in some cases terminate, the expansion of the population of
target cells (e.g. T cells) and to release this population of target cells (e.g. T cells) from the multimerization reagent.

[0199] In some cases for producing the binding agents (e.g. e.g. first or second, receptor-binding agents, e.g. stimulatory agents, or selection agents) to comprise a binding partner C, the binding partner C, e.g. C1 or C2, can be provided by the respective expression vector used for the recombinant production of the agent (e.g. antibody fragment) so that the binding partner C, e.g. C1 or C2, is part of a fusion peptide with the agent at either the N-terminus or C-terminus. In some embodiments, in the context of an agent that is an antibody or antigen-binding fragment, the binding partner C, e.g. C1 or C2, can be present at the C-terminus of either the light or the heavy chain. Also this methodology of cloning a recombinant protein, such as the variable domains of an antibody molecule, and recombinantly producing a respective protein, e.g. antibody fragment, is well known to the person skilled in the art, see for example, Skerra, A. (1994). In some embodiments, an antibody molecule can be generated of artificial binding molecules with antibody like properties against a given target, such as CD3 or CD28 or other accessory or stimulatory agent molecules as described, such as by well-known evolutive methods such as phage display (reviewed, e.g., in Kay, B.K. et al. (1996) Phage Display of Peptides and Proteins - A Laboratory Manual, 1st Ed., Academic Press, New York NY; Lowman, H.B. (1997) Annu. Rev. Biophys. Biomol. Struct. 26, 401-424, or Rodi, D.J., and Makowski, L. (1999) Curr. Opin. Biotechnol. 10, 87-93), ribosome display (reviewed in Amstutz, P. et al. (2001) Curr. Opin. Biotechnol. 12, 400-405) or mRNA display as reported in Wilson, D.S. et al. (2001) Proc. Natl. Acad. Sci. USA 98, 3750-3755.

II. REVERSIBLE REAGENT SYSTEMS AND RELATED USES

[0200] In some embodiments, the methods employ reversible systems in which at least one agent (e.g., a receptor-binding agent or selection agent) capable of binding to a molecule on the surface of a cell (cell surface molecule), is reversibly associated with a reagent. In some cases, the reagent contains a plurality of binding sites capable of reversibly binding to the agent (e.g., receptor-binding agent or selection agent). In some cases, the reagent is a multimerization reagent. In some embodiments, the at least one agent (e.g., receptor-binding agent or selection agent) contains at least one binding site B that can specifically bind an epitope or region of the molecule and also contains a binding partner C that specifically binds to at least one binding site
Z of the reagent. In some cases, the binding interaction between the binding partner C and the at least one binding site Z is a non-covalent interaction. In some embodiments, the binding interaction, such as non-covalent interaction, between the binding partner C and the at least one binding site Z is reversible.

[0201] In some embodiments, the reversible association can be mediated in the presence of a substance, such as a competition reagent (also called an eluent reagent), that is or contains a binding site that also is able to bind to the at least one binding site Z. Generally, the substance (e.g. competition reagent) can act as a competitor due to a higher binding affinity for the binding site Z present in the reagent and/or due to being present at higher concentrations than the binding partner C, thereby detaching and/or dissociating the binding partner C from the reagent. In some embodiments, the affinity of the substance (e.g. competition reagent) for the at least one binding site Z is greater than the affinity of the binding partner C of the agent (e.g., receptor-binding agent or selection agent) for the at least one binding site Z. Thus, in some cases, the bond between the binding site Z of the reagent and the binding partner C of the agent (e.g., receptor-binding agent or selection agent) can be disrupted by addition of the substance (e.g. competition reagent), thereby rendering the association of the agent (e.g., receptor-binding agent or selection agent) and reagent reversible.

[0202] Reagents that can be used in such reversible systems are described and known in the art, see e.g., U.S. Patent Nos. 5,168,049; 5,506,121; 6,103,493; 7,776,562; 7,981,632; 8,298,782; 8,735,540; 9,023,604; and International published PCT Appl. Nos. WO2013/124474 and WO2014/076277. Non-limiting examples of reagents and binding partners capable of forming a reversible interaction, as well as substances (e.g. competition reagents) capable of reversing such binding, are described below.

A. Reagent

[0203] In some embodiments, the reagent contains one or a plurality of binding sites Z that are capable of reversibly binding to a binding partners C comprised by the agent (e.g., receptor-binding agent or selection agent). In some embodiments, the reagent contains a plurality of binding sites Z, which each are able to specifically bind to the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent), such that the reagent is capable of reversibly binding to a plurality of agents (e.g., receptor-binding agent or selection agent), e.g., is a multimerization reagent. In some embodiments, the reagent is an oligomer or polymer of
individual molecules (e.g. monomers) or complexes that make up an individual molecule (e.g. tetramer), each containing at least one binding site Z. In some embodiments, the reagent contains at least two binding sites Z, at least three binding sites Z, at least four binding sites Z, such as at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72 or more binding sites Z. The binding sites can all be the same or the plurality of binding sites can contain one or more different binding sites (e.g. Z1, Z2, Z3, etc.).

[0204] In some embodiments, two or more agents (e.g. receptor-binding agents or selection agents) associate with, such as are reversibly bound to, the reagent, such as via the one or plurality of binding sites Z present on the reagent. In some cases, this results in the agents (e.g., receptor-binding agents or selection agents) being closely arranged to each other such that an avidity effect can take place if a target cell having (at least two copies of) a cell surface molecule is brought into contact with the agent (e.g., receptor-binding agent or selection agent) that has one or more binding sites B able to bind the particular molecule.

[0205] In some embodiments, two or more different agents (e.g. receptor-binding agents or selection agents) that are the same, i.e. containing the same binding site B, can be reversibly bound to the reagent. In some embodiments, it is possible to use at least two different (kinds of) agents (e.g., receptor-binding agents or selection agents), and in some cases, three or four different (kinds of) agents, e.g. two or more different receptor-binding agents and/or selection agent. For example, in some embodiments, the reagent can be reversibly bound to a first agent (e.g., receptor-binding agent or selection agent) containing a binding site Bl, B2, B3 or B4, etc. and a second agent (e.g., receptor-binding agent or selection agent) containing another binding site, e.g. another of a binding site Bl, B2, B3 or B4. In some cases, the binding site of the first agent and the second agent can be the same. For example, in some aspects, each of the at least two agents (e.g. receptor-binding agent or selection agent) can bind to the same molecule. In some cases, the binding site of the first agent and the second agent can be different. In some aspects, each of the at least two agents (e.g. receptor-binding agent or selection agent) can bind to a different molecule, such as a first molecule, second molecule and so on. In some cases, the different molecules, such as cell surface molecules, can be present on the same target cell. In other cases, the different molecules, such as cell surface molecules, can be present on different target cells that are present in the same population of cells. In some case, a third, fourth and so
on agent (e.g., receptor-binding agent or selection agent) can be associated with the same reagent, each containing a further different binding site.

[0206] In some embodiments, the two or more different agents (e.g., receptor-binding agents or selection agents) contain the same binding partner C. In some embodiments, the two or more different agents (e.g., receptor-binding agents or selection agents) contain different binding partners. In some aspects, a first agent (e.g., receptor-binding agent or selection agent) can have a binding partner C1 that can specifically bind to a binding site Z1 present on the reagent and a second agent (e.g., receptor-binding agents or selection agent) can have a binding partner C2 that can specifically bind to the binding site Z1 or to a binding site Z2 present on the reagent. Thus, in some instances, the plurality of binding sites Z comprised by the reagent includes binding sites Z1 and Z2, which are capable of reversibly binding to binding partners C1 and C2, respectively, comprised by the agent (e.g., receptor-binding agent or selection agent). In some embodiments, C1 and C2 are the same, and/or Z1 and Z2 are the same. In other aspects, one or more of the plurality of binding sites Z can be different. In other instances, one or more of the plurality of binding partners C may be different. It is within a level of a skilled artisan to choose any combination of different binding partners C that are compatible with a reagent containing the binding sites Z, as long as each of the binding partners C are able to interact, such as specifically bind, with one of the binding sites Z.

[0207] In some embodiments, the reagent is a streptavidin, a streptavidin mutein or analog, avidin, an avidin mutein or analog (such as neutravidin) or a mixture thereof, in which such reagent contains one or more binding sites Z for reversible association with a binding partner C. In some embodiments, the binding partner C can be a biotin, a biotin derivative or analog, or a streptavidin-binding peptide or other molecule that is able to specifically bind to streptavidin, a streptavidin mutein or analog, avidin or an avidin mutein or analog. In some embodiments, the reagent is or contains streptavidin, avidin, an analog or mutein of streptavidin, or an analog or mutein or avidin that reversibly binds biotin, a biotin analog or a biologically active fragment thereof. In some embodiments, the reagent is or contains an analog or mutein of streptavidin or an analog or mutein of avidin that reversibly binds a streptavidin-binding peptide. In some embodiments, the substance (e.g. competitive reagent) can be a biotin, a biotin derivative or analog or a streptavidin-binding peptide capable of competing for binding with the binding partner C for the one or more binding sites Z. In some embodiments, the binding partner C and
the substance (e.g. competitive reagent) are different, and the substance (e.g. competitive reagent) exhibits a higher binding affinity for the one or more binding sites Z compared to the affinity of the binding partner.

[0208] In some embodiments, the streptavidin can be wild-type streptavidin, streptavidin muteins or analogs, such as streptavidin-like polypeptides. Likewise, avidin, in some aspects, includes wild-type avidin or muteins or analogs of avidin such as neutravidin, a deglycosylated avidin with modified arginines that typically exhibits a more neutral π and is available as an alternative to native avidin. Generally, deglycosylated, neutral forms of avidin include those commercially available forms such as "Extravidin", available through Sigma Aldrich, or "NeutrAvidin" available from Thermo Scientific or Invitrogen, for example.

[0209] In some embodiments, the reagent is a streptavidin or a streptavidin mutein or analog. In some embodiments, wild-type streptavidin (wt-streptavidin) has the amino acid sequence disclosed by Aragarana et al, Nucleic Acids Res. 14 (1986) 1871-1882 (SEQ ID NO: 1). In general, streptavidin naturally occurs as a tetramer of four identical subunits, i.e. it is a homo-tetramer, where each subunit contains a single binding site for biotin, a biotin derivative or analog or a biotin mimic. An exemplary sequence of a streptavidin subunit is the sequence of amino acids set forth in SEQ ID NO: 1, but such a sequence also can include a sequence present in homologs thereof from other Streptomyces species. In particular, each subunit of streptavidin may exhibit a strong binding affinity for biotin with an equilibrium dissociation constant (K_D) on the order of about 10^{-14} M. In some cases, streptavidin can exist as a monovalent tetramer in which only one of the four binding sites is functional (Howarth et al. (2006) Nat. Methods, 3:267-73; Zhang et al. (2015) Biochem. Biophys. Res. Commun., 463:1059-63)), a divalent tetramer in which two of the four binding sites are functional (Fairhead et al. (2013) J. Mol. Biol., 426:199-214), or can be present in monomeric or dimeric form (Wu et al. (2005) J. Biol. Chem., 280:23225-31; Lim et al. (2010) Biochemistry, 50:8682-91).

[0210] In some embodiments, streptavidin may be in any form, such as wild-type or unmodified streptavidin, such as a streptavidin from a Streptomyces species or a functionally active fragment thereof that includes at least one functional subunit containing a binding site for biotin, a biotin derivative or analog or a biotin mimic, such as generally contains at least one functional subunit of a wild-type streptavidin from Streptomyces avidinii set forth in SEQ ID NO: 1 or a functionally active fragment thereof. For example, in some embodiments,
streptavidin can include a fragment of wild-type streptavidin, which is shortened at the N- and/or C-terminus. Such minimal streptavidins include any that begin N-terminally in the region of amino acid positions 10 to 16 of SEQ ID NO: 1 and terminate C-terminally in the region of amino acid positions 133 to 142 of SEQ ID NO: 1. In some embodiments, a functionally active fragment of streptavidin contains the sequence of amino acids set forth in SEQ ID NO: 2. In some embodiments, streptavidin, such as set forth in SEQ ID NO: 2, can further contain an N-terminal methionine at a position corresponding to Ala43 with numbering set forth in SEQ ID NO: 1. Reference to the position of residues in streptavidin or streptavidin muteins is with reference to numbering of residues in SEQ ID NO: 1.

[0211] In some aspects, streptavidin muteins include polypeptides that are distinguished from the sequence of an unmodified or wild-type streptavidin by one or more amino acid substitutions, deletions, or additions, but that include at least one functional subunit containing a binding site for biotin, a biotin derivative or analog or a streptavidin-binding peptide. In some aspects, streptavidin-like polypeptides and streptavidin muteins can be polypeptides which essentially are immunologically equivalent to wild-type streptavidin and are in particular capable of binding biotin, biotin derivatives or biotin analogues with the same or different affinity as wt-streptavidin. In some cases, streptavidin-like polypeptides or streptavidin muteins may contain amino acids which are not part of wild-type streptavidin or they may include only a part of wild-type streptavidin. In some embodiments, streptavidin-like polypeptides are polypeptides which are not identical to wild-type streptavidin, since the host does not have the enzymes which are required in order to transform the host-produced polypeptide into the structure of wild-type streptavidin. In some embodiments, streptavidin also may be present as streptavidin tetramers and streptavidin dimers, in particular streptavidin homotetramers, streptavidin homodimers, streptavidin heterotetramers and streptavidin heterodimers. Generally, each subunit normally has a binding site for biotin or biotin analogues or for streptavidin-binding peptides. Examples of streptavidins or streptavidin muteins are mentioned, for example, in WO 86/02077, DE 19641876 Al, US 6,022,951, WO 98/40396 or WO 96/24606.

[0212] In some embodiments, a streptavidin mutein can contain amino acids that are not part of an unmodified or wild-type streptavidin or can include only a part of a wild-type or unmodified streptavidin. In some embodiments, a streptavidin mutein contains at least one subunit that can have one more amino acid substitutions (replacements) compared to a subunit
of an unmodified or wild-type streptavidin, such as compared to the wild-type streptavidin
subunit set forth in SEQ ID NO: 1 or a functionally active fragment thereof, e.g. set forth in SEQ
ID NO: 2. In some embodiments, at least one subunit of a streptavidin mutein can have at least
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 amino acid differences
compared to a wild-type or unmodified streptavidin and/or contains at least one subunit that
comprising an amino acid sequence that exhibits at least 85%, 86%, 87%, 88%, 89%, 90%,
91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the sequence of
amino acids set forth in SEQ ID NO: 1 or 2, where such streptavidin mutein exhibits functional
activity to bind biotin, a biotin derivative or analog or biotin mimic. In some embodiments, the
amino acid replacements (substitutions) are conservative or non-conservative mutations.
Examples of streptavidin muteins are known in the art, see e.g., U.S. Pat. No. 5,168,049;
5,506,121; 6,022,951; 6,156,493; 6,165,750; 6,103,493; or 6,368,813; or International published

[0213] In some embodiments, streptavidin or a streptavidin mutein includes proteins
containing one or more than one functional subunit containing one or more binding sites Z for
biotin, a biotin derivative or analog or a streptavidin-binding peptide, such as two or more, three
or more, four or more, and, in some cases, 5, 6, 7, 8, 9, 10, 11, 12 or more functional subunits.
In some embodiments, streptavidin or streptavidin mutein can include a monomer; a dimer,
including a heterodimer or a homodimer; a tetramer, including a homotetramer, a
heterotetramer, a monovalent tetramer or a divalent tetramer; or can include higher ordered
multimers or oligomers thereof.

[0214] In some embodiments, the binding affinity of streptavidin or a streptavidin mutein for
a peptide ligand binding partner is less than 1 x 10^{-4} M, 5 x 10^{-4} M, 1 x 10^{-5} M, 5 x 10^{-5} M, 1 x 10^{-6}
M, 5 x 10^{-6} M or 1 x 10^{-7} M, but generally greater than 1 x 10^{-13} M, 1 x 10^{-12} M or 1 x 10^{-11} M.
For example, peptide sequences (Strep-tags), such as disclosed in U.S. Pat. No. 5,506,121, can
act as biotin mimics and demonstrate a binding affinity for streptavidin, e.g., with a K_D of
approximately between 10^{-4} M and 10^{-5} M. In some cases, the binding affinity can be further
improved by making a mutation within the streptavidin molecule, see e.g. U.S. Pat. No.
6,103,493 or International published PCT App. No. WO2014/076277. In some embodiments,
binding affinity can be determined by methods known in the art, such as any described below.
In some embodiments, the reagent, such as a streptavidin or streptavidin mutein, exhibits binding affinity for a peptide ligand binding partner, which peptide ligand binding partner can be the binding partner C present in the agent (e.g., receptor-binding agent or selection agent). In some embodiments, the peptide sequence contains a sequence with the general formula set forth in SEQ ID NO: 9, such as contains the sequence set forth in SEQ ID NO: 10. In some embodiments, the peptide sequence has the general formula set forth in SEQ ID NO: 11, such as set forth in SEQ ID NO: 12. In one example, the peptide sequence is Trp-Arg-His-Pro-Gln-Phe-Gly-Gly (also called Strep-tag®, set forth in SEQ ID NO: 7). In one example, the peptide sequence is Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (also called Strep-tag® II, see e.g. International Published PCT Appl. No. WO02/077018; U.S. Patent No. 7,981,632). In some embodiments, the peptide ligand contains a sequential arrangement of at least two streptavidin-binding modules, wherein the distance between the two modules is at least 0 and not greater than 50 amino acids, wherein one binding module has 3 to 8 amino acids and contains at least the sequence His-Pro-Xaa (SEQ ID NO: 9), where Xaa is glutamine, asparagine, or methionine, and wherein the other binding module has the same or different streptavidin peptide ligand, such as set forth in SEQ ID NO: 11 (see e.g. International Published PCT Appl. No. WO02/077018; U.S. Patent No. 7,981,632). In some embodiments, the peptide ligand contains a sequence having the formula set forth in any of SEQ ID NO: 13 or 14. In some embodiments, the peptide ligand has the sequence of amino acids set forth in any of SEQ ID NOS: 15-19.

In some embodiments, the reagent is or contains a streptavidin mutein. In some embodiments, the streptavidin muteins contain one or more mutations (e.g. amino acid replacements) compared to wild-type streptavidin set forth in SEQ ID NO: 1 or a biologically active portion thereof. For example, biologically active portions of streptavidin can include streptavidin variants that are shortened at the N- and/or the C-terminus, which in some cases is called a minimal streptavidin. In some embodiments, an N-terminally shortened minimal streptavidin, to which any of the mutations can be made, begins N-terminally in the region of the amino acid positions 10 to 16 and terminates C-terminally in the region of the amino acid positions 133 to 142 compared to the sequence set forth in SEQ ID NO: 1. In some embodiments, an N-terminally shortened streptavidin, to which any of the mutations can be made, contains the amino acid sequence set forth in SEQ ID NO: 2. In some embodiments, the minimal streptavidin contains an amino acid sequence from position Alal3 to Serl39 and
optionally has an N-terminal methionine residue instead of Ala13. For purposes herein, the numbering of amino acid positions refers throughout to the numbering of wt-streptavidin set forth in SEQ ID NO: 1 [e.g. Aragana et al., Nucleic Acids Res. 14 (1986), 1871-1882, cf. also Fig. 3).

[0217] In some embodiments, the streptavidin mutein is a mutant as described in U.S. Pat. No. 6,103,493. In some embodiments, the streptavidin mutein contains at least one mutation within the region of amino acid positions 44 to 53, based on the amino acid sequence of wild-type streptavidin, such as set forth in SEQ ID NO: 1. In some embodiments, the streptavidin mutein contains a mutation at one or more residues 44, 45, 46, and/or 47. In some embodiments, the streptavidin mutein contains a replacement of Glu at position 44 of wild-type streptavidin with a hydrophobic aliphatic amino acid, e.g. Val, Ala, Ile or Leu, any amino acid at position 45, an aliphatic amino acid, such as a hydrophobic aliphatic amino acid at position 46 and/or a replacement of Val at position 47 with a basic amino acid, e.g. Arg or Lys, such as generally Arg. In some embodiments, Ala is at position 46 and/or Arg is at position 47 and/or Val or Ile is at position 44. In some embodiments, the streptavidin mutant contains residues Val44-Thr45-Ala46-Arg47, such as set forth in exemplary streptavidin muteins containing the sequence of amino acids set forth in SEQ ID NO: 3 or SEQ ID NO: 4 (also known as streptavidin mutant 1, SAM1). In some embodiments, the streptavidin mutein contains residues He44-Gly45-Ala46-Arg47, such as set forth in exemplary streptavidin muteins containing the sequence of amino acids set forth in SEQ ID NO: 5 or 6 (also known as SAM2). In some cases, such streptavidin mutein are described, for example, in US patent 6,103,493, and are commercially available under the trademark Strep-Tactin®.

[0218] In some embodiment, the streptavidin mutein is a mutant as described in International Published PCT Appl. Nos. WO 2014/076277. In some embodiments, the streptavidin mutein contains at least two cysteine residues in the region of amino acid positions 44 to 53 with reference to amino acid positions set forth in SEQ ID NO: 1. In some embodiments, the cysteine residues are present at positions 45 and 52 to create a disulfide bridge connecting the two alkane acids. In such an embodiment, amino acid 44 is typically glycine or alanine and amino acid 46 is typically alanine or glycine and amino acid 47 is typically arginine. In some embodiments, the streptavidin mutein contains at least one mutation or amino acid difference in the region of amino acids residues 115 to 121 with reference to amino acid
positions set forth in SEQ ID NO: 1. In some embodiments, the streptavidin mutein contains at least one mutation at amino acid position 117, 120 and 121 and/or a deletion of amino acids 118 and 119 and substitution of at least amino acid position 121.

[0219] In some embodiments, the streptavidin mutein contains a mutation at a position corresponding to position 117, which mutation can be to a large hydrophobic residue like Trp, Tyr or Phe or a charged residue like Glu, Asp or Arg or a hydrophilic residue like Asn or Gin, or, in some cases, the hydrophobic residues Leu, Met or Ala, or the polar residues Thr, Ser or His. In some embodiments, the mutation at position 117 is combined with a mutation at a position corresponding to position 120, which mutation can be to a small residue like Ser or Ala or Gly, and a mutation at a position corresponding to position 121, which mutation can be to a hydrophobic residue, such as a bulky hydrophobic residue like Trp, Tyr or Phe. In some embodiments, the mutation at position 117 is combined with a mutation at a position corresponding to position 120 of wildtype streptavidin set forth in SEQ ID NO:1 or a biologically active fragment thereof, which mutation can be a hydrophobic residue such as Leu, Ile, Met, or Val or, generally, Tyr or Phe, and a mutation at a position corresponding to position 121 compared to positions of wildtype streptavidin set forth in SEQ ID NO:1 or a biologically active fragment thereof, which mutation can be to a small residue like Gly, Ala, or Ser, or with Gin, or with a hydrophobic residue like Leu, Val, He, Trp, Tyr, Phe, or Met. In some embodiments, such muteins also can contain residues Val44-Thr45-Ala46-Arg47 or residues Ile44-Gly45-Ala46-Arg47. In some embodiments, the streptavidin mutein contains the residues Val44, Thr45, Ala46, Arg47, Glull7, Glyl20 and Tyr121. In some embodiments, the mutein streptavidin contains the sequence of amino acids set forth in SEQ ID NO:27 or SEQ ID NO:28, or a sequence of amino acids that exhibits at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the sequence of amino acids set forth in SEQ ID NO: 27 or SEQ ID NO: 28, contains the residues Val44, Thr45, Ala46, Arg47, Glu117, Gly120 and Tyr121 and exhibits functional activity to bind to biotin, a biotin analog or a streptavidin-binding peptide.

[0220] In some embodiments, a streptavidin mutein can contain any of the above mutations in any combination, and the resulting streptavidin mutein may exhibit a binding affinity that is less than 2.7 x 10⁻⁴ M for the peptide ligand (Trp-Arg-His-Pro-Gln-Phe-Gly-Gly; also called Strep-tag®, set forth in SEQ ID NO: 7) and/or less than 1.4 x 10⁻⁴ M for the peptide ligand (Trp-
Ser-His-Pro-Gln-Phe-Glu-Lys; also called Strep-tag® II, set forth in SEQ ID NO: 8) and/or is less than 1×10^{-4}, 5×10^{-5}, 1×10^{-5}, 5×10^{-5}, 1×10^{-6}, 5×10^{-6}, or 1×10^{-7} M, but generally greater than 1×10^{-13}, 1×10^{-12}, or 1×10^{-11} M for any of the peptide ligands set forth in any of SEQ ID NOS:7-19.

[0221] In some embodiments, the streptavidin mutein exhibits the sequence of amino acids set forth in any of SEQ ID NOs: 3-6 27 or 28, or a sequence of amino acids that exhibits at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the sequence of amino acids set forth in any of SEQ ID NO: 3-6, 27 or 28, and exhibits a binding affinity that is less than 2.7×10^{-4} M for the peptide ligand (Trp Arg His Pro Gin Phe Gly Gly; also called Strep-tag®, set forth in SEQ ID NO: 7) and/or less than 1.4×10^{-4} M for the peptide ligand (Trp Ser His Pro Gin Phe Glu Lys; also called Strep-tag® II, set forth in SEQ ID NO: 8) and/or is less than 1×10^{-4}, 5×10^{-5}, 1×10^{-5}, 5×10^{-5}, 1×10^{-6}, 5×10^{-6}, or 1×10^{-7} M, but generally greater than 1×10^{-13}, 1×10^{-12}, or 1×10^{-11} M for any of the peptide ligands set forth in any of SEQ ID NOS:7-19.

[0222] In some embodiments, the streptavidin mutein also exhibits binding to other streptavidin ligands, such as but not limited to, biotin, iminobiotin, lipoic acid, desthiobiotin, diaminobiotin, HABA (hydroxyazobenzene-benzoic acid) and/or dimethyl-HABA. In some embodiments, the streptavidin mutein exhibits a binding affinity for another streptavidin ligand, such as biotin or desthiobiotin, that is greater than the binding affinity of the streptavidin mutein for a biotin mimic peptide ligand, such as set forth in any of SEQ ID NOS: 7-19. Thus, in some embodiments, biotin or a biotin analog or derivative (e.g. desthiobiotin) can be employed as a competition reagent in the provided methods. For example, as an example, the interaction of a mutein streptavidin designated Strep-tactin® (e.g. containing the sequence set forth in SEQ ID NO: 4) with the peptide ligand designated Strep-tag® II (e.g. set forth in SEQ ID NO: 8) is characterized by a binding affinity with a K_D of approximately 10^{-6} M compared to approximately 10^{-13} M for the biotin-streptavidin interaction. In some cases, biotin, which can bind with high affinity to the Strep-tactin® with a K_D of between or between about 10^{-10} and 10^{-13} M, can compete with Strep-tag® II for the binding site.

[0223] In some cases, the reagent contains at least two chelating groups K that may be capable of binding to a transition metal ion. In some embodiments, the reagent may be capable of binding to an oligohistidine affinity tag, a glutathione-S-transferase, calmodulin or an analog
thereof, calmodulin binding peptide (CBP), a FLAG-peptide, an HA-tag, maltose binding protein (MBP), an HSV epitope, a myc epitope, and/or a biotinylated carrier protein.

[0224] In some embodiments, the reagent is an oligomer or polymer. In some embodiments, the oligomer or polymer can be generated by linking directly or indirectly individual molecules of the protein as it exists naturally, either by linking directly or indirectly individual molecules of a monomer or a complex of subunits that make up an individual molecule (e.g., linking directly or indirectly dimers, trimers, tetramers, etc., of a protein as it exists naturally). For example, a tetrameric homodimer or heterodimer of streptavidin or avidin may be referred to as an individual molecule or smallest building block of a respective oligomer or polymer. In some embodiments, the oligomer or polymer can contain linkage of at least 2 individual molecules of the protein (e.g., is a 2-mer), or can be at least a 3-mer, 4-mer, 5-mer, 6-mer, 7-mer, 8-mer, 9-mer, 10-mer, 11-mer, 12-mer, 13-mer, 14-mer, 15-mer, 16-mer, 17-mer, 18-mer, 19-mer, 20-mer, 25-mer, 30-mer, 35-mer, 40-mer, 45-mer or 50-mer of individual molecules of the protein (e.g., monomers, tetramers).

[0225] Oligomers can be generated using any methods known in the art, such as any described in published U.S. Patent Application No. US2004/0082012. In some embodiments, the oligomer or polymer contains two or more individual molecules that may be crosslinked, such as by a polysaccharide or a bifunctional linker.

[0226] In some embodiments, the oligomer or polymer is obtained by crosslinking individual molecules or a complex of subunits that make up an individual molecule in the presence of a polysaccharide. In some embodiments, oligomers or polymers can be prepared by the introduction of carboxyl residues into a polysaccharide, e.g., dextran. In some aspects, individual molecules of the reagent (e.g., monomers, tetramers) can be coupled via primary amino groups of internal lysine residues and/or the free N-terminus to the carboxyl groups in the dextran backbone using conventional carbodiimide chemistry. In some embodiments, the coupling reaction is performed at a molar ratio of about 60 moles of individual molecules of the reagent (e.g., monomers, tetramers) per mole of dextran.

[0227] In some embodiments, the reagent is an oligomer or a polymer of one or more streptavidin or avidin or of any analog or mutein of streptavidin (e.g., Strep-Tactin® or Strep-Tactin® XT) or an analog or mutein of avidin (e.g., neutravidin). In some embodiments, the binding site Z is a natural biotin binding site of avidin or streptavidin for which there can be up
to four binding sites in an individual molecule (e.g. a tetramer contains four binding sites Z), whereby a homo-tetramer can contain up to 4 binding sites that are the same, i.e. Z_l, whereas a hetero-tetramer can contain up to 4 binding sites that may be different, e.g. containing Z_1 and Z_2. In some embodiments, the oligomer is generated or produced from a plurality of individual molecules (e.g. a plurality of homo-tetrayers) of the same streptavidin, streptavidin mutein, avidin or avidin mutein, in which case each binding site Z, e.g. Z_l, of the oligomer is the same. For example, in some cases, an oligomer can contain a plurality of binding sites Z_l, such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50 or more binding sites Zl. In some embodiments, the oligomer is generated or produced from a plurality of individual molecules that can be hetero-tetramers of a streptavidin, streptavidin mutein, avidin or avidin mutein and/or from a plurality of two or more different individual molecules (e.g. different homo-tetramers) of streptavidin, streptavidin mutein, avidin or avidin mutein that differ in their binding sites Z, e.g. Z_1 and Z_2, in which case a plurality of different binding sites Z, e.g. Z_1 and Z_2, may be present in the oligomer. For example, in some cases, an oligomer can contain a plurality of binding sites Z_l and a plurality of binding sites Z, which, in combination, can include at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50 or more combined binding sites Z_l and Z_2.

[0228] In some cases, the respective oligomer or polymer may be crosslinked by a polysaccharide. In one embodiment, oligomers or polymers of streptavidin or of avidin or of analogs of streptavidin or of avidin (e.g., neutravidin) can be prepared by the introduction of carboxyl residues into a polysaccharide, e.g. dextran, essentially as described in Noguchi, A, et al, Bioconjugate Chemistry (1992) 3,132-137 in a first step. In some such aspects, streptavidin or avidin or analogs thereof then may be linked via primary amino groups of internal lysine residue and/or the free N-terminus to the carboxyl groups in the dextran backbone using conventional carbodiimide chemistry in a second step. In some cases, cross-linked oligomers or polymers of streptavidin or avidin or of any analog of streptavidin or avidin may also be obtained by crosslinking via bifunctional molecules, serving as a linker, such as glutardialdehyde or by other methods described in the art.
In some embodiments, the oligomer or polymer is obtained by crosslinking individual molecules or a complex of subunits that make up an individual molecule using a bifunctional linker or other chemical linker, such as glutardialdehyde or by other methods known in the art. In some aspects, cross-linked oligomers or polymers of streptavidin or avidin or of any mutein or analog of streptavidin or avidin may be obtained by crosslinking individual streptavidin or avidin molecules via bifunctional molecules, serving as a linker, such as glutardialdehyde or by other methods described in the art. It is, for example, possible to generate oligomers of streptavidin muteins by introducing thiol groups into the streptavidin mutein (this can, for example, be done by reacting the streptavidin mutein with 2-iminothiolan (Trauts reagent) and by activating, for example in a separate reaction, amino groups available in the streptavidin mutein. In some embodiments, this activation of amino groups can be achieved by reaction of the streptavidin mutein with a commercially available heterobifunctional crosslinker such as sulfo succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo SMCC) or Succinimidyl-6-[(P-maleimidopropionamido)hexanoate (SMPH). In some such embodiments, the two reaction products so obtained are mixed together, typically leading to the reaction of the thiol groups contained in the one batch of modified streptavidin mutein with the activated (such as by maleimide functions) amino acids of the other batch of modified streptavidin mutein. In some cases, by this reaction, multimers/oligomers of the streptavidin mutein are formed. These oligomers can have any suitable number of individual molecules, such as at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, 50 or more, and the oligomerization degree can be varied according to the reaction condition.

In some embodiments, the oligomeric or polymeric reagent can be isolated via size exclusion chromatography and any desired fraction can be used as the reagent. For example, in some embodiments, after reacting the modified streptavidin mutein, in the presence of 2-iminothiolan and a heterobifunctional crosslinker such as sulfo SMCC, the oligomeric or polymeric reagent can be isolated via size exclusion chromatography and any desired fraction can be used as the reagent. In some embodiments, the oligomers do not have (and do not need to have) a single molecular weight but they may observe a statistical weight distribution such as Gaussian distribution. In some cases, any oligomer with more than three streptavidin or mutein tetramers, e.g., homotetramers or heterotetramers, can be used as a soluble reagent, such as
generally 3 to 50 tetramers, e.g., homotetramers or heterotetramers, 10 to 40 tetramers, e.g., homotetramers or heterotetramers, 25 to 35 tetramers, e.g., homotetramers or heterotetramers. The oligomers might have, for example, from 3 to 25 streptavidin mutein tetramers, e.g., homotetramers or heterotetramers. In some aspects, with a molecular weight of about 50 kDa for streptavidin muteins, the soluble oligomers can have a molecular weight from about 150 kDa to about 2000 kDa, about 150 kDa to about 1500 kDa, about 150 kDa to about 1250 kDa, about 150 kDa to 1000 kDa, about 150 kDa to about 500 kDa or about 150 kDa to about 300 kDa, about 300 kDa to about 2000 kDa, about 300 kDa to about 1500 kDa, about 300 kDa to about 1250 kDa, about 300 kDa to 1000 kDa, about 300 kDa to about 500 kDa, about 500 kDa to about 2000 kDa, about 500 kDa to about 1500 kDa, about 500 kDa to about 1250 kDa, about 1000 kDa to about 2000 kDa, about 1000 kDa to about 1500 kDa, about 1000 kDa to about 1250 kDa, about 1250 kDa to about 2000 kDa or about 1500 kDa to about 2000 kDa. Generally, because each streptavidin molecule/mutein has four biotin binding sites, such a reagent can provide 12 to 160 binding sites Z, such as 12 to 100 binding sites Z.

I. Format of Reagent

a. Support

[0231] In some embodiments, the reagent is comprised on a support, such as a solid support or surface, e.g., bead, or a stationary phase (chromatography matrix). In some such embodiments, the reagent is reversibly immobilized on the support. In some cases, the reagent is immobilized to the support via covalent bonds. In some aspects, the reagent is reversibly immobilized to the support non-covalently.

[0232] In some embodiments, the support is a solid support. Any solid support (surface) can be used for the reversible immobilization of the reagent. Illustrative examples of solid supports on which the reagent can be immobilized include a magnetic bead, a polymeric bead, a cell culture plate, a microtiter plate, a membrane, or a hollow fiber. In some aspects, hollow fibers can be used as a bioreactor in the Quantum® Cell Expansion System, available from TerumoBCT Inc. (Lakewood, CO, USA). In some embodiments, the reagent is covalently attached to the solid support. In other embodiments, non-covalent interactions can also be used for immobilization, for example on plastic substrates. In some embodiments, the reagent can, for example, be a streptavidin or avidin mutein that reversibly binds a streptavidin binding peptide. Such streptavidin muteins can be covalently attached to any surface, for example, resin...
(beads) used for chromatography purification and are commercially available in such form from IBA GmbH, Gottingen, for example, as Strep-Tactin® Sepharose, Strep-Tactin® Superflow®, Strep-Tactin® Superflow® high capacity or Strep-Tactin® MacroPrep®. Other illustrative examples that are readily commercially available are immobilized metal affinity chromatography (IMAC) resins such as the TALON® resins (Westburg, Leusden, The Netherlands) that can be used for the reversible immobilization of oligo-histidine tagged (histagged) proteins, such as for the reversible binding of an agent (e.g., receptor-binding agent or selection agent) that contains as a binding partner C an oligohistidine tag such as an penta- or hexa-histidine tag. Other examples include calmodulin sepharose available from GE Life Sciences which can be used together with an agent (e.g., receptor-binding agent or selection agent) that contains a calmodulin binding peptide as a binding partner C or sepharose, to which glutathion is coupled. In some such cases, the binding partner C is glutathion-S-transferase.

[0233] In some embodiments, the support contains a stationary phase. Thus, in some embodiments, the reagent is comprised on a stationary phase (also called chromatography matrix). In some such embodiments, the reagent is reversibly immobilized on the stationary phase. In some cases, the reagent is reversibly immobilized to the stationary phase via covalent bonds. In some aspects, the reagent is reversibly immobilized to the stationary phase non-covalently.

[0234] Any material may be employed as a chromatography matrix. In general, a suitable chromatography material is essentially innocuous, i.e. not detrimental to cell viability, such as when used in a packed chromatography column under desired conditions. In some embodiments, the stationary phase remains in a predefined location, such as a predefined position, whereas the location of the sample is being altered. Thus, in some embodiments, the stationary phase is the part of a chromatographic system through which the mobile phase flows (either by flow through or in a batch mode) and where distribution of the components contained in the liquid phase (either dissolved or dispersed) between the phases occurs.

[0235] In some embodiments, the chromatography matrix has the form of a solid or semisolid phase, whereas the sample that contains the target cell to be isolated/separated is a fluid phase. The chromatography matrix can be a particulate material (of any suitable size and shape) or a monolithic chromatography material, including a paper substrate or membrane. Thus, in some aspects, the chromatography can be both column chromatography as well as
planar chromatography. In some embodiments, in addition to standard chromatography columns, columns allowing a bidirectional flow such as PhyTip® columns available from PhyNexus, Inc. San Jose, CA, U.S.A. or pipette tips can be used for column based/flow through mode based methods. Thus, in some cases, pipette tips or columns allowing a bidirectional flow are also comprised by chromatography columns useful in the present methods. In some cases, such as where a particulate matrix material is used, the particulate matrix material may, for example, have a mean particle size of about 5 µm to about 200 µm, or from about 5 µm to about 400 µm, or from about 5 µm to about 600 µm. In some aspects, the chromatography matrix may, for example, be or include a polymeric resin or a metal oxide or a metalloid oxide. In some aspects, such as where planar chromatography is used, the matrix material may be any material suitable for planar chromatography, such as conventional cellulose-based or organic polymer based membranes (for example, a paper membrane, a nitrocellulose membrane or a polyvinylidene difluoride (PVDF) membrane) or silica coated glass plates. In one embodiment, the chromatography matrix/stationary phase is a non-magnetic material or non-magnetizable material.

[0236] In some embodiments, non-magnetic or non-magnetizable chromatography stationary phases that are suitable in the present methods include derivatized silica or a crosslinked gel. In some aspects, a crosslinked gel may be based on a natural polymer, such as on a polymer class that occurs in nature. For example, a natural polymer on which a chromatography stationary phase may be based is a polysaccharide. In some cases, a respective polysaccharide is generally crosslinked. An example of a polysaccharide matrix includes, but is not limited to, an agarose gel (for example, Superflow™ agarose or a Sepharose® material such as Superflow™ Sepharose® that are commercially available in different bead and pore sizes) or a gel of crosslinked dextran(s). A further illustrative example is a particulate cross-linked agarose matrix, to which dextran is covalently bonded, that is commercially available (in various bead sizes and with various pore sizes) as Sephadex® or Superdex®, both available from GE Healthcare. Another illustrative example of such a chromatography material is Sephacryl® which is also available in different bead and pore sizes from GE Healthcare.

[0237] In some embodiments, a crosslinked gel may also be based on a synthetic polymer, such as on a polymer class that does not occur in nature. In some aspects, such a synthetic polymer on which a chromatography stationary phase is based is a polymer that has polar
monomer units, and which is therefore in itself polar. Thus, in some cases, such a polar polymer is hydrophilic. Hydrophilic molecules, also termed lipophobic, in some aspects contain moieties that can form dipole-dipole interactions with water molecules. In general, hydrophobic molecules, also termed lipophiliic, have a tendency to separate from water.

[0238] Illustrative examples of suitable synthetic polymers are polyacrylamide(s), a styrene-divinylbenzene gel and a copolymer of an acrylate and a diol or of an acrylamide and a diol. An illustrative example is a polymethacrylate gel, commercially available as a Fractogel®. A further example is a copolymer of ethylene glycol and methacrylate, commercially available as a Toyopearl®. In some embodiments, a chromatography stationary phase may also include natural and synthetic polymer components, such as a composite matrix or a composite or a co-polymer of a polysaccharide and agarose, e.g. a polyacrylamide/agarose composite, or of a polysaccharide and N,N′-methylenediacrylamide. An illustrative example of a copolymer of a dextran and N,N′-methylenediacrylamide is the above-mentioned Sephacryl® series of material. In some embodiments, a derivatized silica may include silica particles that are coupled to a synthetic or to a natural polymer. Examples of such embodiments include, but are not limited to, polysaccharide grafted silica, polyvinylpyrrolidone grafted silica, polyethylene oxide grafted silica, poly(2-hydroxyethylaspartamide) silica and poly(N-isopropylacrylamide) grafted silica.

[0239] In some embodiments, the chromatography matrix is a gel filtration matrix, for example, when used in a removal cartridge as described herein. Generally, a gel filtration can be characterized by the property that it is designed to undergo. Hence, a gel filtration matrix in some aspects allows the separation of cells or other biological entities largely on the basis of their size. In some such aspects, the respective chromatography matrix is typically a particulate porous material as mentioned above. The chromatography matrix may have a certain exclusion limit, which is typically defined in terms of a molecular weight above which molecules are entirely excluded from entering the pores. In some embodiments, the respective molecular weight defining the size exclusion limit may be selected to be below the weight corresponding to the weight of a target cell. In such an embodiment, the target cell is prevented from entering the pores of the size exclusion chromatography matrix. Likewise, a stationary phase may have pores that are of a size that is smaller than the size of a chosen target cell. In illustrative embodiments chromatography matrix has a mean pore size of 0 to about 500 nm.
In some embodiments, components present in a sample such as agents (e.g., receptor-binding agents or selection agents) or a competition reagent may have a size that is below the exclusion limit of the pores and thus can enter the pores of the chromatography matrix. In some aspects, components that are able to partially or fully enter the pore volume, larger molecules, with less access to the pore volume can elute first, whereas the smallest molecules typically elute last. In some embodiments, the exclusion limit of the chromatography matrix is selected to be below the maximal width of the target cell. Hence, in some aspects, components that have access to the pore volume can remain longer in/on the chromatography matrix than target cell. Thus, in some cases, target cells can be collected in the eluate of a chromatography column separately from other matter/components of a sample. Therefore, in some aspects, components such as an agent (e.g., receptor-binding agent or selection agent), or where applicable a competition reagent, may elute at a later point of time from a gel filtration matrix than the target cell. In some embodiments, this effect can be further increased, such as if the gel permeation matrix contains a reagent (such as covalently bound thereon) that contains binding sites Z that are able to bind agents (e.g., receptor-binding agents or selection agents) and/or a competition reagent present in a sample. In some cases, the agent (e.g., receptor-binding agent or selection agent) and/or the competition reagent can be bound by the binding sites Z of the reagent and thereby immobilized on the matrix. In some aspects, this method is carried out in a removal cartridge.

In some embodiments, a chromatography matrix employed in the present methods may also include magnetically attractable matter such as one or more magnetically attractable particles or a ferrofluid. A respective magnetically attractable particle may comprise a reagent with a binding site that is capable of binding a target cell. In some cases, magnetically attractable particles may contain diamagnetic, ferromagnetic, paramagnetic or superparamagnetic material. In general, superparamagnetic material responds to a magnetic field with an induced magnetic field without a resulting permanent magnetization. Magnetic particles based on iron oxide are for example commercially available as Dynabeads® from Dynal Biotech, as magnetic MicroBeads from Miltenyi Biotec, as magnetic porous glass beads from CPG Inc., as well as from various other sources, such as Roche Applied Science, BIOCLON, BioSource International Inc., micromod, AMBION, Merck, Bangs Laboratories, Polysciences, or Novagen Inc., to name only a few. Magnetic nanoparticles based on
superparamagnetic Co and FeCo, as well as ferromagnetic Co nanocrystals have been described, for example by Hutten, A. et al. (J. Biotech. (2004), 112, 47-63). In other embodiments, a chromatography matrix employed in the present methods is void of any magnetically attractable matter.

[0242] In some embodiments, provided is an apparatus that contains at least one arrangement of a first and a second stationary phase, such as chromatography column for selection of cells (a selection cartridge) and a second chromatography column (a removal cartridge) for removal of reagents. The apparatus may comprise a plurality of arrangements of first and second stationary phases (chromatography columns) being fluidly connected in series. The apparatus may comprise a sample inlet being fluidly connected to the first stationary phase of the first arrangement of the first and second stationary phases. In some embodiments, the apparatus may also comprise a sample outlet for cells, the sample outlet being fluidly connected to the second stationary phase of the last of the at least one arrangement of a first and second stationary phases for chromatography. In some aspects, the apparatus may also comprise a competition reagent container that is fluidly connected to at least one of the first stationary phases of the arrangements of the first and second stationary phases.

b. Soluble

[0243] In some embodiments, the reagent is not bound to a solid support, i.e. it is present in soluble form or is soluble. In principle, the same reagent can be used as in the case of a reagent that is immobilized on a support, such as a solid support or stationary phase. For example, any of the exemplary of reagents described above can be used without immobilizing or attaching such reagent to a support, e.g. not attaching solid support or stationary phase. In some embodiments, the reagent contains a plurality of binding sites, Z, for reversibly binding to a binding agent via interaction with a binding partner, C. In some cases, the reagent is an oligomer or polymer of individual molecules or an oligomer or polymer of a complex of subunits that make up the individual molecule (e.g. oligomers or polymers of a dimeric, trimeric or tetrameric protein). In some embodiments, the reagent can, for example, be a streptavidin mutein oligomer, a calmodulin oligomer, a compound (oligomer) that provides least two chelating groups K, wherein the at least two chelating groups are capable of binding to a transition metal ion, thereby rendering the reagent capable of binding to an oligohistidine affinity tag, multimeric glutathione-S-transferase, or a biotinylated carrier protein.
In some embodiments, the reagent is characterized by the absence of a solid support (surface) attached to the reagent. For example, in some embodiments, the reagent does not comprise or is not attached (directly or indirectly) to a particle, bead, nanoparticle, microsphere or other solid support. In some embodiments, the reagent is not rigid, inflexible or stiff or does not comprise or is not attached to a rigid, inflexible, or stiff surface. In some embodiments, the reagent is flexible or substantially flexible. In some cases, the reagent is able to adjust or adapt to the form of the surface of the cells. In some embodiments, the reagent does not or does not comprise a shape that is spherical or substantially spherical.

