6/020595 A1 | IV VY 200 00 O O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

72
(19) World Intellectual Property Organization f 57"’ | [)

528 | 00 O 0 O

International Bureau

(43) International Publication Date
23 February 2006 (23.02.2006)

(10) International Publication Number

WO 2006/020595 Al

(51) International Patent Classification:
GOGF 17/30 (2006.01)

(21) International Application Number:
PCT/US2005/028192

(22) International Filing Date: 8 August 2005 (08.08.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/917,746 13 August 2004 (13.08.2004) US

(71) Applicant (for all designated States except US):
GOOGLE, INC. [US/US]; 1600 Amphitheatre Park-
way, Building 41, Mountain View, CA 94043 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DEAN, Jeffrey,
Adgate [US/US]; 3179 Stockton Place, Palo Alto, CA
94303 (US). HAAHR, Paul, G. [US/US]; 4222 22nd
Street, San Francisco, CA 94114 (US). SERCINOGLU,
Olcan [TR/US]; 2400 West El Camino Real, Apt. 716,
Mountain View, CA 94040 (US). SINGHAL, Amitabh,
K. [IN/US]; 2435 Aztec Way, Palo Alto, CA 94303 (US).

(74) Agents: WILLIAMS, Gary, S. et al.; Morgan Lewis &
Bockius LLP, 2 Palo Alto Square, 3000 El Camino Real,

Suite 700, Palo Alto, CA 94306 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: MULTI-STAGE QUERY PROCESSING SYSTEM AND METHOD FOR USE WITH TOKENSPACE REPOSITORY

Dy t Lad} g oY
102
»> Lexicon Generator
Mappings
A
Document | [
Repository » System
A
A
Query String
Query D ———
Processing
System Query P (s) -
104 Results Inverse Index

114 >

116 >

(57) Abstract: A multi-stage query processing system and method enables multi-stage query scoring, including "snippet" gen-
& eration, through incremental document reconstruction facilitated by a multi-tiered mapping scheme. At one or more stages of a
& multi-stage query processing system a set of relevancy scores are used to select a subset of documents for presentation as an ordered
list to a user. The set of relevancy scores can be derived in part from one or more sets of relevancy scores determined in prior stages
of the multi-stage query processing system. In some embodiments, the multi-stage query processing system is capable of executing
one or more passes on a user query, and using information from each pass to expand the user query for use in a subsequent pass to

improve the relevancy of documents in the ordered list.

10

15

20

25

WO 2006/020595 PCT/US2005/028192

MULTI-STAGE QUERY PROCESSING SYSTEM AND METHOD FOR
USE WITH TOKENSPACE REPOSITORY

RELATED APPLICATIONS

[0001] This application is related to U.S. Patent Application No. 10/917,745, filed
August 13, 2004, entitled “System and Method For Encoding And Decoding Variable-Length
Data”, and U.S. Patent Application. No. 10/917,739, filed August 13, 2004, entitled
“Document Compression System and Method For Use With Tokenspace Repository, which

applications are incorporated by reference herein in their entirety.

TECHNICAL FIELD

[0002] The disclosed embodiments relate generally to data processing systems and
methods, and in particular to a multi-stage query processing system and method for use with
a collection of documents with an associated index (hereinafter also referred to as a

“tokenpace repository”).
BACKGROUND

[0003] Information retrieval systems (e.g., search engines), match queries against an
index of documents generated from a document corpus (e.g., the World Wide Web). A
typical inverse index includes the words in each document, together with pointers to their
locations within the documents. A document processing system prepares the inverted index
by processing the contents of the documents, pages or sites retrieved from the document
corpus using an automated or manual process. The document processing system may also
store the contents of the documents, or portions of the content, in a repository for use by a

query processor when responding to a query.

[0004] There is a continuing need for more sophisticated query searching and scoring
techniques to ensure that query results are relevant to the query. Some scoring techniques
may require a partial reconstruction of the candidate documents, for example to determine the
context of query terms or keywords found in the documents. Unfortunately, introducing of
such sophisticated techniques can result in a degradation of search performance due to the

additional processing and overhead involved.

10

15

20

25

WO 2006/020595 PCT/US2005/028192

SUMMARY OF EMBODIMENTS

[0005] The disclosed embodiments include a multi-stage query processing system and
method for use with a tokenspace repository. The multi-stage query processing system and
method enables multi-stage query scoring, including “snippet” generation, through
incremental document reconstruction facilitated by a multi-tiered mapping scheme. At one or
more stages of a multi-stage query processing system a set of relevancy scores are used to
select a subset of documents for presentation as an ordered list to a user. The set of relevancy
scores can be derived in part from one or more sets of relevancy scores determined in prior
stages of the multi-stage query processing system. In some embodiments, the multi-stage
query processing system is capable of executing two or more passes on a user query, and
using information from each pass to expand the user query for use in a subsequent pass to

improve the relevancy of documents in the ordered list.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Figure 1 is a block diagram of an embodiment of a information retrieval
system.
[0007] Figure 2 is a conceptual block diagram of an embodiment of the lexicon

generator of Figure 1.

[0008] Figure 3A is a block diagram of an embodiment of an encoding system for

encoding documents for a tokenspace repository.

[0009] Figure 3B is a block diagram of an embodiment of a decoding system for

decoding documents in a tokenspace repository.

[0010] Figure 3C is a block diagram of an embodiment of an attribute

encoding/decoding system for encoding/decoding document attributes.

[0011] Figure 4 is a block diagram of an embodiment of a query processing system

for use with a tokenspace repository.

[0012] Figure 5 is a block diagram of an embodiment of a multi-stage query

processing system for use with a tokenspace repository.

[0013] Figure 6 is a block diagram of an embodiment of a tokenspace repository

SErver.

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192
[0014] Figure 7 is a block diagram of an embodiment of a query processing server.