In some embodiments, substantially all, i.e. more than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the reagent is, is composed of or contains organic material. For example, in some embodiments, more than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more of the reagent is, is composed of or contains lipids, carbohydrates, proteins, peptides or mixtures thereof. In some embodiments, the reagent is, is composed of or contains an essential absence of inorganic material, an inorganic core, e.g. metal, e.g. iron, synthetic or inorganic polymers, such as styrene polymers, e.g. polystyrene, latex, silica or magnetic cores. For example, in some embodiments, the relative percentage of inorganic material of the reagent or that is comprised as part of the reagent is less than 20%, 15%, 10%, 5% or less.

In some embodiments, the majority (i.e. more than 50%), such as more than 60%, 70%, 80%, 90%, 95%, 99% or more of the total volume of the reagent in aqueous solution consists of the individual protein molecules that comprise the reagent, such as oligomers or polymers of individual molecules or a complex of subunits that make up an individual molecule (e.g. tetrameric molecule). In some embodiments, the total density of the soluble reagent is less than 1.2 g/cm³, 1.1 g/cm³, 1.0 g/cm³ or less.

In some embodiments, the soluble reagent, e.g. not being attached to a support or solid support (e.g. is not attached to a bead), has a relatively small size, such as generally less than or about less than 20 nM in size, such as less than or about less than 15 nM, less than or about less than 10 nM, less than or about less than 5 nM or smaller.
In some embodiments, the soluble reagent, e.g. not being attached to a support or solid support (e.g. is not attached to a bead), is biologically inert, i.e. it is non-toxic to living cells. In some embodiments, the reagent may be biodegradable, for example, it can be degraded by enzymatic activity or cleared by phagocytic cells.

In some embodiments, it is possible to react the reagent (e.g. a streptavidin or mutein, such as tetrameric streptavidin muteins) to a carrier, such as an organic carrier. In some aspects, in addition to a reaction with a polysaccharide, it is also possible to use physiologically or pharmaceutically acceptable proteins such as serum albumin (for example human serum albumin (HSA) or bovine serum albumin (BSA)) as carrier protein. In such a case, the reagent, such as streptavidin or a streptavidin mutein (either as individual tetramer or also in the form of oligomers), can be coupled to the carrier protein via non-covalent interaction. In some such embodiments, biotinylated BSA (which is commercially available from various suppliers such as ThermoFisher Scientific, Sigma Aldrich or Vectorlabs, to name only a few) can be reacted with the reagent (e.g. streptavidin mutein). In some aspects, some of the reagent oligomers (e.g. streptavidin oligomers) can non-covalently bind via one or more binding sites Z to the biotinylated carrier protein, leaving the majority of the binding sites Z of the oligomer available for binding the agent (e.g., receptor-binding agent or selection agent) and any further agent as described herein. Thus, by such an approach a soluble reagent with a multitude of binding sites Z can be prepared.

In other embodiments, a reagent, such as a streptavidin mutein (either as an individual tetramer or also in the form of an oligomer), can be covalently coupled to a synthetic carrier such as a polyethylene glycol (PEG) molecule. Any suitable PEG molecule can be used for this purpose, for example, and the PEG molecule and the respective reagent can be soluble. Typically, PEG molecules up to a molecular weight of 1000 Da are soluble in water or culture media that may be used in the present methods. In some cases, such PEG based reagent can be prepared using commercially available activated PEG molecules (for example, PEG-NHS derivatives available from NOF North America Corporation, Irvine, California, USA, or activated PEG derivatives available from Creative PEGWorks, Chapel Hills, North Carolina, USA) with amino groups of the streptavidin mutein.
B. Agents

[0251] In some embodiments, the agent (e.g., receptor-binding agent or selection agent) has one or binding sites, B, for binding to the molecule on the surface of the cell, e.g. cell surface molecule. Thus, in some instances, the agent (e.g., receptor-binding agent or selection agent) contains a binding site B or a plurality of binding sites B, wherein the specific binding between the agent (receptor-binding agent or selection agent) and the molecule on the surface of the target cells contains interaction between B and the molecule. In some embodiments, the agent contains only a single binding site, i.e. is monovalent. In some embodiments, the agent (e.g., receptor-binding agent or selection agent) has at least two, such as a plurality of binding sites B including three, four or five binding sites B capable of binding to the cell surface molecule. In some such aspects, the at least two or plurality of binding sites B may be identical. In some embodiments, one or more of the at least two or plurality of binding sites B may be different (e.g. B1 and B2).

[0252] In some embodiments, one or more different agents (e.g. one or more different receptor-binding agent, selection agent or other agent that binds to a molecule on a cell) are reversibly bound to the reagent. In some embodiments, at least 2, 3, 4 or more different agents are reversibly bound to the same reagent. In some embodiments, at least two different agents are reversibly bound to the same reagent, whereby each reagent comprises a binding site B or a plurality of binding sites B for specific binding between the agent and the molecule. In some embodiments, the at least two or more agents contain the same binding site B, e.g. for the binding the same or substantially the same molecule. In some embodiments, the at least two or more agents contain different binding sites B, e.g. for the binding to different molecules. In some embodiments, a first agent (e.g. a first receptor-binding agent or a first selection agent) contains a binding site B1, B2, B3, B4, etc. and a second agent (e.g. a second receptor-binding agent or second selection agent) contains another of a binding site B1, B2, B3, B4, etc.. In some embodiments, a first agent (e.g. a first selection agent) contains a binding site B1 and a second agent (e.g. second selection agent) contains a binding site B3. In some embodiments, a first agent (e.g. a first receptor-binding agent) contains a binding site B2 and a second agent (e.g. a second receptor-binding agent) contains a binding site B4. In any of such embodiments, the first agent and second agent can contain a binding partner, C1 or C2. In some embodiments, C1 and
C2 can be the same. In some embodiments, C1 and C2 are different. In some embodiments, the first agent and second agent contain the same binding partner, C1.

[0253] In some cases, the dissociation constant (K_D) of the binding between the agent (e.g., via the binding site B) and the binding site Z of the reagent may have a value in the range from about 10^{-2} M to about 10^{-13} M or from about 10^{-3} M to about 10^{-12} M or from about 10^{-4} M to about 10^{-11} M, or from about 10^{-5} M to about 10^{-10} M. In some embodiments, the dissociation constant (K_D) for the binding between the binding agent and the molecule is of low affinity, for example, in the range of a K_D of about 10^{-9} to about 10^{-3} M. In some embodiments, the dissociation constant (K_D) for the binding between the binding agent and the molecule is of high affinity, for example, in the range of a K_D of about 10^{-2} to about 10^{-10} M.

[0254] In some embodiments, the dissociation of the binding of the agent via the binding site B and the molecule occurs sufficiently fast, for example, to allow the target cell to be only transiently stained or associated with the agent after disruption of the reversible bond between the reagent and the agent. In some cases, when expressed in terms of the k_{off} rate (also called dissociation rate constant for the binding between the agent (via the binding site B) and the molecule, the k_{off} rate is about 0.5x10^{-4} sec^{-1} or greater, about 1x10^{-4} sec^{-1} or greater, about 2x10^{-4} sec^{-1} or greater, about 3x10^{-4} sec^{-1} or greater, about 4x10^{-4} sec^{-1} or greater, about 5x10^{-4} sec^{-1} or greater, about 1x10^{-3} sec^{-1} or greater, about 1.5x10^{-3} sec^{-1} or greater, about 2x10^{-3} sec^{-1} or greater, about 3x10^{-3} sec^{-1} or greater, about 4x10^{-3} sec^{-1} or greater, about 5x10^{-3} sec^{-1} or greater, about 1x10^{-2} sec or greater, or about 5x10^{-1} sec^{-1} or greater. It is within the level of a skilled artisan to empirically determine the k_{off} rate range suitable for a particular agent and cell molecule interaction (see e.g. U.S. published application No. US2014/0295458). For example, an agent with a rather high k_{off} rate of, for example, greater than 4.0x10^{-4} sec^{-1} may be used so that, after the disruption of the binding complexes, most of the agent can be removed or dissociated within one hour. In other cases, an agent with a lower k_{off} rate of, for example, 1.0x10^{-4} sec^{-1}, may be used, so that after the disruption of the binding complexes, most of the agent may be removed or dissociated from the cell within about 3 and a half hours.

[0255] In some embodiments, the K_D of this bond as well as the K_D, k_{off} and k_{on} rate of the bond formed between the binding site B of the agent (e.g., receptor-binding agent or selection agent) and the cell surface molecule can be determined by any suitable means, for example, by fluorescence titration, equilibrium dialysis or surface plasmon resonance.
In some aspects, the cell surface molecule is a molecule against which an agent (e.g., receptor-binding agent or selection agent) may be directed. In some embodiments, the cell surface molecule is a peptide or a protein, such as a receptor, e.g., a membrane receptor protein. In some embodiments, the receptor is a lipid, a polysaccharide or a nucleic acid. In some embodiments, a cell surface molecule that is a protein may be a peripheral membrane protein or an integral membrane protein. The cell surface molecule may in some embodiments have one or more domains that span the membrane. As a few illustrative examples, a membrane protein with a transmembrane domain may be a G-protein coupled receptor, such as an odorant receptors, a rhodopsin receptor, a rhodopsin pheromone receptor, a peptide hormone receptor, a taste receptor, a GABA receptor, an opiate receptor, a serotonin receptor, a Ca2+ receptor, melanopsin, a neurotransmitter receptor, such as a ligand gated, a voltage gated or a mechanically gated receptor, including the acetylcholine, the nicotinic, the adrenergic, the norepinephrine, the catecholamines, the L-DOPA-, a dopamine and serotonin (biogenic amine, endorphin/enkephalin) neuropeptide receptor, a receptor kinase such as serine/threonine kinase, a tyrosine kinase, a porin/channel such as a chloride channel, a potassium channel, a sodium channel, an OMP protein, an ABC transporter (ATP-Binding Cassette-Transporter) such as amino acid transporter, the Na-glucose transporter, the Na/iodide transporter, an ion transporter such as Light Harvesting Complex, cytochrome c oxidase, ATPase Na/K, H/K, Ca, a cell adhesion receptor such as metalloprotease, an integrin or a catherin.

In some embodiments, the cell surface molecule may be an antigen defining a desired cell population or subpopulation, for instance a population or subpopulation of blood cells, e.g., lymphocytes (e.g., T cells, T-helper cells, for example, CD4+ T-helper cells, B cells or natural killer cells), monocytes, or stem cells, e.g. CD34-positive peripheral stem cells or Nanog or Oct-4 expressing stem cells. Examples of T-cells include cells such as CMV-specific CD8+ T-lymphocytes, cytotoxic T-cells, memory T-cells and regulatory T-cells (Treg). An illustrative example of Treg is CD4 CD25 CD45RA Treg cells and an illustrative example of memory T-cells is CD62L CD8+ specific central memory T-cells. The cell surface molecule may also be a marker for a tumor cell.

As described above, in some embodiments, the agent (e.g., receptor-binding agent or selection agent) has, in addition to the binding site B that is able to bind the cell surface molecule, a binding partner C. In some aspects, this binding partner C is able to bind to a
binding site Z of the reagent wherein the reagent has one or more binding sites for the binding partner C. In some embodiments, the non-covalent bond that may be formed between the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) and the binding site(s) Z of the reagent may be of any desired strength and affinity, and may be disruptable or reversible under conditions under which the method is performed. The agent (e.g., receptor-binding agent or selection agent) may include at least one, including two, three or more, additional binding partners C and the reagent may include at least two, such as three, four, five, six, seven, eight or more binding sites Z for the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent). As described in US patent 7,776,562, US patent 8,298,782 or International Patent application WO 2002/054065, any combination of a binding partner C and a reagent with one or more corresponding binding sites Z can be chosen, for example, such that the binding partner C and the binding site Z are able to reversibly bind in a complex, such as to cause an avidity effect.

[0259] The binding partner C included in the agent (e.g., receptor-binding agent or selection agent) may for instance be hydrocarbon-based (including polymeric) and include nitrogen-, phosphorus-, sulphur-, carben-, halogen- or pseudohalogen groups. In some aspects, it may be an alcohol, an organic acid, an inorganic acid, an amine, a phosphine, a thiol, a disulfide, an alkane, an amino acid, a peptide, an oligopeptide, a polypeptide, a protein, a nucleic acid, a lipid, a saccharide, an oligosaccharide, or a polysaccharide. As further examples, it may also be a cation, an anion, a polycation, a polyanion, a polycation, an electrolyte, a polyelectrolyte, a carbon nanotube or carbon nanofoam. Generally, such a binding partner C has a higher affinity to the binding site of the reagent than to other matter. Examples of a respective binding partner C include, but are not limited to, a crown ether, an immunoglobulin, a fragment thereof and a proteinaceous binding molecule with antibody-like functions.

[0260] In some embodiments, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) includes biotin and the reagent includes a streptavidin analog or an avidin analog that reversibly binds to biotin. In some embodiments, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) includes a biotin analog that reversibly binds to streptavidin or avidin, and the reagent includes streptavidin, avidin, a streptavidin analog or an avidin analog that reversibly binds to the respective biotin analog. In some embodiments, the binding partner C that is included in the
agent (e.g., receptor-binding agent or selection agent) includes a streptavidin or avidin binding peptide and the reagent includes streptavidin, avidin, a streptavidin analog or an avidin analog that reversibly binds to the respective streptavidin or avidin binding peptide.

[0261] In some embodiments, the reagent is a streptavidin, such as a streptavidin mutein including any described above (e.g. set forth in SEQ ID NOS: 3-6), and the binding partner C that is included in the agent (e.g. receptor-binding agent or selection agent) may include a streptavidin-binding peptide. In some embodiments, the streptavidin-binding peptide may include a sequence with the general formula set forth in SEQ ID NO: 9, such as contains the sequence set forth in SEQ ID NO: 10. In some embodiments, the peptide sequence has the general formula set forth in SEQ ID NO: 11, such as set forth in SEQ ID NO: 12. In one example, the peptide sequence is Trp-Arg-His-Pro-Gln-Phe-Gly-Gly (also called Strep-tag®, set forth in SEQ ID NO: 7). In one example, the peptide sequence is Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (also called Strep-tag® II, set forth in SEQ ID NO: 8). In some embodiments, the peptide ligand contains a sequential arrangement of at least two streptavidin-binding modules, wherein the distance between the two modules is at least 0 and not greater than 50 amino acids, wherein one binding module has 3 to 8 amino acids and contains at least the sequence His-Pro-Xaa (SEQ ID NO: 9), where Xaa is glutamine, asparagine, or methionine, and wherein the other binding module has the same or different streptavidin peptide ligand, such as set forth in SEQ ID NO: 11 (see e.g. International Published PCT Appl. No. WO02/077018; U.S. Patent No. 7,981,632). In some embodiments, the peptide ligand contains a sequence having the formula set forth in any of SEQ ID NO: 13 or 14. In some embodiments, the peptide ligand has the sequence of amino acids set forth in any of SEQ ID NOS: 15-19. In most cases, all these streptavidin binding peptides bind to the same binding site, namely the biotin binding site of streptavidin. If one or more of such streptavidin binding peptides is used as binding partners C, e.g. C1 and C2, the multimerization reagent is typically a streptavidin mutein.

[0262] In some embodiments, the streptavidin-binding peptide may be further modified. In some embodiments, the streptavidin-binding peptide may include the peptide sequence is Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (also called Strep-tag® II, set forth in SEQ ID NO: 8) conjugated with a nickel charged trisNTA (also called His-STREPPER or His/Strep-tag®II Adapter).
In some embodiments, the binding partner C of the agent (e.g., receptor-binding agent or selection agent) includes a moiety known to the skilled artisan as an affinity tag. In such an embodiment, the reagent may include a corresponding binding partner, for example, an antibody or an antibody fragment, known to bind to the affinity tag. As a few illustrative examples of known affinity tags, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) may include dinitrophenol or digoxigenin, oligohistidine, polyhistidine, an immunoglobulin domain, maltose-binding protein, glutathione-S-transferase (GST), chitin binding protein (CBP) or thioredoxin, calmodulin binding peptide (CBP), FLAG '-peptide, the HA-tag (sequence: Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala) (SEQ ID NO: 20), the VSV-G-tag (sequence: Tyr-Thr-Asp-Ile-Glu-Met-Asn-Arg-Leu-Gly-Lys) (SEQ ID NO: 21), the HSV-tag (sequence: Gln-Pro-Glu-Leu-Ala-Pro-Glu-Asp-Pro-Glu-Asp) (SEQ ID NO: 22), the T7 epitope (Ala-Ser-Met-Thr-Gly-Gly-Gln-Gln-Met-Gly) (SEQ ID NO: 22), maltose binding protein (MBP), the HSV epitope of the sequence Gln-Pro-Glu-Leu-Ala-Pro-Glu-Asp-Pro-Glu-Asp (SEQ ID NO: 24) of herpes simplex virus glycoprotein D, the "myc" epitope of the transcription factor c-myc of the sequence Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu (SEQ ID NO: 25), the V5-tag (sequence: Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu-Leu-Gly-Leu-Asp-Ser-Thr) (SEQ ID NO: 26), or glutathione-S-transferase (GST). In such embodiments, the complex formed between the one or more binding sites Z of the reagent which may be an antibody or antibody fragment, and the antigen can be disrupted competitively by adding the free antigen, i.e. the free peptide (epitope tag) or the free protein (such as MBP or CBP). In some embodiments, the affinity tag might also be an oligonucleotide tag. In some cases, such an oligonucleotide tag may, for instance, be used to hybridize to an oligonucleotide with a complementary sequence, linked to or included in the reagent.

Further examples of a suitable binding partner C include, but are not limited to, a lectin, protein A, protein G, a metal, a metal ion, nitrilo triacetic acid derivatives (NT A), RGD-motifs, a dextrane, polyethyleneimine (PEI), a redox polymer, a glycoproteins, an aptamers, a dye, amylose, maltose, cellulose, chitin, glutathione, calmodulin, gelatine, polymyxin, heparin, NAD, NADP, lysine, arginine, benzamidine, poly U, or oligo-dT. Lectins such as Concaavalin A are known to bind to polysaccharides and glycosylated proteins. An illustrative example of a dye is a triazine dye such as Cibacron blue F3G-A (CB) or Red HE-3B, which specifically bind NADH-dependent enzymes. Typically, Green A binds to Co A proteins, human serum albumin,
and dehydrogenases. In some cases, the dyes 7-aminoactinomycin D and 4’,6-diamidino-2-phenylindole bind to DNA. Generally, cations of metals such as Ni, Cd, Zn, Co, or Cu, are typically used to bind affinity tags such as an oligohistidine containing sequence, including the hexahistidine or the His-Asn-His-Arg-His-Lys-His-Gly-Gly-Gly-Cys tag (MAT tag) (SEQ ID NO: 35), and N-methacryloyl-(L)-cysteine methyl ester.

[0265] In some embodiments, the binding between the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) and the one or more binding sites Z of the reagent occurs in the presence of a divalent, a trivalent or a tetravalent cation. In this regard, in some embodiments, the reagent includes a divalent, a trivalent or a tetravalent cation, typically held, e.g. complexed, by means of a suitable chelator. In some embodiments, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) may include a moiety that includes, e.g. complexes, a divalent, a trivalent or a tetravalent cation. Examples of a respective metal chelator, include, but are not limited to, ethylenediamine, ethylene-diaminotetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), diethylenetri-aminepentaacetic acid (DTPA), N,N-bis(carboxymethyl)glycine (also called nitrilotriacetic acid, NTA), 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), 2,3-dimer-capto-l-propanol (dimercaprol), porphine and heme. As an example, EDTA forms a complex with most monovalent, divalent, trivalent and tetravalent metal ions, such as e.g. silver (Ag⁺), calcium (Ca²⁺), manganese (Mn²⁺), copper (Cu²⁺), iron (Fe²⁺), cobalt (Co⁺) and zirconium (Zr⁴⁺), while BAPTA is specific for Ca²⁺. As an illustrative example, a standard method used in the art is the formation of a complex between an oligohistidine tag and copper (Cu²⁺), nickel (Ni²⁺), cobalt (Co²⁺), or zinc (Zn²⁺) ions, which are presented by means of the chelator nitrilotriacetic acid (NTA).

[0266] In some embodiments, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) includes a calmodulin binding peptide and the reagent includes multimeric calmodulin as described in US Patent 5,985,658, for example. In some embodiments, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) includes a FLAG peptide and the reagent includes an antibody that binds to the FLAG peptide, e.g. the FLAG peptide, which binds to the monoclonal antibody 4E11 as described in US Patent 4,851,341. In one embodiment, the binding partner C that is included in the agent (e.g., receptor-binding agent or selection agent) includes an oligohistidine tag and the
reagent includes an antibody or a transition metal ion binding the oligohistidine tag. In some cases, the disruption of all these binding complexes may be accomplished by metal ion chelation, e.g. calcium chelation, for instance by adding EDTA or EGTA. In some embodiments, calmodulin, antibodies such as 4E1 or chelated metal ions or free chelators may be multimerized by conventional methods, e.g. by biotinylation and complexation with streptavidin or avidin or oligomers thereof or by the introduction of carboxyl residues into a polysaccharide, e.g. dextran, essentially as described in Noguchi, A, et al. Bioconjugate Chemistry (1992) 3, 132-137 in a first step and linking calmodulin or antibodies or chelated metal ions or free chelators via primary amino groups to the carboxyl groups in the polysaccharide, e.g. dextran, backbone using conventional carbodiimide chemistry in a second step. In some such embodiments, the binding between the binding partner C that is included in the agent (e.g. receptor-binding agent or selection agent) and the one or more binding sites Z of the reagent can be disrupted by metal ion chelation. The metal chelation may, for example, be accomplished by addition of EGTA or EDTA.

[0267] In some embodiments, the agent (e.g., receptor-binding agent or selection agent), which specifically bind to the cell surface molecule, may for instance be comprised by an antibody, a fragment thereof, or a proteinaceous binding molecule with antibody-like functions. In some embodiments, the binding site B of the agent is an antibody combining site, such as is or contains one or more complementarity determining regions (CDRs) of an antibody. Examples of (recombinant) antibody fragments include, but are not limited to, Fab fragments, Fv fragments, single-chain Fv fragments (scFv), a divalent antibody fragment such as an (Fab)2'-fragment, diabodies, triabodies (Iliades, P., et al, FEB S Lett (1997) 409, 437-441), decabodies (Stone, E., et al, Journal of Immunological Methods (2007) 318, 88-94) and other domain antibodies (Holt, L.J., et al, Trends Biotechnol. (2003), 21, 11, 484-490). In some embodiments, the agent (e.g. receptor-binding agent or selection agent) may comprise a bivalent proteinaceous artificial binding molecule such as a dimeric lipocalin mutein that is also known as "duocalin".

[0268] In some embodiments, the agent (e.g., receptor-binding agent or selection agent) may have a single binding site B, i.e., it may be monovalent. Examples of monovalent agents (e.g., receptor-binding agents or selection agents) include, but are not limited to, a monovalent antibody fragment, a proteinaceous binding molecule with antibody-like binding properties or an
MHC molecule. Examples of monovalent antibody fragments include, but are not limited to a Fab fragment, an Fv fragment, and a single-chain Fv fragment (scFv), including a divalent single-chain Fv fragment.

[0269] In some embodiments, the agent is an antibody or an antigen-binding fragment thereof, such as a Fab fragments, Fv fragments, single-chain Fv fragments (scFv), a divalent antibody fragment such as an F(ab')\(_2\) fragment. In some embodiments, the agent is or is derived from a parental antibody that is known to bind to a cell molecule of interest. Various antibody molecules or fragments thereof against cell surface molecules are well known in the art and any of a variety of such can be used as agents in the methods herein. In some embodiments, the agent is an antibody or fragment thereof that contains one or more amino acid replacements in the variable heavy chain of a parental or reference antibody, for example, to generate an antibody with an altered affinity or that exhibits a sufficiently fast off-rate as described above. For example, exemplary of such mutations are known the context of mutants of the anti-CD4 antibody 13B8.2 (see e.g., U.S. Patent Nos. 7,482,000, U.S. Patent Appl. Pub. No. US2014/0295458 or International Patent Application App. No. WO2013/124474), and any of such mutations can be generated in another parental or reference antibody.

[0270] In some aspects, the agent (e.g., receptor-binding agent or selection agent) that can be monovalent, for example comprise a monovalent antibody fragment or a monovalent artificial binding molecule (proteinaceous or other) such as a mutein based on a polypeptide of the lipocalin family (also known as "Anticalin®), or a bivalent molecule such as an antibody or a fragment in which both binding sites are retained such as an F(ab')\(_2\) fragment.

[0271] An example of a proteinaceous binding molecule with antibody-like functions includes a mutein based on a polypeptide of the lipocalin family (see for example, WO 03/029462, Beste et al, Proc. Natl. Acad. Sci. U.S.A. (1999) 96, 1898-1903). Generally, lipocalins, such as the bilin binding protein, the human neutrophil gelatinase-associated lipocalin, human Apo lipoprotein D or human tear lipocalin possess natural ligand-binding sites that can be modified so that they bind a given target. Further examples of a proteinaceous binding molecule with antibody-like binding properties that can be used as agent (e.g., receptor-binding agent or selection agent) that specifically binds to the cell surface molecule include, but are not limited to, the so-called glubodies (see e.g. international patent application WO 96/23879), proteins based on the ankyrin scaffold (Mosavi, L.K., et al, Protein Science (2004)}
13, 6, 1435-1448) or crystalline scaffold (e.g. international patent application WO 01/04144) the proteins described in Skerra, J. Mol. Recognit. (2000) 13, 167-187. AdNectins, tetraneectins and

Tetraneectins, generally derived from the respective human homotrimeric protein, likewise typically contain loop regions in a C-type lectin domain that can be engineered for desired binding. Peptoids, which can, in some cases, act as protein ligands, typically are oligo(N-alkyl) glycines that differ from peptides in that the side chain is connected to the amide nitrogen rather than the carbon atom. Peptoids are typically resistant to proteases and other modifying enzymes and can have a much higher cell permeability than peptides (see e.g. Kwon, Y.-U., and Kodadek, T., J. Am. Chem. Soc. (2007) 129, 1508-1509).

[0272] Further examples of suitable proteinaceous binding molecules include, but are not limited to, an EGF-like domain, a Kringle-domain, a fibronectin type I domain, a fibronectin type II domain, a fibronectin type III domain, a PAN domain, a Gla domain, a SRCR domain, a Kunitz/Bovine pancreatic trypsin Inhibitor domain, tandemistat, a Kazal-type serine protease inhibitor domain, a Trefoil (P-type) domain, a von Willebrand factor type C domain, an Anaphylatoxin-like domain, a CUB domain, a thyroglobulin type I repeat, LDL-receptor class A domain, a Sushi domain, a Link domain, a Thrombospondin type I domain, an immunoglobulin domain or a an immunoglobulin-like domain (for example, domain antibodies or camel heavy chain antibodies), a C-type lectin domain, a MAM domain, a von Willebrand factor type A domain, a Somatomedin-B domain, a WAP -type four disulfide core domain, a F5/8 type C domain, a Hemopexin domain, an SH2 domain, an SH3 domain, a Laminin-type EGF-like domain, a C2 domain, "Kappabodies" (111 et al. Protein Eng (1997) 10, 949-57, a so called "minibody" (Martin et al, EMBO J (1994) 13, 5303-5309), a diabody (Holliger et al, PNAS USA (1993)90, 6444-6448), a so called "Janusis" (Traunecker et al, EMBO J (1991) 10, 3655-3659, or Traunecker et al, Int J Cancer (1992) Suppl 7, 51-52), a nanobody, a microbody, an affilin, an affibody, a knottin, ubiquitin, a zinc-finger protein, an autofluore scent protein or a
leucine-rich repeat protein. In some embodiments, a nucleic acid molecule with antibody-like functions can be an aptamer. Generally, an aptamer folds into a defined three-dimensional motif and shows high affinity for a given target structure.

1. Receptor-binding agents

[0273] In some embodiments, the agent is a receptor-binding agent. In some embodiments, the receptor-binding agent binds to a molecule (e.g. receptor) on the surface of a cell, which binding between the agent and the molecule is capable of inducing or modulating a signal in the cells. In some instances, the cell surface molecule (e.g. receptor) is a signaling molecule. In some such cases, the receptor-binding agent is capable of specifically binding to a signaling molecule expressed by one or more of the cells. In some instances, the receptor-binding agent is a stimulatory agent, which can be any agent that is capable of inducing a signal in a cell (e.g. a T cell) upon binding to a cell surface molecule, such as a receptor. In some embodiments, the signal can be immunostimulatory, in which case the receptor-binding agent or stimulatory agent is capable of inducing or modulating a signal that is involved in or that does stimulate an immune response by the cell (e.g. T cell), e.g. increase immune cell proliferation or expansion, immune cell activation, immune cell differentiation, cytokine secretion, cytotoxic activity or one or more other functional activities of an immune cell. In some embodiments, the signal can be inhibitory, in which case the receptor-binding agent or stimulatory agent is capable of inducing or modulating a signal in the cell (e.g. T cell) that is involved in or that does inhibit an immune response, e.g. inhibits or decreases immune cell proliferation or expansion, immune cell activation, immune cell differentiation, cytokine secretion, cytotoxic activity or one or more other functional activities of an immune cell.

[0274] In some embodiments, the receptor-binding agent, e.g., stimulatory agent is a first receptor-binding agent, e.g., first stimulatory agent. In some aspects, the first receptor-binding agent, e.g., first stimulatory agent, binds to a receptor molecule on the surface of the cells. Thus, in some cases, the first receptor-binding agent, e.g., first stimulatory agent, induces or modulates a signal. In some aspects, the inducing or modulating of a signal by the first receptor-binding agent, e.g., first stimulatory agent, effects the activation, stimulation, and/or expansion (proliferation) of the cells. Thus, in some cases, the first receptor-binding agent, e.g., first stimulatory agent, provides a primary activation signal to the cells, thereby activating the cells.
In some embodiments, the cell population may be a population of lymphocytes including, but not limited a population of B cells, a population of T cells or a population of natural killer cells. Illustrative examples of cell populations are B cells carrying CD40 or CD137 (both cell population can be proliferated upon binding of only a first agent that provides an activation signal, for example 4-1BB ligand; or an aCD40 antibody molecule or an aCD137 antibody molecule (see for example Zhang et al., 2010, J Immunol, 184:787-795)). Other illustrative examples for agents (either first or second) that may be used for the expansion of B cells are agents that bind to IgG, CD19, CD28 or CD14, for example aCD19, algG, aCD28, or aCD14 antibody molecules. It is also envisioned that first or second agents for the expansion of B cell may comprise ligands for toll like receptors or interleukins, such as IL-21 (see for example Dienz O, et al. 2009. J. Exp. Med. 206:69). It is noted that lipopolysaccharide dependent activation of B cells is also encompassed in embodiments of the present invention, as a lipopolysaccharide can also be used as first agent and can be equipped with a binding partner CI as used herein.

Other illustrative examples of suitable cell populations include T cell population that expand after being activated by binding of a first agent to TCR/CD3 and binding of a second agent to an accessory molecule on the T cell such as CD28. In this case, the first agent stimulates a TCR/CD3 complex-associated signal in the T cells and the second agent provides a secondary stimulus by binding CD28 as accessory molecule. Agents that can be used for the expansion of T cells may also include interleukins, such as IL-2, IL-7, IL-15, or IL-21 (see for example Cornish et al. 2006, Blood. 108(2):600-8, Bazdar and Sieg, 2007, Journal of Virology, 2007, 81(22): 12670-12674, Battalia et al, 2013, Immunology, 139(1): 109-120). Other illustrative examples for agents that may be used for the expansion of T cells are agents that bind to CD8, CD45 or CD90, such as aCD8, aCD45 or aCD90 antibodies. Illustrative examples of T cell population including antigen-specific T cells, T helper cells, cytotoxic T cells, memory T cell (an illustrative example of memory T-cells are CD62L+CD8+ specific central memory T cells) or regulatory T cells (an illustrative example of Treg are CD4+CD25+CD45RA+ Treg cells).

Another illustrative example of a suitable cell population includes natural killer cells (NK cells), which may for example be expanded with agents that bind to CD16 or CD56, such as for example aCD16 or aCD56 antibodies. In illustrative example for such an aCD16 antibody
is the antibody 3G8 with a VH sequence set forth in SEQ ID NO: 36 and a VL sequence set forth in SEQ ID NO: 37 (see for example Hoshino et al, Blood. 1991 Dec 15;78(12):3232-40.). Another agent that may be used for expansion of NK cells may be IL-15 (see for example Vitale et al. 2002. The Anatomical Record. 266:87-92). Yet another illustrative example of a suitable cell population includes monocytes, which may for instance be expanded using an agent that binds to CD14, such as an aCD14 antibody molecule.

[0278] In some embodiments, the first receptor-binding agent, e.g., first stimulatory agent, may stimulate a TCR/CD3 complex-associated signal in the cells, e.g., T cells. In some aspects, the first receptor-binding agent, e.g., first stimulatory agent, may be a binding agent that specifically binds CD3. In some cases, a first receptor-binding agent, e.g., first stimulatory agent, that specifically binds CD3 may be selected from the group consisting of an anti-CD3 antibody, a divalent antibody fragment of an anti-CD3 antibody, a monovalent antibody fragment of an anti-CD3-antibody, and a proteinaceous CD3 binding molecule with antibody-like binding properties. The divalent antibody fragment may be a F(ab')^2-fragment, or a divalent single-chain Fv fragment while the monovalent antibody fragment may be selected from the group consisting of a Fab fragment, an Fv fragment, and a single-chain Fv fragment (scFv). In some cases, a proteinaceous CD3 binding molecule with antibody-like binding properties may be an aptamer, a mutein based on a polypeptide of the lipocalin family, a glubody, a protein based on the ankyrin scaffold, a protein based on the crystalline scaffold, an adnectin, or an avimer.

[0279] In some embodiments, an anti-CD3 Fab fragment can be derived from the CD3 binding monoclonal antibody produced by the hybridoma cell line OKT3 (ATCC® CRL-8001™; see also U.S. Patent No. 4,361,549). The variable domain of the heavy chain and the variable domain of the light chain of the anti-CD3 antibody OKT3 are described in Arakawa et al J. Biochem. 120, 657-662 (1996) and comprise the amino acid sequences set forth in SEQ ID NO: 31 and 32, respectively.

[0280] In some aspects, the receptor-binding agent, e.g., stimulatory agent, is a second receptor-binding agent, e.g., second stimulatory agent. In some cases, the second receptor-binding agent, e.g., second stimulatory agent, binds to a molecule on the surface of the cells, such as a cell surface molecule, e.g., receptor molecule. In some embodiments, the second receptor-binding agent, e.g., second stimulatory agent, is capable of enhancing, dampening, or
modifying a signal delivered through the first molecule. In some embodiments, the second receptor-binding agent, e.g., second stimulatory agent, induces or modulates a signal, e.g., a second or an additional signal. In some aspects, the second receptor-binding agent, e.g., second stimulatory agent, may enhance or potentiate a signal induced by the first receptor-binding agent, e.g., first stimulatory agent. In some embodiments, the second receptor-binding agent, e.g., second stimulatory agent, binds to an accessory molecule and/or can stimulate or induce an accessory or secondary signal in the cell. In some aspects, the second receptor-binding agent, e.g., second stimulatory agent, binds to a co-stimulatory molecule and/or provides a costimulatory signal.

[0281] In some embodiments, the receptor-binding agent, e.g., stimulatory agent, which can be the second receptor-binding agent, e.g., second stimulatory agent, binds, e.g. specifically binds, to a second molecule that can be a costimulatory molecule, an accessory molecule, a cytokine receptor, a chemokine receptor, an immune checkpoint molecule, or a member of the TNF family or the TNF receptor family.

[0282] In some embodiments, the molecule on the cell, e.g., T cell, may be CD28 and the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) specifically binds CD28. In some aspects, the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) that specifically binds CD28 may be selected from the group consisting of an anti-CD28-antibody, a divalent antibody fragment of an anti-CD28 antibody, a monovalent antibody fragment of an anti-CD28-antibody, and a proteinaceous CD28 binding molecule with antibody-like binding properties. The divalent antibody fragment may be an F(ab’)2-fragment, or a divalent single-chain Fv fragment while the monovalent antibody fragment may be selected from the group consisting of a Fab fragment, an Fv fragment, and a single-chain Fv fragment (scFv). A proteinaceous CD28 binding molecule with antibody-like binding properties may be an aptamer, a mutein based on a polypeptide of the lipocalin family, a globbody, a protein based on the ankyrin scaffold, a protein based on the crystalline scaffold, an adnectin, and an avimer.

[0283] In some embodiments, an anti-CD28 Fab fragment can be derived from antibody CD28.3 (deposited as a synthetic single chain Fv construct under GenBank Accession No.
AF45 1974.1; see also Vanhove et al, BLOOD, 15 July 2003, Vol. 102, No. 2, pages 564-570) the heavy and light chain of which comprise SEQ ID NO: 33 and 34, respectively.

[0284] In some embodiments, the molecule on the cell, e.g., T cell, may be CD90 and the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) specifically binds CD90. In some aspects, the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) that specifically binds CD90 may be selected from the group consisting of an anti-CD90-antibody, a divalent antibody fragment of an anti-CD90 antibody, a monovalent antibody fragment of an anti-CD90-antibody, and a proteinaceous CD90 binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. See e.g. anti-CD90 antibody G7 (Biolegend, cat. no. 105201).

[0285] In some embodiments, the molecule on the cell, e.g., T cell, may be CD95 and the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) specifically binds CD95. In some aspects, the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) that specifically binds CD95 may be selected from the group consisting of an anti-CD95-antibody, a divalent antibody fragment of an anti-CD95 antibody, a monovalent antibody fragment of an anti-CD95-antibody, and a proteinaceous CD95 binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. For example, in some aspects, the anti-CD90 antibody can be monoclonal mouse anti-human CD95 CH11 (Upstate Biotechnology, Lake Placid, NY) or can be anti-CD95 mAb 7C1 1 or anti-APO-1, such as described in Paulsen et al. Cell Death & Differentiation 18.4 (2011): 619-631.

[0286] In some embodiments, the molecule on the cell, e.g., T cell or B cell, may be CD137 and the receptor-binding agent, e.g., stimulatory agent (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent,) specifically binds CD137. In some aspects, the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) that specifically binds CD137 may be selected from the group consisting of an anti-CD 137-antibody, a divalent antibody fragment of an anti-CD 137 antibody, a monovalent antibody fragment of an anti-CD 137-antibody, and a proteinaceous
CD137 binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. For example, the anti-CD137 antibody can be LOB 12, IgG2a or LOB 12.3, IgGl as described in Taraban et al. Eur J Immunol. 2002 Dec;32(12):3617-27. See also e.g. US6569997, US6303121, Mittler et al. Immunol Res. 2004;29(1-3): 197-208.

[0287] In some embodiments, the molecule on the cell, e.g. B cell, may be CD40 and the receptor-binding agent, e.g. stimulatory agent, e.g. which can be the second receptor-binding agent, e.g. second stimulatory agent) specifically binds CD40. In some aspects, the receptor-binding agent (which can be the second receptor-binding agent, e.g. second stimulatory agent) that specifically binds CD40 may be selected from the group consisting of an anti-CD40- antibody, a divalent antibody fragment of an anti-CD40 antibody, a monovalent antibody fragment of an anti-CD40-antibody, and a proteinaceous CD40 binding molecule with antibody-like binding properties.

[0288] In some embodiments, the molecule on the cell, e.g. T cell, may be CD40L (CD 154) and the receptor-binding agent, e.g. stimulatory agent, e.g. which can be the second receptor-binding agent, e.g. second stimulatory agent) specifically binds CD40L. In some aspects, the receptor-binding agent, e.g. stimulatory agent, e.g. which can be the second receptor-binding agent, e.g. second stimulatory agent) that specifically binds CD40L may be selected from the group consisting of an anti-CD40L-antibody, a divalent antibody fragment of an anti-CD40L antibody, a monovalent antibody fragment of an anti-CD40L-antibody, and a proteinaceous CD40L binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. For example, the anti-CD40L antibody can in some aspects be Hu5C8, as described in Blair et al. JEM vol. 191 no. 4 651-660. See also e.g. WO1999061065, US20010026932, US7547438, WO2001056603.

[0289] In some embodiments, the molecule on the cell, e.g. T cell, may be inducible T cell Costimulator (ICOS) and the receptor-binding agent, e.g. stimulatory agent, e.g. which can be the second receptor-binding agent, e.g. second stimulatory agent) specifically binds ICOS. In some aspects, the receptor-binding agent, e.g. stimulatory agent, e.g. which can be the second receptor-binding agent, e.g. second stimulatory agent) that specifically binds ICOS may be selected from the group consisting of an anti-ICOS-antibody, a divalent antibody fragment of an anti-ICOS antibody, a monovalent antibody fragment of an anti-ICOS-antibody, and a
proteinaceous ICOS binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. See e.g. US20080279851 and Deng et al. Hybrid Hybridomics. 2004 Jun;23(3):176-82.

[0290] In some embodiments, the molecule on the cell, e.g., T cell, may be Linker for Activation of T cells (LAT) and the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) specifically binds LAT. In some aspects, the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) that specifically binds LAT may be selected from the group consisting of an anti-LAT-antibody, a divalent antibody fragment of an anti-LAT antibody, a monovalent antibody fragment of an anti-LAT-antibody, and a proteinaceous LAT binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art.

[0291] In some embodiments, the molecule on the cell, e.g., T cell, may be CD27 and the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) specifically binds CD27. In some aspects, the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) that specifically binds CD27 may be selected from the group consisting of an anti-CD27-antibody, a divalent antibody fragment of an anti-CD27 antibody, a monovalent antibody fragment of an anti-CD27-antibody, and a proteinaceous CD27 binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. See e.g. WO2008051424.

[0292] In some embodiments, the molecule on the cell, e.g., T cell, may be OX40 and the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) specifically binds OX40. In some aspects, the receptor-binding agent, e.g., stimulatory agent, (e.g. which can be the second receptor-binding agent, e.g., second stimulatory agent) that specifically binds OX40 may be selected from the group consisting of an anti-OX40-antibody, a divalent antibody fragment of an anti-OX40 antibody, a monovalent antibody fragment of an anti-OX40-antibody, and a proteinaceous OX40 binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. See e.g. WO2013038191, Melero et al. Clin Cancer Res. 2013 Mar 1;19(5):1044-53.
[0293] In some embodiments, the molecule on the cell, e.g., T cell, may be HVEM and the receptor-binding agent, e.g., stimulatory agent, (e.g., which can be the second receptor-binding agent, e.g., second stimulatory agent) specifically binds HVEM. In some aspects, the receptor-binding agent, e.g., stimulatory agent, (e.g., which can be the second receptor-binding agent, e.g., second stimulatory agent) that specifically binds HVEM may be selected from the group consisting of an anti-HVEM-antibody, a divalent antibody fragment of an anti-HVEM antibody, a monovalent antibody fragment of an anti-HVEM-antibody, and a proteinaceous HVEM binding molecule with antibody-like binding properties. The antibody or antigen-binding fragment can be derived from any known in the art. See e.g. WO2006054961, WO2007001459, Park et al. Cancer Immunol Immunother. 2012 Feb;61(2):203-14.

[0294] In any of the above examples, the divalent antibody fragment may be an (Fab)2'-fragment, or a divalent single-chain Fv fragment while the monovalent antibody fragment may be selected from the group consisting of a Fab fragment, an Fv fragment, and a single-chain Fv fragment (scFv). In any of the above examples, the proteinaceous binding molecule with antibody-like binding properties may be an aptamer, a mutein based on a polypeptide of the lipocalin family, a globody, a protein based on the ankyrin scaffold, a protein based on the crystalline scaffold, an adenectin, and an avimer.

[0295] In some aspects, the receptor-binding agent, e.g., stimulatory agent, specifically targets a molecule expressed on the surface of the target cells in which the molecule is a TCR or a chimeric antigen receptor. For example, the molecule expressed on the surface of the target cell is selected from a T cell or B cell antigen receptor complex, a CD3 chain, a CD3 zeta, an antigen-binding portion of a T cell receptor or a B cell receptor, or a chimeric antigen receptor. In some cases, the receptor binding agent targets peptide:MHC class I complexes.

[0296] In some embodiments, the stimulatory agent binds to a His-tagged extracellular domain of a molecule expressed on the surface of the target cells. In some cases, the stimulator agent contains the peptide sequence Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (also called Strep-tag® II, set forth in SEQ ID NO: 8) conjugated with a nickel charged trisNTA (also called His-STREPPER or His/Strep-tag®II Adapter). In some embodiments, the molecule expressed on the surface of the target cells that is His-tagged is CD19.

[0297] In some aspects, the receptor-binding agent, e.g., stimulatory agent, specifically binds to the antibody portion of the recombinant receptor, e.g., CAR. In some cases, the
antibody portion of the recombinant receptor includes at least a portion of an immunoglobulin constant region, such as a hinge region, e.g., an IgG4 hinge region, and/or a CH1/CL and/or Fc region. In some embodiments, the constant region or portion is of a human IgG, such as IgG4 or IgGl. In some cases, the reagent is loaded with algG that recognizes the IgG4 spacer.

2. Selection Agents

[0298] In some embodiments, the agent is a selection agent. In some embodiments, the selection agent binds to a molecule on the surface of a cell, such as a cell surface molecule. In some instances, the cell surface molecule is a selection marker. In some such cases, the selection agent is capable of specifically binding to a selection marker expressed by one or more of the cells. In some embodiments, a selection agent or agents that are reversibly bound to a reagent can be used to facilitate selection or isolation of cells.

[0299] In some aspects, the cell surface molecule, e.g., selection marker, may be an antigen defining a desired cell population or subpopulation, for instance a population or subpopulation of blood cells, e.g., lymphocytes (e.g., T cells, T-helper cells, for example, CD4+ T-helper cells, B cells or natural killer cells), monocytes, or stem cells, e.g., CD34-positive peripheral stem cells or Nanog or Oct-4 expressing stem cells. In some embodiments, the selection marker can be a marker expressed on the surface of T cells or a subset of T cells, such as CD25, CD28, CD62L, CCR7, CD27, CD127, CD3, CD4, CD8, CD45RA, and/or CD45RO. Examples of T-cells include cells such as CMV-specific CD8+ T-lymphocytes, cytotoxic T-cells, memory T-cells and regulatory T-cells (Treg). An illustrative example of Treg includes CD4 CD25 CD45RA Treg cells and an illustrative example of memory T-cells includes CD62L CD8+ specific central memory T-cells. The cell surface molecule, e.g., selection marker, may also be a marker for a tumor cell.

[0300] In some embodiments, the selection marker may be CD4 and the selection agent specifically binds CD4. In some aspects, the selection agent that specifically binds CD4 may be selected from the group consisting of an anti-CD4-antibody, a divalent antibody fragment of an anti-CD4 antibody, a monovalent antibody fragment of an anti-CD4-antibody, and a proteinaceous CD4 binding molecule with antibody-like binding properties. In some embodiments, an anti-CD4-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g., CD4 Fab fragment) can be derived from antibody 13B8.2 or a functionally active mutant of 13B8.2 that retains specific binding for CD4. For example,
exemplary mutants of antibody 13B8.2 or ml3B8.2 are described in U.S. Patent Nos. 7,482,000, U.S. Patent Appl. No. US2014/0295458 or International Patent Application No. WO2013/124474; and Bes, C, et al. J Biol Chem 278, 14265-14273 (2003). The mutant Fab fragment termed "ml3B8.2" carries the variable domain of the CD4 binding murine antibody 13B8.2 and a constant domain containing constant human CHI domain of type gamma for the heavy chain and the constant human light chain domain of type kappa, as described in US Patent 7,482,000. In some embodiments, the anti-CD3 antibody, e.g. a mutant of antibody 13B8.2, contains the amino acid replacement H91A in the variable light chain, the amino acid replacement Y92A in the variable light chain, the amino acid replacement H35A in the variable heavy chain and/or the amino acid replacement R53A in the variable heavy chain, each by Kabat numbering. In some aspects, compared to variable domains of the 13B8.2 Fab fragment in ml3B8.2 the His residue at position 91 of the light chain (position 93 in SEQ ID NO: 30) is mutated to Ala and the Arg residue at position 53 of the heavy chain (position 55 in SEQ ID NO: 29) is mutated to Ala. In some embodiments, the reagent that is reversibly bound to anti-CD4 or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-206 or 6-8000-205 or 6-8002-100; IBA GmbH, Gottingen, Germany).