[0015] Figure 8a is a block diagram of a second embodiment of a tokenized document
repository, and Figure 8b is a conceptual block diagram of a second embodiment of the

lexicon generator of Figure 1.

[0016] Figure 9A is a conceptual diagram of an encoding process used in the
embodiment of the lexicon generator, and Figure 9B depicts exemplary data structures for

representing encoded tokens.

[0017] Like reference numerals refer to corresponding parts throughout the several

views of the drawings.

DESCRIPTION OF EMBODIMENTS

System Overview

[0018] Figure 1 is a block diagram of an embodiment of an information retrieval
system 100. The information retrieval system 100 includes a document processing system
102 and a query processing system 104. The information retrieval system 100 can be any
system that is capable of retrieving information in response to a query, including but not
limited to one or more computer systems for performing expressed or implicit document
searches on one or more networks, such as the Internet (e.g., via the World Wide Web) or an
intranet, or locally on a user’s computer (e.g., of files, email, applications, etc.). Note that the
term “documents” means documents, web pages, emails, application specific documents and
data structures, Instant Messaging (IM) messages, audio files, video files, and any other data

or applications that may reside on one or more computer systems.
Document Processing System

[0019] The document processing system 102 generally includes one or more
document repositories 106, a lexicon generator 108, an encoding/decoding system 110 and a
tokenspace repository 112. The encoding/decoding system 110 retrieves documents from the
one or more document repositories 106, parses the documents into tokens, encodes the tokens
into a compressed format using mappings from the lexicon generator 108, then stores the

encoded tokens in the tokenspace repository 112.

[0020] A “token” can be any object typically found in a document, including but not

limited to terms, phrases, punctuation, HTML tags and the like. After parsing, a set of
3

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

documents is represented as a sequence of tokens. Furthermore, each token in the sequence
of tokens has a token position, which also represents the position of the token in the set of
documents. For example, the first token in the set of documents may be assigned a position

of 0, the second token in the set of documents may be assigned a position of 1, and so on.

[0021] It is noted that in some implementations, a completely different set of
computers are used for encoding documents than the computers used for decoding
documents. For instance, a web crawling system may include a document processing system
102 that encodes documents, while a query processing system 104 may decode selected
portions of the encoded documents. In such implementations, the document inverse index
and tokenspace repository 112 built by the document processing system 102, or copies

thereof, are used by the query processing system 104.

[0022] The lexicon generator 108 generates the mappings used for encoding a set of
documents by parsing the documents. A first mapping produced by the lexicon generator 108
is herein called the global-lexicon, which identifies all distinct tokens (herein called unique
tokens) in the set documents, and assigns a global token identifier to each unique token. A
second mapping produced by the lexicon generator 108 is actually a sequence of mappings,
each of which is herein called a mini-lexicon. Each respective mini-lexicon is used only for
encoding and decoding a respective range of positions in the set of documents. The
generation and use of the global-lexicon and the mini-lexicons are explained in more detail

below.
Query Processing System

[0023] The query processing system 104 includes one or more query processors 114
coupled to the encoding/decoding system 110 and a tokenspace inverse index 116. The
tokenspace inverse index 116 maps all the GTokenIDs in the set of documents to their
positions within the documents. Conceptually, the inverse index 116 contains a list of token
positions for each GTokenlID. For efficiency, the list of token positions for each GTokenID

is encoded so as to reduce the amount of space occupied by the inverse index.

[(0024] In some embodiments, the one or more query processor(s) 114 parse a query
into multiple query terms which are transformed by the one or more query processors 114
into a query expression (e.g., Boolean tree expression). The query terms are used to index the

tokenspace inverse index 116 to retrieve token positions, as described more fully with respect

4

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

to Figure 4. In some embodiments, the token positions are used in a multi-stage query
processing system for scoring documents relevant to the query, as described with respect to
Figure 5. In response to the query terms, the query processors 114 generate an ordered list of
documents which are presented to the user via one or more modes of communication (e.g.,

display device, audio, etc.).
Lexicon Generator

[0025] Figure 2 is a conceptual block diagram of an embodiment of the lexicon
generator 108 of Figure 1. The lexicon generator 108 includes a global-lexicon builder 202

and a mini-lexicon builder 204.
Global-Lexicon Builder

[0026] The global-lexicon builder 202 retrieves documents from the document
repository 106 and generates a global-lexicon 206 by assigning unique global token
identifiers (GTokenIDs) to each unique token contained in the documents. In some
embodiments, the document repository 106 is logically or physically split into multiple
portions, sometimes called partitions, and a separate global-lexicon 206 is generated for each
partition. In one embodiment, a set of several billion documents is divided into several
thousand partitions, each of which is processed to generate a global-lexicon 206. A typical

global-lexicon 206 can include a few million unique tokens.

[0027] In some embodiments, the set of documents to be encoded (e.g., the
documents in one partition) are sorted in accordance with one or more criteria prior to the
parsing of the documents into tokens and the processing of the tokens. Such sorting of the
documents can facilitate efficient encoding of the tokenized documents, because documents
that use similar sets of words will be positioned near each other in the set of documents. As a
result, each mini-lexicon (described below) will, on average, cover a larger portion of the set
of documents than would otherwise be the case, and more generally, the encoding of the
documents will occupy less space. In one embodiment, the set of documents are first sorted
by language, and then the documents for each language are sorted by URL, with the fields of
the host name portion of the URL being reversed in order. For example, after the sorting by
language, all the French documents will be grouped together, and then the French documents
will be sorted by URL. When sorting by URL, each URL initially comprises a pattern of

h1l.h2...hy.hz/n1/n2..., where h1.h2...hy.hz comprises the host name portion of the URL and
5

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

/n1/n2 represents the remainder of the URL. The URL is remapped to the pattern
hz.hy...h2.h1/nl/n2... prior to the sorting by URL. For example, the URL
“www.google.com/about.html” is remapped to “com.google.www/about.html”. By reversing
the host name fields of the URLSs prior to sorting by URL, the documents are sorted in
accordance with their logical proximity to each other. Thus, similar types of documents
(within the group of documents for a particular language) are grouped together; within the
group of documents for each document type, documents on each web site are grouped
together; within the documents for each website, the documents for various branches of the

website are grouped together; and so on.