[0301] In some embodiments, the selection marker may be CD8 and the selection agent specifically binds CD8. In some aspects, the selection agent that specifically binds CD8 may be selected from the group consisting of an anti-CD8-antibody, a divalent antibody fragment of an anti-CD8 antibody, a monovalent antibody fragment of an anti-CD8-antibody, and a proteinaceous CD8 binding molecule with antibody-like binding properties. In some embodiments, an anti-CD8-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g. CD8 Fab fragment) can be derived from antibody OKT8 (e.g. ATCC CRL-8014) or a functionally active mutant thereof that retains specific binding for CD8. In some embodiments, the reagent that is reversibly bound to anti-CD8 or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8003 or 6-8000-201; IBA GmbH, Gottingen, Germany).

[0302] In some embodiments, the selection marker may be CD3 and the selection agent specifically binds CD3. In some aspects, the selection agent that specifically binds CD3 may be selected from the group consisting of an anti-CD3-antibody, a divalent antibody fragment of an
anti-CD3 antibody, a monovalent antibody fragment of an anti-CD3-antibody, and a proteinaceous CD3 binding molecule with antibody-like binding properties. In some embodiments, an anti-CD3-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g. CD3 Fab fragment) can be derived from antibody OKT3 (e.g. ATCC CRL-8001; see e.g., Stemberger et al. PLoS One. 2012; 7(4): e35798) or a functionally active mutant thereof that retains specific binding for CD3. In some embodiments, the reagent that is reversibly bound to anti-CD62L or a fragment thereof is reversibly bound to anti-CD62L or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-201, 6-8001-100; IBA GmbH, Gottingen, Germany).

[0303] In some embodiments, the selection marker may be CD25 and the selection agent specifically binds CD25. In some aspects, the selection agent that specifically binds CD25 may be selected from the group consisting of an anti-CD25-antibody, a divalent antibody fragment of an anti-CD25 antibody, a monovalent antibody fragment of an anti-CD25-antibody, and a proteinaceous CD25 binding molecule with antibody-like binding properties. In some embodiments, an anti-CD25-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g. CD25 Fab fragment) can be derived from antibody FRT5 (See e.g., Stemberger et al. 2012) or a functionally active mutant thereof that retains specific binding for CD25. In some embodiments, the reagent that is reversibly bound to anti-CD4 or a fragment thereof is reversibly bound to anti-CD4 or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-205 or 6-8000-207 or 6-8004-050; IBA GmbH, Gottingen, Germany).

[0304] In some embodiments, the selection marker may be CD62L and the selection agent specifically binds CD62L. In some aspects, the selection agent that specifically binds CD62L may be selected from the group consisting of an anti-CD62L-antibody, a divalent antibody fragment of an anti-CD62L antibody, a monovalent antibody fragment of an anti-CD62L-antibody, and a proteinaceous CD62L binding molecule with antibody-like binding properties. In some embodiments, an anti-CD62L-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g. CD62L Fab fragment) can be derived from antibody DREG56 (e.g. ATCC HB300; see e.g. Stemberger et al. 2012) or a functionally active mutant thereof that retains specific binding for CD62L. In some embodiments, the reagent that is reversibly bound to anti-CD62L or a fragment thereof is reversibly bound to anti-CD62L or a fragment thereof is commercially available or derived from
a reagent that is commercially available (e.g. catalog No. 6-8000-204 or 6-8005-050; IBA GmbH, Gottingen, Germany).

[0305] In some embodiments, the selection marker may be CD45RA and the selection agent specifically binds CD45RA. In some aspects, the selection agent that specifically binds CD45RA may be selected from the group consisting of an anti-CD45RA-antibody, a divalent antibody fragment of an anti-CD45RA antibody, a monovalent antibody fragment of an anti-CD45RA-antibody, and a proteinaceous CD45RA binding molecule with antibody-like binding properties. In some embodiments, an anti-CD45RA-antibody, such as a divalent antibody fragment or a monovalent antibody fragment (e.g. CD45RA Fab fragment) can be derived from antibody MEM56 (e.g. Millipore 05-1413; see e.g. Stemberger et al. 2012) or a functionally active mutant thereof that retains specific binding for CD45RA. In some embodiments, the reagent that is reversibly bound to anti-CD45RA or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-208 or 6-8007-050; IBA GmbH, Gottingen, Germany).

[0306] In some embodiments, the selection marker may be CD45RO and the selection agent specifically binds CD45RO. In some aspects, the selection agent that specifically binds CD45RO may be selected from the group consisting of an anti-CD45RO-antibody, a divalent antibody fragment of an anti-CD45RO antibody, a monovalent antibody fragment of an anti-CD45RO-antibody, and a proteinaceous CD45RO binding molecule with antibody-like binding properties. In some embodiments, the reagent that is reversibly bound to anti-CD45RO or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-209 or 6-8012-020; IBA GmbH, Gottingen, Germany).

[0307] In some embodiments, the selection marker may be CD154 and the selection agent specifically binds CD154. In some aspects, the selection agent that specifically binds CD154 may be selected from the group consisting of an anti-CD 154-antibody, a divalent antibody fragment of an anti-CD 154 antibody, a monovalent antibody fragment of an anti-CD 154-antibody, and a proteinaceous CD154 binding molecule with antibody-like binding properties. In some embodiments, the reagent that is reversibly bound to anti-CD 154 or a fragment thereof is commercially available or derived from a reagent that is commercially available (e.g. catalog No. 6-8000-202 or 6-5510-050; IBA GmbH, Gottingen, Germany).
In any of the above examples, the divalent antibody fragment may be an (Fab)2'-fragment, or a divalent single-chain Fv fragment while the monovalent antibody fragment may be selected from the group consisting of a Fab fragment, an Fv fragment, and a single-chain Fv fragment (scFv). In any of the above examples, the proteinaceous binding molecule with antibody-like binding properties may be an aptamer, a mutein based on a polypeptide of the lipocalin family, a glubody, a protein based on the ankyrin scaffold, a protein based on the crystalline scaffold, an adnectin, and an avimer.

III. METHODS OF CULTURING CELLS

Provided are methods of modulating one or more cells by culturing or incubating a composition containing target cells (e.g. T cells) in the presence of a receptor-binding agent, e.g. stimulatory agent, that is reversibly bound to a reagent comprising a plurality of binding sites capable of reversibly binding the receptor-binding agent, e.g. stimulatory agent. In some embodiments, the methods are performed under conditions in which the stimulatory agent specifically binds to a molecule expressed on the surface of the target cell, thereby inducing or modulating a signal in the target cell.

In some embodiments, the provided methods are carried out on a support in which, during at least a portion of the incubation or culturing, the plurality of the target cells are immobilized on the support. In some aspects, the multimerization reagent or another multimerization reagent capable of associating or binding to the target cells is immobilized on the support, such that the plurality of the target cells become immobilized on the support via binding between the binding agent of the multimerization reagent and the target cells. In some embodiments, the reagent is reversibly bound to a binding agent, such as a selection agent, that specifically binds to a molecule on the surface of the target cells. In some embodiments, the multimerization reagent immobilized on the support, e.g. in a stationary phase (e.g. column) is the same reagent reversibly bound to the receptor-binding agent, e.g. stimulatory agent. In some embodiments, the multimerization reagent reversibly bound to the receptor-binding agent, e.g. stimulatory agent, is a first reagent and the multimerization reagent immobilized on the support, e.g. in a stationary phase (e.g. column) is a second reagent. In some aspects, the first reagent can be a soluble reagent that is loaded onto the column. In some aspects, the first reagent can also be immobilized on the support, e.g. in a stationary phase (e.g. column).
In some embodiments, the provided methods of culturing cells includes incubating a composition containing target cells (e.g. T cells) in the presence of an agent (e.g. first or second, receptor-binding agents, e.g. stimulatory agents, or selection agents) that is capable of binding to a molecule on the surface of targets cells (e.g. T cells) in the composition and that is reversibly bound to a reagent containing a plurality of binding sites capable of reversibly binding to the agent. In some embodiments, the incubation is performed under conditions in which the agent binds, such as specifically binds, to the molecule on the cell. In some cases, for certain receptor-binding agents (e.g. stimulatory agents), such binding can induce or modulate a signal in target cells (e.g. T cells) in the compositions, such as a primary signal or accessory signal as described. In some embodiments, binding of the agent to the molecule results in one or more of the stimulation, activation, expansion (proliferation) and/or differentiation of target cells in the composition.

In some embodiments, the provided method can be used for selectively inducing ex vivo expansion of a population of cells such as B cells, T cells or natural killer cells. In some cases, the stimulation can be in the absence of exogenous growth factors, such as lymphokines, and accessory cells. In some embodiments, the proliferation of these cells such as B cells or T cells can be induced without the need for antigen, thus providing an expanded cell population such as a T cell population which is polyclonal with respect to antigen reactivity. The methods disclosed herein may provide for sustained proliferation of a selected population of T cells such as CD4+ or CD8+ T cells over an extended period of time to yield a multi-fold increase in the number of these cells relative to the original T cell population. In general, in case of a (clonal) expansion of a lymphocyte population as described herein, all progeny may share the same antigen specificity as the cell population that was selected for expansion.

In some embodiments, the methods relate to expanding a population of antigen specific T cells. In some embodiments, to produce a population of antigen specific T cells, T cells are contacted with an antigen in a form suitable to trigger a primary activation signal in the T cell, i.e., the antigen is presented to the T cell such that a signal is triggered in the T cell through the TCR/CD3 complex. For example, the antigen can be presented to the T cell by an antigen presenting cell in conjunction with an MHC molecule. An antigen presenting cell, such as a B cell, macrophage, monocyte, dendritic cell, Langerhans cell, or other cell which can present antigen to a T cell, can be incubated with the T cell in the presence of the antigen (e.g., a
soluble antigen) such that the antigen presenting cell presents the antigen to the T cell. Alternatively, a cell expressing an antigen of interest can be incubated with the T cell. For example, a tumor cell expressing tumor-associated antigens can be incubated with a T cell together to induce a tumor-specific response. Similarly, a cell infected with a pathogen, e.g., a virus, which presents antigens of the pathogen can be incubated with a T cell. Following antigen specific activation of a population of T cells, the cells can be expanded in accordance with the provided methods. For example, after antigen specificity has been established, T cells can be expanded by culture with an anti-CD3 antibody (used as first agent) and an anti-CD28 antibody (used as second agent) according to the methods described herein. In another embodiment, the first agent can be an MHC I:peptide complex, which binds to an antigen specific T cell population. In such an embodiment, any antigen specific peptide that is known and that can be complexed with the respective MHC I molecule can be used. Alternatively, it is also possible to use as first agent the natural ligand of a receptor that triggers of cell expansion. For example, the extracellular domain of CD19 can be used to cause the activation of intracellular signaling cascades of cells transduced to express chimeric CD19 binding antigen receptor (CAR). Exemplary aspects of the above are shown in Examples.

[0314] In some embodiments, provided is an in-vitro-method of culturing a population of cells, comprising contacting a sample comprising a composition comprising a plurality of cells with a multimerization reagent. The multimerization reagent has reversibly immobilized thereon (bound thereto) an agent (first or second, receptor-binding, e.g. stimulatory agent, or selection agent), which can be used for the selection, stimulation, expansion and/or differentiation of cells. In some embodiments, a first agent that provides a primary activation signal to the cells, wherein the multimerisation reagent comprising at least one binding site Z1 for the reversible binding of the first agent. The first agent comprises at least one binding partner CI, wherein the binding partner CI is able of reversibly binding to the binding site Z1 of the multimerization reagent, wherein the first agent is bound to the multimerization reagent via the reversible bond formed between the binding partner CI and the binding site Z1. The first agent binds to a receptor molecule on the surface of the cells, thereby providing a primary activation signal to the cells and thereby activating the cells.
In some embodiments, the multimerization reagent is immobilized on a support, such as a solid surface. In some embodiments, the multimerization reagent is not bound to a support, such as not bound to a solid surface or stationary phase.

For example, in some embodiments, provided is an in vzYro-method of expanding a population of cells, comprising contacting a sample comprising a population of cells with a multimerization reagent, wherein the multimerization reagent is not immobilized on a solid support, i.e. is in a soluble form, and has bound thereto an agent (first or second, receptor-binding, e.g. stimulatory agent, or selection agent), which can be used for the selection, stimulation, expansion and/or differentiation of cells. In some embodiments, a first agent that provides a primary activation signal to the cells is reversibly bound to the multimerization reagent. The multimerization reagent comprises at least one binding site, e.g. Z1 for the binding of the first agent, wherein the first agent comprises at least one binding partner, e.g. C1, wherein the binding partner C1 is capable of binding to the binding site Z1 of the multimerization reagent. In some embodiments, the first agent is bound to the multimerization reagent via the bond formed between the binding partner C1 and the binding site Z1, and the first agent binds to a receptor molecule on the surface of the cells, thereby providing a primary activation signal to the cells and thereby activating the cells. In some embodiments, when a soluble multimerization reagent is used, the bond between the binding part C, e.g. C1 and the binding site Z, e.g. Z1 does not need to be reversible.

For example, in some embodiments, the provided methods also include the use of a multimerization reagent having bound thereto a second agent, such as an accessory or co-stimulatory molecules, that stimulates an accessory molecule on the surface of the cells. In some cases, the multimerization reagent is immobilized on a support, e.g. a solid support or stationary phase. In some embodiments, the multimerization reagent is not immobilized on a support, i.e. is in soluble form. In some embodiments, the second agent comprises a binding partner, e.g. C2, wherein the binding partner, e.g. C2 is able of being reversibly bound to a binding site, e.g. Z2 of the multimerization reagent, wherein the second agent is bound to the multimerization reagent via the reversible bond formed between the binding partner C2 and the binding site Z2. In some embodiments, the bond formed between the binding partner C1 and the binding site Z1 may be reversible and the bond formed between the binding partner C2 and the binding site Z2 may be reversible. In this case, the dissociation constant (K_d) for the reversible
binding between said binding site Z1 and said binding partner C1 and/or for the reversible binding between said binding site Z2 and said binding partner C2 may be in the range of 10^{-2} M to 10^{-13} M. In some aspects, such as when the multimerization reagent is not bound to a support (e.g. not bound to a solid support or stationary phase), the bond formed between the binding partner C1 and the binding site Z1 may be irreversible and/or also the bond formed between the binding partner C2 and the binding site Z2 may be irreversible.

[0318] In some cases, the second agent binds to the accessory molecule on the surface on the surface of the cells, thereby stimulating the activated cells. In this embodiment, the first agent may stimulate a TCR/CD3 complex-associated signal in the T cells and may be a binding agent that specifically binds CD3. In this embodiment the accessory molecule on the T cell may be CD28 and the second agent that binds the accessory molecule is a binding reagent that specifically binds CD28. Alternatively, in some embodiments, it is found that targeting other accessory molecules also can be employed, which can, in some cases, alter, such as improve, one or more features, properties or characteristics of the cultured cells. In some embodiments, the accessory molecule can be one or more of CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 or HVEM (e.g. an anti-CD90 antibody, an anti-CD95 antibody, an anti-CD137 antibody, and an anti-CD154 antibody, anti-ICOS antibody, anti-LAT antibody, anti-CD27 antibody, anti-OX40 antibody or anti-HVEM antibody, respectively. Exemplary agents, such as receptor-binding agents (e.g. stimulatory agents), are described below.

[0319] In some embodiments, the provided method may be carried out at any temperature at which the viability of the cell population is at least essentially uncompromised. In some embodiments, the condition at which incubation or culture is carried out include any conditions that are at least essentially not harmful, not detrimental or at least essentially not compromising viability, for example, under which the percentage of the population of cells that are to be expanded with full viability, is at least 70 %, including at least 75 %, at least 80 %, at least 85 %, at least 90 %, at least 92 %, at least 95 %, at least 97 %, at least 98 %, at least 99 % or at least 99.5 %. In some embodiments, the provided method is carried out at a temperature of about 20 °C or higher. Depending on the cell population to be expanded a suitable temperature range may for instance be from about 20 °C to about 45 °C, including from about 25 °C to about 40 °C, or from about 32 °C to 37 °C. In some embodiments a method according to the invention is carried out at a constant temperature value, or at a selected temperature value ± about 5 °C, ±
about 4 °C, ± about 3 °C, ± about 2 °C, ± about 1 °C or ± about 0.5 °C. The person skilled in the
art is able to empirically determine a suitable temperature, taking into account the nature of the
cells and the expansion conditions. Typically human cells are expanded at a temperature such as
37 °C.

[0320] In accordance with the disclosure herein, also provided are multimerized agents, or
compositions comprising multimerization reagents that are capable of expanding a population
of cells. Such a multimerized agent that is capable of expanding a population of cells is a
multimerization reagent that is not bound to a support (e.g. in soluble form) and comprises at
least one binding site Z, e.g. Z1, for the reversible binding of a first agent that provides a
primary activation signal to the cells, wherein the multimerization reagent has reversibly bound
thereto said first agent that provides a primary activation signal to the cells; wherein the first
agent comprises at least one binding partner C, e.g. C1, wherein the binding partner C1 is able of
reversibly binding to the at least one binding site Z1 of the multimerization reagent, wherein the
first agent is bound to the multimerization reagent via the reversible bond formed between the
binding partner C1 and the binding site Z1. It should be noted here that such a multimerization
reagent can have immobilized thereon any of the first agent that are described herein.

[0321] In some embodiments, a multimerized agent provided herein may further comprise
at least one binding site, e.g. Z2 for the reversible binding of a second agent that stimulates an
accessory molecule on the surface of the cells, wherein the multimerization reagent has
reversibly bound thereto the second agent that stimulates an accessory molecule on the surface
of the cells, wherein the second agent comprises a binding partner, e.g. C2, wherein the binding
partner C2 is able of binding to the at least one binding site Z2 of the multimerization reagent. In
this embodiment the second agent is bound to the multimerization reagent via the bond formed
between the binding partner C2 and the binding site Z2. In some embodiments, the second
agent is any that can bind to CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 or
HVEM (e.g. an anti-CD90 antibody, an anti-CD95 antibody, an anti-CD137 antibody, and an
anti-CD154 antibody, anti-ICOS antibody, anti-LAT antibody, anti-CD27 antibody, anti-OX40
antibody or anti-HVEM antibody, respectively).

[0322] In some embodiments, the culturing of the composition containing target cells (e.g. T
cells) with the multimerized agent (e.g. anti-CD3/anti-CD28 mutein streptavidin or oligomer
thereof) can be carried out in a bioreactor such as a hollow-fiber bioreactor (e.g. hollow fiber
bioreactor of the Quantum® cell expansion system) or a plastic bag bioreactor (e.g. Cellbag®
used in Xuri Cell Expansion System W25 from GE Healthcare).

[0323] In some embodiments, the method further includes contacting the cultured target
cells (e.g. T cells) in the reaction mixture (e.g. containing the target cells, e.g. T cells, bound to
the multimerization reagent via, for example, the first agent and the second agent) with (i) a
competition reagent (e.g. free first binding partner C, e.g. CI) or an analog thereof capable of
disrupting the bond between the first binding partner, e.g. CI and the binding site, e.g. Z1 and/or
(such as if necessary) (ii) a second competition reagent, e.g. free second binding partner, e.g. C2,
or an analog thereof, capable of disrupting the bond between the second binding partner C2 and
the binding site Z2. By so doing the reversible bond between said binding partner CI of the first
agent and said binding sites Z1 as well as the reversible bond between said binding partner C2 of
the second agent and said binding site Z2 of said multimerization reagent is disrupted, thereby
releasing in an eluate the T cells bound to the multimerization reagent via the first agent and the
second agent and disrupting the stimulation and/or expansion of the T cells.

[0324] In some embodiments, the competition reagent (e.g. the first and/or second
competition reagent) is added within 5 days after initiation of the incubation, such as within 4
days, 3 days, 2 days or 1 day). Hence, by controlling the time at which the stimulation is
disrupted, one or more particular features of the cultured T cells eluted from the multimerized
agent can be altered as described herein.

[0325] In some embodiments, the method further includes separating or removing one or
more of the components remaining after the reversible dissociation of components. In some
embodiments, any unbound or residual biotin in the cultured target cells (e.g. T cells) can be
separated or removed. In some embodiments, the multimerization reagent is removed or
separated from the cells in the cultured target cell composition. For example, in some
embodiments, the separation/removal might be carried out using a second stationary phase. For
this purpose, a mixture comprising the target cells (e.g. T cells) and the soluble multimerization
reagent are exposed, before or after being applied onto the first stationary phase described
above, to chromatography on a suitable second stationary phase. This secondary stationary
phase may be a gel filtration matrix and/or affinity chromatography matrix, wherein the gel
filtration and/or affinity chromatography matrix comprises an affinity reagent. The affinity
reagent comprised on the chromatography resin include a binding partner D that (specifically)
binds to the binding site Z1 and/or binding site Z2, if present, of the multimerization reagent, thereby immobilizing the multimerization reagent on the stationary phase. If a streptavidin based multimerization reagent is used and both first and second agents have a streptavidin binding peptide as binding partner C1 or C2, the binding partner D that is comprised in the affinity reagent of this second stationary phase can be biotin. The soluble oligomer of streptavidin or of a streptavidin mutein that is used as multimerization reagent then binds to the biotin that is usually covalently coupled to a chromatography matrix such as biotin-sepharose™ that is commercially available. In some such embodiments, the cultured cells (e.g. cultured T cells) can be recovered away from the multimerization reagent.

A. Cells

[0326] In some embodiments, the sample of the cell population can be from any suitable source, typically all sample of a body tissue or a body fluid such as blood. In the latter case, the sample might for example, be a population of peripheral blood mononucleated cells (PBMC) that can be obtained by standard isolation methods such a ficoll gradient of blood cells. The cell population to be stimulated or expanded can however also be in purified form and might have been isolated using an reversible cell staining/isolation technology as described patent in US patent 7,776,562, US patent 8,298,782, International Patent application WO02/054065 or International Patent Application WO2013/011011. Alternatively, the population of cells can also be obtained by cell sorting via negative magnetic immunoadherence as described in US Patent 6,352,694 B1 or European Patent EP 0 700 430 B1. If an isolation method described here is used in basic research, the sample might be cells of in vitro cell culture experiments. The sample will typically have been prepared in form of a fluid, such as a solution or dispersion.

[0327] Cells contained in the composition containing target cells generally are eukaryotic cells, such as mammalian cells, and typically are human cells. In some embodiments, the cells are derived from the blood, bone marrow, lymph, or lymphoid organs, or are cells of the immune system, such as cells of the innate or adaptive immunity, e.g., myeloid or lymphoid cells, including lymphocytes, typically T cells and/or NK cells. Other exemplary cells include stem cells, such as multipotent and pluripotent stem cells, including induced pluripotent stem cells (iPSCs). The cells typically are primary cells, such as those isolated directly from a subject and/or isolated from a subject and frozen.
In some embodiments, the reversibly-bound agents, such as multimerized agents, provided herein are capable of expanding a lymphocyte population or a subpopulation contained in the lymphocyte population. The lymphocyte population to be expanded may any suitable population, for example, a B cell population, a T cell population, or a natural killer cell population. The T-cell population may be an antigen-specific T cell population, a T helper cell population, a cytotoxic T cell, a memory T cell, a regulatory T cell, or a natural killer T cell population. Accordingly, in such embodiments of the multimerized agent the first agent is able to stimulate a TCR/CD3 complex-associated signal in the T cells. The first agent present in the multimerized agent may thus be binding reagent that specifically binds CD3, while the second agent that binds the accessory molecule, such as may be a binding agent that specifically binds CD28, CD137 CD90, CD95, CD137, CD154, ICOS, LAT, CD27, OX40 or HVEM.

In some embodiments, the cells include one or more subsets of T cells or other cell types, such as whole T cell populations, CD3+, CD4+ cells, CD8+ cells, and subpopulations thereof, such as those defined by function, activation state, maturity, potential for differentiation, expansion, recirculation, localization, and/or persistence capacities, antigen-specificity, type of antigen receptor, presence in a particular organ or compartment, marker or cytokine secretion profile, and/or degree of differentiation. With reference to the subject to be treated, the cells may be allogeneic and/or autologous. Among the methods include off-the-shelf methods. In some aspects, such as for off-the-shelf technologies, the cells are pluripotent and/or multipotent, such as stem cells, such as induced pluripotent stem cells (iPSCs). In some embodiments, the methods include isolating cells from the subject, preparing, processing, culturing, and/or engineering them, as described herein, and re-introducing them into the same patient, before or after cryopreservation.

In some embodiments, the T cells, such as CD3+, CD4+ or CD8+ cells, are not further enriched for another marker. In some embodiments, the T cells are not further enriched for CD62L+ cells.

Among the sub-types and subpopulations of T cells and/or of CD4+ and/or of CD8+ T cells are naïve T (T\textsubscript{N}) cells, effector T cells (T\textsubscript{EFF}), memory T cells and sub-types thereof, such as stem cell memory T (T\textsubscript{SCM}), central memory T (T\textsubscript{CM}), effector memory T (T\textsubscript{EM}), or terminally differentiated effector memory T cells, tumor-infiltrating lymphocytes (TIL), immature T cells, mature T cells, helper T cells, cytotoxic T cells, mucosa-associated invariant T (MAIT) cells,
naturally occurring and adaptive regulatory T (Treg) cells, helper T cells, such as TH1 cells, TH2 cells, TH3 cells, TH17 cells, TH9 cells, TH22 cells, follicular helper T cells, alpha/beta T cells, and delta/gamma T cells.

[0332] In some embodiments, the cells are natural killer (NK) cells. In some embodiments, the cells are monocytes or granulocytes, e.g., myeloid cells, macrophages, neutrophils, dendritic cells, mast cells, eosinophils, and/or basophils.

Preparation of cells

[0333] In some embodiments, preparation of the cells includes one or more culture and/or preparation steps. The cells may be isolated from a sample, such as a biological sample, e.g., one obtained from or derived from a subject. In some embodiments, the subject from which the cells are isolated is one having the disease or condition or in need of a cell therapy or to which cell therapy will be administered. The subject in some embodiments is a human in need of a particular therapeutic intervention, such as the adoptive cell therapy for which cells are being isolated, processed, and/or engineered.

[0334] Accordingly, the cells in some embodiments are primary cells, e.g., primary human cells. The samples include tissue, fluid, and other samples taken directly from the subject, as well as samples resulting from one or more processing steps, such as separation, centrifugation, genetic engineering (e.g. transduction with viral vector), washing, and/or incubation. The biological sample can be a sample obtained directly from a biological source or a sample that is processed. Biological samples include, but are not limited to, body fluids, such as blood, plasma, serum, cerebrospinal fluid, synovial fluid, urine and sweat, tissue and organ samples, including processed samples derived therefrom.

[0335] In some aspects, the sample from which the cells are derived or isolated is blood or a blood-derived sample, or is or is derived from an apheresis or leukapheresis product. Exemplary samples include whole blood, peripheral blood mononuclear cells (PBMCs), leukocytes, bone marrow, thymus, tissue biopsy, tumor, leukemia, lymphoma, lymph node, gut associated lymphoid tissue, mucosa associated lymphoid tissue, spleen, other lymphoid tissues, liver, lung, stomach, intestine, colon, kidney, pancreas, breast, bone, prostate, cervix, testes, ovaries, tonsil, or other organ, and/or cells derived therefrom. Samples include, in the context of cell therapy, e.g., adoptive cell therapy, samples from autologous and allogeneic sources.
[0336] In some embodiments, the cells are derived from cell lines, e.g., T cell lines. The cells in some embodiments are obtained from a xenogeneic source, for example, from mouse, rat, non-human primate, or pig.

[0337] In some embodiments, isolation of the cells includes one or more preparation and/or non-affinity based cell separation steps. In some examples, cells are washed, centrifuged, and/or incubated in the presence of one or more reagents, for example, to remove unwanted components, enrich for desired components, lyse or remove cells sensitive to particular reagents. In some examples, cells are separated based on one or more property, such as density, adherent properties, size, sensitivity and/or resistance to particular components.

[0338] In some examples, cells from the circulating blood of a subject are obtained, e.g., by apheresis or leukapheresis. The samples, in some aspects, contain lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and/or platelets, and in some aspects contains cells other than red blood cells and platelets.

[0339] In some embodiments, the blood cells collected from the subject are washed, e.g., to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In some embodiments, the cells are washed with phosphate buffered saline (PBS). In some embodiments, the wash solution lacks calcium and/or magnesium and/or many or all divalent cations. In some aspects, a washing step is accomplished a semi-automated "flow-through" centrifuge (for example, the Cobe 2991 cell processor, Baxter) according to the manufacturer's instructions. In some aspects, a washing step is accomplished by tangential flow filtration (TFF) according to the manufacturer's instructions. In some embodiments, the cells are resuspended in a variety of biocompatible buffers after washing, such as, for example, Ca++/Mg++ free PBS. In certain embodiments, components of a blood cell sample are removed and the cells directly resuspended in culture media.

[0340] In some embodiments, the methods include density-based cell separation methods, such as the preparation of white blood cells from peripheral blood by lysing the red blood cells and centrifugation through a Percoll or Ficoll gradient.

[0341] In some embodiments, the isolation methods include the separation of different cell types based on the expression or presence in the cell of one or more specific molecules, such as surface markers, e.g., surface proteins, intracellular markers, or nucleic acid. In some embodiments, any known method for separation based on such markers may be used.
Separation methods may include any of those disclosed herein, including methods using reversible reagent systems, e.g., agents (such as receptor binding agents or selection agents) and reagents as described herein.

[0342] In some embodiments, the separation is affinity- or immunoaffinity-based separation. For example, the isolation in some aspects includes separation of cells and cell populations based on the cells' expression or expression level of one or more markers, typically cell surface markers, for example, by incubation with an antibody or binding partner that specifically binds to such markers, followed generally by washing steps and separation of cells having bound the antibody or binding partner, from those cells having not bound to the antibody or binding partner.

[0343] Such separation steps can be based on positive selection, in which the cells having bound the reagents are retained for further use, and/or negative selection, in which the cells having not bound to the antibody or binding partner are retained. In some examples, both fractions are retained for further use. In some aspects, negative selection can be particularly useful where no antibody is available that specifically identifies a cell type in a heterogeneous population, such that separation is best carried out based on markers expressed by cells other than the desired population.

[0344] The separation need not result in 100% enrichment or removal of a particular cell population or cells expressing a particular marker. For example, positive selection of or enrichment for cells of a particular type, such as those expressing a marker, refers to increasing the number or percentage of such cells, but need not result in a complete absence of cells not expressing the marker. Likewise, negative selection, removal, or depletion of cells of a particular type, such as those expressing a marker, refers to decreasing the number or percentage of such cells, but need not result in a complete removal of all such cells.

[0345] In some examples, multiple rounds of separation steps are carried out, where the positively or negatively selected fraction from one step is subjected to another separation step, such as a subsequent positive or negative selection. In some examples, a single separation step can deplete cells expressing multiple markers simultaneously, such as by incubating cells with a plurality of antibodies or binding partners, each specific for a marker targeted for negative selection. Likewise, multiple cell types can simultaneously be positively selected by incubating cells with a plurality of antibodies or binding partners expressed on the various cell types.
[0346] For example, in some aspects, specific subpopulations of T cells, such as cells positive or expressing high levels of one or more surface markers, e.g., CD28+, CD62L+, CCR7+, CD27+, CD127+, CD4+, CD8+, CD45RA+, and/or CD45RO+ T cells, are isolated by positive or negative selection techniques.

[0347] For example, CD3+, CD28+ T cells can be positively selected using CD3/CD28 conjugated magnetic beads (e.g., DYNABEADS® M-450 CD3/CD28 T Cell Expander).

[0348] In some embodiments, isolation is carried out by enrichment for a particular cell population by positive selection, or depletion of a particular cell population, by negative selection. In some embodiments, positive or negative selection is accomplished by incubating cells with one or more antibodies or other binding agent that specifically bind to one or more surface markers expressed or expressed (marker*) at a relatively higher level (marker^high) on the positively or negatively selected cells, respectively.

[0349] In some embodiments, T cells are separated from a PBMC sample by negative selection of markers expressed on non-T cells, such as B cells, monocytes, or other white blood cells, such as CD14. In some aspects, a CD4+ or CD8+ selection step is used to separate CD4+ helper and CD8+ cytotoxic T cells. Such CD4+ and CD8+ populations can be further sorted into sub-populations by positive or negative selection for markers expressed or expressed to a relatively higher degree on one or more naive, memory, and/or effector T cell subpopulations.

[0350] In some embodiments, CD8+ cells are further enriched for or depleted of naive, central memory, effector memory, and/or central memory stem cells, such as by positive or negative selection based on surface antigens associated with the respective subpopulation. In some embodiments, enrichment for central memory T (Tcm) cells is carried out to increase efficacy, such as to improve long-term survival, expansion, and/or engraftment following administration, which in some aspects is particularly robust in such sub-populations. See Terakuraei al. (2012) Blood. 1:72-82; Wang et al. (2012) J Immunother. 35(9):689-701. In some embodiments, combining Tcm-enriched CD8+ T cells and CD4+ T cells further enhances efficacy.

[0351] In embodiments, memory T cells are present in both CD62L+ and CD62L− subsets of CD8+ peripheral blood lymphocytes. PBMC can be enriched for or depleted of CD62L−CD8+ and/or CD62L+CD8+ fractions, such as using anti-CD8 and anti-CD62L antibodies.
In some embodiments, the enrichment for central memory T \((T_{CM})\) cells is based on positive or high surface expression of CD45RO, CD62L, CCR7, CD28, CD3, and/or CD 127; in some aspects, it is based on negative selection for cells expressing or highly expressing CD45RA and/or granzyme B. In some aspects, isolation of a CD8+ population enriched for \(T_{CM}\) cells is carried out by depletion of cells expressing CD4, CD14, CD45RA, and positive selection or enrichment for cells expressing CD62L. In one aspect, enrichment for central memory T \((T_{CM})\) cells is carried out starting with a negative fraction of cells selected based on CD4 expression, which is subjected to a negative selection based on expression of CD14 and CD45RA, and a positive selection based on CD62L. Such selections in some aspects are carried out simultaneously and in other aspects are carried out sequentially, in either order. In some aspects, the same CD4 expression-based selection step used in preparing the CD8+ cell population or subpopulation, also is used to generate the CD4+ cell population or subpopulation, such that both the positive and negative fractions from the CD4-based separation are retained and used in subsequent steps of the methods, optionally following one or more further positive or negative selection steps.

CD4+ T helper cells are sorted into naïve, central memory, and effector cells by identifying cell populations that have cell surface antigens. CD4+ lymphocytes can be obtained by standard methods. In some embodiments, naïve CD4+ T lymphocytes are CD45RO−, CD45RA+, CD62L+, CD4+ T cells. In some embodiments, central memory CD4+ cells are CD62L+ and CD45RO+. In some embodiments, effector CD4+ cells are CD62L− and CD45RO−.

In one example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8. In some embodiments, the antibody or binding partner is bound to a solid support or matrix, such as a magnetic bead or paramagnetic bead, to allow for separation of cells for positive and/or negative selection. For example, in some embodiments, the cells and cell populations are separated or isolated using immunomagnetic (or affinitymagnetic) separation techniques (reviewed in Methods in Molecular Medicine, vol. 58: Metastasis Research Protocols, Vol. 2: Cell Behavior In Vitro and In Vivo, p 17-25 Edited by: S. A. Brooks and U. Schumacher © Humana Press Inc., Totowa, NJ).
In some aspects, the sample or composition of cells to be separated is incubated with small, magnetizable or magnetically responsive material, such as magnetically responsive particles or microparticles, such as paramagnetic beads (e.g., such as Dynalbeads or MACS beads). The magnetically responsive material, e.g., particle, generally is directly or indirectly attached to a binding partner, e.g., an antibody, that specifically binds to a molecule, e.g., surface marker, present on the cell, cells, or population of cells that it is desired to separate, e.g., that it is desired to negatively or positively select.

In some embodiments, the magnetic particle or bead contains a magnetically responsive material bound to a specific binding member, such as an antibody or other binding partner. There are many well-known magnetically responsive materials used in magnetic separation methods. Suitable magnetic particles include those described in Molday, U.S. Pat. No. 4,452,773, and in European Patent Specification EP 452342 B, which are hereby incorporated by reference. Colloidal sized particles, such as those described in Owen U.S. Pat. No. 4,795,698, and Liberti et al., U.S. Pat. No. 5,200,084 are other examples.

The incubation generally is carried out under conditions whereby the antibodies or binding partners, or molecules, such as secondary antibodies or other reagents, which specifically bind to such antibodies or binding partners, which are attached to the magnetic particle or bead, specifically bind to cell surface molecules if present on cells within the sample.

In some aspects, the sample is placed in a magnetic field, and those cells having magnetically responsive or magnetizable particles attached thereto will be attracted to the magnet and separated from the unlabeled cells. For positive selection, cells that are attracted to the magnet are retained; for negative selection, cells that are not attracted (unlabeled cells) are retained. In some aspects, a combination of positive and negative selection is performed during the same selection step, where the positive and negative fractions are retained and further processed or subject to further separation steps.

In certain embodiments, the magnetically responsive particles are coated in primary antibodies or other binding partners, secondary antibodies, lectins, enzymes, or streptavidin. In certain embodiments, the magnetic particles are attached to cells via a coating of primary antibodies specific for one or more markers. In certain embodiments, the cells, rather than the beads, are labeled with a primary antibody or binding partner, and then cell-type specific secondary antibody- or other binding partner (e.g., streptavidin)-coated magnetic particles, are
added. In certain embodiments, streptavidin-coated magnetic particles are used in conjunction with biotinylated primary or secondary antibodies.

[0360] In some embodiments, the magnetically responsive particles are left attached to the cells that are to be subsequently incubated, cultured and/or engineered; in some aspects, the particles are left attached to the cells for administration to a patient. In some embodiments, the magnetizable or magnetically responsive particles are removed from the cells. Methods for removing magnetizable particles from cells are known and include, e.g., the use of competing non-labeled antibodies, magnetizable particles or antibodies conjugated to cleavable linkers, etc. In some embodiments, the magnetizable particles are biodegradable.

[0361] In some embodiments, the affinity-based selection is via magnetic-activated cell sorting (MACS) (Miltenyi Biotech, Auburn, CA). Magnetic Activated Cell Sorting (MACS) systems are capable of high-purity selection of cells having magnetized particles attached thereto. In certain embodiments, MACS operates in a mode wherein the non-target and target species are sequentially eluted after the application of the external magnetic field. That is, the cells attached to magnetized particles are held in place while the unattached species are eluted. Then, after this first elution step is completed, the species that were trapped in the magnetic field and were prevented from being eluted are freed in some manner such that they can be eluted and recovered. In certain embodiments, the non-target cells are labelled and depleted from the heterogeneous population of cells.

[0362] In certain embodiments, the isolation or separation is carried out using a system, device, or apparatus that carries out one or more of the isolation, cell preparation, separation, processing, incubation, culture, and/or formulation steps of the methods. In some aspects, the system is used to carry out each of these steps in a closed or sterile environment, for example, to minimize error, user handling and/or contamination. In one example, the system is a system as described in International Patent Application, Publication Number WO2009/072003, or US 20110003380 Al.

[0363] In some embodiments, the system or apparatus carries out one or more, e.g., all, of the isolation, processing, engineering, and formulation steps in an integrated or self-contained system, and/or in an automated or programmable fashion. In some aspects, the system or apparatus includes a computer and/or computer program in communication with the system or
apparatus, which allows a user to program, control, assess the outcome of, and/or adjust various aspects of the processing, isolation, engineering, and formulation steps.

[0364] In some aspects, the separation and/or other steps is carried out using CliniMACS system (Miltenyi Biotec), for example, for automated separation of cells on a clinical-scale level in a closed and sterile system. Components can include an integrated microcomputer, magnetic separation unit, peristaltic pump, and various pinch valves. The integrated computer in some aspects controls all components of the instrument and directs the system to perform repeated procedures in a standardized sequence. The magnetic separation unit in some aspects includes a movable permanent magnet and a holder for the selection column. The peristaltic pump controls the flow rate throughout the tubing set and, together with the pinch valves, ensures the controlled flow of buffer through the system and continual suspension of cells.

[0365] The CliniMACS system in some aspects uses antibody-coupled magnetizable particles that are supplied in a sterile, non-pyrogenic solution. In some embodiments, after labelling of cells with magnetic particles the cells are washed to remove excess particles. A cell preparation bag is then connected to the tubing set, which in turn is connected to a bag containing buffer and a cell collection bag. The tubing set consists of pre-assembled sterile tubing, including a pre-column and a separation column, and are for single use only. After initiation of the separation program, the system automatically applies the cell sample onto the separation column. Labelled cells are retained within the column, while unlabeled cells are removed by a series of washing steps. In some embodiments, the cell populations for use with the methods described herein are unlabeled and are not retained in the column. In some embodiments, the cell populations for use with the methods described herein are labeled and are retained in the column. In some embodiments, the cell populations for use with the methods described herein are eluted from the column after removal of the magnetic field, and are collected within the cell collection bag.

[0366] In certain embodiments, separation and/or other steps are carried out using the CliniMACS Prodigy system (Miltenyi Biotec). The CliniMACS Prodigy system in some aspects is equipped with a cell processing unity that permits automated washing and fractionation of cells by centrifugation. The CliniMACS Prodigy system can also include an onboard camera and image recognition software that determines the optimal cell fractionation endpoint by discerning the macroscopic layers of the source cell product. For example,
peripheral blood may be automatically separated into erythrocytes, white blood cells and plasma layers. The CliniMACS Prodigy system can also include an integrated cell cultivation chamber which accomplishes cell culture protocols such as, e.g., cell differentiation and expansion, antigen loading, and long-term cell culture. Input ports can allow for the sterile removal and replenishment of media and cells can be monitored using an integrated microscope. See, e.g., Klebanoff et al. (2012) J Immunother. 35(9): 651-660, Terakuraei al. (2012) Blood. 1:72-82, and Wang et al. (2012) J Immunother. 35(9):689-701.

[0367] In some embodiments, a cell population described herein is collected and enriched (or depleted) via flow cytometry, in which cells stained for multiple cell surface markers are carried in a fluidic stream. In some embodiments, a cell population described herein is collected and enriched (or depleted) via preparative scale (FACS)-sorting. In certain embodiments, a cell population described herein is collected and enriched (or depleted) by use of microelectromechanical systems (MEMS) chips in combination with a FACS-based detection system (see, e.g., WO 2010/033140, Cho et al. (2010) Lab Chip 10, 1567-1573; and Godin et al. (2008) J Biophoton. 1(5):355—376. In both cases, cells can be labeled with multiple markers, allowing for the isolation of well-defined T cell subsets at high purity.

[0368] In some embodiments, the antibodies or binding partners are labeled with one or more detectable marker, to facilitate separation for positive and/or negative selection. For example, separation may be based on binding to fluorescently labeled antibodies. In some examples, separation of cells based on binding of antibodies or other binding partners specific for one or more cell surface markers are carried in a fluidic stream, such as by fluorescence-activated cell sorting (FACS), including preparative scale (FACS) and/or microelectromechanical systems (MEMS) chips, e.g., in combination with a flow-cytometric detection system. Such methods allow for positive and negative selection based on multiple markers simultaneously.

[0369] In some embodiments, the preparation methods include steps for freezing, e.g., cryopreserving, the cells, either before or after isolation, incubation, and/or engineering. In some embodiments, the freeze and subsequent thaw step removes granulocytes and, to some extent, monocytes in the cell population. In some embodiments, the cells are suspended in a freezing solution, e.g., following a washing step to remove plasma and platelets. Any of a variety of known freezing solutions and parameters in some aspects may be used. One example
involves using PBS containing 20% DMSO and 8% human serum albumin (HSA), or other suitable cell freezing media. This is then diluted 1:1 with media so that the final concentration of DMSO and HSA are 10% and 4%, respectively. The cells are then frozen to -80° C. at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank.

[0370] In some embodiments, the cells are incubated and/or cultured prior to or in connection with genetic engineering. The incubation steps can include culture, cultivation, stimulation, activation, and/or propagation. In some embodiments, the compositions or cells are incubated in the presence of stimulating conditions or a stimulatory agent. Such conditions include those designed to induce proliferation, expansion, activation, and/or survival of cells in the population, to mimic antigen exposure, and/or to prime the cells for genetic engineering, such as for the introduction of a recombinant antigen receptor.

[0371] The conditions can include one or more of particular media, temperature, oxygen content, carbon dioxide content, time, agents, e.g., nutrients, amino acids, antibiotics, ions, and/or stimulatory factors, such as cytokines, chemokines, antigens, binding partners, fusion proteins, recombinant soluble receptors, and any other agents designed to activate the cells.

[0372] In some embodiments, the stimulating conditions or agents include one or more agent, e.g., ligand, which is capable of activating an intracellular signaling domain of a TCR complex. In some aspects, the agent turns on or initiates TCR/CD3 intracellular signaling cascade in a T cell. Such agents can include antibodies, such as those specific for a TCR component and/or costimulatory receptor, e.g., anti-CD3, anti-CD28, for example, bound to solid support such as a bead, and/or one or more cytokines. Optionally, the expansion method may further comprise the step of adding anti-CD3 and/or anti CD28 antibody to the culture medium (e.g., at a concentration of at least about 0.5 ng/ml). In some embodiments, the stimulating agents include IL-2 and/or IL-15, for example, an IL-2 concentration of at least about 10 units/mL.

[0373] In some aspects, incubation is carried out in accordance with techniques such as those described in US Patent No. 6,040,177 to Riddell et al., Klebanoff et al.(2012) J Immunother. 35(9): 651-660, Terakuraei et al. (2012) Blood. 1:72-82, and/or Wang et al. (2012) J Immunother. 35(9):689-701.
In some embodiments, the T cells are expanded by adding to the composition feeder cells, such as non-dividing peripheral blood mononuclear cells (PBMC), (e.g., such that the resulting population of cells contains at least about 5, 10, 20, or 40 or more PBMC feeder cells for each T lymphocyte in the initial population to be expanded); and incubating the culture (e.g. for a time sufficient to expand the numbers of T cells). In some aspects, the non-dividing feeder cells can comprise gamma-irradiated PBMC feeder cells. In some embodiments, the PBMC are irradiated with gamma rays in the range of about 3000 to 3600 rads to prevent cell division. In some aspects, the feeder cells are added to culture medium prior to the addition of the populations of T cells.

In some embodiments, the stimulating conditions include temperature suitable for the growth of human T lymphocytes, for example, at least about 25 degrees Celsius, generally at least about 30 degrees, and generally at or about 37 degrees Celsius. Optionally, the incubation may further comprise adding non-dividing EBV-transformed lymphoblastoid cells (LCL) as feeder cells. LCL can be irradiated with gamma rays in the range of about 6000 to 10,000 rads. The LCL feeder cells in some aspects is provided in any suitable amount, such as a ratio of LCL feeder cells to initial T lymphocytes of at least about 10:1.

In embodiments, antigen-specific T cells, such as antigen-specific CD4+ and/or CD8+ T cells, are obtained by stimulating naive or antigen specific T lymphocytes with antigen. For example, antigen-specific T cell lines or clones can be generated to cytomegalovirus antigens by isolating T cells from infected subjects and stimulating the cells in vitro with the same antigen.

B. Apparatus and Articles of Manufactures

In some embodiments, also provided is an apparatus or article of manufacture. In some embodiments, provided is an arrangement of a bioreactor and a first stationary phase for chromatography. The bioreactor is suitable for the expansion of cells, and the stationary phase is suitable for cell separation and removal of reagents. The first stationary phase is a gel filtration matrix and/or affinity chromatography matrix, wherein the gel filtration and/or affinity chromatography matrix comprises an affinity reagent, wherein the affinity reagent comprises a binding site Z1 specifically binding to a binding partner C1 comprised in a first agent and/or the affinity reagent comprises a binding site Z2 specifically binding to a binding partner C2.
comprised in a second agent. The first stationary phase is thereby being suitable of immobilizing thereon the first agent and/or the second agent, the first binding partner C1 and/or the free second binding partner C2. In addition the bioreactor and the stationary phase are fluidly connected. This arrangement can be used in the serial expansion as explained above and can be integrated into known cell expansion systems such as the Quantum® cell expansion system) or the Xuri Cell Expansion System W25.

[0378] In this arrangement the first stationary phase is either comprised in a chromatography column or is a planar stationary phase. The arrangement may further comprise a second stationary phase which is fluidly connected to the first stationary phase. The second stationary phase may be a gel filtration matrix and/or affinity chromatography matrix, wherein the gel filtration and/or affinity chromatography matrix comprises an affinity reagent. This affinity reagent may comprise a binding partner D that (specifically) binds to the binding site Z1 of the multimerization reagent, thereby being suitable of immobilizing the multimerization reagent on the stationary phase.

[0379] The invention is further directed in some embodiments to an apparatus for purification (e.g. selection) and culture, such as stimulation or expansion, of a composition of cells, the apparatus comprising at least one arrangement of a bioreactor and a first stationary phase or a second stationary phase for chromatography as defined above.

[0380] The apparatus may further comprise a plurality of arrangements of a bioreactor and a stationary phase being fluidly connected in series.

[0381] The apparatus may comprise a sample inlet being fluidly connected to the bioreactor of the arrangement of a bioreactor and the stationary phase for chromatography. The apparatus may also comprise a sample outlet for purified and expanded target cells, the sample outlet being fluidly connected to the stationary phase of the last of the at least one arrangement of a bioreactor and the stationary phase for chromatography.

[0382] Finally, the apparatus may be designed as a functionally closed system.

C. Exemplary Features of Cultured Cells

[0383] In some embodiments, the cultured target cells, (e.g. cultured T cells), which can include cultured cells generated or produced in accord with the methods provided herein, exhibit one or more specified phenotypic and/or functional features, based on or related to their
proliferation capacity, surface marker expression, differentiation state, activation state and/or metabolic profile. In some embodiments, the culturing of the target cells (e.g. culturing of T cells) in accord with any of the provided methods results in a change in a parameter associated with the function (e.g. increase or decrease of a functional activity) or phenotype (e.g. higher or lower expression of a marker or markers) of cells compared to the corresponding or respective function or phenotype of cells in the composition prior to incubation in accord with methods provided herein. In some embodiments, the cultured T cells exhibit the change with respect to a parameter from among expansion and/or proliferation capacity, CD4+/CD8+ T cell distribution or ratio, surface marker expression, functional activity, or metabolic profile.

[0384] In some embodiments, the change in the parameter as measured in the cultured T cells is compared or with reference to the same or similar parameter as measured in a reference T cell composition or preparation. Typically, T cells in the reference T cell composition or preparation include or are derived from the same or substantially the same composition of T cells prior to incubation with the reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), except such cells were not subject to the incubation or were subject to a different incubation. In some embodiments, the reference T cell preparation is subject to the incubation using substantially the same protocol or conditions (e.g. type of stimulatory agents or agent, format of stimulatory agent or agents, substantially the same starting cell numbers, washes, presence or absence of additional reagents, timing of incubation, temperature of incubation), except at least one aspect, and in some cases only one aspect, of such incubation in a reference T cell preparation is different than in the incubation producing the cultured T cells.

[0385] In some embodiments, the reference T cell composition or preparation is the composition containing T cells prior to incubation with a reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin).

[0386] In some embodiments, the cultured T cells are generated by incubation with a reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin) for less than 5 days and/or where the association of such agent with one or more molecules on the cell is disrupted (e.g. in the presence of a competition reagent, e.g. biotin or a biotin analog), such as disrupted with 5 days
of initiation of incubation with such agent. For example, in some aspects, cultured T cells are
generated or produced following incubation with a reversibly-bound agent (e.g. multimerized
agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein
streptavidin) as described herein, wherein the incubation is terminated and/or disrupted within 5
days after initiation of such incubation (such as within or about 4, 3, 2, or 1 day, or less), and/or
where a competing agent (e.g. biotin) that dissociates the reversibly-bound agent from the cells
is added to the incubated cells within 5 days after initiation of such incubation (such as within or
about 4, 3, 2, or 1 day, or less). In some embodiments, the reference T cell preparation is
generated or produced following incubation with the same or substantially the same reversibly-
bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly
bound to an oligomeric mutein streptavidin), but where the incubation is performed for greater
than 5 days, is not terminated and/or disrupted to lessen or terminate the signal induced or
modulated in the cell, and/or where the T cell preparation is produced without the addition of a
competing agent (e.g. biotin or biotin analog) that dissociates the reagent from the cells.

[0387] In some embodiments, the cultured T cells are generated by incubation with a
reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent
reversibly bound to an oligomeric mutein streptavidin) in which the receptor-binding agent (e.g.
stimulatory agent) is one that does not bind to CD28 and/or induce signaling, i.e. is not an anti-
CD28 antibody or fragment thereof. For example, in some embodiments, the cultured T cells
are produced or generated following incubation with a reversibly-bound reagent in which one or
more stimulatory agents are reversibly bound to a mutein streptavidin in which at least one
stimulatory agent is specific for CD3 (e.g. anti-CD3 antibody or fragment thereof) and a second
stimulatory agent can be specific for one or more of CD90, CD95, CD137, CD154, ICOS, LAT,
CD27, OX40 or HVEM (e.g. an anti-CD90 antibody, an anti-CD95 antibody, an anti-CD137
antibody, and an anti-CD154 antibody, anti-ICOS antibody, anti-LAT antibody, anti-CD27
antibody, anti-OX40 antibody or anti-HVEM antibody, respectively, or antigen-binding
fragments thereof). In some embodiments, the reference T cell preparation is a T cell culture
generated or produced following incubation with a reversibly-bound agent (e.g. multimerized
agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein
streptavidin), but where the reagent comprises an agent that specifically binds CD28 and/or
induces or modulates CD28 signaling. For example, in some embodiments, the reference T cell
preparation is generated or produced following incubation of a T cell composition with anti-CD3/anti-CD28 Dynabeads®, anti-CD3/anti-CD28 ExPact® beads or other anti-CD3/anti-CD28 stimulatory agent. In some embodiments, such other anti-CD3/anti-CD28 stimulatory agent is one in which the antibody reagents are bound to a support (e.g. solid support), e.g. a bead, particle, magnetic particle or bead, nanoparticle or microsphere. In some embodiments, the cultured T cells are prepared by incubation with a reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin) that is soluble, i.e. not bound to a support (e.g. solid support).

[0388] For example, in some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), in which the cultured T cells are characterized by an enhanced expansion and/or proliferation capacity compared to a reference T cell composition or preparation. In some embodiments, the enhanced expansion and/or proliferation capacity comprises an increase in the number or percentage of CD3+ T cells, CD4+ T cells, and/or CD8+ T cells in the cultured T cells by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of CD3+ T cells, CD4+ T cells, and/or CD8+ T cells, respectively, in the reference T cell composition or preparation.

[0389] In some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), in which the cultured T cells are characterized by an enhanced expansion and/or proliferation capacity of CD3+ T cells compared to a reference T cell culture. In some embodiments, the enhanced expansion and/or proliferation capacity comprises an increase in the number or percentage of CD3+ T cells in the cultured T cells by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of CD3+ T cells in the reference T cell composition or preparation.
In some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), in which the cultured T cells are characterized by an enhanced expansion and/or proliferation capacity of CD4+ T cells compared to a reference T cell composition or preparation. In some embodiments, the enhanced expansion and/or proliferation capacity comprises an increase in the number or percentage of CD4+ T cells in the cultured T cells by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of CD4+ T cells in the reference T cell composition or preparation.

In some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), in which the cultured T cells are characterized by an enhanced expansion and/or proliferation capacity of CD8+ T cells compared to a reference T cell composition or preparation. In some embodiments, the enhanced expansion and/or proliferation capacity comprises an increase in the number or percentage of CD8+ T cells in the cultured T cells by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of CD8+ T cells in the reference T cell composition or preparation.

In some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), in which the cultured T cells are characterized by an altered CD8+/CD4+ T cell distribution or normalized T cell distribution, such as an altered CD8+/CD4+ ratio or normalized CD8+/CD4+ T cell ratio, compared to a reference T cell composition or preparation. The CD8+/CD4+ ratio or normalized ratio can be increased or decreased. In some embodiments, the altered CD8+/CD4+ T cell ratio results from an increase
in the number or percentage or normalized number or percentage of CD8+ T cells in the cultured T cells relative or compared to the number or percentage or normalized number or percentage in a reference composition or preparation. In some embodiments, number of CD8+ T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of CD8+ T cells or the normalized number or percentage of CD8+ T cells in the reference T cell composition or preparation. In some embodiments, the ratio of CD8+/CD4+ T cells or the normalized ratio of CD8+/CD4+ is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the ratio of CD8+/CD4+ T cells or the normalized ratio of CD8+/CD4+ in the reference T cell composition or preparation. In some embodiments, the number, percentage or ratio in the cultured T cells or in a composition or preparation is normalized to the number, percentage or ratio in the starting composition containing the T cells prior to the incubation.

[0393] In some embodiments, there are provided cultured T cells prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation with a reversibly-bound agent as described herein (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin), and wherein the cultured T cells are characterized by an altered surface marker expression profile compared to a reference T cell composition or preparation. In some embodiments, the altered surface marker expression profile is due to a change in the number or percentage of one or more subsets of T cells that are positive, negative, high, or low for one or more surface markers selected from CD45RA, CD45RO, CD62L, CD69, CCR7, CD27, CD28, CD122, t-bet, IL-7Ra, CD95, IL-2Rp, CXCR3, LFA-1, KLRG1. In some embodiments, the number or percentage of the T cell subset in the cultured T cells is increased at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference composition or preparation.

[0394] In some embodiments, the T cell subset in the cultured T cells (e.g. a T cell subset that is increased in the cultured T cells compared to the reference composition or preparation) exhibits a decreased or reduced differentiation or activation state compared to the reference T cell composition or preparation. In some embodiments, the T cell subset is not or does not
include an effector T cell (T_E) or effector memory T cell (T_{EM}) phenotype. In some embodiments, the subset of T cells contains a surface phenotype that is one or more of CD62L^+, CCR7^+, CD27^+, CD28^+, or KLRG1^{low}. In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.

[0395] In some embodiments, the T cell subset in the cultured T cells (e.g. a T cell subset that is increased in the cultured T cells compared to the reference composition or preparation) is positive for CD62L and/or IL-7Ra (CD127) and/or negative or low for t-bet. In some embodiments, the subset of T cells is positive for CD45RA and/or negative or low for CD45RO. In some embodiments, the subset of T cells is positive for one or more of CCR7, CD45RA, CD62L, CD27, CD28, IL-7Ra (CD127), CD95, IL-2Rp, CXCR3, and LFA-1, and/or negative for CD45RO. In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.

[0396] In some embodiments, the T cell subset in the cultured T cells (e.g. a T cell subset that is increased in the cultured T cells compared to the reference composition or preparation) is or includes cells that are positive for CD62L (CD62L^+). In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.

[0397] In some embodiments, the T cell subset in the cultured T cells (e.g. a T cell subset that is increased in the cultured T cells compared to the reference composition or preparation) is or includes cells that are CD62L^+ and a) any one or more of CD45RA^{low}, CD45RO^{low}, CCR7^+ and CD27^+ and b) any one or more of t-bet^{low}, IL-7Ra^{+} (CD127^+), CD95^+, IL-2Rp^+, CXCR3^+ and LFA-1^+. In some embodiments, the T cell subset also can be CD3^+, CD4^+, or CD8^+. In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.
In some embodiments, the T cell subset, such as a CD62L+ T cell subset, in the cultured T cells are or include or share phenotypic characteristics with memory T cells or particular subsets thereof, such as long-lived memory T cells. In some embodiments, such memory T cells are central memory T cells (T_{cm}) or T memory stem cells (T_{scm}) cells. In some embodiments, the memory T cells are T_{scm} cells. T_{scm} cells may be described as having one or more phenotypic differences or functional features compared to other memory T cell subsets or compared to naïve T cells, such as being less differentiated or more naïve (see e.g., Ahlers and Belyakov (2010) Blood, 115:1678; Cieri et al. (2015) Blood, 125:2865; Flynn et al. (2014) Clinical & Translational Immunology, 3, e20; Gattinoni et al. (2012) Nat. Med., 17:1290-1297; Gattinoni et al. (2012) Nat. Reviews, 12:671; Li et al. (2013) PLOS ONE, 8:e67401; and published PCT Appl. No. WO2014/039044). In some cases, T_{scm} cells are thought to be the only memory T cells able to generate effector T cells and all three subsets of memory T cells (T_{scm}, T_{cm}, and T_{em}). In some aspects, T_{scm} cells have the highest survival and proliferation response to antigenic or homeostatic stimuli of all the memory T cell subsets, and the least attrition absent cognate antigen. In some embodiments, the less-differentiated T_{scm} cells may exhibit greater expansion, long-term viability, and target cell destruction following adoptive transfer than other memory T cells, and thus may be able to mediate more effective treatment with fewer transferred cells than would be possible for either T_{cm} or T_{em} cells.

In some aspects, examples of phenotypic or functional features that have been reported or are known for T_{scm} cells include, for example, that such cells a) are CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+, IL-7Ra+, CD95+, IL-2Rp+, CXCR3+, and LFA-1+; b) are CD45RA+, CCR7+, CD62L+, and CD95+; c) are CD45RA+, CD45RO+, CCR7+, CD62L+, CD27+, CD28+, CD95+, and IL-2Rp+; d) are CD45RO−, CD45RA+, CCR7+, CD62L+, CD27+, CD28+, CD95+, and IL-2Rp+; e) are CD45RA+, CD44+, CD62L+, CD127+, IL-2Rp+, CD28+, CD43+, KLRG1+, Peforin−, and GranzymeB−; f) express high levels of CCR7, CD62L, CD27, and CD28, intermediate levels of CD95 and IL-2RP, low levels of CD45RA, and do not express CD45RO or KLRG-1; or g) express high levels of CD62L, low levels of CD44 and t-bet, and are Sca-1+; and/or have intermediate IL-2-producing capacity, low IFNy-producing capacity, low cytotoxicity, and high self-renewal capacity.

In some embodiments, the T cell subset in the cultured T cells (e.g. a T cell subset that is increased in the cultured T cells compared to the reference composition or preparation) is
or includes memory T cells, such as long-lived memory T cells. In some embodiments, the memory T cells are central memory (Tcm) T cells. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA-; CD45R0^lo^, CCR7+, CD62L+, CD27+, CD28+, CD95+, CD122+ and/or KLGR1^low^. In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.

[0401] In some embodiments, the memory T cells are stem central memory (T_{scm}) T cells. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA^lo^, CD45R0^hi^, CCR7+, CD62L+, CD27+, CD28+, CD95+, CD122+ and/or KLGR1+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA^lo^, CD45RO^-, CCR7+, CD62L+, CD27+, CD28+, CD95+, CD122+ and/or KLGR1+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RO^-, CCR7^+^, CD45RA^+, CD62L^+, CD27^+, CD28^+, IL-7Ra^+^, CD95^+^, IL-2Rp^+^, CXCR3^+^, and/or LFA-1^+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA^+, CCR7^-, CD62L^+, and/or CD95^+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA^+, CD45RO^-, CCR7^+, CD62L^+, CD27^+, CD28^-, and/or IL-2Rp^+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RO^-, CD45RA^+, CCR7^+, CD62L^+, CD27^+, CD28^+, CD127^+, and/or CD95^+. In some embodiments, the T cell subset has a phenotypic characteristic CD45RA^+, CD44^+/-^, CD62L^+, CD127^+, IL-2Rp^+, CD28^+, CD43^-, KLRG1^-, Peforin^-, and/or GranzymeB^-. In some embodiments, the T cell subset expresses high levels of CCR7, CD62L, CD27, and/or CD28, intermediate levels of CD95 and/or IL-2Rp, low levels of CD45RA, and/or does not express CD45RO and/or KLRLG-1. In some embodiments, the T cell subset expresses high levels of CD62L, low levels of CD44 and t-bet, and/or is Sca-1^+. In some embodiments, the T cell subset has a phenotypic characteristic intermediate IL-2-producing capacity, low IFNy-producing capacity, low cytotoxicity, and/or high self-renewal capacity. In some embodiments, such a subset of T cells in the cultured T cells is increased by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) compared to the number or percentage of the subset of T cells in the reference T cell composition or culture.
In some embodiments, the subset of T cells, such as any subset of T cells described above, is present at a greater percentage of the total T cells in the cultured T cells or a greater number of total T cells in the cultured T cells compared to a reference T cell composition or preparation. In some embodiments, the percentage of the T cell subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more. In some embodiments, the percentage of the T cell subset in the cultured cells, such as any T cell subset described above, is greater, e.g. at least 1.5-fold greater, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold or more greater, than the corresponding percentage of the subset of cells in a T cell in a T cell composition isolated or enriched directly from a human subject based on surface expression of one or markers comprising the phenotype, but without the incubation or culture. In some embodiments, the total number, relative number or normalized number of the T cells subset in the cultured cells, such as any T cell subset described above, is greater, e.g. at least 1.5-fold greater, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold or more greater, than the number, relative number or normalized number of the T cell subset in a reference T cell composition or preparation, such as any reference T cell composition or preparation described above, e.g. the T cell composition prior to the incubation with the reversibly-bound agent (e.g. multimerized agent, such as incubation with a stimulatory agent reversibly bound to an oligomeric mutein streptavidin) in accord with any of the methods provided herein. In some embodiments, the number of T cells corresponding to the T cell subset present in the T cell culture is at least or at least about 1 x 10^6 cells, 2 x 10^6 cells, 3 x 10^6 cells, 4 x 10^6 cells, 5 x 10^6 cells or more.

In some embodiments, the T cell subset is CD62L+ and/or IL-7Ra+ (CD127+) and the percentage of the CD62L+ and/or IL-7Ra+ (CD127+) subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more. In some embodiments, the T cell subset is CD45RA-, CD45R0 low, and/or KLRG1 low and the percentage of the CD45RA-, CD45R0 low, and/or KLRG1 low subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more. In some embodiments, the T cell subset is CD45RA low, CD45R0 low, and/or KLRG1 low and the percentage of the CD45RA low, CD45R0 low, and/or
KLRG1 subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more.

[0404] In some embodiments, the T cell subset is or includes Tcm cells. In some embodiments, the percentage of the Tcm subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more.

[0405] In some embodiments, the T cell subset is or includes Tscm cells. In some embodiments, the percentage of the Tscm subset in the cultured T cells as a percentage of the total T cells or total cells in the culture is at least 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more.

[0406] In some embodiments, the subset of T cells, such as CD62L+ T cells, have or exhibit a) a low level of TCR rearrangement excisions circles (TREC); and/or b) express a proliferation marker (e.g., Ki-67); and/or c) exhibit the capacity to proliferate in the presence of a stimulatory agent; and/or d) exhibit a capacity to produce a cytokine selected from among IFN-gamma, TNF and IL-2 in the presence of a stimulatory agent; and/or e) are refractory to attrition in the absence of a stimulatory agent; and/or f) are able to generate Tscm, Tcm, Tcem, and TefF cells; and/or g) have low cytotoxicity; and/or h) can produce the same or greater response following adoptive transfer of fewer cells than with Tcm or Tem cells. In some embodiments, the stimulatory agent is an antigen, a homeostatic cytokotine (e.g., IL-15 or IL-17), or is an agent that is capable of initiating a TCR/CD3 complex-associated signal in the T cells. In some embodiments, the capacity to produce a cytokine comprises a low capacity to produce IFNγ and/or an intermediate capacity to produce IL-2.

[0407] In some embodiments, there are provided cultured T cells, such as prepared according to any of the methods provided herein, wherein the cultured T cells are generated or produced following incubation as described herein, and wherein the cultured T cells are characterized by a modified functional activity profile compared to a reference T cell composition or preparation. In some embodiments, the cultured T cells or a specific subset of T cells present in the culture exhibits an altered functional activity profile compared to a reference composition or preparation or compared to the subset of T cells in the reference composition or preparation, such as a functional activity that is altered (e.g., increased or decreased) at least 1.5-
fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold. In some embodiments, the functional activity is selected from one or more of a) a low level of TCR rearrangement excisions circles (TREC); and/or b) expression of a proliferation marker (e.g., Ki-67); and/or c) the capacity to proliferate in the presence of a stimulatory agent; and/or d) the capacity to produce a cytokine selected from among IFN-gamma, TNF and IL-2 in the presence of a stimulatory agent; and/or e) are refractory to attrition in the absence of a stimulatory agent; and/or f) are able to generate TSCM, TCM, T_{RM}, and TEFF cells; and/or g) have low cytotoxicity. In some embodiments, the stimulatory agent is an antigen, a homeostatic cytokine (e.g., IL-15 or IL-17), or is an agent that is capable of initiating a TCR/CD3 complex-associated signal in the T cells. In some embodiments, the capacity to produce a cytokine comprises a low capacity to produce IFNγ and/or an intermediate capacity to produce IL-2. In some embodiments, the subset of T cells comprises memory T cells, such as long-lived memory T cells, in the cultured T cells. In some embodiments, the memory T cells are TSCM cells.

[0408] In some embodiments, the cultured T cells or a specific subset of T cells present in the culture can produce the same or greater response following adoptive transfer of fewer cells than can be achieved by a reference composition or preparation or by the subset of T cells in the reference composition or preparation. In some embodiments, such response is achieved with at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more) fewer cells. In some embodiments, the response is increased or is greater by at least about 2-fold (such as by at least about any of 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, or more).

[0409] In some embodiments, the percentage of the T cell subset in the cultured cells, such as any T cell subset described above, is greater, e.g. at least 1.5-fold greater, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold or more greater, than the corresponding subset of cells in a preparation of T cells that were incubated in the presence of a GSK-P inhibitor. In some embodiments, the composition of cultured T cells does not contain a GSK-P inhibitor.

[0410] In some embodiments, the percentage of the T cell subset in the cultured cells, such as any T cell subset described above, is greater, e.g. at least 1.5-fold greater, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold or more greater, than the corresponding subset of cells that were incubated in the presence of a recombinant homeostatic cytokine, optionally IL-7 or
IL-15. In some embodiments, the composition of cultured T cells does not contain a recombinant (e.g. exogenous) IL-7 cytokine or a recombinant (e.g. exogenous) IL-15 cytokine.

[0411] In some embodiments, the composition of cultured T cells was produced or generated in accord with any of the methods provided herein in which a substance, such as a competition agent, was added to T cells to disrupt, such as to lessen and/or terminate, the signaling of the stimulatory agent or agents. In some embodiments, the composition of cultured T cells contains the presence of a substance, such as a competition agent, e.g. biotin or a biotin analog, e.g. D-Biotin. In some embodiments, the substance, such as a competition agent, e.g. biotin or a biotin analog, e.g. D-Biotin, is present in an amount that is at least 1.5-fold greater, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 10-fold, at least 100-fold, at least 1000-fold or more greater than the amount of the substance in a reference composition or preparation of cultured T cells in which the substance was not added exogenously during the incubation. In some embodiments, the amount of the substance, such as a competition agent, e.g. biotin or a biotin analog, e.g. D-Biotin, in the composition of cultured T cells is from or from about 10 µM to 100 µM, 100 µM to 1 mM, 100 µM to 500 µM or 10 µM to 100 µM.

IV. METHODS OF GENETICALLY ENGINEERING CULTURED CELLS, ANTIGEN RECEPTORS AND GENETICALLY ENGINEERED CELLS

[0412] In some embodiments, the cells may be engineered prior to, or subsequent to the culturing of the cells as described herein (e.g. selection, enrichment and/or stimulation), and in some cases at the same time as or during at least a portion of the culturing or incubation. In some embodiments, the cells that are to be engineered are the cultured cells, or in some cases, cells may be transduced prior to performing the culturing as described herein.

[0413] In some embodiments, the method includes introducing a recombinant nucleic acid into target cells of the population, which nucleic acid encodes a recombinant protein, whereby the cells express the recombinant protein. In some aspects, the cells are primary cells and introducing is ex vivo. In some embodiments, the introducing is carried out subsequently to or during said incubation and/or while cells are immobilized on the support. In some embodiments, the method of engineering the cells is carried out during at least a portion of the incubation or culturing of the cells while the cells are immobilized on the solid support. In some embodiments, such methods include loading or adding viral particles containing a nucleic acid
molecule encoding the recombinant protein to the cells immobilized on the support and/or to cells obtained or dissociated from such a support after the incubation or culturing theren. Such methods result in cells, that express the recombinant protein, which expression, in some aspects, occurs during at least a portion of the incubation.

[0414] In some embodiments, the cultured cells contain or are engineered to contain an engineered receptor, e.g., an engineered antigen receptor, such as a chimeric antigen receptor (CAR), or a T cell receptor (TCR). Also provided are populations of such cells, compositions containing such cells and/or enriched for such cells, such as in which cells of a certain type such as T cells or CD8+ or CD4+ cells are enriched or selected. Among the compositions are pharmaceutical compositions and formulations for administration, such as for adoptive cell therapy. Also provided are therapeutic methods for administering the cells and compositions to subjects, e.g., patients.

[0415] Thus, in some embodiments, the cultured cells include one or more nucleic acids introduced via genetic engineering, and thereby express recombinant or genetically engineered products of such nucleic acids. In some embodiments, gene transfer is accomplished by first stimulating the cultured cells, such as by combining it with a stimulus that induces a response such as proliferation, survival, and/or activation, e.g., as measured by expression of a cytokine or activation marker, followed by transduction of the activated cells, and expansion in culture to numbers sufficient for clinical applications.

[0416] In some contexts, overexpression of a stimulatory factor (for example, a lymphokine or a cytokine) may be toxic to a subject. Thus, in some contexts, the engineered cells include gene segments that cause the cells to be susceptible to negative selection in vivo, such as upon administration in adoptive immunotherapy. For example, in some aspects, the cultured cells are engineered so that they can be eliminated as a result of a change in the in vivo condition of the patient to which they are administered. The negative selectable phenotype may result from the insertion of a gene that confers sensitivity to an administered agent, for example, a compound. Negative selectable genes include the Herpes simplex virus type I thymidine kinase (HSV-I TK) gene (Wigler et al., Cell 2: 223, 1977) which confers ganciclovir sensitivity; the cellular hypoxanthine phosphoribosyltransferase (HPRT) gene, the cellular adenine phosphoribosyltransferase (APRT) gene, bacterial cytosine deaminase, (Mullen et al., Proc.
In some aspects, the cultured cells further are engineered to promote expression of cytokines or other factors.

A. Nucleic acids encoding Antigen Receptors, e.g. chimeric antigen receptors

[0417] Provided are methods, nucleic acids, compositions, and kits for producing the genetically engineered cells. The genetic engineering generally involves introduction of a nucleic acid encoding the recombinant or engineered component into a composition containing the cultured cells, such as by retroviral transduction, transfection, or transformation.

[0418] In some embodiments, the nucleic acids are heterologous, i.e., normally not present in a cell or sample obtained from the cell, such as one obtained from another organism or cell, which for example, is not ordinarily found in the cell being engineered and/or an organism from which such cell is derived. In some embodiments, the nucleic acids are not naturally occurring, such as a nucleic acid not found in nature, including one comprising chimeric combinations of nucleic acids encoding various domains from multiple different cell types.

1. Chimeric Antigen Receptors (CARs)

[0419] The cells generally express recombinant receptors, such as antigen receptors including functional non-TCR antigen receptors, e.g., chimeric antigen receptors (CARs), and other antigen-binding receptors such as transgenic T cell receptors (TCRs). Also among the receptors are other chimeric receptors.

of the CARs include CARs as disclosed in any of the aforementioned publications, such as
US Patent No.: 8,389,282, Kochenderfer et al., 2013, Nature Reviews Clinical Oncology, 10,
267-276 (2013); Wang et al. (2012) J. Immunother. 35(9): 689-701; and Brentjens et al., Sci
receptors, such as CARs, generally include an extracellular antigen binding domain, such as a
portion of an antibody molecule, generally a variable heavy (\(V_H\)) chain region and/or variable
light (\(V_L\)) chain region of the antibody, e.g., an scFv antibody fragment.

[0421] In some embodiments, the antigen targeted by the receptor is a polypeptide. In some
embodiments, it is a carbohydrate or other molecule. In some embodiments, the antigen is
selectively expressed or overexpressed on cells of the disease or condition, e.g., the tumor or
pathogenic cells, as compared to normal or non-targeted cells or tissues. In other embodiments,
the antigen is expressed on normal cells and/or is expressed on the engineered cells.

[0422] Antigens targeted by the receptors in some embodiments include orphan tyrosine
kinase receptor ROR1, tEGFR, Her2, LI-CAM, CD19, CD20, CD22, mesothelin, CEA, and
hepatitis B surface antigen, anti-folate receptor, CD23, CD24, CD30, CD33, CD38, CD44,
EGFR, EGP-2, EGP-4, 0EPHa2, ErbB2, 3, or 4, FBP, fetal acethycholine e receptor, GD2, GD3,
HMW-MAA, IL-22R-alpha, IL-13R-alpha2, kdr, kappa light chain, Lewis Y, LI-cell adhesion
molecule, MAGE-A1, mesothelin, MUC1, MUC16, PSCA, NKG2D Ligands, NY-ESO-1,
MART-1, gpLOO, oncofetal antigen, ROR1, TAG72, VEGF-R2, carcinoembryonic antigen
(CEA), prostate specific antigen, PSMA, Her2/neu, estrogen receptor, progesterone receptor,
ephrinB2, CD123, c-Met, GD-2, and MAGE A3, CE7, Wilms Tumor 1 (WT-1), a cyclin, such as
cyclin A1 (CCNA1), and/or biotinylated molecules, and/or molecules expressed by HIV,
HCV, HBV or other pathogens.

[0423] In some embodiments, the CAR binds a pathogen-specific antigen. In some
embodiments, the CAR is specific for viral antigens (such as HIV, HCV, HBV, etc.), bacterial
antigens, and/or parasitic antigens.

[0424] In some embodiments, the antibody portion of the recombinant receptor, e.g., CAR,
further includes at least a portion of an immunoglobulin constant region, such as a hinge region,
e.g., an IgG4 hinge region, and/or a CH1/CL and/or Fc region. In some embodiments, the
constant region or portion is of a human IgG, such as IgG4 or IgGl. In some aspects, the portion of the constant region serves as a spacer region between the antigen-recognition component, e.g., scFv, and transmembrane domain. The spacer can be of a length that provides for increased responsiveness of the cell following antigen binding, as compared to in the absence of the spacer. Exemplary spacers, e.g., hinge regions, include those described in international patent application publication number WO2014031687. In some examples, the spacer is or is about 12 amino acids in length or is no more than 12 amino acids in length. Exemplary spacers include those having at least about 10 to 229 amino acids, about 10 to 200 amino acids, about 10 to 175 amino acids, about 10 to 150 amino acids, about 10 to 125 amino acids, about 10 to 100 amino acids, about 10 to 75 amino acids, about 10 to 50 amino acids, about 10 to 40 amino acids, about 10 to 30 amino acids, about 10 to 20 amino acids, or about 10 to 15 amino acids, and including any integer between the endpoints of any of the listed ranges. In some embodiments, a spacer region has about 12 amino acids or less, about 119 amino acids or less, or about 229 amino acids or less. Exemplary spacers include IgG4 hinge alone, IgG4 hinge linked to CH2 and CH3 domains, or IgG4 hinge linked to the CH3 domain.

[0425] This antigen recognition domain generally is linked to one or more intracellular signaling components, such as signaling components that mimic activation through an antigen receptor complex, such as a TCR complex, in the case of a CAR, and/or signal via another cell surface receptor. Thus, in some embodiments, the antigen-binding component (e.g., antibody) is linked to one or more transmembrane and intracellular signaling domains. In some embodiments, the transmembrane domain is fused to the extracellular domain. In one embodiment, a transmembrane domain that naturally is associated with one of the domains in the receptor, e.g., CAR, is used. In some instances, the transmembrane domain is selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex.

[0426] The transmembrane domain in some embodiments is derived either from a natural or from a synthetic source. Where the source is natural, the domain in some aspects is derived from any membrane-bound or transmembrane protein. Transmembrane regions include those derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33,
CD37, CD64, CD80, CD86, CD134, CD137, and/or CD154. Alternatively the transmembrane domain in some embodiments is synthetic. In some aspects, the synthetic transmembrane domain comprises predominantly hydrophobic residues such as leucine and valine. In some aspects, a triplet of phenylalanine, tryptophan and valine will be found at each end of a synthetic transmembrane domain. In some embodiments, the linkage is by linkers, spacers, and/or transmembrane domain(s).

[0427] Among the intracellular signaling domains are those that mimic or approximate a signal through a natural antigen receptor, a signal through such a receptor in combination with a costimulatory receptor, and/or a signal through a costimulatory receptor alone. In some embodiments, a short oligo- or polypeptide linker, for example, a linker of between 2 and 10 amino acids in length, such as one containing glycines and serines, e.g., glycine-serine doublet, is present and forms a linkage between the transmembrane domain and the cytoplasmic signaling domain of the CAR.

[0428] The receptor, e.g., the CAR, generally includes at least one intracellular signaling component or components. In some embodiments, the receptor includes an intracellular component of a TCR complex, such as a TCR CD3 chain that mediates T-cell activation and cytotoxicity, e.g., CD3 zeta chain. Thus, in some aspects, the antigen-binding portion is linked to one or more cell signaling modules. In some embodiments, cell signaling modules include CD3 transmembrane domain, CD3 intracellular signaling domains, and/or other CD transmembrane domains. In some embodiments, the receptor, e.g., CAR, further includes a portion of one or more additional molecules such as Fc receptor γ, CD8, CD4, CD25, or CD16. For example, in some aspects, the CAR or other chimeric receptor includes a chimeric molecule between CD3-zeta (CD3-Q or Fc receptor γ and CD8, CD4, CD25 or CD16.

[0429] In some embodiments, upon ligation of the CAR or other chimeric receptor, the cytoplasmic domain or intracellular signaling domain of the receptor activates at least one of the normal effector functions or responses of the immune cell, e.g., T cell engineered to express the CAR. For example, in some contexts, the CAR induces a function of a T cell such as cytolytic activity or T-helper activity, such as secretion of cytokines or other factors. In some embodiments, a truncated portion of an intracellular signaling domain of an antigen receptor component or costimulatory molecule is used in place of an intact immuno stimulatory chain, for example, if it transduces the effector function signal. In some embodiments, the intracellular
signaling domain or domains include the cytoplasmic sequences of the T cell receptor (TCR), and in some aspects also those of co-receptors that in the natural context act in concert with such receptors to initiate signal transduction following antigen receptor engagement.

[0430] In the context of a natural TCR, full activation generally requires not only signaling through the TCR, but also a costimulatory signal. Thus, in some embodiments, to promote full activation, a component for generating secondary or co-stimulatory signal is also included in the CAR. In other embodiments, the CAR does not include a component for generating a costimulatory signal. In some aspects, an additional CAR is expressed in the same cell and provides the component for generating the secondary or costimulatory signal.

[0431] T cell activation is in some aspects described as being mediated by two classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation through the TCR (primary cytoplasmic signaling sequences), and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal (secondary cytoplasmic signaling sequences). In some aspects, the CAR includes one or both of such signaling components.

[0432] In some aspects, the CAR includes a primary cytoplasmic signaling sequence that regulates primary activation of the TCR complex. Primary cytoplasmic signaling sequences that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs. Examples of ITAM containing primary cytoplasmic signaling sequences include those derived from TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CDS, CD22, CD79a, CD79b, and CD66d. In some embodiments, cytoplasmic signaling molecule(s) in the CAR contain(s) a cytoplasmic signaling domain, portion thereof, or sequence derived from CD3 zeta.

[0433] In some embodiments, the CAR includes a signaling domain and/or transmembrane portion of a costimulatory receptor, such as CD28, 4-1BB, OX40, DAP10, and ICOS. In some aspects, the same CAR includes both the activating and costimulatory components.

[0434] In some embodiments, the activating domain is included within one CAR, whereas the costimulatory component is provided by another CAR recognizing another antigen. In some embodiments, the CARs include activating or stimulatory CARs, costimulatory CARs, both expressed on the same cell (see WO2014/055668). In some aspects, the cells include one or more stimulatory or activating CAR and/or a costimulatory CAR. In some embodiments, the
cells further include inhibitory CARs (iCARs, see Fedorov et al., Sci. Transl. Medicine, 5(215) (December, 2013), such as a CAR recognizing an antigen other than the one associated with and/or specific for the disease or condition whereby an activating signal delivered through the disease-targeting CAR is diminished or inhibited by binding of the inhibitory CAR to its ligand, e.g., to reduce off-target effects.

[0435] In certain embodiments, the intracellular signaling domain comprises a CD28 transmembrane and signaling domain linked to a CD3 (e.g., CD3-zeta) intracellular domain. In some embodiments, the intracellular signaling domain comprises a chimeric CD28 and CD137 (4-1BB, TNFRSF9) co-stimulatory domains, linked to a CD3 zeta intracellular domain.

[0436] In some embodiments, the CAR encompasses one or more, e.g., two or more, costimulatory domains and an activation domain, e.g., primary activation domain, in the cytoplasmic portion. Exemplary CARs include intracellular components of CD3-zeta, CD28, and 4-IBB.

[0437] In some embodiments, the CAR or other antigen receptor further includes a marker, such as a cell surface marker, which may be used to confirm transduction or engineering of the cell to express the receptor, such as a truncated version of a cell surface receptor, such as truncated EGFR (tEGFR). In some aspects, the marker includes all or part (e.g., truncated form) of CD34, a NGFR, or epidermal growth factor receptor (e.g., tEGFR). In some embodiments, the nucleic acid encoding the marker is operably linked to a polynucleotide encoding for a linker sequence, such as a cleavable linker sequence, e.g., T2A. See WO2014031687.

[0438] In some embodiments, the marker is a molecule, e.g., cell surface protein, not naturally found on T cells or not naturally found on the surface of T cells, or a portion thereof.

[0439] In some embodiments, the molecule is a non-self molecule, e.g., non-self protein, i.e., one that is not recognized as "self" by the immune system of the host into which the cells will be adoptively transferred.

[0440] In some embodiments, the marker serves no therapeutic function and/or produces no effect other than to be used as a marker for genetic engineering, e.g., for selecting cells successfully engineered. In other embodiments, the marker may be a therapeutic molecule or molecule otherwise exerting some desired effect, such as a ligand for a cell to be encountered in vivo, such as a costimulatory or immune checkpoint molecule to enhance and/or dampen responses of the cells upon adoptive transfer and encounter with ligand.
In some cases, CARs are referred to as first, second, and/or third generation CARs. In some aspects, a first generation CAR is one that solely provides a CD3-chain induced signal upon antigen binding; in some aspects, a second-generation CARs is one that provides such a signal and costimulatory signal, such as one including an intracellular signaling domain from a costimulatory receptor such as CD28 or CD137; in some aspects, a third generation CAR is one that includes multiple costimulatory domains of different costimulatory receptors.

In some embodiments, the chimeric antigen receptor includes an extracellular portion containing an antibody or antibody fragment. In some aspects, the chimeric antigen receptor includes an extracellular portion containing the antibody or fragment and an intracellular signaling domain. In some embodiments, the antibody or fragment includes an scFv and the intracellular domain contains an ITAM. In some aspects, the intracellular signaling domain includes a signaling domain of a zeta chain of a CD3-zeta (CD3ζ) chain. In some embodiments, the chimeric antigen receptor includes a transmembrane domain linking the extracellular domain and the intracellular signaling domain. In some aspects, the transmembrane domain contains a transmembrane portion of CD28. In some embodiments, the chimeric antigen receptor contains an intracellular domain of a T cell costimulatory molecule. In some aspects, the T cell costimulatory molecule is CD28 or 4IBB.

The terms "polypeptide" and "protein" are used interchangeably to refer to a polymer of amino acid residues, and are not limited to a minimum length. Polypeptides, including the provided receptors and other polypeptides, e.g., linkers or peptides, may include amino acid residues including natural and/or non-natural amino acid residues. The terms also include post-expression modifications of the polypeptide, for example, glycosylation, sialylation, acetylation, and phosphorylation. In some aspects, the polypeptides may contain modifications with respect to a native or natural sequence, as long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification.

In some embodiments, the receptor, e.g., the CAR, expressed by the cells in the consecutive dose contains at least one immunoreactive epitope as the receptor, e.g., the CAR, expressed by the cells of the first dose. In some aspects, the receptor, e.g., the CAR, expressed by the cells administered in the consecutive dose is identical to the receptor, e.g., the CAR,
expressed by the first dose or is substantially identical to the receptor, e.g., the CAR, expressed by the cells of administered in the first dose.

[0445] The recombinant receptors, such as CARs, expressed by the cells administered to the subject in the various doses generally recognize or specifically bind to a molecule that is expressed in, associated with, and/or specific for the disease or condition or cells thereof being treated. Upon specific binding to the molecule, e.g., antigen, the receptor generally delivers an immunostimulatory signal, such as an ITAM-transduced signal, into the cell, thereby promoting an immune response targeted to the disease or condition. For example, in some embodiments, the cells in the first dose express a CAR that specifically binds to an antigen expressed by a cell or tissue of the disease or condition or associated with the disease or condition.

2. TCRs

[0446] In some embodiments, the genetically engineered antigen receptors include recombinant T cell receptors (TCRs) and/or TCRs cloned from naturally occurring T cells. In some embodiments, a high-affinity T cell clone for a target antigen (e.g., a cancer antigen) is identified, isolated from a patient, and introduced into the cells. In some embodiments, the TCR clone for a target antigen has been generated in transgenic mice engineered with human immune system genes (e.g., the human leukocyte antigen system, or HLA). See, e.g., tumor antigens (see, e.g., Parkhurst et al. (2009) Clin Cancer Res. 15:169-180 and Cohen et al. (2005) J Immunol. 175:5799-5808. In some embodiments, phage display is used to isolate TCRs against a target antigen (see, e.g., Varela-Rohena et al. (2008) Nat Med. 14:1390-1395 and Li (2005) Nat Biotechnol. 23:349-354.

[0447] In some embodiments, after the T-cell clone is obtained, the TCR alpha and beta chains are isolated and cloned into a gene expression vector. In some embodiments, the TCR alpha and beta genes are linked via a picornavirus 2A ribosomal skip peptide so that both chains are coexpression. In some embodiments, genetic transfer of the TCR is accomplished via retroviral or lentiviral vectors, or via transposons (see, e.g., Baum et al. (2006) Molecular Therapy: The Journal of the American Society of Gene Therapy. 13:1050-1063; Frecha et al. (2010) Molecular Therapy: The Journal of the American Society of Gene Therapy. 18:1748-1757; an Hackett et al. (2010) Molecular Therapy: The Journal of the American Society of Gene Therapy. 18:674-683.
3. Multi-targeting

[0448] In some embodiments, the cells and methods include multi-targeting strategies, such as expression of two or more genetically engineered receptors on the cell, each recognizing the same of a different antigen and typically each including a different intracellular signaling component. Such multi-targeting strategies are described, for example, in International Patent Application Publication No.: WO 2014055668 A1 (describing combinations of activating and costimulatory CARs, e.g., targeting two different antigens present individually on off-target, e.g., normal cells, but present together only on cells of the disease or condition to be treated) and Fedorov et al., Sci. Transl. Medicine, 5(215) (December, 2013) (describing cells expressing an activating and an inhibitory CAR, such as those in which the activating CAR binds to one antigen expressed on both normal or non-diseased cells and cells of the disease or condition to be treated, and the inhibitory CAR binds to another antigen expressed only on the normal cells or cells which it is not desired to treat).

[0449] For example, in some embodiments, the cells include a receptor expressing a first genetically engineered antigen receptor (e.g., CAR or TCR) which is capable of inducing an activating signal to the cell, generally upon specific binding to the antigen recognized by the first receptor, e.g., the first antigen. In some embodiments, the cell further includes a second genetically engineered antigen receptor (e.g., CAR or TCR), e.g., a chimeric costimulatory receptor, which is capable of inducing a costimulatory signal to the immune cell, generally upon specific binding to a second antigen recognized by the second receptor. In some embodiments, the first antigen and second antigen are the same. In some embodiments, the first antigen and second antigen are different.

[0450] In some embodiments, the first and/or second genetically engineered antigen receptor (e.g. CAR or TCR) is capable of inducing an activating signal to the cell. In some embodiments, the receptor includes an intracellular signaling component containing ITAM or ITAM-like motifs. In some embodiments, the activation induced by the first receptor involves a signal transduction or change in protein expression in the cell resulting in initiation of an immune response, such as ITAM phosphorylation and/or initiation of ITAM-mediated signal transduction cascade, formation of an immunological synapse and/or clustering of molecules near the bound receptor (e.g. CD4 or CD8, etc.), activation of one or more transcription factors,
such as NF-KB and/or AP-1, and/or induction of gene expression of factors such as cytokines, proliferation, and/or survival.

[0451] In some embodiments, the first and/or second receptor includes intracellular signaling domains of costimulatory receptors such as CD28, CD137 (4-1 BB), OX40, and/or ICOS. In some embodiments, the first and second receptor include an intracellular signaling domain of a costimulatory receptor that are different. In one embodiment, the first receptor contains a CD28 costimulatory signaling region and the second receptor contain a 4-IBB costimulatory signaling region or vice versa.

[0452] In some embodiments, the first and/or second receptor includes both an intracellular signaling domain containing ITAM or ITAM-like motifs and an intracellular signaling domain of a costimulatory receptor.

[0453] In some embodiments, the first receptor contains an intracellular signaling domain containing ITAM or ITAM-like motifs and the second receptor contains an intracellular signaling domain of a costimulatory receptor. The costimulatory signal in combination with the activating signal induced in the same cell is one that results in an immune response, such as a robust and sustained immune response, such as increased gene expression, secretion of cytokines and other factors, and T cell mediated effector functions such as cell killing.

[0454] In some embodiments, neither ligation of the first receptor alone nor ligation of the second receptor alone induces a robust immune response. In some aspects, if only one receptor is ligated, the cell becomes tolerized or unresponsive to antigen, or inhibited, and/or is not induced to proliferate or secrete factors or carry out effector functions. In some such embodiments, however, when the plurality of receptors are ligated, such as upon encounter of a cell expressing the first and second antigens, a desired response is achieved, such as full immune activation or stimulation, e.g., as indicated by secretion of one or more cytokine, proliferation, persistence, and/or carrying out an immune effector function such as cytotoxic killing of a target cell.

[0455] In some embodiments, the two receptors induce, respectively, an activating and an inhibitory signal to the cell, such that binding by one of the receptor to its antigen activates the cell or induces a response, but binding by the second inhibitory receptor to its antigen induces a signal that suppresses or dampens that response. Examples are combinations of activating CARs and inhibitory CARs or iCARs. Such a strategy may be used, for example, in which the
activating CAR binds an antigen expressed in a disease or condition but which is also expressed on normal cells, and the inhibitory receptor binds to a separate antigen which is expressed on the normal cells but not cells of the disease or condition.