[0028] In some embodiments, the documents are ordered using one or more
clustering techniques. Terms, words or phrases contained in documents can be used to
organize the documents into clusters that relate to various concepts. For example, general
information about the documents (e.g., meta-data embedded in or otherwise associated with
the identified documents), sampled content from the identified documents, and/or category

information about the documents can be used to order the documents.

[0029] In some embodiments, while parsing the documents the global lexicon builder
202 stores information (not shown in Figure 2) about each identified unique token, such as
the number of occurrences of each unique token in the set of documents, and the language (if
any) associated with the unique token. The language associated with a unique token may be
determined based on the language associated with the document(s) in which the token is
found. When a particular token is found in documents associated with more than language,
the language associated with the token may be determined using any suitable methodology.
One suitable methodology is a statistical methodology that is used while parsing the set of
documents to identify unique tokens. Each token is initially assigned to the language of the
first document in which it is found, and then for each subsequent occurrence of the token that
occurs in a document of a language other than the current language assigned to the token, the
token is reassigned to the other language only if a randomly (or pseudo-randomly) selected
number between 0 and 1 is less than 1/N, where N is the current count of occurrences of the
token. In other embodiments, any similar or otherwise suitable language assignment
mechanism can be used to associate a language with each unique token. In some
embodiments, a language is not associated with the unique tokens representing punctuation
symbols. In yet another embodiment, while a language may be associated with every unique

token, the language association is ignored when processing the N (e.g., 256) most frequently
6

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

occurring tokens. As a result, the language associated with punctuation tokens is effectively

ignored.

[0030] In some embodiments, the list of unique tokens, and the associated frequency
and language information, is sorted based on frequency of occurrence of the unique tokens.
Optionally, the entries can then be further sorted to facilitate space efficient encoding of the
set of documents. For instance, in one embodiment, all the unique tokens are first sorted by
frequency of occurrence. The resulting sorted list of unique tokens is then divided into
bands. For instance, the top band, Band 0, may comprise the top 255 or 256 tokens (i.c.,
those with the highest frequency counts). The second band, Band 1, may comprise the top
21 (i.e., 65,536) tokens, excluding the tokens in Band 0. The third band, Band 2, may
comprise the next 2" (i.e., 65,536) tokens in the sorted list of unique tokens. Of course, the
number of tokens in each band may differ in other embodiments. Next, the tokens in each
band are sorted in accordance with a second set of criteria. For instance, in one embodiment,
the tokens in the first band are sorted alphabetically, that is by numeric or alphabetic value.
Each of the other bands are sorted first by language, and then alphabetically. As a result, the
sorted tokens in each band other than Band 0 are grouped by language, and within each
language group the tokens are sorted alphabetically. In other embodiments, other sorting

criteria may be used for sorting the unique tokens in each of the bands.

[0031] The sorting process produces a sorted list of the unique tokens, each having a
respective position in the list. Each sorted unique token is then assigned a unique global
token identifier (hereinafter also referred to as “GTokenID”). GTokenIDs can include any
suitable data type and width depending upon the platform used to implement the document
processing system 102 (e.g., 32-bit unsigned integers). In some embodiments, GTokenIDs
are assigned to the sorted unique tokens in increasing order, so that high-frequency tokens are
assigned small valued GTokenIDs and low-frequency tokens are assigned large valued
GTokenIDs. To be more specific, in one embodiment, each token in the sorted list of tokens
is assigned a 32-bit global token identifier equal to its numeric position in the sorted list of
unique tokens. Thus, the first token in the list is assigned a GTokenID equal to 0 (i.e.,
00000000 in hexadecimal format), the second token in the list is assigned a GTokenID equal
to 1, and so on. The resulting set of mappings of GTokenIDs to unique token values is herein
called the global-lexicon 206. In some embodiments, the global lexicon 206 actually
comprises two mapping structures, one which maps GTokenIDs to tokens, and another that
maps tokens to GTokenIDs. The mapping of tokens to GTokenIDs is used during the

7

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

encoding process, while the mapping of GTokenIDs to tokens is used while decoding

portions of the documents.

{0032] As will be explained more fully below, ordering the unique tokens based on
frequency helps reduce the amount of space required for storing the mini-lexicons 208. This
is true even in those embodiments in which bands of the unique tokens are sorted based on
criteria other than frequency of occurrence, because the tokens in the bands assigned to lower

GTokenIDs have higher frequencies of occurrence than the tokens in the bands assigned to
higher GTokenIDs.

[0033] In some embodiments, “special” tokens that occur more frequently than the
average token, such as HTML tags and punctuation, are assigned GTokenIDs which occupy a
prefix 205 portion of GTokenIDs in the global-lexicon 206 (e.g., GTokenIDy-GTokenIDy.).
All other GTokenIDs can be offset by the last special GTokenID allocated to the prefix 205.

[0034] In the above discussion, the GTokenIDs are described as fixed length values,
such as 32-bit unsigned integer values. However, these same GTokenIDs can also be
considered to be variable length identifiers, because when the GTokenIDs are encoded for
storage, the most significant bytes (or bits) that are equal to zero may be truncated or masked
off during encoding. For instance, in some embodiments, all GTokenIDs with a value of less
than 2® are encoded as a single byte value, all GTokenIDs with a value of less than 2'° are
encoded as a two-byte value, and all GTokenIDs with a value of less than 22* are encoded as
a three-byte value. In this way, the tokens having the highest frequencies of occurrence in the
set of documents are represented by shorter length GTokenIDs than the tokens having lower

frequencies of occurrence.

[0035] In the embodiments described below, the tokenspace repository is populated
with fixed length LTokenIDs, rather than the variable-length GTokenIDs. However,
mapping the LTokenIDs in the tokenspace repository back to the original tokens (which are
also of variable length, of course) requires the storage of a large number of “mini-lexicons”,
and the content of the mini-lexicons comprises GTokenIDs. To efficiently store the mini-
lexicons, the GTokenIDs in each mini-lexicon may be treated as variable length values.
Alternately, the GTokenIDs in each mini-lexicon may be treated as a list that is first delta
encoded, and then the resulting delta values are encoded using a variable length encoding

scheme.

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

Mini-Lexicon Builder

[0036] After the global-lexicon 206 is generated, a set of mini-lexicons 208 are
generated by the mini-lexicon builder 204 for use by the encoding/decoding system 110.
Each entry in a mini-lexicon 208 includes a GTokenID and a corresponding local token
identifier (LTokenID). The LTokenID for each entry is implied by the position of the entry
in the mini-lexicon 208, and therefore does not need to be explicitly stored. Each respective
mini-lexicon 208 is used only for encoding and decoding a distinct, respective specific range
of token positions in the tokenized documents, thus allowing the same set of LTokenIDs to be
used by each mini-lexicon 208. For example, a first mini-lexicon 208 (e.g., mini-lexicon A)
having P (e.g., 256) entries is generated for the first P unique tokens encountered by the mini-
lexicon builder 204 as it parses through the documents. Once the first P unique tokens have
been encountered, a first entry in a “valid range map” 210 is made which includes the starting
token position, Start_Pos,, for the range of token positions for which the first mini-lexicon
208 is valid. Each of the P LTokenIDs in the first mini-lexicon 208 is assigned to a unique
GTokenID. When all of the LTokenIDs have been assigned to GTokenIDs, a second mini-
lexicon 208 (e.g., mini-lexicon B) is generated for the next P unique tokens encountered by
the mini-lexicon builder 204, and a second entry is made in the valid range map 210 which
includes the starting token position, Start Posg, of the range of positions for which the second
mini-lexicon 208 is valid. Thus, a token having a position in the tokenized documents that
falls within the range Start Posg to Start Posc -1 can be decoded using mini-lexicon B, as

shown in Figure 2.

[0037] To provide a concrete example, in one embodiment the LTokenIDs in each
mini-lexicon have values from 0 to 255, each represented by an 8-bit unsigned integer, while
the GTokenIDs are 32-bit unsigned integers. A first mini-lexicon is generated by scanning
the set of documents, starting at token position 0, until a predefined number P (e.g., 256) of _
distinct tokens are identified. The GTokenIDs for the P distinct tokens are assembled in a
list. In some embodiments, the GTokenIDs in the list are sorted by numeric value, with the
smallest GTokenlIDs at the top of the list. LTokenIDs are then assigned to the GTokenIDs in
the list, in accordance with the positions of the GTokenIDs in the list. For instance, the first
GTokenlD in the list is assigned an LTokenID of 0, the next GTokenlID in the list is assigned
an LTokenID of 1, and so on. The resulting mapping of LTokenIDs to GTokenIDs is called a
mini-lexicon 208. A range of token positions, from Start_Posx to Start Posg, is associated

with the mini-lexicon. A second mini-lexicon is generated by scanning the set of documents
9

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

starting at the position Start Posg immediately following the last position associated with the
first mini-lexicon. The scanning continues until the predefined number P of distinct tokens
are identified, at which point a second mini-lexicon is generated using the same process as
described above. The mini-lexicon builder 204 continues to generate a sequence of mini-
lexicons 208 for subsequent ranges of token positions in the set of documents until all the

tokens in the documents have been mapped to mini-lexicons 208.

[0038] In an alternate embodiment, the first F LTokenIDs in each mini-lexicon 208
are reserved for the F most popular tokens in the set of documents. For these F LTokenIDs,
the LTokenID is always equal to the GTokenID. This assignment scheme facilitates fast
decoding of documents. Whenever an LTokenID (in the tokenspace repository) having a
value of F-1 or less is decoded, it can be mapped to a token directly in accordance with the

global-lexicon without having to first map the LTokenlID to a corresponding GTokenID.

[0039] The same set of LTokenIDs (e.g., 0 to 255) are used in each mini-lexicon 208.
To facilitate compression of the documents, the LTokenIDs have a smaller width (e.g., 1
byte) than the GTokenIDs (e.g., 4 bytes). The difference of these widths (e.g., 3 bytes)
represents a reduction in the number of bytes per token used to store the tokenized documents
in the tokenspace repository 112. In an embodiment in which each LTokenID occupies one
byte, a set of documents having 1 billion tokens will occupy 1 billion bytes (1 GB) in the
tokenspace repository 112, ignoring the space occupied by other supporting data structures

(which are described later in this document).

[0040] When the process of generating mini-lexicons 208 is complete, every token in
the tokenized documents is associated with a mini-lexicon 208 based on its position in the
tokenized documents. Note that each unique token in the tokenized documents may be
associated with more than one mini-lexicon 208 if the token occurs in more than one position
range. In one embodiment, an average document has approximately 1100 tokens and an

average mini-lexicon 208 spans around 1000 tokens.

[0041] After each mini-lexicon 208 is generated, the tokens in the corresponding
portion of the set of documents is mapped to LTokenIDs by the encoding/decoding system
110 and stored in the tokenspace repository 112 for subsequent retrieval. With this mapping,
every token in the document repository 106 is mapped to a fixed length (e.g., one byte)
LTokenID in the tokenspace repository 112. Thus, during decoding/decompression it is

possible to jump from one token position to another in the tokenspace repository 112 without

10

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

the need of skip tables or equivalent data structures, which can slow down the decoding

process.