[0456] In some embodiments, the multi-targeting strategy is employed in a case where an antigen associated with a particular disease or condition is expressed on a non-diseased cell and/or is expressed on the engineered cell itself, either transiently (e.g., upon stimulation in association with genetic engineering) or permanently. In such cases, by requiring ligation of two separate and individually specific antigen receptors, specificity, selectivity, and/or efficacy may be improved.

[0457] In some embodiments, the plurality of antigens, e.g., the first and second antigens, are expressed on the cell, tissue, or disease or condition being targeted, such as on the cancer cell. In some aspects, the cell, tissue, disease or condition is multiple myeloma or a multiple myeloma cell. In some embodiments, one or more of the plurality of antigens generally also is expressed on a cell which it is not desired to target with the cell therapy, such as a normal or non-diseased cell or tissue, and/or the engineered cells themselves. In such embodiments, by requiring ligation of multiple receptors to achieve a response of the cell, specificity and/or efficacy is achieved.

B. Vectors and methods for genetic engineering

[0458] Various methods for the introduction of genetically engineered components, e.g., antigen receptors, e.g., CARs or TCRs, are well known and may be used with the provided methods and compositions. Exemplary methods include those for transfer of nucleic acids encoding the receptors, including via viral, e.g., retroviral or lentiviral, transduction, transposons, and electroporation.

[0459] In some embodiments, recombinant nucleic acids are transferred into cultured cells using recombinant infectious virus particles, such as, e.g., vectors derived from simian virus 40 (SV40), adenoviruses, adeno-associated virus (AAV). In some embodiments, recombinant nucleic acids are transferred into T cells using recombinant lentiviral vectors or retroviral vectors, such as gamma-retroviral vectors (see, e.g., Koste et al. (2014) Gene Therapy 2014 Apr 3. doi: 10.1038/gt.2014.25; Carlens et al. (2000) Exp Hematol 28(10): 1137-46; Alonso-Camino et al. (2013) Mol Ther Nucl Acids 2, e93; Park et al, Trends Biotechnol. 2011 November 29(11): 550-557.
In some embodiments, the retroviral vector has a long terminal repeat sequence (LTR), e.g., a retroviral vector derived from the Moloney murine leukemia virus (MoMLV), myeloproliferative sarcoma virus (MPSV), murine embryonic stem cell virus (MESV), murine stem cell virus (MSCV), spleen focus forming virus (SFFV), or adeno-associated virus (AAV). Most retroviral vectors are derived from murine retroviruses. In some embodiments, the retroviruses include those derived from any avian or mammalian cell source. The retroviruses typically are amphotropic, meaning that they are capable of infecting host cells of several species, including humans. In one embodiment, the gene to be expressed replaces the retroviral gag, pol and/or env sequences. A number of illustrative retroviral systems have been described (e.g., U.S. Pat. Nos. 5,219,740; 6,207,453; 5,219,740; Miller and Rosman (1989) BioTechniques 7:980-990; Miller, A. D. (1990) Human Gene Therapy 1:5-14; Scarpa et al. (1991) Virology 180:849-852; Burns et al. (1993) Proc. Natl. Acad. Sci. USA 90:8033-8037; and Boris-Lawrie and Temin (1993) Cur. Opin. Genet. Develop. 3:102-109.

Other approaches and vectors for transfer of the nucleic acids encoding the recombinant products are those described, e.g., in International Patent Application Publication No.: WO2014055668, and U.S. Patent No. 7,446,190.
In some embodiments, the cells, e.g., T cells, may be transfected either during or after expansion e.g. with a T cell receptor (TCR) or a chimeric antigen receptor (CAR). This transfection for the introduction of the gene of the desired receptor can be carried out with any suitable retroviral vector, for example. The genetically modified cell population can then be liberated from the initial stimulus (the CD3/CD28 stimulus, for example) and subsequently be stimulated with a second type of stimulus e.g. via a de novo introduced receptor). This second type of stimulus may include an antigenic stimulus in form of a peptide/MHC molecule, the cognate (cross-linking) ligand of the genetically introduced receptor (e.g. natural ligand of a CAR) or any ligand (such as an antibody) that directly binds within the framework of the new receptor (e.g. by recognizing constant regions within the receptor). See, for example, Cheadle et al, "Chimeric antigen receptors for T-cell based therapy" Methods Mol Biol. 2012; 907:645-66 or Barrett et al., Chimeric Antigen Receptor Therapy for Cancer Annual Review of Medicine Vol. 65: 333-347 (2014).

Among additional nucleic acids, e.g., genes for introduction are those to improve the efficacy of therapy, such as by promoting viability and/or function of transferred cells; genes to provide a genetic marker for selection and/or evaluation of the cells, such as to assess in vivo survival or localization; genes to improve safety, for example, by making the cell susceptible to negative selection in vivo as described by Lupton S. D. et al., Mol. and Cell Biol., 11:6 (1991); and Riddell et al., Human Gene Therapy 3:319-338 (1992); see also the publications of PCT/US91/08442 and PCT/US94/05601 by Lupton et al. describing the use of bifunctional selectable fusion genes derived from fusing a dominant positive selectable marker with a negative selectable marker. See, e.g., Riddell et al., US Patent No. 6,040,177, at columns 14-17. In some cases, a vector may be used that does not require that the cells, e.g., T cells, are activated. In some such instances, the cells may be selected and/or transduced prior to activation.

V. FURTHER CELL CULTURE AND EXPANSION

In some embodiments, expressed cells from the support that have been incubated, such as mixed with, one or more stimulatory conditions or stimulating agents, are further incubated outside of the support. In some embodiments, the method further involves transferring target cells of the composition to a different environement. For example, the environment is suitable for cell culture or expansion. In some embodiments, the cells are transferred within a
close system or closed container to the different environment. In some cases, the transfer involves removing the cells from a first container to a second container. In some cases, the different environment is within an incubator.

[0467] In some embodiments, the transfer is carried out within a closed system. In some cases the steriley sealed containing with the cells is transferred to a sterile environment or to the different environment within the sealed container. In some embodiments, the transfer is carried out within a sterile environment or under sterile conditions.

[0468] In some embodiments, the reversible binding between the stimulatory agent and the regent is disrupted prior to the transferring of target cells to a different environment. In some embodiments, the cells are transferred and removed from the support by disrupting the reversible binding between the agent and the regent. In some cases, the disrupting is achieved with the addition of biotin. In some aspects, the disrupting releases the target cells from the immobilized reagent. In some embodiments, the disrupting releases the target cells from the reagent before further incubation and expansion of the target cells. In some embodiments, the target cells are separated from the reagent and competition agent prior to further incubation and expansion.

[0469] In some other embodiments, the reversible binding between the stimulatory agent and the regent is not disrupted prior to the transferring of target cells to a different environment. In some embodiments, the target cells bound to the agent reversibly bound to the reagent are transferred to a different environment for expansion. In some aspects, the further incubation and expansion of cells is followed by the addition of a competition agent which disrupts the reversible binding between the reagent and the agent. In some cases, the disrupting is achieved with the addition of biotin. Therefore, in some embodiments, the disrupting releases cells from the reagent after further incubation and/or expansion of the target cells.

[0470] In some embodiments, the further incubation and expansion is at temperatures greater than room temperature, such as greater than or greater than about 25 °C, such as generally greater than or greater than about 32 °C, 35 °C or 37 °C. In some embodiments, the further incubation is effected at a temperature of at or about 37 °C ± 2 °C, such as at a temperature of at or about 37 °C. In some embodiments, the further incubation is for a time between or about between 12 hours and 96 hours, such as at least or at least about 12 hours, 24 hours, 36 hours, 48 hours, 72 hours or 96 hours.
In some embodiments, the further incubation and expansion occurs in a closed system. In some embodiments, after expression of the cells from the stationary phase, the cells are incubated, such as mixed, with one or stimulatory conditions or stimulating agents, such as into a container (e.g., bag), the container containing the cells is incubated for a further portion of time. In some embodiments, the container, such as bag, is incubated at a temperature of at or about 37 °C ± 2 °C for a time between or about between 1 hour and 48 hours, 4 hours and 36 hours, 8 hours and 30 hours or 12 hours and 24 hours, inclusive.

In some embodiments, a bioreactor rocker can rock or agitate the container (e.g., bag), thereby providing movement (e.g., aeration and mixing) of the cells in the bag to foster cell cultivation. The rocking or agitation of the bioreactor can also provide efficient gas exchange from the gas-liquid surface. Examples of bioreactors with rocking motion platforms compatible with the bioreactor bag assemblies disclosed herein include, but are not limited to, GE Xuri W25, GE Xuri W5, Sartorius BioSTAT RM 20 I50, Finesse SmartRocker Bioreactor Systems, and Pall XRS Bioreactor Systems.

VI. COMPOSITIONS, FORMULATIONS AND METHODS OF ADMINISTRATION

Also provided are compositions containing the engineered cells expressing the recombinant protein, such as recombinant receptor (e.g., engineered antigen receptor), such as CAR or TCR, and compositions containing the engineered cells, including pharmaceutical compositions and formulations. Also provided are methods of using and uses of the compositions, such as in the treatment of diseases, conditions, and disorders in which the antigen is expressed, or in detection, diagnostic, and prognostic methods.

A. Compositions/Formulations

The term "pharmaceutical formulation" refers to a preparation which is in such form as to permit the biological activity of an active ingredient contained therein to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered.

A "pharmaceutically acceptable carrier" refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is nontoxic to a subject. A pharmaceutically acceptable carrier includes, but is not limited to, a buffer, excipient, stabilizer, or preservative.

In some aspects, the choice of carrier is determined in part by the particular cell and/or by the method of administration. Accordingly, there are a variety of suitable
formulations. For example, the pharmaceutical composition can contain preservatives. Suitable preservatives may include, for example, methylparaben, propylparaben, sodium benzoate, and benzalkonium chloride. In some aspects, a mixture of two or more preservatives is used. The preservative or mixtures thereof are typically present in an amount of about 0.0001% to about 2% by weight of the total composition. Carriers are described, e.g., by Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980). Pharmacologically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as polyethylene glycol (PEG).

[0477] Buffering agents in some aspects are included in the compositions. Suitable buffering agents include, for example, citric acid, sodium citrate, phosphoric acid, potassium phosphate, and various other acids and salts. In some aspects, a mixture of two or more buffering agents is used. The buffering agent or mixtures thereof are typically present in an amount of about 0.001% to about 4% by weight of the total composition. Methods for preparing administrable pharmaceutical compositions are known. Exemplary methods are described in more detail in, for example, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins; 21st ed. (May 1, 2005).

[0478] The formulation or composition may also contain more than one active ingredients useful for the particular indication, disease, or condition being treated with the cells, preferably those with activities complementary to the cell, where the respective activities do not adversely affect one another. Such active ingredients are suitably present in combination in amounts that
are effective for the purpose intended. Thus, in some embodiments, the pharmaceutical composition further includes other pharmaceutically active agents or drugs, such as chemotherapeutic agents, e.g., asparaginase, busulfan, carboplatin, cisplatin, daunorubicin, doxorubicin, fluorouracil, gemcitabine, hydroxyurea, methotrexate, paclitaxel, rituximab, vinblastine, vincristine, etc. In some embodiments, the cells or antibodies are administered in the form of a salt, e.g., a pharmaceutically acceptable salt. Suitable pharmaceutically acceptable acid addition salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric, and sulphuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic, and arylsulphonic acids, for example, p-toluenesulphonic acid.

[0479] Active ingredients may be entrapped in microcapsules, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. In certain embodiments, the pharmaceutical composition is formulated as an inclusion complex, such as cyclodextrin inclusion complex, or as a liposome. Liposomes can serve to target the host cells (e.g., T-cells or NK cells) to a particular tissue. Many methods are available for preparing liposomes, such as those described in, for example, Szoka et al., Ann. Rev. Biophys. Bioeng., 9: 467 (1980), and U.S. Patents 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

[0480] The pharmaceutical composition in some aspects can employ time-released, delayed release, and sustained release delivery systems such that the delivery of the composition occurs prior to, and with sufficient time to cause, sensitization of the site to be treated. Many types of release delivery systems are available and known. Such systems can avoid repeated administrations of the composition, thereby increasing convenience to the subject and the physician.

[0481] The pharmaceutical composition in some embodiments contains cells in amounts effective to treat or prevent the disease or condition, such as a therapeutically effective or prophylactically effective amount. Therapeutic or prophylactic efficacy in some embodiments is monitored by periodic assessment of treated subjects. For repeated administrations over several days or longer, depending on the condition, the treatment is repeated until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful and can be determined. The desired dosage can be delivered by a single bolus administration of the
composition, by multiple bolus administrations of the composition, or by continuous infusion administration of the composition.

[0482] The cells may be administered using standard administration techniques, formulations, and/or devices. Provided are formulations and devices, such as syringes and vials, for storage and administration of the compositions. Administration of the cells can be autologous or heterologous. For example, immunoresponsive cells or progenitors can be obtained from one subject, and administered to the same subject or a different, compatible subject. Peripheral blood derived immunoresponsive cells or their progeny (e.g., in vivo, ex vivo or in vitro derived) can be administered via localized injection, including catheter administration, systemic injection, localized injection, intravenous injection, or parenteral administration. When administering a therapeutic composition (e.g., a pharmaceutical composition containing a genetically modified immunoresponsive cell), it will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion).

[0483] Formulations include those for oral, intravenous, intraperitoneal, subcutaneous, pulmonary, transdermal, intramuscular, intranasal, buccal, sublingual, or suppository administration. In some embodiments, the cell populations are administered parenterally. The term "parenteral," as used herein, includes intravenous, intramuscular, subcutaneous, rectal, vaginal, and intraperitoneal administration. In some embodiments, the cell populations are administered to a subject using peripheral systemic delivery by intravenous, intraperitoneal, or subcutaneous injection.

[0484] Compositions in some embodiments are provided as sterile liquid preparations, e.g., isotonic aqueous solutions, suspensions, emulsions, dispersions, or viscous compositions, which may in some aspects be buffered to a selected pH. Liquid preparations are normally easier to prepare than gels, other viscous compositions, and solid compositions. Additionally, liquid compositions are somewhat more convenient to administer, especially by injection. Viscous compositions, on the other hand, can be formulated within the appropriate viscosity range to provide longer contact periods with specific tissues. Liquid or viscous compositions can comprise carriers, which can be a solvent or dispersing medium containing, for example, water, saline, phosphate buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol) and suitable mixtures thereof.
Sterile injectable solutions can be prepared by incorporating the cells in a solvent, such as in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose, dextrose, or the like. The compositions can also be lyophilized. The compositions can contain auxiliary substances such as wetting, dispersing, or emulsifying agents (e.g., methylcellulose), pH buffering agents, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired. Standard texts may in some aspects be consulted to prepare suitable preparations.

Various additives which enhance the stability and sterility of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules.

The formulations to be used for in vivo administration are generally sterile. Sterility may be readily accomplished, e.g., by filtration through sterile filtration membranes.

B. Methods of Administration

Provided are methods of administering the cells, populations, and compositions, and uses of such cells, populations, and compositions to treat or prevent diseases, conditions, and disorders, including cancers. In some embodiments, the cells, populations, and compositions are administered to a subject or patient having the particular disease or condition to be treated, e.g., via adoptive cell therapy, such as adoptive T cell therapy. In some embodiments, cells and compositions prepared by the provided methods, such as engineered compositions and end-of-production compositions following incubation and/or other processing steps, are administered to a subject, such as a subject having or at risk for the disease or condition. In some aspects, the methods thereby treat, e.g., ameliorate one or more symptom of, the disease or condition, such as by lessening tumor burden in a cancer expressing an antigen recognized by an engineered T cell.

As used herein, a "subject" is a mammal, such as a human or other animal, and typically is human. In some embodiments, the subject, e.g., patient, to whom the cells, cell populations, or compositions are administered is a mammal, typically a primate, such as a human. In some embodiments, the primate is a monkey or an ape. The subject can be male or female and can be any suitable age, including infant, juvenile, adolescent, adult, and geriatric subjects. In some embodiments, the subject is a non-primate mammal, such as a rodent.

As used herein, "treatment" (and grammatical variations thereof such as "treat" or "treating") refers to complete or partial amelioration or reduction of a disease or condition or disorder, or a symptom, adverse effect or outcome, or phenotype associated therewith. Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis. The terms do not imply complete curing of a disease or complete elimination of any symptom or effect(s) on all symptoms or outcomes.

"Delaying development of a disease" means to defer, hinder, slow, retard, stabilize, suppress and/or postpone development of the disease (such as cancer). This delay can be of varying lengths of time, depending on the history of the disease and/or individual being treated. As is evident to one skilled in the art, a sufficient or significant delay can, in effect, encompass prevention, in that the individual does not develop the disease. For example, a late stage cancer, such as development of metastasis, may be delayed.

"Preventing," as used herein, includes providing prophylaxis with respect to the occurrence or recurrence of a disease in a subject that may be predisposed to the disease but has
not yet been diagnosed with the disease. In some embodiments, the provided cells and compositions are used to delay development of a disease or to slow the progression of a disease.

[0495] As used herein, to "suppress" a function or activity is to reduce the function or activity when compared to otherwise same conditions except for a condition or parameter of interest, or alternatively, as compared to another condition. For example, cells that suppress tumor growth reduce the rate of growth of the tumor compared to the rate of growth of the tumor in the absence of the cells.

[0496] An "effective amount" of an agent, e.g., a pharmaceutical formulation, cells, or composition, in the context of administration, refers to an amount effective, at dosages/amounts and for periods of time necessary, to achieve a desired result, such as a therapeutic or prophylactic result.

[0497] A "therapeutically effective amount" of an agent, e.g., a pharmaceutical formulation or cells, refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result, such as for treatment of a disease, condition, or disorder, and/or pharmacokinetic or pharmacodynamic effect of the treatment. The therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the subject, and the populations of cells administered. In some embodiments, the provided methods involve administering the cells and/or compositions at effective amounts, e.g., therapeutically effective amounts.

[0498] A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.

[0499] The disease or condition that is treated can be any in which expression of an antigen is associated with and/or involved in the etiology of a disease condition or disorder, e.g. causes, exacerbates or otherwise is involved in such disease, condition, or disorder. Exemplary diseases and conditions can include diseases or conditions associated with malignancy or transformation of cells (e.g. cancer), autoimmune or inflammatory disease, or an infectious disease, e.g. caused by a bacterial, viral or other pathogen. Exemplary antigens, which include antigens associated with various diseases and conditions that can be treated, are described above.
In particular embodiments, the chimeric antigen receptor or transgenic TCR specifically binds to an antigen associated with the disease or condition.

[0500] Thus, the provided methods and uses include methods and uses for adoptive cell therapy. In some embodiments, the methods include administration of the cells or a composition containing the cells to a subject, tissue, or cell, such as one having, at risk for, or suspected of having the disease, condition or disorder. In some embodiments, the cells, populations, and compositions are administered to a subject having the particular disease or condition to be treated, e.g., via adoptive cell therapy, such as adoptive T cell therapy. In some embodiments, the cells or compositions are administered to the subject, such as a subject having or at risk for the disease or condition, ameliorate one or more symptom of the disease or condition.

[0501] In some embodiments, the cell therapy, e.g., adoptive T cell therapy, is carried out by autologous transfer, in which the cells are isolated and/or otherwise prepared from the subject who is to receive the cell therapy, or from a sample derived from such a subject. Thus, in some aspects, the cells are derived from a subject, e.g., patient, in need of a treatment and the cells, following isolation and processing are administered to the same subject.

[0502] In some embodiments, the cell therapy, e.g., adoptive T cell therapy, is carried out by allogeneic transfer, in which the cells are isolated and/or otherwise prepared from a subject other than a subject who is to receive or who ultimately receives the cell therapy, e.g., a first subject. In such embodiments, the cells then are administered to a different subject, e.g., a second subject, of the same species. In some embodiments, the first and second subjects are genetically identical. In some embodiments, the first and second subjects are genetically similar. In some embodiments, the second subject expresses the same HLA class or supertype as the first subject. The cells can be administered by any suitable means. Dosing and administration may depend in part on whether the administration is brief or chronic. Various dosing schedules include but are not limited to single or multiple administrations over various time-points, bolus administration, and pulse infusion.

[0503] In certain embodiments, the cells, or individual populations of sub-types of cells, are administered to the subject at a range of about one million to about 100 billion cells and/or that amount of cells per kilogram of body weight, such as, e.g., 1 million to about 50 billion cells (e.g., about 5 million cells, about 25 million cells, about 500 million cells, about 1 billion cells, about 5 billion cells, about 20 billion cells, about 30 billion cells, about 40 billion cells, or a
range defined by any two of the foregoing values), such as about 10 million to about 100 billion cells (e.g., about 20 million cells, about 30 million cells, about 40 million cells, about 60 million cells, about 70 million cells, about 80 million cells, about 90 million cells, about 10 billion cells, about 25 billion cells, about 50 billion cells, about 75 billion cells, about 90 billion cells, or a range defined by any two of the foregoing values), and in some cases about 100 million cells to about 50 billion cells (e.g., about 120 million cells, about 250 million cells, about 350 million cells, about 450 million cells, about 650 million cells, about 800 million cells, about 900 million cells, about 3 billion cells, about 30 billion cells, about 45 billion cells) or any value in between these ranges and/or per kilogram of body weight. Again, dosages may vary depending on attributes particular to the disease or disorder and/or patient and/or other treatments. In some embodiments, the cells are administered as part of a combination treatment, such as simultaneously with or sequentially with, in any order, another therapeutic intervention, such as an antibody or engineered cell or receptor or agent, such as a cytotoxic or therapeutic agent. The cells in some embodiments are co-administered with one or more additional therapeutic agents or in connection with another therapeutic intervention, either simultaneously or sequentially in any order. In some contexts, the cells are co-administered with another therapy sufficiently close in time such that the cell populations enhance the effect of one or more additional therapeutic agents, or vice versa. In some embodiments, the cells are administered prior to the one or more additional therapeutic agents. In some embodiments, the cells are administered after the one or more additional therapeutic agents. In some embodiments, the one or more additional agents includes a cytokine, such as IL-2, for example, to enhance persistence. In some embodiments, the methods comprise administration of a chemotherapeutic agent.

[0504] Following administration of the cells, the biological activity of the engineered cell populations in some embodiments is measured, e.g., by any of a number of known methods. Parameters to assess include specific binding of an engineered or natural T cell or other immune cell to antigen, in vivo, e.g., by imaging, or ex vivo, e.g., by ELISA or flow cytometry. In certain embodiments, the ability of the engineered cells to destroy target cells can be measured using any suitable method known in the art, such as cytotoxicity assays described in, for example, Kochenderfer et al., J. Immunotherapy, 32(7): 689-702 (2009), and Herman et al. J. Immunological Methods, 285(1): 25-40 (2004). In certain embodiments, the biological activity of the cells is measured by assaying expression and/or secretion of one or more cytokines, such
as CD 107a, IFNy, IL-2, and TNF. In some aspects the biological activity is measured by assessing clinical outcome, such as reduction in tumor burden or load.

[0505] In certain embodiments, the engineered cells are further modified in any number of ways, such that their therapeutic or prophylactic efficacy is increased. For example, the engineered CAR or TCR expressed by the population can be conjugated either directly or indirectly through a linker to a targeting moiety. The practice of conjugating compounds, e.g., the CAR or TCR, to targeting moieties is known in the art. See, for instance, Wadwa et al., J. Drug Targeting 3: 111 (1995), and U.S. Patent 5,087,616.

VII. DEFINITIONS

[0506] Unless defined otherwise, all terms of art, notations and other technical and scientific terms or terminology used herein are intended to have the same meaning as is commonly understood by one of ordinary skill in the art to which the claimed subject matter pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art.

[0507] As used herein, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. For example, "a" or "an" means "at least one" or "one or more." It is understood that aspects and variations described herein include "consisting" and/or "consisting essentially of" aspects and variations.

[0508] Throughout this disclosure, various aspects of the claimed subject matter are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the claimed subject matter. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, where a range of values is provided, it is understood that each intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the claimed subject matter. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the claimed subject matter, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of
the limits, ranges excluding either or both of those included limits are also included in the
claimed subject matter. This applies regardless of the breadth of the range.

[0509] The term "about" as used herein refers to the usual error range for the respective
value readily known to the skilled person in this technical field. Reference to "about" a value or
parameter herein includes (and describes) embodiments that are directed to that value or
parameter per se. For example, description referring to "about X" includes description of "X".

[0510] The term "vector," as used herein, refers to a nucleic acid molecule capable of
propagating another nucleic acid to which it is linked. The term includes the vector as a self-
replicating nucleic acid structure as well as the vector incorporated into the genome of a host cell
into which it has been introduced. Certain vectors are capable of directing the expression of
nucleic acids to which they are operatively linked. Such vectors are referred to herein as
"expression vectors." Among the vectors are viral vector particles, such as retroviral, e.g.,
gammaretroviral and lentiviral vector particles.

[0511] The terms "host cell," "host cell line," and "host cell culture" are used
interchangeably and refer to cells into which exogenous nucleic acid has been introduced,
including the progeny of such cells. Host cells include "transformants" and "transformed cells,"
which include the primary transformed cell and progeny derived therefrom without regard to the
number of passages. Progeny may not be completely identical in nucleic acid content to a parent
cell, but may contain mutations. Mutant progeny that have the same function or biological
activity as screened or selected for in the originally transformed cell are included herein.

[0512] As used herein, a composition refers to any mixture of two or more products,
substances, or compounds, including cells. It may be a solution, a suspension, liquid, powder, a
paste, aqueous, non-aqueous or any combination thereof.

[0513] As used herein, "enriching" when referring to one or more particular cell type or cell
population, refers to increasing the number or percentage of the cell type or population, e.g.,
compared to the total number of cells in or volume of the composition, or relative to other cell
types, such as by positive selection based on markers expressed by the population or cell, or by
negative selection based on a marker not present on the cell population or cell to be depleted.
The term does not require complete removal of other cells, cell type, or populations from the
composition and does not require that the cells so enriched be present at or even near 100 % in
the enriched composition.
[0514] As used herein, a statement that a cell or population of cells is "positive" for a particular marker refers to the detectable presence on or in the cell of a particular marker, typically a surface marker. When referring to a surface marker, the term refers to the presence of surface expression as detected by flow cytometry, for example, by staining with an antibody that specifically binds to the marker and detecting said antibody, wherein the staining is detectable by flow cytometry at a level substantially above the staining detected carrying out the same procedure with an isotype-matched control under otherwise identical conditions and/or at a level substantially similar to that for cell known to be positive for the marker, and/or at a level substantially higher than that for a cell known to be negative for the marker.

[0515] As used herein, a statement that a cell or population of cells is "negative" for a particular marker refers to the absence of substantial detectable presence on or in the cell of a particular marker, typically a surface marker. When referring to a surface marker, the term refers to the absence of surface expression as detected by flow cytometry, for example, by staining with an antibody that specifically binds to the marker and detecting said antibody, wherein the staining is not detected by flow cytometry at a level substantially above the staining detected carrying out the same procedure with an isotype-matched control under otherwise identical conditions, and/or at a level substantially lower than that for cell known to be positive for the marker, and/or at a level substantially similar as compared to that for a cell known to be negative for the marker.

[0516] The term "expression", as used herein, refers to the process by which a polypeptide is produced based on the encoding sequence of a nucleic acid molecule, such as a gene. The process may include transcription, post-transcriptional control, post-transcriptional modification, translation, post-translational control, post-translational modification, or any combination thereof.

[0517] As used herein, a subject includes any living organism, such as humans and other mammals. Mammals include, but are not limited to, humans, and non-human animals, including farm animals, sport animals, rodents and pets.

[0518] As used herein, a control refers to a sample that is substantially identical to the test sample, except that it is not treated with a test parameter, or, if it is a plasma sample, it can be from a normal volunteer not affected with the condition of interest. A control also can be an internal control.
VII. EXEMPLARY EMBODIMENTS

[0519] Among the provided embodiments are:

1. A method for modulating cells, the method comprising incubating a composition comprising target cells, in the presence of a stimulatory agent that is reversibly bound to a reagent, which optionally is a first reagent, which reagent comprises a plurality of stimulatory agent-binding sites capable of reversibly binding to the stimulatory agent, under conditions whereby the stimulatory agent specifically binds to a molecule expressed on the surface of the target cells, thereby inducing or modulating a signal in the target cells.

2. The method of embodiment 1, wherein:
 the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, CI; and
 the stimulatory agent further comprises one or more of the binding partner, CI.

3. The method of embodiment 2, wherein:
 the plurality of stimulatory agent-binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, CI; and/or
 the stimulatory agent comprises two or more of the binding partner, CI.

4. The method of any of embodiments 1-3, wherein the stimulatory agent further comprises a binding site B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.

5. The method of any one of embodiments 1 to 4, wherein at least a plurality of the target cells are immobilized on a support during at least a portion of the incubation, wherein the immobilization is optionally reversible.

6. The method of embodiment 5, wherein:
 the support is or comprises a stationary phase; and/or
 the support is or comprises a solid support.

7. The method of embodiment 5 or 6, wherein the reagent is a first reagent and the at least a portion of the incubation is carried out in the presence of (a) a second reagent, which is immobilized on the support, and (b) a selection agent reversibly bound to said second reagent;
wherein specific binding by the selection agent to a selection marker expressed by at least a plurality of the target cells effects the reversible immobilization of said at least a plurality of the target cells on the support.

8. The method of embodiment 7, wherein the second reagent comprises a plurality of selection agent-binding sites each capable of reversibly binding to the selection agent.

9. The method of embodiment 8 or embodiment 14, wherein:

- the plurality of selection agent-binding sites comprises one or more of a binding site, Y₁, which is capable of reversibly binding to a binding partner, D₁; and
- the selection agent further comprises one or more of the binding partner, D₁.

10. The method of embodiment 9, wherein the plurality of selection agent-binding sites comprises two or more of the binding site, Y₁ and/or further comprises one or more of a binding site, Y₂, which is capable of reversibly binding to the binding partner, D₁; and/or
- the selection agent comprises two or more of the binding partner, D₁.

11. The method of embodiment 5 or 6, wherein the reversible immobilization of the at least a plurality of the target cells is facilitated by reversible immobilization of the reagent on the support, during said at least a portion of the incubation.

12. The method of any of embodiments 1-10, wherein:
- the first reagent is not, and is not bound to or associated with, a solid support, stationary phase, a bead, a microparticle, a magnetic particle, and/or a matrix during said incubation, and/or
- the first reagent is flexible, does not contain a metal or magnetic core, is comprised entirely or primarily of organic multimer, is not spherical, is not substantially spherical or uniform in shape, and/or is not rigid.

13. The method of any of embodiments 1-4, further comprising combining:

(a) at least a plurality of the target cells;

(b) a selection agent that (i) is capable of specifically binding to a selection marker expressed by one or more of the at least a plurality of the target cells of the plurality and (ii) is immobilized, or is capable of being immobilized, on a support, directly or indirectly; and

(c) the support;

thereby one or more target cells of the at least a plurality become immobilized on the support via the selection agent.
14. A method comprising:
 (1) combining (a) a composition comprising target cells, (b) a selection agent that
 (i) is capable of specifically binding to a selection marker expressed by one or more of the at
 least a plurality of the target cells of the plurality and (ii) is immobilized, or is capable of being
 immobilized, on a support, directly or indirectly; and (c) the support, whereby one or more
 target cells of the at least a plurality are immobilized on the support via the selection agent; and
 (2) incubating at least a plurality of the target cells in the presence of a
 stimulatory agent reversibly bound to a reagent, which optionally is a first reagent, the (first)
 reagent comprising a plurality of stimulatory agent-binding sites each capable of reversibly
 binding to the stimulatory agent, under conditions whereby the stimulatory agent specifically
 binds to a molecule expressed on the surface of the target cells, thereby inducing or modulating
 a signal in the target cells.

15. The method of embodiment 13 or 14, wherein:
 the selection agent further comprises one or more of a binding partner, Dl, which
 optionally is capable of reversibly binding to the binding site, Zl; and/or
 the selection agent further comprises one or more of a binding partner, Dl, which
 optionally is capable of reversibly binding to a binding site, Yl.

16. The method of any of embodiments embodiment 10-11, further comprising, after
 said combining, separating and/or removing, from the immobilized target cells, other cells of the
 composition.

17. The method of embodiment 16 or 17, further comprising performing a wash step.

18. The method of any of embodiments 15-17, wherein said separating and/or said
 wash step is carried out prior to initiation of said incubation.

19. The method of any of embodiments 13-18, wherein the support is or comprises a
 stationary phase and/or is or comprises a solid support.

20. The method of any of embodiments 13-19, wherein:
 said incubating is carried out and/or is initiated prior to said combining; or
 said incubating is carried out and/or is initiated subsequently to said combining.

21. The method of any of embodiments 13-20, wherein said combining is carried out
during at least a portion of said incubation.
22. The method of any of embodiments 13-21, wherein the immobilization of the selection agent on the support is reversible.

23. The method of any of embodiments 14-22, wherein the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, CI; and

the stimulatory agent further comprises one or more of the binding partner, C1.

24. The method of embodiment 23, wherein:

the plurality of stimulatory agent-binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, CI; and/or

the stimulatory agent comprises two or more of the binding partner, CI.

25. The method of any of embodiments 13-24, wherein the stimulatory agent further comprises a binding site B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.

26. The method any of embodiments 13-25, wherein:

said reagent is a first reagent; and

the immobilization of the selection agent to the support is indirect, and is via reversible binding of the selection agent to a second reagent, which is immobilized on the support.

27. The method of embodiment 26, wherein the second reagent comprises a plurality of selection agent-binding sites capable of reversibly binding to the selection agent.

28. The method of embodiment 27, wherein said plurality of selection agent-binding sites comprise a binding site, Y1, which is capable of binding to a binding partner, D1, one or more of which is comprised by the selection agent.

29. The method of embodiment 28, wherein:

said plurality of selection agent-binding sites comprises two or more of the binding site, Y1 and/or further comprises one or more of a binding site, Y2, which is capable of reversibly binding to the binding partner, D1; and/or

the selection agent comprises two or more of the binding partner, D1.
30. The method of any one of embodiments 26-29, wherein the second reagent and the selection agent are reversibly bound together in a complex at the time of said combining, wherein the combining is carried out by combining the cells with the complex.

31. The method of any of embodiments 26-30, wherein the second reagent and the selection agent are not in a complex at the time of said combining, wherein the combining is carried out by separate addition of the second reagent and selection agent.

32. The method of any one of embodiments 7 to 10 and 13 to 31, wherein the selection agent further comprises a binding site, B1, and the specific binding between the selection agent and the selection marker comprises interaction between B1 and the selection marker.

33. The method of any of embodiments 1 to 32 or 45 to 72 wherein:

the reversible binding between the stimulatory agent and the first reagent is capable of being disrupted by the addition of a substance; and/or

the reversible binding between the selection agent and the first reagent or the selection agent and the second reagent is capable of being disrupted by the addition of a substance; and/or

each of the reversible binding between the stimulatory agent and the first reagent, and the reversible binding between the selection agent and the second reagent and/or first reagent is capable of being disrupted by the addition of a substance;

the reversible binding between the second stimulatory agent and the first reagent or fourth reagent is capable of being disrupted by the addition of a substance; and/or

the reversible binding between the second selection agent and the first reagent and/or the second selection agent and the second reagent and/or the second selection agent and the third reagent is capable of being disrupted by the addition of a substance; and/or

each of the reversible binding between the second stimulatory agent and the first reagent or fourth reagent, and the reversible binding between the second selection agent and the first reagent, second reagent, and/or third reagent, is capable of being disrupted by the addition of a substance.

34. The method of embodiment 33 or 100, or the composition of embodiment 120, or the article of manufacture of embodiment 128 or the apparatus of embodiment 131, wherein:

the substance is or comprises a free binding partner; or
the substance is or comprises a competition agent; and/or
the substance effects a change that disrupts the binding, other than by competition
for said binding.

35. The method of embodiment 34, wherein the substance is not detrimental to the
target cells or to a majority of the target cells and/or wherein the addition of the substance to the
target cells, in an amount sufficient to effect said disruption, does not reduce the survival and/or
proliferative capacity of the cells by less than at or about 90 %, 80 %, 70 %, 60 %, or 50 %, as
compared to the absence of the substance under the otherwise same conditions.

36. The method of embodiment 37, wherein the substance is or comprises a peptide
or polypeptide.

37. The method of any one of embodiments 33 to 36, wherein:
the substance comprises a molecule from the group consisting of: streptavidin-
binding molecules; biotin; D-biotin; biotin analogs; biotin analogs that specifically bind to
streptavidin or a streptavidin analog having an amino acid sequence Val^{44}-Thr^{45}-Ala^{46}-Arg^{47}, or
Ile^{44}-Gly^{45}-Ala^{46}-Arg^{47}, at sequence positions corresponding to positions 44 to 47 of a wild type
streptavidin; and peptides comprising or consisting of a sequence set forth in any of SEQ ID
NO: 1, 4, 5, and 7; or
the substance comprises a metal chelator, which is optionally EDTA or EGTA.

38. The method of any one of embodiments 1 to 27,
wherein the stimulatory agent comprises only one of said binding site, B2;
wherein the stimulatory agent comprises only a single binding site that
specifically binds to the molecule;
wherein the stimulatory agent specifically binds to the molecule in a monovalent
manner;
wherein the selection agent comprises only one of said binding site, B1;
wherein the selection agent comprises only a single binding site that specifically
binds to the selection marker; and/or
wherein the selection agent specifically binds to the selection marker in a
monovalent manner.

39. The method of any of embodiments 4-13 and 25-38, wherein:
the binding site, B2, comprises an antibody combining site; and/or
the binding site, Bl, comprises an antibody combining site.

40. The method of any of embodiments 1-39, wherein:

the stimulatory agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or

the stimulatory agent comprises an antibody fragment;

the stimulatory agent is or comprises a Fab fragment;

the stimulatory agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2'$-fragments and divalent single-chain Fv (scFv) fragments;

the stimulatory agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or

the stimulatory agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers; and/or

the selection agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or

the selection agent comprises an antibody fragment;

the selection agent is or comprises a Fab fragment;

the selection agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2'$-fragments and divalent single-chain Fv (scFv) fragments;

the selection agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or

the selection agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a
polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers.

41. The method of any of embodiments 1-40, wherein:
 the molecule expressed on the surface of the target cells is a protein or polypeptide; and/or
 the selection marker is a protein or polypeptide.

42. The method of any of embodiments 1-41, wherein:
 the molecule expressed on the surface of the target cells is or comprises a member of a T cell or B cell antigen receptor complex;
 the molecule expressed on the surface of the target cells is or comprises a CD3 chain;
 the molecule expressed on the surface of the target cells is or comprises a CD3 zeta;
 the molecule expressed on the surface of the target cells is or comprises an antigen-binding portion of a T cell receptor or a B cell receptor;
 the molecule expressed on the surface of the target cells is a chimeric antigen receptor;
 the specific binding of the stimulatory agent and the molecule is capable of delivering a primary signal to a T cell or B cell.

43. The method of any of embodiments 7-42, wherein:
 the selection marker is a B cell or T cell coreceptor;
 the selection marker is or comprises a member of a T cell or B cell antigen receptor complex;
 the selection marker is or comprises a CD3 chain;
 the selection marker is or comprises a CD3 zeta chain;
 the selection marker is or comprises a CD8;
 the selection marker is or comprises a CD4 and/or
 the specific binding between the selection agent and the selection marker does not induce a signal, or does not induce a stimulatory or activating or proliferative signal, to the target cells.

44. The method of any of embodiments 1-43, wherein:
the stimulatory agent comprises a comprises an MHC L peptide complex or functional portion thereof, an MHC IL peptide complex or functional portion thereof, and/or is capable of delivering a stimulatory signal through a TCR/CD3 complex in a T cell, a CD3-containing complex in a T cell, and/or an ITAM-containing molecule in a T cell, and/or said inducing or modulating said signal results in an increase in expression of a cytokine in the target cell, which optionally is IL-2, IFN-γ and/or IL-4.

45. The method of any of embodiments 1-44, wherein the molecule expressed on the surface of target cells is a first molecule and the stimulatory agent is further capable of binding to a second molecule expressed on the surface of at least a plurality of the target cells.

46. The method of any of embodiments 1-44, wherein the molecule expressed on the surface of target cells is a first molecule, the stimulatory agent is a first stimulatory agent and the incubation is further carried out in the presence of a second stimulatory agent, which is capable of binding to a second molecule expressed on the surface of at least a plurality of the target cells.

47. The method of embodiment 46, wherein the second stimulatory agent is reversibly bound to the first reagent or is reversibly bound to a fourth reagent.

48. The method of embodiment 46 or embodiment 47, wherein:
 the second stimulatory agent comprises one or more of the binding partner, C1;
 the second stimulatory agent comprises one or more of a binding partner, C2, which is capable of binding to the stimulatory agent-binding site; and/or
 the second stimulatory agent comprises one or more of a binding partner, C2, which is capable of binding to a binding site, Z2, and the reagent further comprises one or more of the binding site Z2.

49. The method of embodiment 48, wherein:
 C2 and C1 are the same or substantially the same, or contain the same or substantially the same moiety;
 Z1 and Z2 are the same or substantially the same or contain the same or substantially the same moiety.

50. The method of any of embodiments 46-49, wherein the second stimulatory agent comprises one or more of a binding site, B4, which facilitates the specific binding between the second stimulatory agent and the second molecule.
51. The method of embodiment 45, wherein the stimulatory agent further comprises one or more of a binding site, B4, which facilitates specific binding thereof to the second molecule.

52. The method of any of embodiments 45-51, wherein the specific binding of the agent or second agent to the second molecule is capable of enhancing, dampening, or modifying a signal delivered through the first molecule.

53. The method of any of embodiments 45-52, wherein:

the second molecule is a costimulatory molecule;

the second molecule is an accessory molecule; the second molecule is a cytokine receptor;

the second molecule is a chemokine receptor;

the second molecule is an immune checkpoint molecule; or

the second molecule is a member of the TNF family or the TNF receptor family.

54. The method of any of embodiments 1-53, wherein:

the (first) molecule, which is a first molecule, is a costimulatory molecule, a cytokine receptor, a chemokine receptor, an immune checkpoint molecule, a member of the TNF family or the TNF receptor family, or a functional portion of any of the foregoing;

the (first) molecule comprises a CD28, a CD137, or a CD40 ligand, or a CD40, or an OX40, or an ICOS, or functional portion of any of the foregoing; and/or

the second molecule comprises a CD28, a CD137, or a CD40 ligand, or a CD40, or an OX40, or an ICOS, or functional portion of any of the foregoing.

55. The method of any of embodiments 1-54, wherein:

the (first) stimulatory agent or the second stimulatory agent specifically binds to a CD3 and, optionally, is selected from the group consisting of an anti-CD3-antibody, a monovalent antibody fragment of an anti-CD3 antibody, a divalent antibody fragment of an anti-CD3-antibody, and a proteinaceous CD3 binding molecule, and/or

the (first) stimulatory agent or the second stimulatory agent specifically binds to CD28 and optionally is selected from the group consisting of an anti-CD28-antibody, a monovalent antibody fragment of an anti-CD28 antibody, a divalent antibody fragment of an anti-CD28-antibody, and a proteinaceous CD28 binding molecule, a B7 family member or portion thereof, and mixtures thereof;
the (first) stimulatory agent or the second stimulatory agent specifically binds to CD137 and optionally is selected from the group comprising an anti-CD137-antibody, a monovalent antibody fragment of an anti-CD28 antibody, a divalent antibody fragment of an anti-CD137-antibody, a proteinaceous CD137 binding molecule, a 4-1BB ligand or CD137-binding portion thereof, and mixtures thereof; and/or

the (first) stimulatory and/or secondary agent comprises an agent that specifically binds to CD40 and optionally is selected from the group comprising an anti-CD40-antibody, a monovalent antibody fragment of an anti-CD40 antibody, a divalent antibody fragment of an anti-CD40-antibody, and a proteinaceous CD40 binding molecule, a CD40 ligand (CD 154), and mixtures thereof.

56. The method of any of embodiments 7 to 55, wherein the selection marker is a first selection marker and the selection agent is further capable of binding to a second selection marker, which is expressed on the surface of at least a plurality of the target cells.

57. The method of any of embodiments 7 to 55, wherein the selection marker is a first selection marker and the selection agent is a first selection agent and the incubation is further carried out in the presence of a second selection agent, which is capable of binding to a second selection marker, which is expressed on the surface of at least a plurality of the target cells.

58. The method of embodiment 57, wherein:

the second selection agent is reversibly bound to the second reagent or

the second selection agent is reversibly bound to a third reagent, which is immobilized on the support or an additional support.

59. The method of embodiment 57 or 58, wherein:

the second selection agent comprises one or more of the binding partner, D1; and/or

the second selection agent comprises one or more of a binding partner, D2, which is capable of binding to the binding site, Y1; and/or

the second selection agent comprises one or more of a binding partner, D2, which is capable of binding to a binding site, Y2, and the second reagent further comprises one or more of the binding site Y2.

60. The method of embodiment 59, wherein:
D2 and D1 are the same or substantially the same, or contain the same or substantially the same moiety;

Y1 and Y2 are the same or substantially the same or contain the same or substantially the same moiety;

C1 and D1 are the same or substantially the same, or contain the same or substantially the same moiety; and/or

Z1 and Y1 are the same or substantially the same, or contain the same or substantially the same moiety.

61. The method of any of embodiments 57-60, wherein the second selection agent comprises one or more of a binding site, B3, which facilitates the specific binding between the second selection agent and the second selection marker.

62. The method of any of embodiments 56 and 58-61, wherein the selection agent further comprises one or more of a binding site, B3, which facilitates specific binding thereof to the second selection marker.

63. The method of any of embodiments 45-62, wherein the second stimulatory agent comprises only one of said binding site, B4; wherein the second stimulatory agent comprises only a single binding site that specifically binds to the second molecule;

wherein the second stimulatory agent specifically binds to the molecule in a monovalent manner;

wherein the second selection agent comprises only one of said binding site, B3; wherein the second selection agent comprises only a single binding site that specifically binds to the second selection marker; and/or

wherein the second selection agent specifically binds to the second selection marker in a monovalent manner.

64. The method of any of embodiments 50-63, wherein:

the binding site, B4, comprises an antibody combining site; and/or

the binding site, B3, comprises an antibody combining site.

65. The method of any of embodiments 45-64, wherein:

the second stimulatory agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding
molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or

the second stimulatory agent comprises an antibody fragment;
the second stimulatory agent is or comprises a Fab fragment;
the second stimulatory agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2$'-fragments and divalent single-chain Fv (scFv) fragments;

the second stimulatory agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or

the second stimulatory agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers; and/or

the second selection agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or

the second selection agent comprises an antibody fragment;
the second selection agent is or comprises a Fab fragment;
the second selection agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2$'-fragments and divalent single-chain Fv (scFv) fragments;

the second selection agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or

the second selection agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers.

66. The method of any of embodiments 45-65, wherein:

the second molecule expressed on the surface of the target cells is a protein or polypeptide; and/or
the second selection marker is or comprises a protein or polypeptide.

67. The method of any of embodiments 56-66, wherein:
the second selection marker is a B cell or T cell coreceptor;
the second selection marker is or comprises a member of a T cell or B cell
antigen receptor complex;
the second selection marker is or comprises a CD3 chain;
the second selection marker is or comprises a CD3 zeta chain;
the second selection marker is or comprises a CD8;
the second selection marker is or comprises a CD4 and/or
the specific binding between the second selection agent and the second selection
marker does not induce a signal, or does not induce a stimulatory or activating or proliferative
signal, to the target cells.