[0042] In some embodiments, the mini-lexicons 208 are encoded in a compressed
format and stored until needed for document reconstruction. In one embodiment, the sorted
list of GTokenIDs in each mini-lexicon 208 is delta encoded, and then the resulting list of
delta values is encoded in a compressed format, preferably in a format that facilitates fast and
efficient decoding and reconstruction of the mini-lexicon. A suitable data structure and
encoding/decoding method are described in co-pending U.S. Patent Application No.
10/917,745, filed August 13, 2004, entitled “System and Method For Encoding And
Decoding Variable-Length Data.”

[0043] To decompress a particular document, the mini-lexicons 208 associated with
the range of token positions for that document are decompressed into translation tables or
mappings built from entries of the mini-lexicons 208 which translate the LTokenIDs to their
corresponding GTokenIDs. Thus, decoding a tokenized document in the tokenspace
repository 112 is accomplished by reading the fixed-length LTokenIDs stored in the
tokenspace repository 112 for the document, and accessing the mini-lexicon for each token
position in the document to translate the LTokenIDs into corresponding GTokenIDs. The
GTokenlIDs are then mapped into the corresponding tokens (e.g., text and punctuation) using

the global-lexicon 206, thereby reconstructing all or a portion of the document.
Encoding System

[0044] Figure 3A is a block diagram of an embodiment of an encoding system 300 for
encoding documents for a tokenspace repository. The encoding system 300 includes an
optional preprocessor 302, an optional delta encoder 304 and a variable-length data encoder
306. Variable-length data can include various data types, such as, without limitation,
integers, character strings, floating-point numbers, fixed-point numbers and the like. The
variable-length data includes but is not limited to text, images, graphics, audio samples and
the like.

[0045] In some embodiments, a list of information is received by the preprocessor
302 which orders the information for efficient encoding. The preprocessor 302 may order the
data into a monotonic sequence using one or more sorting algorithms. For example, if a set

of integers are sorted by value, then adjacent integers will be close in magnitude, thus

11

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

enabling the delta encoder 304 to generate delta values that are small valued integers for
encoding. The ordered data is received by the delta encoder 304, which computes differences
between adjacent pairs of the ordered data to obtain the small valued integers. The small
valued integers are received by the variable-length data encoder 306, which encodes the data
into a compressed format which can be efficiently decoded. One example of a suitable
variable-length data encoder 306 is described more fully in co-pending co-pending U.S.
Patent Application No. 10/917,745, filed August 13, 2004, entitled “System and Method For
Encoding And Decoding Variable-Length Data.” '

[0046] Various information generated by the document processing system 102 can be
encoded using all or part of the encoding system 300. In some embodiments, the GTokenIDs
in each mini-lexicon 208 are sorted using the preprocessor 302 to ensure that integer values
closest in magnitude will be delta encoded. The ordered GTokenIDs are then delta encoded
by the delta encoder 304 to provide difference or residual values. The difference values are
then encoded in groups (e.g., groups of 4 values) into a compressed format using the variable-
length data encoder 306. In some embodiments, lists of token positions in an inverse index
are similarly encoded to facilitate fast and efficient decoding of the positions, as described

more fully with respect to Figure 4.

[0047] While the variable-length data encoder 306 provides a compressed format that
facilitates fast and efficient decoding, other known encoding schemes can also be used in the
document processing system 102 to compress a list of information (e.g., CCITT-G4, LZW
etc.).

Decoding System

[0048] Figure 3B is a block diagram of an embodiment of a decoding system 308 for
decoding documents in a tokenspace repository. The decoding system 308 includes a
variable-length data decoder 310 and an optional delta decoder 312. In some embodiments,
encoded groups of data are received by the variable-length data decoder 310, which decodes
the groups with the assistance of one or more offset/mask tables. The decoded data is
received by the delta decoder 312, which computes running sums, thereby producing delta-
decoded data, which is equivalent to the original list of information. The use of offset/mask
tables in decoding group encoded variable-length integer values is described more fully in co-
pending U.S. Patent Application No. 10/917,745, filed August 13, 2004, entitled “System and

Method For Encoding And Decoding Variable-Length Data.”
12

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

Attribute Encoding/Decoding System

[0049] Figure 3C is a block diagram of an embodiment of an attribute
encoding/decoding system 314 for encoding/decoding document attributes. The attribute
encoding/decoding system 314 includes an encoding/decoding system 320 which encodes
attribute information 322 into attribute records 318 for storage in an attribute table 316. The
attributes for a document are determined on a token-by-token basis, with a 0 or 1 bit value
being used to represent the presence or absence of each attribute for a given token. For
instance an attribute record 318 in the attribute table may be conceptually represented as an
A x K bit map, where A is the number of attributes that are encoded and K is the number of
tokens whose attributes are represented by the record 318. If A is 8 and K is 32, then each
attribute record 318 stores eight attributes for each of 32 tokens. Each attribute record 318
may be encoded so as to compress the amount of space occupied by the attributes table while
enabling very fast decoding of selected attribute records during query processing. One
suitable methodology for encoding and decoding the attribute records 318 is described in co-
pending U.S. Patent Application No. 10/917,745, filed August 13, 2004, entitled “System and
Method For Encoding And Decoding Variable-Length Data.” Alternately, the information in

each attribute record may be run-length encoded.

[0050}] The set of attributes that are recorded in the attribute table 316 can include one
or more font attributes (e.g., bold, underlined, etc.), one or more document position attributes
(e.g., title, heading), metadata and any other features or characteristics that can be used to
distinguish between the tokens in a set of documents. In some embodiments, the attributes of
the tokens in a set of documents are identified and encoded at the same time that the
tokenized documents are encoded and stored in the tokenspace repository, as described
above. The encoded attributes are used in one or more stages of relevancy scoring, as

described more full with respect to Figure 5.

Document Repository Encoding and Decoding System — Second Embodiment

[0051] Figures 8 A and 8B are block diagrams of an embodiment in which a tokenized
collection of documents (a “tokenspace repository”) is encoded in a somewhat different way
than the one described above. As described above, a global lexicon builder 202 tokenizes the
set of documents 106, identifies all unique tokens, and assigns global token identifiers to all
the unique tokens. The result is a global lexicon 206. Next, the set of documents (which

have been tokenized) are processed by a region lexicons builder 804. Conceptually, the set of
13

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

documents are divided into regions 820, and each region 820 is divided into blocks 822. The
region lexicons builder 804 builds a “lexicon” or dictionary 830 for each region, and an
encoding system 810 generates a set of encoded tokens 832 for each region, plus a set of
block offsets 834 for each region. The region lexicon 830, the encoded tokens 832 and the
block offsets 834 (each of which will be described in more detail next) together form an

encoded representation of a respective region 820 of the set of documents.

[0052] In one embodiment, the set of documents is divided into regions 820, each of
which (except perhaps a last region) has a predetermined, fixed size, such as 8192 tokens (or
any other appropriate size). Each block 822 of a region 820 also has a predefined, fixed size,

such as 64 tokens (or any other appropriate size).

[0053] In one embodiment, the “lexicon” 830 for a respective region 820 is an
ordered listing of the longest sequences of tokens having the highest repeat rates, or any
similar structure. The lexicon 830 may be built by building a table of candidate token strings
in the region, determining their repeat counts within the region, and then selecting the best
candidates until a maximum lexicon size is reached. In an exemplary embodiment, the
maximum lexicon size is 64 tokens, but any other appropriate size limit may be used in other
embodiments. As will be described next, the lexicon 830 is used as a context for encoding
each of the blocks 822 of the respective region 820, enabling a highly compressed
representation of the region. In some embodiments, one or more of the region lexicons 830
may be encoded in a compressed format, for instance using the encoding method described in
U.S. Patent Application No. 10/917,745, filed August 13, 2004, entitled “System and Method

For Encoding And Decoding Variable-Length Data,” referenced earlier in this document.

[0054] Referring to Figures 9A and 9B, in one embodiment the encoding system 810
encodes each block 822 of tokens as follows. The lexicon 830 for the corresponding region
is treated as a set of tokens that immediately precede the tokens of the block. In sequence,
the tokens of the block are processed from first to last, matching each token and as many
subsequent tokens as possible with the longest matching token sequence in the preceding
sequence of tokens, including the lexicon 830. If a matching preceding sequence is found, a
“copy code” is generated. Otherwise a “literal code” is generated to represent the token. All
tokens covered by the current code are then treated as preceding tokens for subsequence
processing of the next token (if any) in the block. As shown in Figure 9B, each “code”

representing the set of tokens in a block may include a type field 902. If the code is a “literal
14

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

code” the second portion 904 of the code represents the global token identifier. In some
embodiments, this type field 902 indicates the number of bits required to represent the global
token identifier. For example, in one embodiment, the type code 902 can indicate up to seven
distinct literal codes, each having a corresponding global token identifier length. In other
embodiments, the number of distinct type codes may be more or less than eight (e.g., one
indicating a copy code and the rest indicating literal codes). If the literal code is a “copy
code” the second portion 906 of the code may include a pointer 908 and a length 910, where
the pointer 908 indicates where in the preceding text to start, and the length 910 indicates the
length of the matching sequence (i.e., the number of tokens to be copied during decoding).
Thus, if a matching sequence of, say, four tokens is found by the encoding system 810,
beginning at a location 31 tokens preceding the current position, then the code for this

sequence would be:
<type=copy, ptr=31, length=4>.

[0055] The length of a copy code (as measured in bits) will depend on the maximum
token length of the region lexicon 830 and the maximum token length of the block, the
maximum allowed length of a matching sequence, and the number of distinct codes. In one
example, the type field 902 is 3 bits (allowing 8 type codes), the pointer field 908 is 7 bits
and the length field 910 is 2 bits, for a total of 12 bits. Other bit lengths for each field of a
copy code may be used in other embodiments. The length of each literal code (as measured

in bits) is specified by the type of the literal code.

[0056] Referring back to Figure 8B, as the encoding system 810 encodes the blocks
of a region, the encoding system 810 generates a set of block offsets 834 indicating the
locations of the encoded tokens for each block of the region. In one embodiment, the block
offset of the first block of the region is a pointer into the token repository, and each of the
other block offsets for the region is a relative offset with respect to the starting position of the
first block in the region. In one embodiment the region lexicons 830 and block offsets 834
are stored in a table or equivalent data structure that is indexed in accordance with the starting
positions of the regions 820 divided by the fixed region size. From another viewpoint, each
region 820 is assigned a Region Number comprising its starting position divided by the fixed
region size, and the data structure(s) in which the region lexicons 830 and block offsets 834

are stored are indexed by Region Number.

15

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

[0057] Decoding a block 822 of a region 820 is accomplished by locating the region
lexicon 830 of the corresponding region, locating the encoded block using the block offsets
834 for the region, and then decoding the set of the codes for the block so as to produce a
sequence of global token identifiers. The resulting sequence of global token identifiers, or
any subset thereof, may then be converted into a corresponding set of symbols or terms using

the globél lexicon 206.