68. A method of cell modulation, the method comprising:
(a) combining a composition comprising target cells and a stimulatory agent
reversibly bound to a reagent that is immobilized on a support, wherein the reagent comprises a
plurality of stimulatory agent-binding sites, each capable of reversibly binding to the stimulatory
agent, and is capable of specifically binding to a molecule expressed on the surface of the target
cells,

thereby immobilizing the target cells on the support; and
(b) separating or removing, from the immobilized target cells, other cells of
the composition; and
(c) incubating at least some of the immobilized target cells in the presence of
the stimulatory agent, under conditions whereby a signal is induced or modulated in at least a
plurality of the target cells.

69. The method of embodiment 69, wherein the support is or comprises a solid
support and/or a stationary phase.

70. The method of embodiment 68 or embodiment 69, wherein the plurality of
stimulatory agent-binding sites comprises one or more of a binding site, Zl, which is capable of
reversibly binding to a binding partner, CI; and
the stimulatory agent further comprises one or more of the binding partner, C1.

71. The method of embodiment 70, wherein:
the plurality of stimulatory agent binding sites comprises two or more of the
binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of
reversibly binding to the binding partner, CI; and/or
the stimulatory agent comprises two or more of the binding partner, CI.

72. The method of any of embodiments 68-71, wherein the stimulatory agent further
comprises a binding site B2, wherein the specific binding between the stimulatory agent and the
molecule on the surface of the target cells comprises interaction between B2 and the molecule.

73. The method of any of embodiments 2 to 72, wherein:
the support comprises a resin or matrix;
the support comprises a gel filtration matrix;
the support comprises a chromatography matrix; and/or
the support comprises a cellulose-based or organic polymer-based membrane.

74. The method of embodiment 73, wherein the chromatography matrix is present
within a column and/or wherein the chromatography is column chromatography or planar
chromatography.

75. The method of any of embodiments 2-74, wherein the support comprises a
microparticle, rigid particle, magnetic particle, or bead.

76. The method of any of embodiments 77, wherein the support is a stationary phase,
present within a container during all or part of said incubation and/or said contacting.

78. The method of embodiment 76, wherein the container comprises a container
selected from the group consisting of: columns, containers suitable for bidirectional flow, pipette
tips, tubes, and columns suitable for flow-through of a liquid sample.

79. The method of any of embodiments 1-78, wherein:
the target cells comprise blood cells;
the target cells comprise leukocytes;
the target cells comprise lymphocytes;
the target cells comprise B cells;
the target cells comprise a B cell population
the target cells comprise T cells;
the target cells comprise a T cell population; and/or
the target cells comprise natural killer (NK) cells.
80. The method of embodiment 79, wherein the target cells comprise antigen-specific
T cells or a population thereof, a T helper cell or population thereof, a cytotoxic T cell or
population thereof, a memory T cell or population thereof, a regulatory T cell or population
thereof, or a NK cell or population thereof, antigen-specific B cells or a population thereof, a
memory B cell or population thereof, or a regulatory B cell or population thereof.

81. The method of any of embodiments 1-80, wherein the induction or modulation of
the signal induces, dampens, inhibits, or enhances activation, proliferation, survival, and/or
expansion.

82. The method of any of embodiments 1-81, wherein:
the first reagent is or comprises a streptavidin, an avidin, an analog of streptavidin that
reversibly binds to biotin, an analog of avidin that reversibly binds to biotin, a reagent that
comprises at least two chelating groups, K, which are capable of binding to a transition metal
ion, an agent capable of binding to an oligohistidine affinity tag, an agent capable of binding to a
glutathione-S-transferase, calmodulin or an analog thereof, an agent capable of binding to
calmodulin binding peptide (CBP), an agent capable of binding to a FLAG-peptide, an agent
capable of binding to an HA-tag, an agent capable of binding to maltose binding protein (MBP),
an agent capable of binding to an HSV epitope, an agent capable of binding to a myc epitope,
and/or an agent capable of binding to a biotinylated carrier protein; and/or

the second reagent and/or the third reagent is or comprises a streptavidin, an
avidin, an analog of streptavidin that reversibly binds to biotin, an analog of avidin that
reversibly binds to biotin, a reagent that comprises at least two chelating groups, K, which are
capable of binding to a transition metal ion, an agent capable of binding to an oligohistidine
affinity tag, an agent capable of binding to a glutathione-S-transferase, calmodulin or an analog
thereof, an agent capable of binding to calmodulin binding peptide (CBP), an agent capable of
binding to a FLAG-peptide, an agent capable of binding to an HA-tag, an agent capable of
binding to maltose binding protein (MBP), an agent capable of binding to an HSV epitope, an
agent capable of binding to a myc epitope, and/or an agent capable of binding to a biotinylated
carrier protein.

82. The method of embodiment 81, wherein:
the first reagent comprises an oligomer or polymer; and/or
the second reagent comprises an oligomer or a polymer; and/or
the third reagent comprises an oligomer or a polymer.

83. The method of any of embodiments 1 to 82, wherein:
the first reagent comprises an oligomer or polymer of streptavidin, avidin, streptavidin analog or avidin analog, which oligomer or polymer comprises monomers of the streptavidin, avidin, or analog, which are crosslinked by a polysaccharide or a bifunctional linker; and/or
the second reagent comprises an oligomer or polymer of streptavidin, avidin, streptavidin analog or avidin analog, which oligomer or polymer comprises monomers of the streptavidin, avidin, or analog, which are crosslinked by a polysaccharide or a bifunctional linker; and/or
the third reagent comprises an oligomer or polymer of streptavidin, avidin, streptavidin analog or avidin analog, which oligomer or polymer comprises monomers of the streptavidin, avidin, or analog, which are crosslinked by a polysaccharide or a bifunctional linker;
the fourth reagent comprises an oligomer or polymer of streptavidin, avidin, streptavidin analog or avidin analog, which oligomer or polymer comprises monomers of the streptavidin, avidin, or analog, which are crosslinked by a polysaccharide or a bifunctional linker.

84. The method of any of embodiments 1 to 83, wherein:
the second reagent comprises three or more streptavidin monomers or three or more streptavidin mutein monomers; and/or
the second reagent comprises three or more streptavidin monomers or three or more streptavidin mutein monomers and/or
the third reagent comprises three or more streptavidin monomers or three or more streptavidin mutein monomers; and/or
the fourth reagent comprises three or more streptavidin monomers or three or more streptavidin mutein monomers.

85. The method of any of embodiments 1-84, wherein the first reagent and the second reagent and/or the first reagent and the third reagent and/or the first reagent and the fourth reagent are the same or substantially the same.

86. The method of any of embodiments 1-85, wherein:
the first reagent and the second reagent are not the same;
the first reagent and the third reagent are not the same; and/or
the second reagent and the third reagent are not the same; and/or
the first reagent and the fourth reagent are not the same; and/or
the second reagent and the fourth reagent are not the same; and/or
the third reagent and the fourth reagent are not the same.

87. The method of any of embodiments 1 to 86, wherein:
the binding partner CI, the binding partner C2, the binding partner D1 and/or the
binding partner D2, independently, comprise biotin, a biotin analog that reversibly binds to a
streptavidin or avidin; and/or
each of the binding partner CI and the binding partner C2, independently,
comprises biotin, a biotin analog that reversibly binds to streptavidin or avidin; and/or
each of the binding partner D1 and the binding partner D2, independently,
comprises biotin, a biotin analog that reversibly binds to streptavidin or avidin.

88. The method of any of embodiments 1-87, wherein:
the (first) reagent comprises a streptavidin analog or an avidin analog that
reversibly binds to biotin;
the (first) reagent comprises a streptavidin analog or an avidin analog that
reversibly binds to a biotin analog; and/or
the (first) reagent comprises a streptavidin analog or an avidin analog that
reversibly binds to a streptavidin-binding peptide; and/or
the (first) reagent comprises a streptavidin analog or an avidin analog that
reversibly binds to a streptavidin-binding peptide selected from the group consisting of Trp-Ser-
His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-
(GlyGlyGlySer) _3-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-
Phe-Glu-Lys-(GlyGlyGlySer) _2-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-
Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2 Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-
Lys (SEQ ID NO: 19).

89. The method of any of embodiments 1 to 88, wherein:
the second reagent and/or the third reagent and/or the fourth reagent comprises a
streptavidin analog or an avidin analog that reversibly binds to biotin;
the second reagent and/or the third reagent and/or the fourth reagent comprises a streptavidin analog or an avidin analog that reversibly binds to a biotin analog; and/or

the second reagent and/or the third reagent and/or the fourth reagent comprises a streptavidin analog or an avidin analog that reversibly binds to a streptavidin-binding peptide; and/or

the second reagent and/or the third reagent and/or the fourth reagent comprises a streptavidin analog or an avidin analog that reversibly binds to a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _3- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys ((SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2 Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19).

90. The method of any of embodiments 1 to 89, wherein:

the binding partner CI, the binding partner C2, the binding partner D1 and/or the binding partner D2, independently, comprise a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _3- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2 Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19);

each of the binding partner CI and the binding partner C2, independently, comprises a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _3- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2 Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19); and/or

each of the binding partner D1 and the binding partner D2, independently, comprises a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _3- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2- Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) _2 Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19).
(GlyGlyGlySer)₂-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-
Gln-Phe-Glu-Lys-(GlyGlyGlySer)₂Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ
ID NO: 19).

91. The method of any of embodiments 1 to 90, wherein:

the (first) reagent comprises a streptavidin analog, which comprises the amino
acid sequence Val₄⁴-Thr⁴⁵-Ala⁴⁶-Arg⁴⁷ at sequence positions corresponding to positions 44 to 47
of a wild type streptavidin or a streptavidin analog that comprises the amino acid sequence Ile⁴⁴-
Gly⁴⁵-Ala⁴⁶-Arg⁴⁷ at sequence positions corresponding to positions 44 to 47 of a wild type
streptavidin; and/or

the second reagent and/or the third reagent and/or the fourth reagent comprises a
streptavidin analog, which comprises the amino acid sequence Val₄⁴-Thr⁴⁵-Ala⁴⁶-Arg⁴⁷ at
sequence positions corresponding to positions 44 to 47 of a wild type streptavidin or a
streptavidin analog that comprises the amino acid sequence Ile⁴⁴-Gly⁴⁵-Ala⁴⁶-Arg⁴⁷ at sequence
positions corresponding to positions 44 to 47 of a wild type streptavidin; and/or

the binding site Z₁, the binding site Z₂, the binding site Y₁, and/or the binding
site Z₂, individually, comprises an amino acid sequence of Val-Thr-Ala-Arg and/or comprises
an amino acid sequence Ile-Gly-Ala-Arg.

92. The method of any one of embodiments 1 to 91, wherein the binding between
said binding partner C₁ and/or the binding partner C₂, respectively, and said binding sites Z₁
and/or Z₂, respectively, is capable of occurring in the presence of a divalent cation and/or is not
capable of occurring in the absence of a divalent cation, and/or is disrupted by removal of
divalent cations.

93. The method of any of embodiments 1 to 92, wherein:

each of said binding partners C₁ and/or C₂ and/or each of said binding partners
D₁ and/or D₂, independently comprises a calmodulin binding peptide and the (first) reagent
and/or the second reagent and/or the third reagent and/or the fourth reagent comprises
calmodulin, or

each of said binding partners C₁ and/or C₂ and/or each of said binding partners
D₁ and/or D₂, independently comprises a FLAG peptide and the (first) reagent and/or the
second reagent and/or the third reagent and/or the fourth reagent comprises an antibody binding
the FLAG peptide, or
each of said binding partners C1 and/or C2 and/or each of said binding partners D1 and/or D2, independently comprises an oligohistidine tag and said (first) reagent and/or the second reagent and/or the third reagent and/or the fourth reagent comprises an antibody binding the oligohistidine tag.

94. The method of any of embodiments 1-93, wherein the binding between said binding partner C1 and said binding site Z1 and/or between said binding partner C2 and/or said binding site Z2, and/or said binding partner D1 and said binding site Y1 and/or said binding partner D2 and said binding site Y2 is capable of disruption by metal ion chelation, which is optionally accomplished by addition of EDTA or EGTA.

95. The method of any of embodiments 1 to 94, wherein:

the binding partners C1 and C2 are different and/or the interactions thereof with the (first) reagent are disruptable by the addition of a different substance or not by addition of the same substance;

the binding partners D1 and D2 are different and/or the interactions thereof with the second reagent are disruptable by the addition of a different substance or not by addition of the same substance;

the binding partners C1 and/or C2 are different compared with the binding partners D1 and/or D2, and/or the interactions thereof with the first reagent and second reagent, respectively, are disruptable by the addition of a different substance or not by addition of the same substance.

96. The method of any of embodiments 1 to 94, wherein:

the binding partners C1 and C2 are identical or substantially identical and/or the interactions thereof with the first reagent are disruptable by the addition of the same substance;

the binding partners D1 and D2 are identical or substantially identical and/or the interactions thereof with the second reagent are disruptable by the addition of the same substance;

the binding partners C1 and/or C2 are identical or substantially identical compared with the binding partners D1 and/or D2, and/or the interactions thereof with the first reagent and second reagent, respectively, are disruptable by the addition of the same substance.

97. The method of any of the foregoing embodiments, further comprising:
disrupting the reversible binding between the (first) stimulatory agent and/or the second stimulatory agent, on the one hand, and the (first) reagent and/or fourth reagent, on the other hand.

98. The method of any of embodiments 2 to 97, further comprising disrupting the reversible binding between the (first) selection agent and/or the second selection agent, on the one hand, and the second reagent and/or the third reagent, on the other hand.

99. The method of embodiment 98, wherein:
said disrupting is carried out following said incubation or is initiated subsequently to the initiation of said incubation; and/or
said disrupting further disrupts the reversible binding between the (first) stimulatory agent and/or second stimulatory agent and the first reagent; and/or
the combining is carried out before initiation of the incubation and the reversible binding between the selection agent and second reagent is not disrupted prior to said initiation.

100. The method of embodiment 98 or embodiment 99, wherein said disruption is carried out by introducing a substance that disrupts the interaction between binding partner C1 and/or C2 and binding site Z1 and/or Z2.

101. The method of any of embodiments 98 to 100, wherein said disrupting causes:
termination of or lessening of a signal delivered by one of the stimulatory agents; or
termination of or lessening of stimulation, activation, or expansion of the cells.

102. The method of any of embodiments 98 to 101, wherein said disruption comprises introducing to the cells a composition comprising a substance.

103. The method of any of embodiments 1 to 102, wherein:
the dissociation constant (K_d) for the reversible binding between said binding site Z1 and said binding partner C1 and/or for the reversible binding between said binding site Z2 and said binding partner C2 is in the range of 10^{-2} M to 10^{-13} M.

104. The method of any of the foregoing embodiments, wherein the composition contacted with the second reagent further comprises non-target cells, which do not comprise the selection marker, the molecule, the second molecule, and/or the second selection marker, and the method further comprises separating target cells from the non-target cells.
105. The method of any one of the preceding embodiments, further comprising, prior to said incubation, expanding cells comprised in the population of target cells, or wherein cells have been expanded \textit{in vitro} prior to said incubation.

106. The method of any one of the preceding embodiments, wherein the method further comprises changing medium or supplementing with a substance at least one time during said incubation.

107. The method of any one of the preceding embodiments, further comprising repeating one or more steps of the method in an iterative fashion, whereby cells of one or more populations are serially isolated and expanded in at least two cycles, wherein the method optionally comprises contacting target cells in the population with at least two different selection agents, in each of two different contacting steps, respectively, that specifically bind to two different selection markers, wherein at least a portion of said incubation is carried out between the contacting with the two different selection agents.

108. The method of any of embodiments 1 to 107, further comprising introducing a recombinant nucleic acid into target cells of the population, which nucleic acid encodes a recombinant protein, whereby the cells express the recombinant protein, wherein said introducing is optionally carried out subsequently to or during said incubation and/or while cells are immobilized on the support; or wherein the cells, during at least a portion of the incubation, express a recombinant protein, introduced \textit{ex vivo}.

109. The method of embodiment 108, wherein the introducing of the nucleic acid is carried out between a plurality of the at least two contacting steps.

110. The method of embodiment 109, wherein one of the at least two selection agents specifically binds to the recombinant protein and/or one of the stimulatory agents specifically binds to the recombinant protein.

111. The method of any of embodiments 1 to 110, wherein the first reagent is not immobilized on the support.

112. A composition comprising a stimulatory agent reversibly bound to a reagent, which is optionally a first reagent, wherein the stimulatory agent is capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell.
113. The composition of embodiment 112, wherein said (first) reagent comprises a plurality of stimulatory agent-binding sites, each capable of reversibly binding to said stimulatory agent.

114. The composition of embodiment 113, wherein the reagent is a first reagent, further comprising:

(a) a support;

(c) a second reagent immobilized on the support; and

(d) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on the target cell.

115. The composition of embodiment 114, wherein the support is or comprises a stationary phase and/or a solid support.

116. The composition of any one of embodiments 112 to 115, wherein the selection agent is reversibly bound to the second reagent.

117. The composition of any of embodiments 114 to 116, wherein the (first) reagent is not bound to the support.

118. The composition of any of embodiments 114 to 117, wherein the first reagent and the second reagent are the same or substantially the same.

119. The composition of any of embodiments 112 to 118, further comprising the target cell and/or further comprising a non-target cell, which does not express the (first) selection marker and/or second selection marker, wherein the target cell optionally comprises a recombinant molecule or nucleic acid expressing a recombinant molecule, which optionally is a chimeric receptor.

120. The composition of any of embodiments 112 to 118, further comprising a substance capable of disrupting the reversible binding between the second reagent and the selection agent and/or capable of disrupting between the first reagent and the stimulatory agent.

121. An article of manufacture for the purification and modulation of target cells, the article of manufacture comprising:

(a) a stimulatory agent capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell;

(b) a reagent, which is optionally a first reagent, which comprises a plurality of stimulatory agent-binding sites, each capable of reversibly binding to the stimulatory agent.
122. The article of manufacture of embodiment 121, further comprising:
 (c) a second reagent;
 (d) a support, which optionally is or comprises a stationary phase and/or a solid support; and
 (e) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on a target cell.

123. The article of embodiment 122, wherein the second reagent is immobilized on the support.

124. The article of any of embodiments 121 to 123, wherein the (first) reagent is reversibly bound to the stimulatory agent and/or wherein the selection agent is reversibly bound to the second reagent.

125. The composition of any of embodiments 112 to 120 or the article of manufacture of any of embodiments 121 to 124, further comprising:
 a second stimulatory agent capable of specifically binding to a second molecule on the surface of the target cell and of reversibly binding to the first reagent and/or of reversibly binding to a fourth reagent; and/or
 a second selection agent capable of specifically binding to a second selection marker, which is (i) comprised by the target cell or (ii) comprised by another target cell, which optionally expresses the molecule to which the (first) stimulatory agent and/or the second stimulatory agent specifically binds.

126. The composition or article of manufacture of embodiment 125, wherein the second selection agent is capable of reversibly binding to the second reagent or the article further comprises a third reagent capable of reversibly binding to the second selection agent, which third agent is optionally immobilized on the support or on another support.

127. The article of manufacture of embodiment 126, wherein the support and second support are present in separate containers, wherein said different containers are optionally fluidly connected to one another, permitting passage of cell suspension through or past one of the supports, followed by the other.

128. The article of manufacture of any one of embodiments 121 to 127, further comprising a substance capable of disrupting the reversible binding between one or more of the reagents and one or more of the agents.
129. The article of manufacture of any of embodiments 122 to 128, wherein the support is a stationary phase, which is or comprises a chromatography matrix, wherein the article of manufacture further comprises a container, which is optionally a first container, in which all or part of the chromatography matrix is contained, which (first) container is optionally a column.

130. The article of manufacture of embodiment 129, wherein:
 the second reagent is further comprised within the container; and/or
 the (first) selection agent and/or second selection agent are further comprised in the container; and/or
 the article of manufacture further comprises a second container, optionally containing the (first) stimulatory agent and/or second stimulatory agent, and/or the first reagent.

131. The article of manufacture of embodiment 130, wherein:
 the article further comprises a third container in which the second selection agent and/or the third reagent are comprised; and/or
 the article further comprises a fourth container, in which the substance is comprised.

132. An apparatus comprising the composition of any of embodiments 112 to 120 or the article of manufacture of any of embodiments 131, and optionally further comprising a fluid inlet, being fluidly connected to the composition or to one or more component of the apparatus, and/or a fluid outlet, being fluidly connected to the composition and/or to one or more component of the apparatus.

133. An apparatus comprising:
 (a) a stimulatory agent capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell;
 (b) a first reagent, which is capable of reversibly binding to the stimulatory agent;
 (c) a second reagent;
 (d) a support,
 (e) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on a target cell.
134. The apparatus of embodiment 133, wherein the components in (a)-(e) are present in a plurality of containers, at least some of which are in fluid connection, optionally in a closed or sterile system, whereby one or more of the components pass from one container to another within the apparatus.

135. The article of manufacture or apparatus of any of embodiments 121-134, further comprising a sample outlet fluidly connected to one of the at least one stationary phase for chromatography.

136. The article of manufacture or apparatus of any of embodiments 121 to 135, wherein the apparatus is a functionally closed system.

137. The article of manufacture or apparatus of any of embodiments 121 to 136, further comprising one or more controls, capable of regulating or adjusting pH, pO_2, pCO_2, and/or thermostatic control of one or more containers or components thereof, and optionally of at least one of the at least one stationary phase for chromatography.

138. The article of manufacture or apparatus of any of any of embodiments 121 to 137 to 190, further comprising a fluid connection to a container comprising medium and/or one or more nutrients and/or one or more carbon sources, whereby the connection is capable of delivering such medium, nutrients, and/or carbon sources to cells within the apparatus, optionally when said cells are immobilized on the stationary phase for chromatography.

139. The article of manufacture or apparatus of any of embodiments 121 to 138, wherein at least one of the recited components and/or a container comprising the same is detachable from the apparatus in a sterile or aseptic fashion.

140. The apparatus of any of embodiments 134 to 139, the composition of any of embodiments 112 to 120 or the article of any of embodiments 121 to 133, which is useful in or capable of carrying out the method of any of embodiments 1 to 111 or 142 to 150, wherein the method is optionally carried out in an automated fashion.

141. The apparatus of any of embodiments 134 to 139, the composition of any of embodiments 112 to 120 or the article of any of embodiments 121 to 133, for use in the method of any of embodiments 1 to 111 or 142 to 150, wherein the method is optionally carried out in an automated fashion.

142. The method of any of embodiments 13 to 111, wherein said incubation is carried out subsequently to said combination and the method further comprises transferring target cells
of the composition to a different environment, said environment being suitable for cell culture or expansion.

143. The method of embodiment 142, wherein the cells so transferred are transferred within a closed system or closed container to the different environment; or wherein the transfer comprises removing the cells so transferred from a first container and transferring the cells to a second container

144. The method of embodiment 142 or 143, wherein the different environment is within an incubator.

145. The method of any of embodiments 142 to 144, wherein said transfer is carried out within a closed system, wherein said transfer comprises transfer of a steriley-sealed container containing the cells to a sterile environment or to the different environment within the sealed container, and/or wherein said transfer is carried out within a sterile environment or under sterile conditions.

146. The method of embodiment 145, further comprising, following transfer, detaching cells from the stationary phase by disrupting said reversible binding and optionally removing said cells from the presence of the stationary phase.

147. The method of embodiment 146, further comprising expanding said removed cells.

148. The method of any of embodiments 1 to 111 and 142 to 147, wherein temperature, pH, pO\textsubscript{2}, pCO\textsubscript{2}, and/or temperature is controlled during at least a portion of said incubation, optionally in an automated fashion.

149. The method of any of embodiments 142 to 148, wherein nutrients are fed to cells comprised in the at least one of the at least one stationary phase for chromatography while being in the environment suitable for expansion.

150. The method of any of embodiments 142 to 149, wherein the stationary phase is present in an apparatus of any of embodiments 134 to 141, wherein transfer for expansion to the suitable environment includes detaching the stationary phase from the cells, while said stationary phase is present in the apparatus
VIII. EXAMPLES

[0520] The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1 - Generation of a soluble multimerized agent containing anti-CD3 and anti-CD28 Fab fragments reversibly bound on a soluble oligomeric streptavidin mutein

[0521] Anti-CD3 and anti-CD28 Fab fragments were multimerized by reversibly binding the antibody fragments to a soluble oligomeric streptavidin mutein, which was used as a multimerization reagent. The soluble oligomeric streptavidin mutein was prepared by polymerizing a streptavidin mutein designated Strep-tactin® (a streptavidin homo-tetramer containing the mutein sequence of amino acids set forth in SEQ ID NO:6, see e.g. U.S. Patent No. 6,103,493 and Voss and Skerra (1997) Protein Eng., 1:975-982) with sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, product #22122 Thermo Scientific) and iminothiolan (product # 26101 Thermo Scientific) according to the manufacturer's instructions (Thermo Scientific). The oligomeric streptavidin mutein molecules were separated from monomeric (unreacted) and dimeric streptavidin mutein by size exclusion chromatography.

[0522] Anti-CD3 and anti-CD28 Fab fragments were reversibly bound to the soluble oligomeric streptavidin mutein via a streptavidin peptide-binding partner fused to each Fab fragment. The anti-CD3 Fab fragment was derived from the CD3 binding monoclonal antibody produced by the hybridoma cell line OKT3 (ATCC® CRL-8001™; see also U.S. Patent No. 4,361,549). The variable domain of the heavy chain and the variable domain of the light chain of the anti-CD3 antibody OKT3 are described in Arakawa et al J. Biochem. 120, 657-662 (1996) and are set forth in SEQ ID NOS:31 and 32, respectively. The anti-CD28 Fab fragment was derived from antibody CD28.3 (deposited as a synthetic single chain Fv construct under GenBank Accession No. AF45 1974.1; see also Vanhove et al, BLOOD, 15 July 2003, Vol. 102, No. 2, pages 564-570). The variable domain of the heavy chain and the variable domain of the light chain of the anti-CD28 antibody CD28.3 are set forth in SEQ ID NOS: 33 and 34, respectively. Both Fab fragments contained a human IgGl CH1 and C_L Kappa domain, and were each individually fused at the carboxy-terminus of their heavy chain to a streptavidin peptide-binding sequence containing a sequential arrangement of two streptavidin binding
modules having the sequence of amino acids SAWSHPQFEK(GGGS)₂GGSAWSHPQFEK (SEQ ID NO: 16; commercially available as "Twin-Strep-tag® from IBA GmbH, Gottingen, Germany). The peptide-tagged Fab fragments were recombinantly produced in E. coli as described in International Patent Application Publication Numbers WO 2013/01 1011 and WO 2013/124474.

[0523] Peptide-tagged anti-CD3 and anti-CD28 Fab fragments were mixed at approximately room temperature with the soluble oligomeric backbone, thereby multimerizing the anti-CD3 and anti-CD28 Fab fragments on the surface of the soluble oligomeric backbone via interaction between the streptavidin peptide-binding partner of the Fab fragments and the oligomeric mutein streptavidin. In an exemplary embodiment, approximately 0.5 µg of the anti-CD3 peptide tagged Fab fragment and approximately 0.5 µg of the anti-CD28 peptide-tagged Fab fragment were added to approximately 3 µg of soluble oligomeric Strep-tactin® at room temperature. In some cases, the peptide-tagged Fab fragments were pre-mixed prior to reversibly binding onto the soluble oligomeric mutein streptavidin backbone, which, in some instances, can result in a more uniform distribution of the different Fab molecules. The resulting soluble anti-CD3/anti-CD28 multimerized agent was used directly to stimulate T cells. If necessary, the resulting soluble anti-CD3/anti-CD28 multimerized agent was stored on ice prior to stimulation of cells.

EXAMPLE 2: Stimulation/expansion of CD3+ T responder cells with aCD3/aCD28 Fab fragments that were reversibly immobilized on beads coated with the streptavidin mutein Strep-tactin®

[0524] 300,000 CD3+CD62L-responder T cells (Tresp, isolated by serial magnetic enrichment from a non-mobilized donor apheresis product) were labeled with 3µM CFSE and stimulated with 5µl of a 15µl preparation of Streptactin® beads (10 mg magnetic particles/ml, loaded with 35 µg Streptactin®/mg beads) either loaded with 0^g aCD3 Fab fragment alone, 0^g aCD28 Fab fragment alone, or a mixture of 0^g aCD3 Fab fragment and 0^g aCD28 Fab.

[0525] The aCD3 Fab fragment used was derived from the CD3 binding monoclonal antibody produced by the hybridoma cell line OKT3. The hybridoma cell line OKT3 and the OKT3 antibody are described in US Patent 4,361,549, the cell line has been deposited under accession number ATCC® CRL-8001™). The aCD28 Fab used was derived from the
monoclonal anti-human CD28 antibody CD28.3 (Vanhove et al, BLOOD, 15 July 2003, Vol. 102, No. 2, pages 564-570). The nucleotide sequence of the variable domains of this antibody CD28.3 has been deposited in GenBank in the form of a synthetic single chain Fv construct anti-human CD28 antibody scFv28.3 under GenBank accession number AF451974.1).

[0526] Both Fab fragments were recombinantly produced in E. coli as described in International Patent Application Publication Numbers WO2013/01 101 1 and WO 2013/124474 carrying as constant domains (CHI and Ckappa) an IgGl consensus sequence. The heavy chain of both Fab fragments was carboxy-terminally fused with a sequential arrangement of two streptavidin binding modules (SAWSHPQFEK(GGGS)2GGSASWSHPQFEK)(SEQ ID NO: 16), that is commercially available as "Twin-Strep-tag® from IBA GmbH, Gottingen, Germany). The aCD3 Fab fragment was used as first agent with the streptavidin binding peptide serving as binding partner C1 and the aCD28 Fab fragment was used as second agent with the streptavidin binding peptide serving as binding partner C2. The (tetrameric) streptavidin mutein "Strep-tactin®" serves as the reagent on which both Fab fragments were reversibly immobilized.

[0527] In the expansion experiment, Tresp cells stimulated with blank beads (no Fab) served as negative control. Tresp cells were seeded in triplets in 48-well plates along with 300,000 CD3 cells autologous feeder cells (irradiated with 30Gy) in 3ml complete cell culture medium (RPMI (Gibco) supplemented with 10% (v/v) fetal calf serum, L-glutamine, b-mercapto ethanol, HEPES, penicillin, streptomycin and gentamycine) supplemented with 10U/ml interleukin 2 (IL-2). The cells were incubated at 37°C without media exchange and analyzed after 4 days by FACS analysis. FACS staining and analysis was done after 10min incubation with 100µM D-biotin. One representative plot for each condition is shown in FIG. 7A. Plots show live CD3+ cells that were stained with propidium iodide (PI) for live/dead discrimination. FIG. 7B is a histogram showing size-distribution (forward scatter) of stimulated cells. FIG. 7B shows that a specific cell population of Tresp cells was stimulated and expanded (increase in size/number compared to the unstimulated "beads only" control) when incubated in the presence of beads on which a mixture of 0^g aCD3 Fab fragment and 0^g aCD28 Fab was immobilized, after being stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on beads coated with the streptavidin mutein Strep-tactin®. FIG. 7B depicts histograms of the dilution of the proliferation dye CFSE representing the degree of proliferation according to the number of cells per cell division (indicated on top of FIG. 7B, 0 represents undivided cells; 5
represents cells that have gone through at least 5 divisions). It can be seen from FIG. 7B that the population of T cells stimulated with the beads on which a mixture of O^g aCD3 Fab fragment and 0.5 μg aCD28 Fab was immobilized have mostly gone through three cell divisions and represent a more uniform proliferation pattern than with a single stimulus alone (small number of cells within the undivided peak "0"). The increased absolute amount of proliferation (more cells have proliferated uniformly after 4d stimulation with aCD3 and aCD28 functionalized beads) is also represented by a more intense consumption of media as depicted by an indicator color change to yellow (depicted as lighter liquid in wells in FIG. 7C).

EXAMPLE 3: Stimulation/expansion of CD3+ T responder cells with aCD3/aCD28 Fab fragments that were reversibly immobilized on soluble Strep-tactin

[0528] In this example CD3+ T responder cells (isolated by magnetic selection from a sample of fresh PBMCs obtained from a Ficoll gradient) were expanded after in vitro stimulation with aCD3/aCD28 Fab fragments that were reversibly immobilized on soluble oligomeric Strep-tactin® acting as a soluble reagent. The oligomeric streptavidin mutein was obtained by polymerizing Strep-tactin® with sulfo SMCC (sulfo succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate, product # 2212 Thermo Scientific) and iminothiolan (product # 26101 Thermo Scientific) according to the protocol of the manufacturer (Thermo Scientific). The oligomeric streptavidin muteins were separated from monomeric (unreacted) and dimeric streptavidin muteins by size exclusion chromatography and the so obtained fraction of the oligomeric streptavidin mutein (n> 3) was used as soluble reagent.

[0529] For the in vitro expansion, 300,000 CD3+ responder T cells (Tresp) were labeled with 2μM Carboxyfluorescein succinimidyl ester (CFSE) and stimulated with varying amounts of a preparation of soluble oligomeric streptavidin mutein on which a combination of the above described aCD3 OKT3 Fab fragment and the aCD28 Fab fragment of the antibody 28.3 (both carrying the above-mentioned Twin-Strep-tag® as streptavidin binding peptide at the heavy chain) were immobilized. ("lx" corresponds to 3μg oligomeric streptavidin mutein functionalized with 0^g of the aCD3- and 0^g aCD28 monomeric Fab fragment, the numbers "0.5x", "2x" and "5x" indicate the respective n-fold amount of "lx"). Tresp cells either left unstimulated or were stimulated with blank oligomeric streptavidin mutein (no Fab) served as negative controls. Tresp cells were seeded in duplicates in 48-well plates along with 300,000
CD3 negative autologous feeder cells (irradiated with 30Gy) in 1ml cell culture medium supplemented with 20U/ml IL-2. Cells were incubated at 37°C without media exchange and proliferation was analyzed according to CFSE dilution after 5 days by FACS analysis. FIG. 8A shows the increase in the size distribution of proliferating cells after 5 days in culture compared to the negative controls. FIG. 8B shows that CD3+ Tresp cells were properly stimulated and proliferated vigorously when incubated with soluble oligomeric streptavidin mutein (as compared to solid Streptactin magnetic particles in Example 2 and FIG. 7A-C) on which a mixture of aCD3 Fab and aCD28 Fab fragments were immobilized. The results in FIG. 8A and FIG. 8B indicate that under these in vitro conditions most of the CD3+ T responder cells divided (2 to 5 cell divisions) after engagement of the surface CD28 and TCR/CD3 complex with the aCD3 and aCD28 Fab fragments that were reversibly immobilized on soluble oligomeric streptavidin mutein. After in vitro expansion the soluble multimerized agents were dissociated and removed after D-biotin treatment. The dissociation and removal of monomeric Fab fragments was flow-cytometrically analyzed by restaining cells with phycoerythrine label Streptactin®) (ST-PE). A representative histogram (dark grey histogram) is shown compared to the appropriate ST-PE only negative control (light grey histogram). It can be seen from FIG. 8C that both Fab fragments had completely dissociated and were entirely removed from the expanded cells. FIG. 8D shows the absolute number of live (trypan blue negative) cells after 5 days. The number was counted using a Neubauer counting chamber and plotted against the respective stimulation condition. Median cell numbers are shown in FIG. 8D; error bars indicate standard deviation (SD). FIG. 8D shows that all which mixtures of aCD3 Fab fragments and aCD28 Fab fragments that were immobilized on a soluble oligomeric streptavidin mutein reagent were equally effective in expanding the CD3+ cells and resulted in an approx. 4-fold increase of absolute cell numbers.

EXAMPLE 4: Kinetics of proliferation of purified CD4+ and CD8+ T responder cells stimulated in vitro with reversible aCD3/aCD28 Fab-Streptamer multimers without medium exchange

[0530] In this example the expansion kinetics of proliferation of purified CD4+ and CD8+ T responder cells (Tresp) that were stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized soluble oligomeric streptavidin muteins were examined. For this
purpose, soluble oligomeric Streptactin® mutein of two different sizes served as soluble reagent. The first kind of oligomeric Streptactin® was the fraction of the oligomeric streptavidin mutein (n> 3) obtained in Example 3 (also referred herein as "conventional oligomeric streptavidin mutein backbone", illustrated by the triangle symbol with the tip on top in FIG. 9A-B). The second kind of this oligomeric streptavidin mutein used as soluble reagent was an oligomeric streptavidin mutein (n> 3) that was reacted with biotinylated human serum albumin (also referred herein as "large oligomeric streptavidin mutein backbone").

[0531] In this example 500,000 purified CD4+ or CD8+ responder T cells (Tresp) were separately stimulated with these two different Streptamer multimers as explained above, i.e. with either the oligomeric streptavidin mutein backbone of Example 3 (using a solution with a concentration of 1 mg oligomeric streptavidin mutein/ml) or with the large oligomeric streptavidin mutein backbones (0.1mg/ml). 3μl of the both different backbones were either loaded with a combination of 0 ng of the aCD3 Fab and 0 ng aCD28 Fab used in the earlier Examples that carried a streptavidin binding peptide

SAWSHPQFEK(GGGS)₂GGSAWSHPQFEK (SEQ ID NO: 16) at the C-terminus of the heavy chain of the Fab fragment. In addition, 4.5μl of the conventional oligomeric streptavidin mutein backbone was loaded with 0 ng aCD3 Fab fragment, 0 ng aCD8 Fab fragment (IBA GmbH Gottingen, that also carries at the C-terminus of the Fab fragment the streptavidin binding peptide SAWSPQFEK(GGGS)₂GGSAWSHPQFEK (SEQ ID NO: 16) and 0.5μg aCD28 Fab fragment. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated with commercially available anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) as positive control. Tresp cells were seeded in duplicates in 48-well plates in 1ml cell culture medium (RPMI 1640 (Gibco) supplemented with 10% (v/v) fetal calf serum, 0.025% (w/v) L-glutamine, 0.025% (w/v) L-arginine, 0.1% (w/v) HEPES, 0.001% (w/v) gentamycin, 0.002% (w/v) streptomycin, 0.002% (w/v) penicilne) supplemented with 30U/ml IL-2. Cells were incubated at 37°C without media exchange and cell count was analyzed after 1, 3 and 6 days. In the experiments of FIG. 9A-B the expansion was carried out without medium exchange. The results for the CD4+ T responder cells are shown in FIG. 9A, the results for the CD8+ T responder cells are shown in FIG. 9B, with the graphs representing degree of proliferation according to the number of cells harvested per time point for CD4+ Tresp (FIG. 9A) and for CD8+ Tresp in FIG. 9B.
As can be seen from FIG. 9A the "smaller" soluble reagent on which aCD3 Fab and aCD28 Fab fragments were reversibly immobilized provided for the same amount of expansion of CD4+ T cells as anti-CD3/anti-CD28 beads (which are so far the standard reagent for the expansion of T cells), while the "larger" soluble multimerized agent provided for even better expansion compared to Dynabead. This improvement might be caused by the soluble "larger" multimerized being able to bind to more T cells at the same time than the "smaller" multimerized agent, thereby being able to stimulate more CD4+ T cells than the "smaller" multimerized agent.

As evident from FIG. 9B, using the soluble multimerized agents disclosed herein, CD8+ T cells could be expanded within the first 3 days at least as efficiently as with anti-CD3/anti-CD28 beads. Notably, in this time period, the expansion experiment that used a soluble reagent that in addition to aCD3 Fab and aCD28 Fab fragments (as first and second agent) carried reversibly immobilized thereon aCD8 Fab fragment, showed the best degree of expansion under these culturing conditions. This indicates that it is possible by using a stimulus that is specific for a particular sub-population of cells (here the aCD8 Fab fragment) to increase or modulate the selectivity of the expansion, thereby being able to obtain larger amounts of a desired cell (sub)-population.

Thus, summarizing the above, Example 4 shows that the functionality of the soluble multimerized agent in terms of triggering expansion of T cells is comparable to the current standard methodology of using anti-CD3/anti-CD28 beads for this purpose. However, since the stimulation can be controlled (and terminated, if wanted) by adding a competitor such as biotin in the case of a streptavidin based reversible interaction between the first and second agent and the reagent, the compositions and methods described herein provide a significant advantage over the anti-CD3/anti-CD28 beads technology since the expansion conditions can be optimized (it would, for example, be possible to stop the stimulation in the experiment of FIG. 9B after 3 days). In addition, since the soluble reagent can be easily removed from the reaction (for example, by immobilizing the reagent on a biotinylated column after the expansion reaction), the expansion methods disclosed herein can be carried out and automated in closed systems that are, for example, needed for GMP production of cells for therapeutic purposes, without having to deal with the removal of beads such as anti-CD3/anti-CD28 beads.
EXAMPLE 5: Kinetics of proliferation of purified CD4+ and CD8+ T responder cells stimulated in vitro with reversible aCD3/aCD28 Fab-Streptamer multimers with medium exchange

[0535] In this example the expansion kinetics of proliferation of purified CD4+ and CD8+ T responder cells (Tresp) that were stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on soluble oligomeric streptavidin muteins were examined. For this purpose, soluble oligomeric Strep-tactin® mutein of two different sizes served as soluble reagent. The first kind of oligomeric Strep-tactin® was the fraction of the oligomeric streptavidin mutein (n> 3) obtained in Example 3 (also referred herein as "conventional oligomeric streptavidin mutein backbone", illustrated by the triangle symbol with the tip down in FIG. 9A-B). The second kind of this oligomeric streptavidin mutein used as soluble reagent was obtained by reacting the oligomeric Strep-tactin (n> 3) obtained in Example 3 with biotinylated human serum albumin. This soluble oligomeric reagent is also referred herein as "large oligomeric streptavidin mutein backbone."

[0536] In this example, 400,000 purified CD4+ or CD8+ responder T cells (Tresp) were separately stimulated with these two different oligomeric streptavidin muteins as explained above, i.e. with either the oligomeric streptavidin mutein backbone of Example 3 (1.0 mg/ml) or with the large oligomeric streptavidin mutein backbones (0.1 mg/ml). 3μl of both the different backbones were either loaded with a combination of 0^g aCD3 Fab and 0^g aCD28 Fab fragments described above. In addition, 4.5μl of the oligomeric streptavidin mutein backbone of Example 3 was loaded with 0^g aCD3, 0^g aCD8 Fab and 0^g aCD28 Fab fragment as described above. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated with anti-CD3/anti-CD28 beads (on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) as positive control. Tresp cells were seeded in duplicates in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C with media exchange on day 3 and cell count was analyzed after 1, 3 and 6 days. The results for the CD4+ T responder cells are shown in FIG. 10A, the results for the CD8+ T responder cells are shown in FIG. 10B, with the graphs representing degree of proliferation according to the number of cells harvested per time point for CD4+ Tresp (FIG. 10A) and for CD8+ Tresp in FIG. 10B.
As can be seen from FIG. 10A the soluble reagents on which aCD3 Fab and aCD28 Fab fragments were reversibly immobilized (the multimerized agents) provided for better expansion of CD4+ T cells than anti-CD3/anti-CD28 beads.

As evident from FIG. 10B, using the multimerized agents, CD8+ T cells could be expanded within the first 6 days at least as efficiently as with anti-CD3/anti-CD28 beads. Notably, in this time period, the expansion experiment that used the larger soluble reagent that carried aCD3 Fab and aCD28 Fab fragments (as first and second agent) showed the best degree of expansion under these culturing conditions. This might again be caused by the soluble "larger" multimerized agent being able to bind to more T cells at the same time than the "smaller" multimerized agent, thereby being able to stimulate more CD4+ T cells than the "smaller" multimerized agent.

EXAMPLE 6: Expansion kinetics of purified CD4+ and CD8+ T cell cultures with or without medium exchange

In this Example the combined data from Examples 4 and 5 were normalized on input cell number for the "smaller" multimerized agent and positive and negative control. No normalization data was obtained on the "larger" multimerized agent. As explained in Examples 4 and 5, 400,000 to 500,000 CD4+ or CD8+ responder T cells (Tresp) were stimulated with 3µl of a preparation of multimerized agent (lmg/ml; on which 0.5g aCD3 Fab fragment and 0.5g aCD28 Fab fragment were immobilized). Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated with anti-CD3/anti-CD28 beads as positive control. Tresp cells were seeded in duplicates in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C with media exchange (straight lines in FIG. 11A-B) or without media exchange (dashed lines in FIG. 11A-B) on day 3 and cell count was analyzed after 1, 3 and 6 days. As evident from the normalized data of FIG. 1A, the "smaller" soluble reagent on which aCD3 Fab and aCD28 Fab fragments were reversibly immobilized yielded an about 2.5 fold expansion of CD4+ T cells, while the expansion using anti-CD3/anti-CD28 beads yielded an about 1.8 fold expansion rate. Thus, the use of a multimerized agent even provides for an improvement in the expansion of CD4+ T cells over anti-CD3/anti-CD28 beads. Similarly, FIG. 1B, confirms that CD8+ T cells could be expanded using the
multimerized agents within the first 3 days at least as efficiently as with anti-CD3/anti-CD28 beads.

EXAMPLE 7: Expansion kinetics & phenotype of polyclonal activated/expanded bulk CD3+ central memory T cells (T_{CM})

In this Example, 500,000 CD3+CD62L+CD45RA- responder T_{CM} cells (Tresp) were stimulated with 3μl of a preparation of the soluble oligomeric streptavidin mutein of Example 3 (1mg/ml) that was either loaded with a combination of 0^g aCD3 Fab and 0^g aCD28 Fab. Furthermore, 4.5μl of a preparation of oligomeric streptavidin mutein loaded with 0^g aCD3, 0^g aCD8 Fab and 0^g aCD28 Fab was used as an additional stimulation condition. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated with anti-CD3/anti-CD28 beads (on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) as positive control. Tresp cells were seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2 only or 30U/ml IL-2 and 5ng/ml IL-15. Cells were incubated at 37^°C with media exchange every 3 days and cell count was analyzed after 7 and 14 days. Graphs represent degree of proliferation according to the number of cells harvested per time point, in FIG.12A only IL-2 supplemented media and in FIG.12B IL-2 and IL-15 supplemented media. As can be seen from both FIG.12A and FIG.12B, the soluble reagent that has reversibly bound thereon aCD3 Fab fragment and aCD28 Fab fragment yields better cell expansion than the anti-CD3/anti-CD28 beads. As further shown by the flow-cytometric analysis of CD62L and CD127 surface expression after 14 days of culture in variable cytokine milieu of FIG.12C, the experimental approaches using multimerized agents retain, under both conditions chosen here, a higher content of CD127-expressing long-lived memory T cells than expansion with anti-CD3/anti-CD28 beads. This illustrates a further advantage of the methods of the present compositions and methods described herein.

EXAMPLE 8: Yield and phenotype of expanded CD8+ T cells - size variation of soluble reagent and addition of aCD8-Fab addition for stimulation

In this Example, the expansion of purified CD8+ T responder cells stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized soluble oligomeric
streptavidin muteins were examined. In addition, the effect of adding aCD8-Fab to the reagent for increasing the specificity of the expansion for CD8+ T cells was examined.