Query Processing System

[0058] Figure 4 is a block diagram of an embodiment of the first stage of a query
processing system 104 for use with a tokenspace repository. The query processing system
104 includes a global-lexicon 402, a tokenspace inverse index 408, a first stage look-up table
406 and a second stage look-up table 410. Query terms or strings are received by the global-
lexicon 402 which translates query terms into GTokenIDs using a translation table or
mapping built from entries of the global-lexicon 402. The GTokenIDs are received by the
inverse index 408, which includes a map 404 for mapping the GTokenIDs to index records
412 stored in the inverse index 408. Each index record 412 identified using the map 404
contains a list of token positions, which directly correspond to token positions in the
tokenspace repository 112. In some embodiments, the inverse index 408 is generated after °
the global-lexicon is generated, and may be generated during the same pass through the

documents that is used to generate the mini-lexicons.

[0059] In some embodiments, the inverse index 408 provides a list of positions which
can be used as an index into the first stage look-up table 406. When the query contains
multiple terms, multiple lists of positions are produced by the inverse index 408. To avoid
having to search the entire DocID map 410 for an entry corresponding to each position in the
list(s) of positions, the first stage look-up table 406 has one entry for each block of positions
in the tokenspace repository. For example, each block may have a size of 32,768 positions,
and each entry may have a pointer to a first entry in the DocID lookup table 410 for the
corresponding block of positions. Thus, the first stage look-up table 406 translates the list(s)
of positions into starting point positions for document identifier (DocID) entries 412 in the
second stage look-up table 410, which is sometimes called the DocID table 410. Alternately,
tables 406 and 410 may be jointly called the DocID lookup table. Each entry 412 in the
second stage look-up table 410 includes a DocID (document identifier) and a starting

16

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

repository position for the corresponding document. The last token in any document is the
position immediately prior to the starting position identified by the next entry 412 in the
second stage look-up table. The starting point positions Start_Pos,_z for DocIDs are received
by the second look-up table 410 which translates the starting point positions into a list of
DoclIDs for each of the query terms.

[0060] In some embodiments, the first stage query processor includes logic 416 for
producing a result set. The lists of DocIDs are merged by logic 416, in accordance with the
Boolean logic specified by the query or query tree, to form a result set of DocIDs. The logic
416 may also optionally filter the lists of token positions to eliminate token positions not
located within the documents corresponding to the DocIDs in the result set. Furthermore, a
scoring function may be applied to the result set, using the DocIDs and token positions within
each document identified by the DocIDs so as to associate a score (sometimes called a query

score) with each DoclD in the result set.
Multi-Stage Query Processing

[0061] Figure 5 is a block diagram of an embodiment of a multi-stage query
processing system 500 for use with a tokenspace repository 524. In some embodiments, the
query processing system 500 includes four stages of query processing and relevancy score
generation, including a first stage query processor 510, a second stage query processor 514, a
third stage query processor 518 and a fourth stage query processor 520. Note that more or
fewer query processor stages can be used in the system 500 depending upon the application.
Each stage calculates one or more sets of relevancy scores which can be returned to the user
and/or combined with relevancy scores generated in previous stages, depending upon the

application.
Query Processing - Stage I

[0062] The first stage query processor 510 was generally described with respect to
Figure 4. A query string 502 is tokenized and parsed by a query parser 504 into query terms
(i.e., each distinct term in the query is treated as a token). The tokenized query terms are
translated by the global-lexicon 508 to corresponding GTokenIDs using a translation table or
mapping, as previously described with respect to Figures 2 and 4. Since users may employ
special operators in their query string, including Boolean, adjacency, or proximity operators,

the system 500 parses the query into query terms and operators. These operators may occur
17

10

15

20

25

30

WO 2006/020595 _ PCT/US2005/028192

in the form of reserved punctuation (e.g., quotation marks) or reserved terms in a specialized
format (e.g., AND, OR). In the case of a natural language processing (NLP) system,
operators can be recognized implicitly in the language used no matter how the operators
might be expressed (e.g., prepositions, conjunctions, ordering, etc.). Other query processing
may also be included in the first stage query processor 510, such as deleting stop words (e.g.,

86,9 <&

a”, “the”, etc.) and term stemming (i.e., removing word suffixes).

[0063] Next, the list of GTokenIDs are processed by a query expander 506, which
generates a query tree or other query representation that takes into account any operators used
in the query string (e.g., a Boolean expression). Optionally, the query expander 506 may also
expand the query in various ways. For instance, a query term may be converted into a
subtree containing the term and one or more synonym terms or other terms related to the
query term, with the terms in the subtree being related to each other by an OR operator or

parent node.

[0064] As will be described in more detail below, in some embodiments a query is
processed one or more times by the sequence of query processing stages shown in Figure 5.
On each pass (other than the last), additional query expansion terms are generated (as will be
explained below), and then these additional terms are added to the query tree. The query tree
can also be used as a scoring tree, with weights being associated with terms in the query tree.
The expanded query tree can also include supplemental terms and subtrees of terms that are
not required to be present in documents responsive to the query, but which are used in
scoring the relevance of documents responsive to the query. If there is more than one query
term, during the first pass weights may be computed for the query terms to improve the

search results.

[0065] In some embodiments, the first pass through the system 500 processes a
random sample of documents from a document corpus. The size of the random sample can
be selected based on one or more smaller random samples that can be used by the system 500
to estimate a number of documents that match the query across the document corpus. In
other embodiments, a first document corpus (e.g., a set of query sessions) is used in the first
pass through the system 500 and a second, different corpus is used in a second or subsequent
pass through the system 500. Using previous sets of query sessions enables the system 500 to
determine other related terms that commonly co-occur in similar queries. These related terms

can be used by the query expander 506 to expand the query for subsequent passes.