[0542] For this purpose, 300,000 purified CD8+ responder T cells (Tresp) were separately stimulated with two different Streptactin based reagents, namely either the small multimerized agent of Example 3 (1mg/ml) or the larger multimerized agent described above (0.1mg/ml). 3μl of both oligomeric streptavidin mutein reagent backbones were either loaded with a combination of the 0^g aCD3 Fab and 0^g aCD28 Fab fragments described above to form the multimerized agents. In addition, 4.5μl of the smaller oligomeric streptavidin mutein backbone was loaded with 0^g aCD3, 0^g aCD8 Fab and 0^g aCD28 Fab fragments described above. Furthermore, 3μl of the "smaller" oligomeric streptavidin mutein backbone only functionalized with 0^g aCD3 Fab fragment alone or 0^g aCD28 Fab fragment alone was used. Unstimulated Tresp cells served as negative control and Tresp stimulated with anti-CD3/anti-CD28 beads served as positive control. Tresp cells were seeded in duplicates in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C with media exchange after 3 days and analyzed after 6 days. FIG.13A depicts the degree of proliferation according to the number of cells harvested at day 6 compared to the negative controls and normalized to the positive control. FIG.13A shows that the expansion of the CD8+ T cells using the multimerized agents result in higher yields of the CD8+ T cells than expansion using anti-CD3/anti-CD28 beads. The FACS analysis of CD8 surface expression and CD45RO surface expression (FIG.13B) after cell culture shows that the same phenotype of CD8+ T cells were expanded by either the multimerized agents or anti-CD3/anti-CD28 beads (the various stimulating conditions were compared using one-way ANOVA and no significant difference (n.s.) was detected). The improved yield of the CD8+ cells using the expansion methods disclosed herein compared to the anti-CD3/anti-CD28 beads might be due to the fact that the soluble multimerized agents can access their target receptors on the cell surface better than the antibodies that are immobilized on the anti-CD3/anti-CD28 beads. This improved yield might become very advantageous when expanding rare population of cells from an initial sample.

[0543] In addition, comparing the yield of expansion achieved with the reagent on which both the 0^g aCD3 Fab and 0^g aCD28 Fab fragments were jointly immobilized (second column from the left in FIG.13B) to the yield using two reagents which were functionalized only with the aCD3 Fab fragment alone or the aCD28 Fab fragment alone (third column from the left
in FIG.13B), it can be seen that both experiments had the same expansion efficiency. Thus, these experiments show that using one reagent on which both the first agent and the second agent are jointly immobilized is functionally equivalent to using for the expansion two separate reagents which are loaded with only the first agent and the second agent, respectively.

EXAMPLE 9: Yield & phenotype of expanded CD8+ T cells - titration of separate soluble reagents with different ratios of aCD3- and aCD28 Fab fragment immobilized thereon

[0544] In this Example, the yield and the phenotype of expanded CD8+ T responder cells (Tresp) that were stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized in different amounts on soluble oligomeric streptavidin muteins were examined.

[0545] For this purpose 300,000 CD8+ responder T cells (Tresp) were stimulated with varying amounts of a mixture of preparations of the "small" oligomeric streptavidin muteins (1mg/ml) functionalized with aCD3 Fab alone and aCD28 Fab alone ("Ix" corresponds to I^g oligomeric streptavidin mutein functionalized with 0^g aCD3 alone and I^g oligomeric streptavidin mutein functionalized with 0^g aCD28 Fab fragment alone), or 3µl of a preparation of the oligomeric streptavidin mutein loaded with 0^g aCD3 and 0µg CD28 Fab, or 4.5µl of a preparation of the oligomeric streptavidin mutein loaded with 0^g aCD3, 0^g strep-tagged aCD8 and 0^g aCD28 Fab. Untreated Tresp cells served as negative control and Tresp stimulated with anti-CD3/anti-CD28 beads as positive control. Tresp cells were seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C without media exchange and analyzed after 5 days. FIG.14A depicts the degree of proliferation according to the number of cells harvested at day 5 compared to the negative controls and normalized to the positive control. FIG.14A shows that the expansion of the CD8+ T cells using the various multimerized agents result in higher yields of the CD8+ T cells than expansion using anti-CD3/anti-CD28 beads (especially the cumulative total reagent amount of the 5x condition resulted in an optimal expansion of cells especially over time/increase in total cells by beginning cell division). The FACS analysis of CD8 surface expression and CD45RO (FIG.14B) surface expression after cell culture shows that the same phenotype of CD8+ T cells were expanded by either the multimerized agents or by the commercially available anti-CD3/anti-CD28 beads.
EXAMPLE 10: Yield and subset composition of expanded CD3+ T cells with addition of aCD8-Fab for stimulation

[0546] The experiment shows the expansion of purified CD3+ T responder cells stimulated in vitro with aCD3/aCD28 Fab fragments that were reversibly immobilized on the soluble oligomeric streptavidin muteins of Example 3 that served as a soluble reagent. In one experiment, in addition to aCD3/aCD28 Fab fragments, a aCD8 Fab fragment commercially available from IBA GmbH, Gottingen, Germany (catalogue number 6-8000-203) was immobilized on the soluble oligomeric streptavidin mutein in order to test whether it is possible to preferentially stimulate a specific T cell subpopulation in vitro with the reversible aCD3/aCD28 multimerized agents. In more detail, 500,000 purified CD3+ responder T cells (Tresp) were stimulated with 3μl of a preparation of oligomeric streptavidin muteins (1mg/ml) loaded with a combination of 0^g of the aCD3 Fab and 0^g of the aCD28 Fab. As an alternative approach, 4.5μl of the oligomeric streptavidin muteins were loaded with 0^g aCD3, 0^g strep-tagged aCD8 Fab and 0^g strep-tagged aCD28 Fab. Unstimulated Tresp cells served as negative control and Tresp stimulated with anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) served as positive control. As can be seen from FIG. 15A, the reagent that is reversibly loaded with the aCD3 Fab fragment, the aCD28 Fab fragment and also the aCD8 Fab fragment provided the highest number of expanded CD3+ T cells. With approximately, 1x10^6 the number of expanded cells the yield was about 30 % higher than for expansion of these T cells using commercially available anti-CD3/anti-CD28 beads. In addition and more important, as shown in FIG.15B with this reagent that carries the aCD3 Fab fragment, the aCD28 Fab fragment and the aCD8 Fab fragment, the amount of CD8+ T cells were the highest, compared to both the expansion with anti-CD3/anti-CD28 beads or a soluble reagent that carries only the aCD3 Fab fragment and the aCD28 Fab fragment as first and second agent as described herein. Thus, also this experiment shows the advantage of the compositions and methods described herein that in addition to a first agent that provides a primary activation signal to the desired cell population and optionally a second agent that provides a co-stimulatory signal, a further agent that is specific for the activation of the desired cell population can be immobilized on the reagent. Thus, by so doing, the compositions and methods described herein provide for the possibility of preferentially
expanding or selectively enriching any desired cell population or subpopulation from a sample that, for example, comprises a variety of different subpopulations.

EXAMPLE 11: On-column culture of immobilized T cells using streptavidin mutein-based stationary phase with multiple binding sites reversibly functionalized with first and second receptor-binding agents (aCD3 and aCD28 Fab fragments)

[0547] A study was carried out, demonstrating successful expansion of immobilized T cells by incubating the cells, in the presence of a stationary phase, within a chromatography column, with multimerized stimulatory agents. The agents were reversibly bound to a reagent having multiple binding sites for each of the agents. The process involved incubating T cells immobilized on the stationary phase in the presence of the multimerized agents, resulting in their activation and expansion. Cells then were removed from the stationary phase by disrupting binding.

[0548] In this study, human PBMC-containing samples were isolated from blood of a healthy human donor, by separation on a ficoll gradient. PBMCs, in some cases, were labeled with Carboxyfluorescein succinimidyl ester (CFSE) for assessment of cell division following incubation. Column-based affinity chromatography was used to enrich the PBMC samples for particular populations (CD3+ cells, CD4+ and/or CD8+ cells). Selection agents specific for such cells were reversibly immobilized on a stationary phase within the colmn. Specifically, to generate the columns with the stationary phases, 1.2ml-tips were pre-filled with a stationary phase (200μ1 agarose resin) to which was immobilized a reagent having multiple binding sites for the selection agents (an oligomer of the streptavidin mutein, "ml"). Six (6) micrograms each of the individual selection agents (Fab fragments capable of specifically binding to CD3, CD4, and CD8, respectively), each containing a binding partner (a twin-strep tag sequence set forth in SEQ ID NO: 16 (SAWSHPQFEK(GGGS)2GGSAWSHPQFEK), capable of reversibly binding to a binding site on the selection reagent, were added and permitted to reversibly bind to the reagent immobilized on the column, thereby immobilizing the agents on the stationary phase (agarose resin), via the reagent, generating a selection reagent immobilized to the stationary phase. Various samples and buffers were added to and manipulated in the columns using an electronic pipette.
PBMC-containing samples (1 x 10^7 cells, 2 x 10^7 cells, and 4.5 x 10^7 cells for enrichment of CD3+, CD4+ and CD8+ target cell populations, respectively) were passed over the column(s) for selection of the appropriate population. This step facilitated specific binding of T cells in the sample expressing the relevant selection marker(s) (CD3, CD4, and/or CD8) to the respective selection agent(s) on the stationary phase. The columns were washed. Cells not expressing the relevant marker generally were removed through this process.

Selected target cells then were cultured (incubated) while still within the columns, in the presence of the stationary phase, under various conditions. Thus, the cells were immobilized on the stationary phase during all or part of the culture. Specifically, to allow for further culture of immobilized T cells on the stationary phase, D-Biotin was not added to disrupt reversible binding to the resin, until after the incubation was carried out. Rather, each of the columns (tips) containing the stationary phase and immobilized selected cells was transferred to a 15-mL conical centrifuge tube. The cells were incubated on the columns (in the presence of 1 mL medium supplemented with IL-2), inside the respective conical tubes, each loosely-fitted with a lid, and contained within a humidified CO_2 incubator. Cells were incubated on the columns, untouched, for six (6) days following selection.

For cell expansion, this incubation was carried out in the presence of multimerized stimulatory agents capable of delivering an activating and costimulatory signal to T cells (anti-CD3, anti-CD28). Prior to this incubation, a multimerization reagent (oligomerized streptavidin mutein, ml) was reversibly bound with two different Fab fragments that specifically bound to CD3 and CD28, respectively, and individually contained the twin-strep tag of SEQ ID NO: 16. Specifically, 0.5 micrograms of each Fab fragment were mixed with 3 micrograms of the oligomerized mutein. The resulting multimeric stimulatory reagent complex was added to the columns for the incubation, serving as a polyclonal T cell activator. In certain (unstimulated) control samples, the incubation was carried out without addition of this polyclonal activation reagent.

Following the incubation, the cells then were eluted from the columns by addition of medium containing ImM D-Biotin. Following elution, cell count, surface expression of various surface markers, and proliferation (measured by dilution of CFSE) were assessed. The results are shown in FIG. 6A, FIG. 6B, and FIG. 6C.
Increased cell counts (FIG. 6A) and dilution of CFSE (data not shown) were observed following incubation of the different T cell populations within the columns, in the presence of the multimerized stimulatory agents (CD3/CD28 Fabs), indicating expansion of the cells under these conditions.

Additionally, following incubation with the multimerized stimulatory agents, increased percentages of CD45RO+ cells were observed (FIG. 6B), suggesting differentiation from a naïve to memory-like state. Increased CD69 surface expression, and maintained levels of CD62L expression (FIG. 6C), was consistent with the conditions having promoted generation and/or persistence of an activated, not terminally differentiated, cell population. Visual observation of the cultures indicated the occurrence of a pH shift in the samples incubated with the multimerized stimulatory agents, based on the color of the medium, which was consistent with a shift in metabolism associated with acidification of the extracellular milieu.

EXAMPLE 12: Analysis of the differential intracellular calcium mobilization in Jurkat cells

Real-time low-cytometric analysis of the differential intracellular calcium mobilization induced in Jurkat cells that are either labeled with the aCD3 antibody clone OKT3 or with Fab fragments of OKT3 being multimerized with Strep-Tactin® was examined here.

For this purpose, Jurkat cells were loaded with the calcium-sensitive dye Indo-1-AM and calcium release was triggered by injection of either aCD3 monoclonal antibody OKT3 (produced by the hybridoma cell line OKT3, see above, black squares) or aCD3 Fab fragments (derived from the parental cell line OKT3) that were multimerized by reversible binding of its streptavidin binding peptide to soluble Strep-Tactin fluorescently conjugated with phycoerythrin. In the case of the intact multimeric OKT3 Fab-Strep-Tactin complexes, the calcium release was triggered over an identical time period as with the parental antibody clone (dark grey triangles). Activation of cells could be completely avoided by injection of D-biotin treated, pre-dissociated Fab-Strep-Tactin complexes (light grey circles) identical to injection of the PBS negative control (inverted white triangles). Application of ionomycine served as positive control for calcium influx. Time-resolved changes in intracellular Ca²⁺ concentration were monitored by flow-cytometry based on the change in FL6/FL7 ratio. It can be seen from
FIG. 16A that both the parental antibody OKT3 as well as the multimerized monovalent Fab fragment of OKT3 effected calcium release, meaning that the multimerized monovalent Fab fragment of OKT3 is essentially as functional as the parental antibody. Notably, the multimeric OKT3 Fab fragment was not able to trigger calcium release if biotin was added to Strep-tactin on which the OKT3 Fab fragment was immobilized prior to the addition of the Streptactin-OKT3 Fab fragment. In this case, the biotin disrupted the reversible bond formed between Streptactin as multimerization agent and the OKT3 Fab fragment. The monovalent Fab fragment was therefore displaced from the multimerization agent and after dissociation was not able to trigger calcium release by binding to CD3 of the Jurkat cells.

[0557] In the experiments shown in FIG. 16B indo-1-AM-labeled Jurkat cells were activated by OKT3 derived aCD3 Fab-Strep-Tactin-complexes as described in FIG. 16A. Injection of intact (upper graph) or pre-dissociated complexes (lower graph) served as positive or negative controls respectively. In addition, stimulation of cells with intact Fab-Strep Tactin-complexes followed by subsequent injection of D-biotin (near the peak activation at t=140s) resulted in abrupt disruption of aCD3 Fab-multimer signaling (middle graph). Injection of ionomycin into the pre-dissociated Fab complex group served as positive control. Data are representative of three different experiments. Importantly, FIG. 16B shows that the addition of D-biotin to the sample rapidly displaces the Fab fragment from the Strep-tactin multimerization agent, thereby effectively terminating the calcium release even under ongoing calcium stimulation and demonstrating that the dissociated OKT3 Fab fragment is not any longer biologically active. Likewise, the multimeric OKT3 Fab fragment was also not able to trigger calcium release when biotin was added to the Streptactin-OKT3 Fab fragment multimer prior to the addition of the Streptactin-OKT3 Fab sample to the Jurkat cells.

EXAMPLE 13: Reversible staining of cells by CD3 Fab-multimers

[0558] This Example examines the reversible staining of cells by aCD3 Fab-multimers. Freshly isolated PBMCs were stained with either the aCD3 monoclonal antibody clone OKT3 (left dot plot, parental clone for the Fab-multimers) or cognate phycoerythrine (PE)-labeled OKT3 Fab-multimers and analyzed either before (second dot plot from the left) or after treatment with D-biotin (middle dot plot). Remaining Fab monomers were then detected after
subsequent washing steps using fresh PE-labeled Strep-Tactin® (second dot plot from the right). Secondary Fab-multimer staining of reversibly stained cells served as control (right dot plot). Only live CD3 cells which are negative in staining with propidium iodide (PI) for live/dead discrimination are shown in FIG. 17. Numbers in dot plots indicate the percentage of cells within gates. This experiment shows that the staining of CD3+ PBMCs with an anti-CD3 Fab fragment multimerized with Streptactin as multimerization reagent is fully reversible by addition of D-biotin and that the monovalent Fab fragment alone does not bind to the CD3 molecule present on PBMCs.

EXAMPLE 14: Reversible isolation of cells by CD28 Fab-multimers

[0559] This Example shows the isolation of cells by reversible binding of anti-CD28 Fab fragments multimerized with Sire/?-Tactin® magnetic particles (the magnetic particles are available from IBA GmbH Gottingen, Germany). The Fab fragments derived from the antibody CD28.3 described in Example 7 above were used for this purpose. CD28+ cells were selected/isolation by Fab-multimer magnetic cell selection from freshly isolated PMBCs as essentially described in International Patent App. Pub. No. WO2013/011011. The results are shown in Fig. 22. Before selection cells were control stained with either the cognate fluorescent aCD28-multimers (left dot plot) or with an antibody directed against the immunoglobulin kappa light chain (second dot plot from the left, a-Ig kappa mAb) as a control staining. After selection, CD28+ cells were treated with D-biotin and subsequently washed to remove magnetic beads and Fab-monomers. Liberated CD28+ cells were subsequently (re-) stained either with aCD28 Fab-multimers (second dot plot from the right) or with the a-Igkappa mAb (right dot plot) to detect potentially remaining Fab-monomers. Only live (PI⁺) CD3+ cells are shown. Numbers in dot plots indicate the percentage of cells within gates. FIG. 18 shows that CD28+ cells can be isolated from PMBC using such multimerized anti-CD28 Fab fragment and that all isolation reagents including the anti-CD28 Fab-monomers can be removed after selection.

EXAMPLE 15: Early cluster formation after activation of purified CD4+ and CD8+ T responder cells stimulated in vitro with reversible aCD3/aCD28 Fab-Streptamer multimers
In this Example, 400,000 CD4+ or CD8+ responder T cells (Tresp) were stimulated with 3µl of a preparation of oligomeric Streptactin multimerization reagent (Img/ml) loaded with a combination of 0^g aCD3- and 0^g aCD28 Fab. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated with anti-CD3/anti-CD28 beads as positive control. Tresp cells were seeded in duplicates in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C and microscopically analyzed after 1 and 2 days. Stimulation of CD4+ Tresp (FIG. 19A) and CD8+ Tresp (FIG. 19B) are shown for anti-CD3/anti-CD28 beads (middle row) and multimerized agent (lower row) respectively. The photographs represent degree of cluster formation: For better visibility exemplary clusters are indicated by circles for the stimulation with soluble streptavidin mutein oligomers in FIG. 19A and FIG. 19B. Clusters within the Dynabead stimulation are readily visibly by accumulation of dark stimulatory particles. As evident, both for CD4+ and CD8+ T cells early clusters formed when using the expansion method of the invention that employs a soluble oligomeric multimerization reagent.

EXAMPLE 16: Selective Antigen-specific expansion of TCM responder cells out of bulk CD3+ central memory T cells (kinetics & phenotype)

In this Example, the kinetics and the phenotype of selective Antigen specific (Ag-specific) expansion out of purified CD3+CD62L+CD45RA- T_CM responder cells was examined.

In more detail, CD3+CD62L+CD45RA- T_CM responder cells were stimulated in vitro with both a peptide:MHC molecule complex (that acts as first agent that provides a primary activation signal to the cells) and an aCD28 Fab fragment (that acts as second reagent that stimulates an accessory molecule on the surface of the cells). Both the complex of antigen specific peptide with the MHC molecule and the aCD28 Fab fragment were reversibly immobilized on the soluble oligomeric streptavidin mutein (with n≥ 3) described in Example 3. The peptide that was used for the antigen specific expansion was the peptide CRVLCCYVL (SEQ ID NO: 38), amino acids 309-317 of the immediate-early 1 protein (described in Ameres et al, PLOS Pathogens, May 2013, vol. 9, issue 5, el003383) representing an HLA-C7/IE-1 epitope that is specific for cytomegalovirus (CMV). The MHC I molecule that presents the peptide carries at the C-terminus of the a chain (heavy chain) the streptavidin binding peptide...
(SAWSHPQFEK(GGGS)_2GGSAWSHPQFEK, (SEQ ID NO: 16) that is commercially available as "Twin-Strep-tag®" from IBA GmbH, Göttingen, Germany).

[0563] For this purpose, 500,000 CD3+CD62L+CD45RA- responder T_{CM} cells (Tresp) were stimulated Ag-specifically using 3μl of a preparation of soluble oligomeric Streptactin multimerization reagent functionalized with 0^g of the peptide:MHC class I complexes equipped with the streptavidin binding peptide and with 0^g of the aCD28 Fab described above. As an alternative, 4.5μl of a preparation of the Streptactin multimerization reagent were loaded with 0^g of these peptide:MHC class I complexes, 0^g CD8 aFab and 0^g aCD28 Fab. For comparison, polyclonal stimulation was performed, using 3μl of a preparation of Streptactin multimerization reagent (1mg/ml) either loaded with a combination of 0^g aCD3 Fab and 0^g aCD28 Fab. Again as the alternative stimulation condition described above, 4.5μl of a preparation of Streptactin multimerization reagent reversibly loaded with 0^g aCD3 Fab, 0^g aCD8 Fab and 0^g aCD28 Fab was used. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated polyclonal with anti-CD3/anti-CD28 beads (beads on which aCD3 and aCD28 monoclonal antibodies are irreversible immobilized) as positive control. Tresp cells were seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2 and 5ng/ml IL-15. Cells were incubated at 37°C with media exchange every 3 days and cell count was analyzed after 7 and 14 days. The exemplary flow-cytometric analysis for the fraction of Ag-specific cells that was stimulated/expanded via the soluble strept-tactin oligomer on which the peptide:MHC-I complex for an HLA-C7/IE-1 epitope (for CMV) was immobilized (FIG. 20A) show that these antigen-specific T cells were specifically expanded. The graphs of FIG. 20B to FIG. 20E (that represent the degree of expansion of distinct Ag-specificities according to the number of peptide:MHCI multimer-positive cells harvested per time point in analogy to the expansion experiment shown in FIG. 20A) show that, the multimerization reagent that uses the respective complex of the Ag-specific peptide and MHC I molecule provided for the highest number of expanded cells (ranging from an twentyfold increase in the number of cells for the Ag-specific cells that recognize the pp65 epitope of CMV (amino acids 341-350 (QYDPVAALF, (SEQ ID NO: 39)) restricted by HLA-A2402) (see FIG. 20B) to an 98 fold increase in the number of Ag-specific cells that recognize the HLA-B7/IE-1₁₆₉₋₃₁₇ epitope (CRVLCCYVL (SEQ ID NO: 38)) of CMV (see FIG. 20E), thereby showing that the expansion method of the present invention is fully applicable to the
expansion of Ag-specific cells. Finally, the exemplary flow-cytometric analysis of CD62L and CD127 surface expression after 14 days of culture for HLA-B7/Hexon5 epitope (for adenovirus) shown in FIG. 20F further confirms that experimental approaches using the soluble multimerization reagents of the present invention retain a higher content of CD127-expressing long-lived memory T cells in polyclonal and Ag-specific stimulatory conditions.

EXAMPLE 17: Selective Ag-specific expansion kinetics & phenotype of bulk central memory T cells

[0564] This Example examines the kinetics of selective Ag-specific expansion out of purified CD3+CD62L+CD45RA- responder cells that were stimulated in vitro with a) antigen specific peptide MHC I complexes and b) aCD28 Fab fragments that were reversibly immobilized as first and second agent on soluble oligomeric streptavidin muteins.

[0565] For this purpose 500,000 CD3+CD62L+CD45RA- responder T_{CM} cells (Tresp) were stimulated Ag-specifically using 3µl of a preparation of Streptactin multimerization reagent functionalized with 0\(^g\) peptide:MHC class I complexes equipped with a streptavidin binding peptide (the specific peptide represents amino acids 114-124 (CPYSGTAYNSL, SEQ ID NO: 41) of the Hexon 5 protein of adenovirus) restricted by HLA-B07) and 0\(^g\) aCD28 Fab. As an alternative, 4.5µl of a preparation of Streptactin multimerization reagent loaded with 0\(^g\) this peptide:MHC class I complex, 0\(^g\) aCD8 Fab and 0\(^g\) aCD28 Fab. For comparison, polyclonal stimulation was performed, using 3µl of a preparation of Streptactin multimerization reagent (1mg/ml) either loaded with a combination of 0\(^g\) aCD3 Fab and 0\(^g\) aCD28 Fab. Again as the alternative stimulation condition described above, 4.5µl of a preparation of Streptactin multimers loaded with 0\(^g\) aCD3 Fab, 0\(^g\) aCD8 Fab and 0\(^g\) aCD28 Fab was used. Untreated (unstimulated) Tresp cells served as negative control and Tresp cells stimulated polyclonal with anti-CD3/anti-CD28 beads as positive control. Tresp cells were seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2 and 5ng/ml IL-15. Cells were incubated at 37\(^\circ\)C with media exchange every 3 days and cell count was analyzed after 7 and 14 days. The pictures shown in FIG. 21 represent degree of cluster formation on day 5, exemplary Ag-specific stimulation is illustrated for the HLA-B7/Hexon 5
epitope of adenovirus. As can be seen from FIG. 21, such adenovirus antigen specific cells could be specifically expanded from the original CD3+CD62L+CD45RA-Tcm responder population.

EXAMPLE 18: Activation of intracellular signaling cascades after Streptamer multimers stimulation of aCD19-CAR transduced Jurkat cells

[0566] In this Example the activation of intracellular signaling cascades of transduced Jurkat cells that have been modified to express a tumor-specific chimeric antigen receptor (CAR), namely here CD19 and that were stimulated using the oligomeric Streptactin® of Example 3 as soluble multimerization reagent was examined.

[0567] For this purpose, 300,000 Jurkat responder cells (Jresp) were stimulated with (A) varying amounts of a mixture of preparations of Streptactin multimerization reagent (1mg/ml) functionalized with aCD3 Fab and aCD28 Fab fragments described here ("xl") corresponds to 3µg Streptactin multimerization reagent functionalized with 0¹g aCD3- and 0¹g aCD28 Fab - this provides a "polyclonal Streptactin based multimerization reagent"), or (B) 3µl of a preparation of Streptactin multimerization reagent functionalized with 0¹g (xl) or 1µg (x2) of the extracellular domain (ECD) of CD19 (the natural ligand for the aCD19-CAR - this provides a "CAR-specific Streptactin based multimerization reagent"), or 3µl of a preparation of Streptactin multimerization reagent loaded with 0¹g (xl) or 1µg (x2) algG recognizing the IgG4 spacer within the aCD19-CAR - this also provides a "CAR-specific Streptavidin mutein based multimerization reagent." ECD of CD19 equipped with a hexahistidine tag was obtained from Sino Biological/Life technologies (SEQ ID NO: 49) and was functionalized for binding to the streptavidin based multimerization reagent by mixing the ECD of CD19 with the adapter molecule His-STREPPER (IBA GmbH, Germany, Order number 2-0920-005) at a molecular ratio of 1:1 and incubating for 15 min at room temperature. The His-STREPPER adapter molecule contains a chelating portion that binds to the hexahistidine tag and a streptavidin binding peptide, thereby temporarily providing the target molecule, here the ECD of CD19 with a streptavidin binding peptide that can reversibly bind to a streptavidin mutein based multimerization reagent. Jresp stimulated with anti-CD3/anti-CD28 beads (beads having irreversibly immobilized thereon aCD3- and aCD28- monoclonal antibodies) or PMA and Ionomycin served as positive controls. Jresp cells were seeded in 1.5ml Eppendorf tubes in 200µl cell culture medium supplemented with 30U/ml IL-2. Cells were incubated at 37°C and put on ice and lysed after Omin to 20min of stimulation. Detection of phosphorylated ERK
indicates active MAPK signaling, staining of the housekeeper β-Actin indicates loading of equal amounts of total protein per condition and time point. As can be seen from the comparison of FIG. 22A showing activation of the Jurkat cells via the "polyclonal Streptactin multimerization reagent" and FIG. 22B showing activation of the Jurkat cells via the two "CAR-specific Streptactin based multimerization reagents", the Jurkat cells can be activated/expanded via the binding of the CD19 extracellular domain to the CD19 specific chimeric antigen receptor. Since genetic down-stream processing of T cells is almost exclusively performed on pre-selected cell populations, a generic activation via cross-linking of introduced CARs via the IgG4 spacer domain (this is conserved within various CARs with different specificities) broadens the applicability for reversible cell stimulation/expansion in these in vitro cell-processing situations.

[0568] Thus, this experiment shows that in principle any cell population that is activated by binding of an agent (ligand) that provides a primary activation signal to the cell population can be expanded using a first agent reversibly immobilized on a multimerization reagent as described here.

EXAMPLE 19: Parallel Antigen-specific expansion of Tcm responder cells out of a single pool

[0569] In this Example, the kinetics of parallel Antigen specific (Ag-specific) expansion out of a single pool of T responder cells stimulated in vitro with multiple reversible peptide:MHC/ aCH28 Fab-Streptamer multimers is examined.

[0570] 500,000 CD3+CD62L+CD45RA− responder Tcm cells (Tresp) are simultaneously stimulated for multiple Ag-specificities using for each specificity, 3µl of Streptactin multimers functionalized with 0^g of the respective peptide:MHC class I complexes that carries a streptavidin binding peptide and 0^g aCD28 Fab that also carries a streptavidin binding peptide. As an alternative approach, 4.5µl of Streptactin based multimerization reagent functionalized with 0^g peptide:MHC class I complexes carrying a streptavidin binding peptide, 0^g aCD8 Fab and 0^g aCD28 Fab as described here are used for each specificity. For comparison, polyclonal stimulation is performed, using 3µl of a preparation of Streptactin based multimerization reagent (lmg/ml) either reversibly loaded with a combination of 0^g aCD3 Fab and 0^g aCD8 Fab. Again as the alternative stimulation condition described above, 4.5µl of a preparation of the Streptactin based multimerization reagent reversibly loaded with 0^g aCD3 Fab, 0^g aCD8 Fab and 0^g aCD28 Fab (each of them carrying a
streptavidin binding peptide can be used. Untreated (unstimulated) Tresp cells serve as negative control and Tresp cells stimulated polyclonal with anti-CD3/anti-CD28 beads (aCD3- and aCD28- mAb coated beads) as positive control. Tresp cells are seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2 and 5ng/ml IL-15. Cells are incubated at 37°C with media exchange every 3 days and cell count are analyzed after 7 and 14 days.

EXAMPLE 20: Preferential proliferation of CD8+ T cells among CD3+ T responder cells stimulated *in vitro* with streptavidin based multimerization reagents reversibly functionalized with aCD3/aCD8/aCD28 Fab fragments

[0571] 300,000 CD3+ responder T cells (Tresp) are stimulated with 3µl of a preparation of Streptactin multimerization (1mg/ml) or a preparation of a multimerization reagent using the large Streptactin backbone (0.1mg/ml) either loaded with a combination of 0^g aCD3 Fab and 0^g aCD28 Fab, or 4.5µl of a preparation of Streptactin based multimerization reagent loaded with 0^g aCD3, 0^g aCD8 Fab and 0^g aCD28 Fab, or 3µl of a mixture of preparations of Streptactin based multimerization reagent with 0^g aCD3 Fab alone and 0^g aCD28 Fab alone (each Fab fragment again carries a streptavidin binding peptide). Untreated Tresp cells serve as negative control and Tresp cells stimulated with anti-CD3/anti-CD28 beads (aCD3- and aCD28- mAb coated beads) as positive control. Tresp cells are seeded in duplicates in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells are incubated at 37°C with media exchange after 3 days and analyzed after 6 days.

EXAMPLE 21: Preferential proliferation of CD8+ T cells among CD3+ T responder cells stimulated *in vitro* with streptavidin based multimerization reagents reversibly functionalized with aCD3 Fab and aCD28 Fab fragments

[0572] 300,000 CD3+ responder T cells (Tresp) are stimulated with varying amounts of a mixture of preparations of Streptactin based multimerization reagent (1mg/ml) functionalized with aCD3 Fab fragment alone and aCD28 Fab fragment alone (l^g Streptactin based multimerization reagent functionalized with 0^g aCD3 Fab fragment alone and l^g Streptactin based multimerization reagent functionalized with 0^g aCD28 Fab fragment
alone), or varying amounts of a mixture of preparations of Streptactin based multimerization reagent functionalized with aCD3 Fab fragment and aCD28 Fab fragment with or without aCD8 Fab fragment (each Fab fragment again carries a streptavidin binding peptide) (3µg Streptactin based multimerization reagent functionalized with O\(^\wedge\)g aCD3- and O\(^\wedge\)g aCD28 Fab fragment - without aCD8 Fab fragment, or 4.5 µl of a preparation of Streptactin multimerization reagent loaded with O\(^\wedge\)g aCD3 Fab fragment, O\(^\wedge\)g aCD8 Fab fragment and O\(^\wedge\)g aCD28 Fab fragment, wherein Fab fragment again carries a streptavidin binding peptide). Untreated Tresp cells serve as negative control and Tresp stimulated with anti-CD3/anti-CD28 beads (aCD3- and aCD28- mAb coated beads) as positive control. Tresp cells are seeded in 48-well plates in 1ml cell culture medium supplemented with 30U/ml IL-2. Cells are incubated at 37°C with media exchange after 3 days and analyzed after 6 days.

[0573] The present invention is not intended to be limited in scope to the particular disclosed embodiments, which are provided, for example, to illustrate various aspects of the invention. Various modifications to the compositions and methods described will become apparent from the description and teachings herein. Such variations may be practiced without departing from the true scope and spirit of the disclosure and are intended to fall within the scope of the present disclosure.
SEQUENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DPSKDSKAQVSAAEAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAASIDAAKKAGVNNNGPDLAVQQ</td>
<td>Streptavidin Species: Streptomyces avidinii UniProt No. P22629</td>
</tr>
<tr>
<td>2</td>
<td>EAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAAS</td>
<td>Minimal streptavidin Species: Streptomyces avidinii</td>
</tr>
<tr>
<td>3</td>
<td>DPSKDSKAQVSAAEAGITGTWYNQLGSTFIVTAGADGALTGTYVTARGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAASIDAAKKAGVNNNGPDLAVQQ</td>
<td>Mutein Streptavidin Val44-Thr45-Ala46-Arg47 Species: Streptomyces avidinii</td>
</tr>
<tr>
<td>4</td>
<td>EAGITGTWYNQLGSTFIVTAGADGALTGTYVTARGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAAS</td>
<td>Mutein Streptavidin Val44-Thr45-Ala46-Arg47 Species: Streptomyces avidinii</td>
</tr>
<tr>
<td>5</td>
<td>DPSKDSKAQVSAAEAGITGTWYNQLGSTFIVTAGADGALTGTYIGARGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAASIDAAKKAGVNNNGPDLAVQQ</td>
<td>Mutein Streptavidin Ile44-Gly45-Ala-46-Arg47 Species: Streptomyces avidinii</td>
</tr>
<tr>
<td>6</td>
<td>EAGITGTWYNQLGSTFIVTAGADGALTGTYIGARGNAESRYVLTGRYDSAPATDGSGLGWTVAWKNNYRNAHSAATTWSGQYYVGGAEARINTQWLLTSGTTEANAWKSTLGVHDFTFVKPKSAAS</td>
<td>Mutein Streptavidin Ile44-Gly45-Ala-46-Arg47 Species: Streptomyces avidinii</td>
</tr>
<tr>
<td>7</td>
<td>Trp-Arg-His-Pro-Gln-Phe-Gly-Gly</td>
<td>Streptavidin binding peptide, Strep-tag®</td>
</tr>
<tr>
<td>8</td>
<td>WSHPQFEK</td>
<td>Strep-tag® II</td>
</tr>
<tr>
<td>9</td>
<td>His-Pro-Xaa</td>
<td>Streptavidin Binding peptide</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>10</td>
<td>His-Pro-Gln-Phe</td>
<td>Streptavidin-binding peptide</td>
</tr>
<tr>
<td>11</td>
<td>Xaa₁-Xaa₂-His-Pro-Gln-Phe-Xaa₃-Xaa₄</td>
<td>Streptavidin-binding peptide Xaa₁ is Trp, Lys or Arg; Xaa₂ is any amino acid; Xaa₃ is Gly or Glu Xaa₄ is Gly, Lys or Arg</td>
</tr>
<tr>
<td>12</td>
<td>-Trp-Xaa₁-His-Pro-Gln-Phe-Xaa₂-Xaa₃·</td>
<td>Streptavidin-binding peptide Xaa₁ is any amino acid; Xaa₂ and Xaa₃ are Gly or Glu</td>
</tr>
<tr>
<td>13</td>
<td>Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(Xaa)n-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-</td>
<td>Sequential modules of streptavidin-binding peptide Xaa is any amino acid; n is either 8 or 12</td>
</tr>
<tr>
<td>14</td>
<td>Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer)n-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys</td>
<td>Sequential modules of streptavidin-binding peptide n is 2 or 3</td>
</tr>
<tr>
<td>15</td>
<td>SAWSHPQFEKGGGGGGGGGGWSHPQFEK</td>
<td>Twin-Strep-tag</td>
</tr>
<tr>
<td>16</td>
<td>SAWSHPQFEKGGGGGGGGGGSAWSHPQFEK</td>
<td>Twin-Strep-tag</td>
</tr>
<tr>
<td>17</td>
<td>WSHPQFEKGGGGGGGGGWSHPQFEK</td>
<td>Twin-Strep-tag</td>
</tr>
<tr>
<td>18</td>
<td>WSHPQFEKGGGGGGGGWSHPQFEK</td>
<td>Twin-Strep-tag</td>
</tr>
<tr>
<td>19</td>
<td>WSHPQFEKGGGGGGGGGSAWSHPQFEK</td>
<td>Twin-Strep-tag</td>
</tr>
<tr>
<td>20</td>
<td>Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala</td>
<td>HA-tag</td>
</tr>
<tr>
<td>21</td>
<td>Tyr-Thr-Ile-Glu-Met-Asn-Arg-Leu-Gly-Lys</td>
<td>VSV-G-tag</td>
</tr>
<tr>
<td>22</td>
<td>Gln-Pro-Glu-Leu-Ala-Pro-Glu-Asp-Pro-Glu-Asp</td>
<td>HSV-tag</td>
</tr>
<tr>
<td>23</td>
<td>Ala-Ser-Met-Thr-Gly-Gln-Gln-Met-Gly</td>
<td>T7 epitope</td>
</tr>
<tr>
<td>No.</td>
<td>Sequence</td>
<td>Annotation</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>24</td>
<td>Gln-Pro-Glu-Leu-Ala-Pro-Glu-Asp-Pro-Glu-Asp</td>
<td>HSV epitope</td>
</tr>
<tr>
<td>25</td>
<td>Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu</td>
<td>Myc epitope</td>
</tr>
<tr>
<td>26</td>
<td>Gly-Lys-Pro-Ile-Pro-Asn-Pro-Leu-Gly-Leu-Asp-Ser-Thr</td>
<td>V5-tag</td>
</tr>
<tr>
<td>27</td>
<td>EAIGITGWYNQLGSTFIVTAGADGALTGTYVTARGNAESRYLTRGLGTVAYWAKKNNYRHAHATTWSSGQVYGGEAERINTQWLLTSGTTEENAGYSTLVGHDTFTKVKSAAAS</td>
<td>Mutein Streptavidin Val44-Thr45-Ala46-Arg47 and Glu17, Gly 120, Try 121 (mutein m1-9) Species: Streptomyces avidini</td>
</tr>
<tr>
<td>28</td>
<td>DPSKDSKAQVSAAEAGITGWYNQLGSTFIVTAGADGALTGTYVTARGNAESRYLTRGLGTVAYWAKKNNYRHAHATTWSSGQVYGGEAERINTQWLLTSGTTEENAGYSTLVGHDTFTKVKSAAAS</td>
<td>Mutein Streptavidin Val44-Thr45-Ala46-Arg47 and Glu17, Gly 120, Try 121 (mutein m1-9) Species: Streptomyces avidini</td>
</tr>
<tr>
<td>29</td>
<td>AMQVQLKQSG PGLVQPSQSL SITCTVSGFS LTTFGWHVWR QSPGKGLEWL GVIWASGIDT YNVPFMSRLS ITKDNSKSOV FFKLNLSQPD DTAYYYCAKN DPGTGFAYWG QGTLTVSAG STKGPSVFPL APSSKTSSG TAAALGLKVD YFEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLLSVVTV PSSSLGTQTYYCVNHKPSN TKVDKVKEPK SCGSAXSHPO FEGGGGSGS SGGGASHPO FEK</td>
<td>Variable Heavy chain of Fab fragment m3B8.2</td>
</tr>
<tr>
<td>30</td>
<td>AMDIQMTQSP ASLSASVGTEVTFTCRASEM IYSYALAYQQ KQGKSPQLLV HDAKTLEAVG P5RFSGGQSG TQFSLKINTL QPEDFGTYYC QAHYGNPTF GGEKTLIEKR GIAAPSFIF PPSDEQLKSG TAVVCLNN FYPREAKVQW KVYVALQSGN SQVESQTEQDS KSTYSLSST LTLSKADYEK HKVLACEVTH QGSSLVPKSN FRNGECGS</td>
<td>Variable Light chain of Fab Fragment m3B8.2</td>
</tr>
<tr>
<td>31</td>
<td>Gin Val Gin Leu Gin Gin Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gin Arg Pro Gly Gin Gly Leu Glu Trp Ile Gly Tyr Ile Asp Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gin Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gin Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Asp Tyr Trp Gly Gin Gly Thr Thr Thr Thr Leu Thr Val Ser Ser</td>
<td>Variable Heavy chain of anti-CD3 antibody OKT3</td>
</tr>
<tr>
<td>32</td>
<td>Gin Ile Val Leu Thr Gin Ser Pro Ala Ile Met Ser Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gin Gin Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gin Gin Trp Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu</td>
<td>Variable Light chain of anti-CD3 antibody OKT3</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>Antibody Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Arg Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Glu Tyr Ile Ile His Trp Ile Lys Leu Arg Ser Gly Gln Gly Leu Glu Glu Trp Ile Gly Trp Phe Tyr Pro Gly Ser Asp Ile Gln Tyr Asn Ala Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Val Tyr Met Glu Leu Thr Glu Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Asp Asp Phe Ser Gly Tyr Asp Ala Leu Pro Tyr Trp Gly Gln Gly Thr Met Val Thr Val</td>
<td>Variable Heavy chain of anti-CD28 antibody CD28.3</td>
</tr>
<tr>
<td>34</td>
<td>Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Val Gly Glu Thr Val Thr Ile Thr Cys Arg Thr Asn Glu Asn Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln Gln Gly Lys Ser Pro Gln Leu Leu Ile Tyr Ala Ala His Leu Val Glu Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Thr Ser Leu Gln Ser Glu Asp Phe Gly Asn Tyr Tyr Cys Gln His Phe Trp Gly Thr Pro Cys Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg</td>
<td>Variable Light chain of anti-CD28 antibody CD28.3</td>
</tr>
<tr>
<td>35</td>
<td>His-Asn-His-Arg-His-Lys-His-Gly-Gly-Gly-Cys</td>
<td>MAT tag</td>
</tr>
<tr>
<td>36</td>
<td>Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Arg Thr Ser Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu Glu Trp Leu Ala His Ile Trp Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ala Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Ser Asn Glu Val Phe Leu Lys Ile Ala Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr Cys Ala Glu Ile Asn Pro Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Thr Ser</td>
<td>αCD16 antibody 3G8 VH</td>
</tr>
<tr>
<td>37</td>
<td>Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Glu Ser Val Asp Phe Asp Gly Asp Ser Phe Met Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Thr Thr Ser Asn Leu Glu Ser Gly Ile Pro Ala Arg Phe Ser Ala Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu Asp Thr Ala Thr Tyr Tyr Cys Gln Gln Ser Asn Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys</td>
<td>αCD16 antibody 3G8 VL</td>
</tr>
<tr>
<td>38</td>
<td>CRVLCCYVL</td>
<td>antigen-specific peptide</td>
</tr>
<tr>
<td>39</td>
<td>QYDPVAALF</td>
<td>pp65 epitope of CMV (amino acids 341-350)</td>
</tr>
<tr>
<td>40</td>
<td>RPHERNGFETV</td>
<td>pp65 epitope of CMV (amino acids 265-274)</td>
</tr>
<tr>
<td>41</td>
<td>CPYSQTAYNSL</td>
<td>hexon 5 epitope of adenovirus (amino acids 114-124)</td>
</tr>
<tr>
<td>42</td>
<td>Met Gly Ser His Ser Met Arg Tyr Phe Ser Thr Ser Val Ser Arg Pro Gly Gly Gly Glu Pro Arg Phe Ile Ala Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala Ala Ser Glu Arg Met Glu Pro Arg Ala Pro Trp Ile Glu Glu Gly Pro Gly Thr Tyr Trp Asp Glu Glu Thr Gly Lys Val Lys Ala His Ser Gln Thr Asp Arg Glu Asn Leu Arg Ile Ala Leu Arg Tyr Tyr Asn Glu Ser Glu Ala Gly Ser His Thr Leu Gln Met Met Phe Gly Cys Asp Val Gly Ser Asp Gly Arg Phe Leu Arg Gly Tyr His Gln Tyr Ala Tyr Asp Gly Lys Asp Tyr Ile Ala Leu Lys Glu Asp Leu Arg Ser Trp Thr Ala Asp Met Ala Ala Glu Ile Thr</td>
<td>HLA-A*2402</td>
</tr>
<tr>
<td>Lys Arg Lys Trp Glu Ala Ala His Val Ala Glu Gin Gin Arg Ala Tyr Leu Glu Gly Thr Cys Val Asp Gly Leu Arg Arg Tyr Leu Glu Asn Gly Lys Glu Thr Leu Gin Arg Thr Asp Pro Pro Lys Thr His Met Thr His His Pro Ile Ser Asp His Glu Ala Thr Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr Trp Gin Arg Asp Gly Glu Asp Gin Thr Gin Asp Thr Glu Leu Val Glu Thr Arg Pro Ala Gly Asp Gly Thr Phe Gin Lys Trp Ala Ala Val Val Val Pro Ser Gly Glu Gin Arg Tyr Thr Cys His Val Gin His Glu Gly Leu Pro Lys Pro Leu Thr Leu Arg Trp Glu Pro Pro Pro Ser Gly Ser Ser Ala Trp Ser His Pro Gin Phe Glu Lys Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly Ser Ser Ser Ala Trp Ser His Pro Gin Phe Glu Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Gly Ser His Ser Met Arg Tyr Phe Tyr Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ser Val Gly Tyr Val Asp Asp Thr Gin Phe Val Arg Phe Asp Ser Asp Ala Ala Ser Pro Arg Glu Glu Pro Arg Ala Pro Trp Ile Glu Gin Gly Pro Glu Tyr Trp Asp Arg Asn Thr Gin Ile Tyr Lys Ala Gin Ala Gin Thr Asp Arg Glu Ser Leu Arg Asn Leu Arg Gly Tyr Tyr Asn Gin Ser Glu Ala Gly Ser His Thr Leu Gin Ser Met Tyr Gly Cys Asp Val Gly Pro Asp Gly Arg Leu Arg Gly His Asp Gin Tyr Ala Tyr Asp Gly Lys Asp Tyr Ile Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala Asp Thr Ala Gin Ile Thr Gin Arg Lys Trp Glu Ala Ala Arg Ala Glu Gin Arg Arg Ala Tyr Leu Glu Gly Glu Cys Val Glu Trp Leu Arg Arg Tyr Leu Glu Asn Gly Lys Asp Lys Leu Glu Arg Ala Asp Pro Pro Lys Thr His Val Thr His His Pro Ile Ser Asp His Glu Ala Thr Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr Trp Gin Arg Asp Gly Glu Asp Gin Thr Gin Asp Thr Glu Leu Val Glu Thr Arg Pro Ala Gly Asp Arg Thr Phe Gin Lys Trp Ala Ala Val Val Val Pro Ser Gly Glu Gin Arg Tyr Thr Cys His Val Gin His Glu Gly Leu Pro Lys Pro Leu Thr Leu Arg Trp Glu Pro Pro Pro Ser Gly Ser Ser Ala Trp Ser His Pro Gin Phe Glu Lys Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Ser Ser Ala Trp Ser His Pro Gin Phe Glu Lys</td>
<td>HLA-B*0702</td>
<td></td>
</tr>
<tr>
<td>Met Ala Leu Thr Glu Thr Trp Ala Cys Ser His Ser Met Arg Tyr Phe Asp Thr Ala Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ser Val Gly Tyr Val Asp Asp Thr Gin Phe Val Arg Phe Asp Ser Asp Ala Ala Ser Pro Arg Gly Glu Pro Arg Ala Pro Trp Ile Glu Gin Gly Pro Glu Tyr Trp Asp Arg Glu Thr Gin Lys Tyr Lys Arg Gin Ala Gin Ala Asp Arg Val Ser Leu Arg Asn Leu Arg Gly Tyr Tyr Asn Gin Ser Glu Asp Gly Ser His Thr Leu Gin Arg Met Ser Gly Cys Asp Leu Gly Pro Asp Gly Arg Leu Arg Arg Gly Tyr Asp Gin Ser Ala Tyr Asp Gly Lys Asp Tyr Ile Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala Asp Thr Ala Ala Gin Ile Thr Gin Arg Lys Leu Glu Ala Ala Arg Ala Ala Glu Gin Leu Arg Ala Tyr Leu Glu Gly Thr Cys Val Glu Trp Leu Arg Arg Tyr Leu Glu Asn Gly Lys Glu Thr Leu Gin Arg Ala Glu Pro Pro Lys Thr His Val Thr His Pro Leu Ser Asp His Glu Ala Thr Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Thr Leu Thr Trp Gin Arg Asp Gly Glu Asp Thr Gin Thr Gin Asp Thr Glu Leu Val Glu Thr Arg Pro Ala Gly Asp Gly Thr Phe Gin Lys Trp Ala Ala Val Val Val Pro Ser Gly Gin Gin Arg Tyr Thr Cys His Met Gin His Glu Gly Leu Gin Glu Pro Leu Thr Leu Ser Trp Glu Pro Pro Ser Gin Pro Thr Ile Gly Ser Ala Trp Ser His Pro Gin Phe Glu Lys Gly Gly Gly</td>
<td>HLA-C*0702</td>
<td></td>
</tr>
<tr>
<td>Ser Gly Gly Gly Gly Gly Ser Gly Ala Trp Ser His Pro Gln Phe Glu Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Met Ile Gln Arg Thr Pro Lys Ile Gln Val Tyr Ser Arg His Pro Ala Glu Asn Gly Lys Ser Asn Phe Leu Asn Cys Tyr Val Ser Gly Phe His Pro Ser Asp Ile Glu Val Asp Leu Leu Lys Asn Gly Glu Arg Ile Glu Lys Val Glu His Ser Asp Leu Ser Phe Ser Lys Asp Trp Ser Phe Tyr Leu Leu Tyr Tyr Thr Glu Phe Thr Pro Thr Glu Lys Asp Glu Tyr Ala Cys Arg Val Asn His Val Thr Leu Ser Gln Pro Lys Ile Val Lys Trp Asp Arg Asp Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β₂ microglobulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 YTDIEMNRLGK</td>
<td>VSV-G tag</td>
<td></td>
</tr>
<tr>
<td>47 WREPGRMELN</td>
<td>10 amino acid tag from the collagen-binding domain of von Willebrand factor</td>
<td></td>
</tr>
<tr>
<td>48 GGGS</td>
<td>Linker peptide</td>
<td></td>
</tr>
<tr>
<td>49 PEEPLVVKVEEGDNAVLQCLKGTSDGPTQQLTWSRESPLKPFLKL</td>
<td>human CD19 extracellular domain with His-Tag</td>
<td></td>
</tr>
<tr>
<td>SLGLPGGLIIHMRLPLAIWLFIFNVSQMQMGFYLCPQGPPSEKAWQP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWTVNVEGSGELFRWNVSDLGGLGCGLKNSSEGSPSGKLMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKLYVWAKDRPEIWEGEPPCLPPRDSLNSLSQDLTMAPSTWLW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCCGVPDSVSRGPLSWTHVHPKGSLLSLELKDDRPARDMWVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETGLLLLPRATAQDAGKYYCHRGNLTMFSFLEITARPVLWHWLLRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGGWKAHHHHHHHHHHHHH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLAIMS

1. A method for modulating cells, the method comprising incubating a composition comprising target cells in the presence of a stimulatory agent that is reversibly bound to a first reagent comprising a plurality of stimulatory agent-binding sites capable of reversibly binding to the stimulatory agent, wherein:
 at least a plurality of the target cells are immobilized on a support during at least a portion of the incubation; and
 the incubation is carried out under conditions whereby the stimulatory agent specifically binds to a molecule expressed on the surface of the target cells, thereby inducing or modulating a signal in the target cells.

2. The method of claim 1, wherein the immobilization of the at least a plurality of cells is reversible.

3. The method of claim 1 or claim 2, wherein:
 the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, C1; and
 the stimulatory agent further comprises one or more of the binding partner, C1.

4. The method of claim 3, wherein:
 the plurality of stimulatory agent-binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, C1; and/or
 the stimulatory agent comprises two or more of the binding partner, C1.

5. The method of any of claims 1-4, wherein the stimulatory agent further comprises a binding site B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.
6. The method of any of claims 1-5, wherein:
the support is or comprises a stationary phase; and/or
the support is or comprises a solid support.

7. The method of any of claims 2-5, wherein the reagent is a first reagent and the at least a portion of the incubation is carried out in the presence of (a) a second reagent, which is immobilized on the support, and (b) a selection agent reversibly bound to said second reagent;
wherein specific binding by the selection agent to a selection marker expressed by at least a plurality of the target cells effects the reversible immobilization of said at least a plurality of the target cells on the support.

8. A method of modulating cells, comprising:
(1) combining (a) a composition comprising target cells, (b) a selection agent that (i) is capable of specifically binding to a selection marker expressed by one or more of the at least a plurality of the target cells of the plurality and (ii) is immobilized, or is capable of being immobilized, on a support, directly or indirectly; and (c) the support, whereby one or more target cells of the at least a plurality are immobilized on the support via the selection agent; and
(2) incubating at least a plurality of the target cells in the presence of a stimulatory agent reversibly bound to a reagent, the reagent comprising a plurality of stimulatory agent-binding sites each capable of reversibly binding to the stimulatory agent, under conditions whereby the stimulatory agent specifically binds to a molecule expressed on the surface of the target cells, thereby inducing or modulating a signal in the target cells.

9. The method of claim 8, wherein the reagent is a first reagent and the selection agent is reversibly bound to a second reagent, which is immobilized on the support, wherein specific binding by the selection agent to a selection marker expressed by at least a plurality of the target cells effects the reversible immobilization of said at least a plurality of the target cells on the support.
10. The method of any of claims 7-9, wherein the second reagent comprises a plurality of selection agent-binding sites each capable of reversibly binding to the selection agent.

11. The method of claim 10, wherein:
the plurality of selection agent-binding sites comprises one or more of a binding site, Y1, which is capable of reversibly binding to a binding partner, D1; and
the selection agent further comprises one or more of the binding partner, D1.

12. The method of claim 11, wherein the plurality of selection agent-binding sites comprises two or more of the binding site, Y1 and/or further comprises one or more of a binding site, Y2, which is capable of reversibly binding to the binding partner, D1; and/or
the selection agent comprises two or more of the binding partner, D1.

13. The method of any of claims 2-7 and 9-12, wherein the reversible immobilization of the at least a plurality of the target cells is facilitated by reversible immobilization of the reagent on the support, during said at least a portion of the incubation.

14. The method of any of claims 1-3, wherein:
the first reagent, is not, and is not bound to or associated with, a solid support, stationary phase, a bead, a microparticle, a magnetic particle, and/or a matrix during said incubation, and/or
the first reagent, is flexible, does not contain a metal or magnetic core, is comprised entirely or primarily of organic multimer, is not spherical, is not substantially spherical or uniform in shape, and/or is not rigid.

15. The method of any of claims 1-7, further comprising combining:
(a) at least a plurality of the target cells;
(b) a selection agent that (i) is capable of specifically binding to a selection marker expressed by one or more of the at least a plurality of the target cells of the plurality and (ii) is immobilized, or is capable of being immobilized, on a support, directly or indirectly; and
(c) the support;
whereby one or more target cells of the at least a plurality become immobilized on the support via the selection agent.

16. The method of any of claims 7-15, wherein:
the selection agent further comprises one or more of a binding partner, Dl, which is capable of reversibly binding to the binding site, Zl; and/or
the selection agent further comprises one or more of a binding partner, Dl, which is capable of reversibly binding to a binding site, Yl.

17. The method of claim 15 or claim 16, further comprising, after said combining, separating and/or removing, from the immobilized target cells, other cells of the composition.

18. The method of claim 17, further comprising performing a wash step.

19. The method of claim 17 or claim 18, wherein said separating and/or said wash step is carried out prior to initiation of said incubation.

20. The method of any of claims 8-19, wherein the support is or comprises a stationary phase and/or is or comprises a solid support.

21. The method of any of claims 15-20, wherein:
said incubating is carried out and/or is initiated prior to said combining; or
said incubating is carried out and/or is initiated subsequently to said combining.

22. The method of any of claims 15-21, wherein said combining is carried out during at least a portion of said incubation.

23. The method of any of claims 15-22, wherein the immobilization of the selection agent on the support is reversible.
24. The method of any of claims 8-23, wherein the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, C1; and
the stimulatory agent further comprises one or more of the binding partner, C1.

25. The method of claim 24, wherein:
the plurality of stimulatory agent-binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, C1; and/or
the stimulatory agent comprises two or more of the binding partner, C1.

26. The method of any of claims 13-24, wherein the stimulatory agent further comprises a binding site B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.

27. The method any of claims 15-26, wherein:
said reagent is a first reagent; and
the immobilization of the selection agent to the support is indirect, and is via reversible binding of the selection agent to a second reagent, which is immobilized on the support.

28. The method of claim 27, wherein the second reagent comprises a plurality of selection agent-binding sites capable of reversibly binding to the selection agent.

29. The method of claim 28, wherein said plurality of selection agent-binding sites comprise a binding site, Y1, which is capable of binding to a binding partner, D1, one or more of which is comprised by the selection agent.

30. The method of claim 29, wherein:
said plurality of selection agent-binding sites comprises two or more of the binding site, Y1 and/or further comprises one or more of a binding site, Y2, which is capable of reversibly binding to the binding partner, D1; and/or
the selection agent comprises two or more of the binding partner, Dl.

31. The method of any one of claims 27-30, wherein the second reagent and the selection agent are reversibly bound together in a complex at the time of said combining, wherein the combining is carried out by combining the cells with the complex.

32. The method of any one of claims 27-30, wherein the second reagent and the selection agent are not in a complex at the time of said combining, wherein the combining is carried out by separate addition of the second reagent and selection agent.

33. The method of any one of claims 7 to 12 and 15 to 32, wherein the selection agent further comprises a binding site, B1, and the specific binding between the selection agent and the selection marker comprises interaction between B1 and the selection marker.

34. The method of any one of claims 7 to 12 and 15 to 33 wherein the selection agent comprises only one of said binding site, B1; wherein the selection agent comprises only a single binding site that specifically binds to the selection marker; and/or wherein the selection agent specifically binds to the selection marker in a monovalent manner.

35. The method of any one of claims 7-12 and 15-34, wherein the selection agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or the selection agent comprises an antibody fragment; the selection agent is or comprises a Fab fragment; the selection agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2$'-fragments and divalent single-chain Fv (scFv) fragments;
the selection agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or
the selection agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glutodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers.

36. The method of any of claims 7-12 and 15-35, wherein:
the selection marker is a B cell or T cell coreceptor;
the selection marker is or comprises a member of a T cell or B cell antigen receptor complex;
the selection marker is or comprises a CD3 chain;
the selection marker is or comprises a CD3 zeta chain;
the selection marker is or comprises a CD8;
the selection marker is or comprises a CD4 and/or
the specific binding between the selection agent and the selection marker does not induce a signal, or does not induce a stimulatory or activating or proliferative signal, to the target cells.

37. The method of any one of claims 1 to 36,
wherein the stimulatory agent comprises only one of said binding site, B2;
wherein the stimulatory agent comprises only a single binding site that specifically binds to the molecule; or
wherein the stimulatory agent specifically binds to the molecule in a monovalent manner.

38. The method of any of claims 1-37, wherein:
the stimulatory agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or
the stimulatory agent comprises an antibody fragment;
the stimulatory agent is or comprises a Fab fragment;
the stimulatory agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2$-fragments and divalent single-chain Fv (scFv) fragments;
the stimulatory agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or
the stimulatory agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers;

39. The method of any of claims 1-38, wherein:
the molecule expressed on the surface of the target cells is or comprises a member of a T cell or B cell antigen receptor complex;
the molecule expressed on the surface of the target cells is or comprises a CD3 chain;
the molecule expressed on the surface of the target cells is or comprises a CD3 zeta;
the molecule expressed on the surface of the target cells is or comprises an antigen-binding portion of a T cell receptor or a B cell receptor;
the molecule expressed on the surface of the target cells is a chimeric antigen receptor;
the specific binding of the stimulatory agent and the molecule is capable of delivering a primary signal to a T cell or B cell.

40. The method of any of claims 1-39, wherein:
the stimulatory agent comprises a comprises an MHC Lpeptide complex or functional portion thereof, an MHCILpeptide complex or functional portion thereof, and/or is capable of delivering a stimulatory signal through a TCR/CD3 complex in a T cell, a CD3-containing complex in a T cell, and/or an ITAM-containing molecule in a T cell, and/or
said inducing or modulating said signal results in an increase in expression of a cytokine in the target cell.

41. The method of claim 40, wherein the cytokine is IL-2, IFN-γ and/or IL-4.
42. The method of any of claims 1-41, wherein the molecule expressed on the surface of target cells is a first molecule and the stimulatory agent is further capable of binding to a second molecule expressed on the surface of at least a plurality of the target cells.

43. The method of any of claims 1-42, wherein the molecule expressed on the surface of target cells is a first molecule, the stimulatory agent is a first stimulatory agent and the incubation is further carried out in the presence of a second stimulatory agent, which is capable of binding to a second molecule expressed on the surface of at least a plurality of the target cells.

44. The method of claim 43, wherein the second stimulatory agent is reversibly bound to the first reagent or is reversibly bound to a fourth reagent.

45. The method of claim 43 or claim 44, wherein:
the second stimulatory agent comprises one or more of the binding partner, CI;
the second stimulatory agent comprises one or more of a binding partner, C2, which is capable of binding to the stimulatory agent-binding site; and/or
the second stimulatory agent comprises one or more of a binding partner, C2, which is capable of binding to a binding site, Z2, and the reagent further comprises one or more of the binding site Z2.

46. The method of claim 45, wherein:
C2 and CI are the same or substantially the same, or contain the same or substantially the same moiety;
Z1 and Z2 are the same or substantially the same or contain the same or substantially the same moiety.

47. The method of any of claims 43-46, wherein the second stimulatory agent comprises one or more of a binding site, B4, which facilitates the specific binding between the second stimulatory agent and the second molecule.
48. The method of claim 42, wherein the stimulatory agent further comprises one or more of a binding site, B4, which facilitates specific binding thereof to the second molecule.

49. The method of any of claims 42-48, wherein the specific binding of the agent or second agent to the second molecule is capable of enhancing, dampening, or modifying a signal delivered through the first molecule.

50. The method of any of claims 42-49, wherein:
 the second molecule is a costimulatory molecule;
 the second molecule is an accessory molecule; the second molecule is a cytokine receptor;
 the second molecule is a chemokine receptor;
 the second molecule is an immune checkpoint molecule; or
 the second molecule is a member of the TNF family or the TNF receptor family.

51. The method of claim 50, wherein the second molecule comprises a CD28, a CD137, or a CD40 ligand, or a CD40, or an OX40, or an ICOS, or functional portion of any of the foregoing.

52. The method of any of claims 7-12 and 15-51, wherein the selection marker is a first selection marker and the selection agent is further capable of binding to a second selection marker, which is expressed on the surface of at least a plurality of the target cells.

53. The method of any of claims 7-12 and 15-52, wherein the selection marker is a first selection marker and the selection agent is a first selection agent and the incubation is further carried out in the presence of a second selection agent, which is capable of binding to a second selection marker, which is expressed on the surface of at least a plurality of the target cells.

54. The method of claim 53, wherein:
 the second selection agent is reversibly bound to the second reagent or
the second selection agent is reversibly bound to a third reagent, which is immobilized on the support or an additional support.

55. The method of claim 53 or 54, wherein:
the second selection agent comprises one or more of the binding partner, D1; and/or
the second selection agent comprises one or more of a binding partner, D2, which is capable of binding to the binding site, Y1; and/or
the second selection agent comprises one or more of a binding partner, D2, which is capable of binding to a binding site, Y2, and the second reagent further comprises one or more of the binding site Y2.

56. The method of claim 55, wherein:
D2 and D1 are the same or substantially the same, or contain the same or substantially the same moiety;
Y1 and Y2 are the same or substantially the same or contain the same or substantially the same moiety;
CI and D1 are the same or substantially the same, or contain the same or substantially the same moiety; and/or
Z1 and Y1 are the same or substantially the same, or contain the same or substantially the same moiety.

57. The method of any of claims 53-56, wherein the second selection agent comprises one or more of a binding site, B3, which facilitates the specific binding between the second selection agent and the second selection marker.

58. The method of any of claims 52 and 54-57, wherein the selection agent further comprises one or more of a binding site, B3, which facilitates specific binding thereof to the second selection marker.

59. The method of any of claims 43-58,
wherein the second stimulatory agent comprises only one of said binding site, B4;
wherein the second stimulatory agent comprises only a single binding site that
specifically binds to the second molecule;

wherein the second stimulatory agent specifically binds to the molecule in a monovalent
manner.

60. The method of any of claims 43-59, wherein:
the second stimulatory agent is or comprises an agent selected from the group consisting
of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with
immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines,
aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments
thereof; and/or
the second stimulatory agent comprises an antibody fragment;
the second stimulatory agent is or comprises a Fab fragment;
the second stimulatory agent is selected from the group of divalent antibody fragments
consisting of (Fab)_2'-fragments and divalent single-chain Fv (scFv) fragments;
the second stimulatory agent is a monovalent antibody fragment selected from the group
consisting of Fab fragments, Fv fragments, and scFvs; and/or
the second stimulatory agent is a proteinaceous binding molecule with antibody-like
binding properties, selected from the group consisting of aptamers, muteins based on a
polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins
based on the crystalline scaffold, adnectins, and avimers; and/or

61. The method of any of claims 52-60,
wherein the second selection agent comprises only one of said binding site, B3;
wherein the second selection agent comprises only a single binding site that specifically
binds to the second selection marker; and/or
wherein the second selection agent specifically binds to the second selection marker in a
monovalent manner.
62. The method of any of claims 52-61, wherein:
the second selection agent is or comprises an agent selected from the group consisting of antibody fragments, monovalent antibody fragments, proteinaceous binding molecules with immunoglobulin-like functions, molecules containing Ig domains, cytokines, chemokines, aptamers, MHC molecules, MHC-peptide complexes; receptor ligands; and binding fragments thereof; and/or
the second selection agent comprises an antibody fragment;
the second selection agent is or comprises a Fab fragment;
the second selection agent is selected from the group of divalent antibody fragments consisting of (Fab)$_2'$-fragments and divalent single-chain Fv (scFv) fragments;
the second selection agent is a monovalent antibody fragment selected from the group consisting of Fab fragments, Fv fragments, and scFvs; and/or
the second selection agent is a proteinaceous binding molecule with antibody-like binding properties, selected from the group consisting of aptamers, muteins based on a polypeptide of the lipocalin family, glubodies, proteins based on the ankyrin scaffold, proteins based on the crystalline scaffold, adnectins, and avimers.

63. The method of any of claims 52-62, wherein:
the second selection marker is a B cell or T cell coreceptor;
the second selection marker is or comprises a member of a T cell or B cell antigen receptor complex;
the second selection marker is or comprises a CD3 chain;
the second selection marker is or comprises a CD3 zeta chain;
the second selection marker is or comprises a CD8;
the second selection marker is or comprises a CD4 and/or
the specific binding between the second selection agent and the second selection marker does not induce a signal, or does not induce a stimulatory or activating or proliferative signal, to the target cells.
A method of cell modulation, the method comprising:

(a) combining a composition comprising target cells and a stimulatory agent reversibly bound to a reagent that is immobilized on a support, wherein the reagent comprises a plurality of stimulatory agent-binding sites, each capable of reversibly binding to the stimulatory agent, and is capable of specifically binding to a molecule expressed on the surface of the target cells, thereby immobilizing the target cells on the support; and

(b) separating or removing, from the immobilized target cells, other cells of the composition; and

(c) incubating at least some of the immobilized target cells in the presence of the stimulatory agent, under conditions whereby a signal is induced or modulated in at least a plurality of the target cells.

The method of claim 64, wherein the support is or comprises a solid support and/or a stationary phase.

The method of claim 64 or claim 65, wherein the plurality of stimulatory agent-binding sites comprises one or more of a binding site, Z1, which is capable of reversibly binding to a binding partner, C1; and

the stimulatory agent further comprises one or more of the binding partner, C1.

The method of claim 66, wherein:

the plurality of stimulatory agent binding sites comprises two or more of the binding site, Z1 and/or further comprises one or more of a binding site, Z2, which is capable of reversibly binding to the binding partner, C1; and/or

the stimulatory agent comprises two or more of the binding partner, C1.

The method of any of claims 64-67, wherein the stimulatory agent further comprises a binding site B2, wherein the specific binding between the stimulatory agent and the molecule on the surface of the target cells comprises interaction between B2 and the molecule.
69. The method of any of claims 1-68, wherein the binding between one or more of the agents reversibly bound to the first, second and/or third reagent is individually capable of being disrupted by addition of a substance to the cells.

70. The method of claim 69, wherein:

the reversible binding between the stimulatory agent and the first reagent is capable of being disrupted by the addition of the substance; and/or

the reversible binding between the selection agent and the first reagent or the selection agent and the second reagent is capable of being disrupted by the addition of the substance; and/or

each of the reversible binding between the stimulatory agent and the first reagent, and the reversible binding between the selection agent and the second reagent and/or first reagent is capable of being disrupted by the addition of the substance;

the reversible binding between the second stimulatory agent and the first reagent or fourth reagent is capable of being disrupted by the addition of the substance; and/or

the reversible binding between the second selection agent and the first reagent and/or the second selection agent and the second reagent and/or the second selection agent and the third reagent is capable of being disrupted by the addition of the substance; and/or

each of the reversible binding between the second stimulatory agent and the first reagent or fourth reagent, and the reversible binding between the second selection agent and the first reagent, second reagent, and/or third reagent, is capable of being disrupted by the addition of the substance.

71. The method of claim 69 or claim 70, wherein:

the substance is or comprises a free binding partner; or

the substance is or comprises a competition agent; and/or

the substance effects a change that disrupts the binding, other than by competition for said binding.
72. The method of claim 71, wherein the substance is not detrimental to the target cells or to a majority of the target cells and/or wherein the addition of the substance to the target cells, in an amount sufficient to effect said disruption, does not reduce the survival and/or proliferative capacity of the cells by less than at or about 90%, 80%, 70%, 60%, or 50%, as compared to the absence of the substance under the otherwise same conditions.

73. The method of any of claims 69-72, wherein the substance is or comprises a peptide or polypeptide.

74. The method of any one of claims 69-73, wherein:
 the substance comprises a molecule from the group consisting of: streptavidin-binding molecules; biotin; D-biotin; biotin analogs; biotin analogs that specifically bind to streptavidin or a streptavidin analog having an amino acid sequence Val^{44}-Thr^{45}-Ala^{46}-Arg^{47}, or Ile^{44}-Gly^{45}-Ala^{46}-Arg^{47}, at sequence positions corresponding to positions 44 to 47 of a wild type streptavidin; and peptides comprising or consisting of a sequence set forth in any of SEQ ID NO: 1, 4, 5, and 7; or
 the substance comprises a metal chelator, which is optionally EDTA or EGTA.

75. The method of any of claims 1-74, wherein:
 the support comprises a resin or matrix;
 the support comprises a gel filtration matrix;
 the support comprises a chromatography matrix; and/or
 the support comprises a cellulose-based or organic polymer-based membrane.

76. The method of claim 75, wherein the chromatography matrix is present within a column and/or wherein the chromatography is column chromatography or planar chromatography.

77. The method of any of claims 1-76, wherein the support comprises a microparticle, rigid particle, magnetic particle, or bead.
78. The method of any of claims 1-77, wherein the support is a stationary phase, present within a container during all or part of said incubation and/or said contacting.

79. The method of claim 78, wherein the container comprises a container selected from the group consisting of: columns, containers suitable for bidirectional flow, pipette tips, tubes, and columns suitable for flow-through of a liquid sample.

80. The method of any of claims 1-79, wherein:
 the target cells comprise blood cells;
 the target cells comprise leukocytes;
 the target cells comprise lymphocytes;
 the target cells comprise B cells;
 the target cells comprise a B cell population
 the target cells comprise T cells;
 the target cells comprise a T cell population; and/or
 the target cells comprise natural killer (NK) cells.

81. The method of claim 80, wherein the target cells comprise antigen-specific T cells or a population thereof, a T helper cell or population thereof, a cytotoxic T cell or population thereof, a memory T cell or population thereof, a regulatory T cell or population thereof, or a NK cell or population thereof, antigen-specific B cells or a population thereof, a memory B cell or population thereof, or a regulatory B cell or population thereof.

82. The method of any of claims 1-81, wherein the induction or modulation of the signal induces, dampens, inhibits, or enhances activation, proliferation, survival, and/or expansion.

83. The method of any of claims 1-82, wherein:
 the first reagent, the second reagent and/or the third reagent independently is or comprises a streptavidin, an avidin, an analog of streptavidin that reversibly binds to biotin, an analog of avidin that reversibly binds to biotin, a reagent that comprises at least two chelating
groups, K, which are capable of binding to a transition metal ion, an agent capable of binding to an oligohistidine affinity tag, an agent capable of binding to a glutathione-S-transferase, calmodulin or an analog thereof, an agent capable of binding to calmodulin binding peptide (CBP), an agent capable of binding to a FLAG-peptide, an agent capable of binding to an HA-tag, an agent capable of binding to maltose binding protein (MBP), an agent capable of binding to an HSV epitope, an agent capable of binding to a myc epitope, and/or an agent capable of binding to a biotinylated carrier protein

84. The method of claim 83, wherein the first reagent, second reagent and/or third reagent independently is or comprises an oligomer or polymer.

85. The method of any of claims 1-84, wherein the first reagent, second reagent or third reagent independently is or comprises an oligomer or polymer of streptavidin, avidin, streptavidin analog or avidin analog, which oligomer or polymer comprises monomers of the streptavidin, avidin, or analog, which are crosslinked by a polysaccharide or a bifunctional linker.

86. The method of any of claims 2-7, 16-63 and 66-85, wherein:
the binding partner C1, the binding partner C2, the binding partner D1 and/or the binding partner D2, independently, comprise biotin, a biotin analog that reversibly binds to a streptavidin or avidin; and/or
each of the binding partner C1 and the binding partner C2, independently, comprises biotin, a biotin analog that reversibly binds to streptavidin or avidin; and/or
each of the binding partner D1 and the binding partner D2, independently, comprises biotin, a biotin analog that reversibly binds to streptavidin or avidin.

87. The method of any of claims 1-86, wherein:
the first reagent, the second reagent and/or the third reagent independently comprises a streptavidin analog or an avidin analog that reversibly binds to biotin;
the first reagent, the second reagent and/or the third reagent independently comprises a streptavidin analog or an avidin analog that reversibly binds to a biotin analog; and/or
the first reagent, the second reagent and/or the third reagent independently comprises a streptavidin analog or an avidin analog that reversibly binds to a streptavidin-binding peptide; and/or

the first reagent, the second reagent and/or the third reagent independently comprises a streptavidin analog or an avidin analog that reversibly binds to a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 3Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19).

88. The method of any of claims 2-7, 16-63 and 66-87, wherein:

the binding partner CI, the binding partner C2, the binding partner D1 and/or the binding partner D2, independently, comprise a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 3Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 15 or 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19); each of the binding partner CI and the binding partner C2, independently, comprises a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 3Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19); and/or each of the binding partner D1 and the binding partner D2, independently, comprises a streptavidin-binding peptide selected from the group consisting of Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 8), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 3Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 17), Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-(GlyGlyGlySer) 2.
Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 18) and Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-
(GlyGlyGlySer) 2Gly-Gly-Ser-Ala-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys (SEQ ID NO: 19).

89. The method of any of claims 1-88, wherein:

the first reagent, second reagent and/or third reagent independently comprises a streptavidin analog, which comprises the amino acid sequence Val44-Thr45-Ala46-Arg47 at sequence positions corresponding to positions 44 to 47 of a wild type streptavidin or a streptavidin analog that comprises the amino acid sequence Ile44-Gly45-Ala46-Arg47 at sequence positions corresponding to positions 44 to 47 of a wild type streptavidin; and/or

90. The method of any one of claims 2-7, 16-63 and 66-89, wherein the binding between said binding partner CI and/or the binding partner C2, respectively, and said binding sites Z1 and/or Z2, respectively, is capable of occurring in the presence of a divalent cation and/or is not capable of occurring in the absence of a divalent cation, and/or is disrupted by removal of divalent cations.

91. The method of any of claims 2-7, 16-63 and 66-90, wherein:

each of said binding partners CI and/or C2 and/or each of said binding partners D1 and/or D2, independently comprises a calmodulin binding peptide and the (first) reagent and/or the second reagent and/or the third reagent and/or the fourth reagent comprises calmodulin, or

each of said binding partners CI and/or C2 and/or each of said binding partners D1 and/or D2, independently comprises a FLAG peptide and the (first) reagent and/or the second reagent and/or the third reagent and/or the fourth reagent comprises an antibody binding the FLAG peptide, or

each of said binding partners CI and/or C2 and/or each of said binding partners D1 and/or D2, independently comprises an oligohistidine tag and said (first) reagent and/or the second reagent and/or the third reagent and/or the fourth reagent comprises an antibody binding the oligohistidine tag.
92. The method of any of claims 2-7, 16-63 and 66-91, wherein the binding between said binding partner CI and said binding site Z1 and/or between said binding partner C2 and/or said binding site Z2, and/or said binding partner D1 and said binding site Y1 and/or said binding partner D2 and said binding site Y2 is capable of disruption by metal ion chelation, which is optionally accomplished by addition of EDTA or EGTA.

93. The method of any of claims 2-7, 16-63 and 66-92, wherein:
 the binding partners CI and C2 are different and/or the interactions thereof with the (first) reagent are disruptable by the addition of a different substance or not by addition of the same substance;
 the binding partners D1 and D2 are different and/or the interactions thereof with the second reagent are disruptable by the addition of a different substance or not by addition of the same substance;
 the binding partners CI and/or C2 are different compared with the binding partners D1 and/or D2, and/or the interactions thereof with the first reagent and second reagent, respectively, are disruptable by the addition of a different substance or not by addition of the same substance.

94. The method of any of claims 2-7, 16-63 and 66-93, wherein:
 the binding partners CI and C2 are identical or substantially identical and/or the interactions thereof with the first reagent are disruptable by the addition of the same substance;
 the binding partners D1 and D2 are identical or substantially identical and/or the interactions thereof with the second reagent are disruptable by the addition of the same substance;
 the binding partners CI and/or C2 are identical or substantially identical compared with the binding partners D1 and/or D2, and/or the interactions thereof with the first reagent and second reagent, respectively, are disruptable by the addition of the same substance.

95. The method of any of claims 1-94, further comprising
 disrupting the binding between one or more of the agents reversibly bound to the first, second and/or third reagent.
96. The method of claim 95, wherein said disrupting is carried out following said incubation or is initiated subsequently to the initiation of said incubation; and/or

97. The method of claim 95 or claim 96, wherein said disruption is carried out by introducing a substance that disrupts the interaction between binding partner C1 and/or C2 and binding site Z1 and/or Z2.

98. The method of any of claims 95-97, wherein said disrupting causes:
termination of or lessening of a signal delivered by one of the stimulatory agents; or termination of or lessening of stimulation, activation, or expansion of the cells.

99. The method of any of claims 97-98, wherein said disruption comprises introducing to the cells a composition comprising the substance.

100. The method of any of claim 1-99, wherein the composition contacted with the second reagent further comprises non-target cells, and the method further comprises separating target cells from the non-target cells.

101. The method of any of claims 1-100, further comprising, prior to said incubation, expanding cells comprised in the population of target cells, or wherein cells have been expanded in vitro prior to said incubation.

102. The method of any one of claims 1-101, wherein the method further comprises changing medium or supplementing with a substance at least one time during said incubation.

103. The method of any one of claims 1-102, further comprising repeating one or more steps of the method in an iterative fashion, whereby cells of one or more populations are serially isolated and expanded in at least two cycles.
104. The method of claim 103, wherein the method comprises contacting target cells in the population with at least two different selection agents, in each of two different contacting steps, respectively, that specifically bind to two different selection markers, wherein at least a portion of said incubation is carried out between the contacting with the two different selection agents.

105. The method of any of claims 1-104, further comprising introducing a recombinant nucleic acid into target cells of the population, which nucleic acid encodes a recombinant protein, whereby the cells express the recombinant protein.

106. The method of claim 105, wherein said introducing is carried out subsequently to or during said incubation and/or while cells are immobilized on the support.

107. The method of any of claims 1-106, wherein the cells, during at least a portion of the incubation, express a recombinant protein, introduced \textit{ex vivo}.

108. The method of any of claims 105-107, wherein the introducing of the nucleic acid is carried out between a plurality of the at least two contacting steps.

109. The method of claim 108, wherein one of the at least two selection agents specifically binds to the recombinant protein and/or one of the stimulatory agents specifically binds to the recombinant protein.

110. The method of any of claims 1-109, wherein the first reagent is not immobilized on the support.

111. The method of any of claims 1-110, wherein subsequent to said incubation the method further comprises transferring target cells of the composition to a different environment, said environment being suitable for cell culture or expansion.
112. The method of claim 111, wherein the cells so transferred are transferred within a closed system or closed container to the different environment; or wherein the transfer comprises removing the cells so transferred from a first container and transferring the cells to a second container.

113. The method of claim 111 or 112, wherein the different environment is within an incubator.

114. The method of any of claims 111-113, wherein said transfer is carried out within a closed system, wherein said transfer comprises transfer of a sterilely-sealed container containing the cells to a sterile environment or to the different environment within the sealed container, and/or wherein said transfer is carried out within a sterile environment or under sterile conditions.

115. The method of claim 114, further comprising, following transfer, detaching cells from the stationary phase by disrupting said reversible binding and optionally removing said cells from the presence of the stationary phase.

116. The method of claim 1115, further comprising expanding said removed cells.

117. The method of any of claims 1-116, wherein temperature, pH, pO$_2$, pCO$_2$, and/or temperature is controlled during at least a portion of said incubation, optionally in an automated fashion.

118. The method of any of claims 111-117, wherein nutrients are fed to cells comprised in the at least one of the at least one stationary phase for chromatography while being in the environment suitable for expansion.
119. The method of any of claims 111-118, wherein the stationary phase is present in an apparatus of any of claims 131 to 143, wherein transfer for expansion to the suitable environment includes detaching the stationary phase from the cells, while said stationary phase is present in the apparatus.

120. An article of manufacture for the purification and modulation of target cells, the article of manufacture comprising:
(a) a stimulatory agent capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell;
(b) a first reagent, which comprises a plurality of stimulatory agent-binding sites, each capable of reversibly binding to the stimulatory agent;
(c) a second reagent;
(d) a support; and
(e) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on a target cell.

121. The method of claim 120, wherein the support is or comprises a stationary phase and/or a solid support.

122. The article of manufacture of claim 120 or claim 121, wherein the second reagent is immobilized on the support.

123. The article of manufacture of any of claims 120-122, wherein the first reagent is reversibly bound to the stimulatory agent and/or wherein the selection agent is reversibly bound to the second reagent.

124. The article of manufacture of any of claims 120-123, further comprising:
 a second stimulatory agent capable of specifically binding to a second molecule on the surface of the target cell and of reversibly binding to the first reagent and/or of reversibly binding to a fourth reagent; and/or
a second selection agent capable of specifically binding to a second selection marker, which is (i) comprised by the target cell or (ii) comprised by another target cell.

125. The method of claim 124, wherein the other target cell expresses the molecule to which the first stimulatory agent and/or the second stimulatory agent specifically binds.

126. The article of manufacture of claim 124 or claim 125, wherein the second selection agent is capable of reversibly binding to the second reagent or the article further comprises a third reagent capable of reversibly binding to the second selection agent.

127. The article of manufacture of claim 126, wherein the third reagent is immobilized on the support or on another support.

128. The article of manufacture of claim 127, wherein the support and second support are present in separate containers, wherein said different containers are optionally fluidly connected to one another, permitting passage of cell suspension through or past one of the supports, followed by the other.

129. The article of manufacture of any of claims 120-128, wherein the support is a stationary phase, which is or comprises a chromatography matrix, wherein the article of manufacture further comprises a container in which all or part of the chromatography matrix is contained.

130. The article of manufacture of claim 129, wherein the container is a column.

131. An apparatus comprising the article of manufacture of any of claims 120-130.

132. The apparatus of claim 131, further comprising a fluid inlet, being fluidly connected to one or more component of the apparatus, and/or a fluid outlet, being fluidly connected to one or more component of the apparatus.
133. An apparatus comprising:
(a) a stimulatory agent capable of specifically binding to a molecule on the surface of a target cell, in a manner that induces or modulates a signal in the target cell;
(b) a first reagent, which is capable of reversibly binding to the stimulatory agent;
(c) a second reagent;
(d) a support,
(e) a selection agent that is capable of reversibly binding to the second reagent and is capable of specifically binding to a selection marker on a target cell.

134. The apparatus of claim 133, wherein the support is or comprises a stationary phase for chromatography.

135. The apparatus of claim 133, wherein the components in (a)-(e) are present in a plurality of containers, at least some of which are in fluid connection, whereby one or more of the components pass from one container to another within the apparatus.

136. The apparatus of any of claims 131-135 that is in a closed or sterile system.

137. The apparatus of any of claims 131 and 134-136, further comprising a sample outlet fluidly connected to one of the at least one stationary phase for chromatography.

138. The article of manufacture or apparatus of any of claims 120-137, wherein the apparatus is a functionally closed system.

139. The article of manufacture or apparatus of any of claims 120-138, further comprising one or more controls, capable of regulating or adjusting pH, pO₂, PCO₂, and/or thermostatic control of one or more containers or components thereof, and/or of at least one of the at least one stationary phase for chromatography.

140. The article of manufacture or apparatus of any of any of claims 120-139, further comprising a fluid connection to a container comprising medium and/or one or more nutrients.
and/or one or more carbon sources, whereby the connection is capable of delivering such medium, nutrients, and/or carbon sources to cells within the apparatus, optionally when said cells are immobilized on the stationary phase for chromatography.

141. The apparatus of any of claims 131-140, wherein at least one of the recited components and/or a container comprising the same is detachable from the apparatus in a sterile or aseptic fashion.

142. The apparatus of any of claims 131-141 or the article of any of claims 122-130, which is useful in or capable of carrying out the method of any of claims 1-121, wherein the method is optionally carried out in an automated fashion.

143. The apparatus of any of claims 131-141, or the article of any of claims 122-130, for use in the method of any of claims 1-121, wherein the method is optionally carried out in an automated fashion.
FIG. 6A

CD3+ CD4+ CD8+

Number of cells

6.0x10^5
4.0x10^5
2.0x10^5

FIG. 6B

CD4+ T cells

CD8+ T cells

PBMCs

no stim aCD3, aCD28

CD3+ enriched

CD4+ enriched

CD8+ enriched
FIG. 6C

CD4⁺ T cells

- no stim
- aCD3, aCD28

CD8⁺ T cells

- no stim
- aCD3, aCD28

- CD3⁺ enriched
- CD4⁺ enriched
- CD8⁺ enriched
FIG. 7A

Cells

FSC

beads only

99.4 0.6

beads 0.5μg αCD3 Fab

37.7 62.3

beads 0.5μg αCD28 Fab

57.5 42.5

beads 0.5μg αCD3 + 0.5μg αCD28 Fab

5.3 94.7
FIG. 7B

- beads only
- beads 0.5µg αCD3 Fab
- beads 0.5µg αCD28 Fab
- beads 0.5µg αCD3 + 0.5µg αCD28 Fab

CFSE

% of Max
FIG. 7C

b) beads only
b) beads 0.5μg αCD3 Fab
b) beads 0.5μg αCD28 Fab
b) beads 0.5μg αCD3 + 0.5μg αCD28 Fab

1°
2°
3°
FIG. 8D

![Bar chart showing the number of cells under different stimulation conditions. The x-axis represents the stimulation condition (unstimulated, ST only, 0.5x, 1x, 2x, 5x), and the y-axis represents the number of cells (from 0 to 2500000).](image-url)
FIG. 8E
FIG. 10A
- CD4+ T cells unstimulated
- CD4+ T cells + αCD3/αCD28 beads
- CD4+ T cells + anti-CD3/anti-CD28 multimerized agent (large backbone)
- CD4+ T cells + anti-CD3/anti-CD28 multimerized agent
- CD4+ T cells + anti-CD3/anti-CD4/anti-CD28 multimerized reagent

FIG. 10B
- CD8+ T cells unstimulated
- CD8+ T cells + αCD3/αCD28 beads
- CD8+ T cells + anti-CD3/anti-CD28 multimerized agent (large backbone)
- CD8+ T cells + anti-CD3/anti-CD28 multimerized agent
- CD8+ T cells + anti-CD3/anti-CD8/anti-CD28 multimerized agent
FIG. 13A

Fold expansion (normalized to αCD3/αCD28 beads)

- αCD3/αCD28 beads
- Anti-CD3/anti-CD28 multimerized agent
- Anti-CD3 multimerized agent + anti-CD28 multimerized agent (large backbone)
- Anti-CD3/anti-CD8 anti-CD28 multimerized agent
- Unstimulated

n.s.
FIG. 13B

- αCD3/αCD28 beads
- Anti-CD3/anti-CD28 multimerized agent (Large)
- Anti-CD3/anti-CD28 multimerized agent
- Anti-CD3 multimerized agent + anti-CD28 multimerized reagent
- Anti-CD3/anti-CD8/anti-CD28 multimerized agent
- Unstimulated

![Bar chart showing MFI values for CD8 and CD45RO with n.s. indicated at the top.](chart-image)
FIG. 14B

CD8

Anti-CD3 multimerized agent
+ anti-CD28 multimerized agent

CD45RO

Anti-CD3 multimerized agent
+ anti-CD28 multimerized agent
FIG. 16B

- **αCD3 Fab-multimer**
- **αCD3 Fab-multimer + D-biotin** (at 140s)
- **αCD3 Fab-multimer Pre-dissociated**
FIG. 19A

CD4⁺

Unstimulated

αCD3/αCD28 beads

Multimerized agent

d1 d2

FIG. 19B

CD8⁺

d1 d2
FIG. 20D

FIG. 20E
FIG. 20F

unstimulated \(\alpha\text{CD3}/\alpha\text{CD28} \) beads

Multimerized agent

polyclonal Ag-specific
FIG. 21

unstimulated

αCD3/αCD28 beads

+αCD8-Fab

Polyclonal multimerized agent

Ag-specific multimerized agent
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>G01N33/569</th>
<th>C12N5/0775</th>
<th>C12N5/00</th>
</tr>
</thead>
</table>

ADD.

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

- Minimum documentation searched (classification system followed by classification symbols)
 - G01N
 - C12N

- Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Electronic database consulted during the international search (name of database and, where practicable, search terms used)
 - EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014/295458 AI (SCHMIDT THOMAS [DE] ET AL) 2 October 2014 (2014-10-02) cited in the application on claim 1; example all</td>
<td>1-143</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "S" document member of the same patent family

Date of the actual completion of the international search 8 March 2017

Date of mailing of the international search report 24/03/2017

Name and mailing address of the ISA/ Authorized officer

Trommsdorff, Mari on
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2013/124474 A2 (STAGE CELL THERAPEUTICS GMBH [DE]) 29 August 2013 (2013-08-29) cited in the application figure 1; examples 1-3</td>
<td>1-143</td>
</tr>
<tr>
<td>A</td>
<td>ANITA SCHMITT ET AL: "Adaptive transfer and selective reconstruction of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplant" TRANSFUSION, vol. 51, no. 3, 6 December 2010 (2010-12-06), pages 591-599, XP055043927, ISSN: 0041-1132, DOI: 10.1111/j.1537-2995.2010.02940.x the whole document</td>
<td>1-143</td>
</tr>
<tr>
<td>A</td>
<td>KNABEL MICHAEL ET AL: "Reversal of MHC multimer staining for functional isolation of T-cell populations and effective adaptive transfer" NATURE MEDICINE, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 8, no. 6, 1 June 2002 (2002-06-01), pages 631-637, XP002460640, ISSN: 1078-8956, DOI: 10.1038/NM0602-631 the whole document</td>
<td>1-143</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. \(\square\) Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. \(\xmark\) claims NOS. 1-143 (partially)
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 see FURTHER INFORMATION sheet PCT/ISA/21Q

3. \(\square\) Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. \(\square\) As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. \(\square\) As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. \(\square\) As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. \(\square\) No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.
FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 1-143 (partially)

The present application contains 143 claims relating to methods for producing cells (independent claims 1, 8, and 64), articles of manufacture for the production of cells (claim 120), apparatuses comprising said articles of manufacture (claim 131). These claims do not contain any clear technical features, and the compounds used in said claims are all defined by functional features or not at all defined. The compounds are the following:
- cells (the type of cells is not defined)
- a stimulatory agent (only defined by the fact that it binds to a molecule expressed on the cells)
- a first reagent (only defined by the fact that it comprises a multitude of stimulatory agent binding sites)
- a molecule expressed on the cells (not defined)
- a support (not defined)
- a selection agent
- a binding partner.

Independent claims 1, 8, 64 thus relate to an extremely large number of possible methods due to the multitude of possible compounds used in these claims. Searching these claims would require an equally unquantifiable and thus unreasonable amount of experimentation, imposing a severe and undue burden on all those wishing to ascertain the scope of the claim, which is not in compliance with the clarity requirement of Article 6 of PCT.

There are furthermore so many dependent claims, and they are drafted in such a way that the claims as a whole are not in compliance with the provisions of clarity and conciseness of Article 6 of PCT, as they create a smoke screen in front of the skilled reader when assessing what should be the subject-matter to search.

The non-compliance with the substantive provisions is to such an extent, that the search was performed taking into consideration on the non-compliance in determining the extent of the search (PCT Guidelines, 9.19 and 9.24).

From the examples, it appears that a method wherein T cells are induced and stimulated by anti CD3, anti CD28 and or anti CD8 anti body molecules multimerized via Strep-tag and Strep-Tactin is the core of the invention. The present author therefore intends to limit the search to the examples and to variations and combinations thereof.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EP policy when acting as an International Preliminary Examination Authority is normally not to carry out a preliminary examination on matters which has not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guidelines C-IV, 7.2), should the problems which led to the Article 17(2) declaration be overcome.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014295458 AI</td>
<td>02-10-2014</td>
<td>CN 103797028 A</td>
<td>14-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2734538 A2</td>
<td>28-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014529361 A</td>
<td>06-11-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014295458 AI</td>
<td>02-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015301046 AI</td>
<td>22-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013011011 A2</td>
<td>24-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2013124474 A2</td>
<td>29-08-2013</td>
<td>AU 2013224027 AI</td>
<td>02-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2865033 AI</td>
<td>29-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104254780 A</td>
<td>31-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2817625 A2</td>
<td>31-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1202335 AI</td>
<td>25-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015512621 A</td>
<td>30-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 10201606970U A</td>
<td>28-10-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201404991Y A</td>
<td>26-09-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015024411 AI</td>
<td>22-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013124474 A2</td>
<td>29-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2014076277 AI</td>
<td>22-05-2014</td>
<td>CA 2891820 AI</td>
<td>22-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105073770 A</td>
<td>18-11-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2920204 AI</td>
<td>23-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015535006 A</td>
<td>07-12-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016272688 AI</td>
<td>22-09-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014076277 AI</td>
<td>22-05-2014</td>
</tr>
</tbody>
</table>