18

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

[0066] The first stage query processor 510 uses the query terms to search against a
tokenspace inverted index 512 and to identify documents matching the query. The first stage
query processor 510 accesses the inverse index 512 to produce a list of token positions (also
called tokenspace repository positions) for terms in the query tree and accesses the DocID
Map 516 to produce a set of DocIDs for the documents corresponding to the token positions.
In addition, the first stage processor 510 performs the Boolean logic specified by the query or
query tree so as to generate a set of DocIDs that are responsive to the query. In some
embodiments, the first stage query processor 510 also computes a first set of relevancy scores
S| between the query and each document based on one or more scoring algorithms. In
general, scoring algorithms provide relevancy rankings for each matching document based on
one or more query features, including but not limited to, the presence or absence of query
term(s), term frequency, Boolean logic fulfillment, query term weights, popularity of the
documents (e.g., a query independent score of the document’s importance or popularity or
interconnectedness), proximity of the query terms to each other, context, attributes, etc. In
one embodiment, the first set of relevancy scores S; are based on a set of factors that include

presence of query terms, term frequency and document popularity.

[0067] In some embodiments, the first set of relevancy scores S; can be used to select
documents for presentation as an ordered list to the user, who can then simply click and
follow internal pointers to the selected document. In other embodiments, the first set of
relevancy scores S, together with DocIDs and corresponding positions, are provided to the

second stage query processor 514 for further processing.
Query Processing - Stage 11

[0068] The second stage query processor 514 receives a set of DoclIDs, a list of
tokenspace repository positions for the corresponding documents, and a first set of relevancy
scores S from the first stage query processor 510. The second stage query processor 514
uses the list of positions to generate a second set of relevancy scores S, based on the
proximity or relative positions of query terms found in the documents. When the terms in a
query occur near to each other within a document, it is more likely that the document is
relevant to the query than if the terms occur at greater distance. Thus, the second set of
relevancy scores S; are used to rank documents higher if the query terms occur adjacent to
one another or in close proximity, as compared to documents in which the terms occur at a

distance. In some embodiments, the second set of relevancy scores S, can be used to select

19

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

the top X documents for presentation as an ordered list to the user, who can then simply click
and follow internal pointers to the selected document. In some embodiments, the second set
of relevancy scores S; is derived in part from the first set of relevancy scores S; (e.g., by
adjusting the S, scores in accordance with the additional scoring factors used by the second
stage query processor 514) to generate an ordered list of documents (ordered in accordance
with the second set of relevancy scores S;) for presentation to the user, and/or for further

processing by the third stage query processor 518.
Query Processing - Stage III

[0069] In some embodiments, the second stage query processor 514 is coupled to a
third stage query processor 518 for handling term attributes (e.g., font attributes, title,
headings, metadata, etc.) which have been encoded in an attribute table 522, as previously
described with respect to Figure 3C. The third stage query processor 518 receives a set of
DoclIDs, a list of tokenspace repository positions for the corresponding documents, and the
second set of relevancy scores S; from the second stage query processor 514. Alternately, the
third stage query processor receives the first set of relevancy scores S; as well as the second

set of relevancy scores S,.

[0070] Some studies show that the location of a term in a document indicates its
significance to the document. For example, terms occurring in the title of a document that
match a query term may be weighted more heavily than query terms occurring in the body of
the document. Similarly, query terms occurring in section headings or the first paragraph of a
document are likely to be more indicative of the document’s relevancy to the query than
terms occurring in less prominent positions within the document. Other attributes that may
be used as indicators of relevancy include bolded text, underlined text and font size. Thus,
the third set of scores Sj are determined using the attributes of tokens in the documents that
match the query terms. Referring to Figure 3C, to access the attributes for the query terms in
a document (i.e., the attributes of the tokens matching or relevant to the query terms), the
token positions of the query terms in the document are used to index into the attribute table
316 (522 in Figure 5). More specifically, if the number of tokens whose attributes are
encoded by each attribute record 318 is K, then the token positions divided by K are used to
index into the attribute table 316. In some embodiments, the identified attribute record or
records 318 are stored in an encoded, compressed form, and thus must be decoded in order to

determine the attributes associated with each of the query terms.

20

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

[0071] In some embodiments, the third set of relevancy scores S; can be used to
select the top Y documents for presentation as an ordered list to the user, who can then
simply click and follow internal pointers to the selected document. In some embodiments,
the third set of relevancy scores S; is derived in part from one or more of the first and second
sets of relevancy scores S and Sy, to generate an ordered list of documents for presentation to
the user, and/or for further processing by the fourth stage query processor 520. In one
embodiment, the S; scores are produced by adjusting the S, scores in accordance with the

additional scoring factors produced by the third stage query processor 518.
Query Processing - Stage [V

[0072] The fourth stage query processor 520 receives a set of DocIDs, a list of
positions in the documents corresponding to the DoclDs, and the third set of relevancy scores
S; from the third stage query processor 518. The fourth stage query processor 520 may
optionally receive the first and/or second sets of relevancy scores S; and S, as well. The
fourth stage query processor 520 is coupled to a decoding system 527, which in turn is
coupled to one or more mini-lexicon maps 523, a tokenspace repository 524 and one or more
global-lexicon maps 508. The mini-lexicon maps 523, tokenspace repository 524 and global

lexicon maps 508 were all previously described with respect to Figures 1 and 2.

[0073] The fourth stage query processor 520 generates a fourth set of relevancy
scores S4 based on context, and may also generate a “snippet” for one or more of the
documents listed in the result set. Snippets are small portions of text from a document, and
typically include text that appears around the keywords being searched. In one embodiment,
to generate a snippet for a document listed in the result set, the query processor decodes a
predefined number of tokens positioned before and after the first occurrence of each query
term present in the document, thereby reconstructing one or more text portions of the
document, and then selects a subset of the text portions to include in the snippet. Using the
list of positions in the result set, the decoding system 527 can select the mini-lexicons 523
that are needed to decode the portions of a document that precede and follow the occurrences
of the query terms in the document. The selected mini-lexicons 523 and the global-lexicon
508 are used to translate LTokenIDs in the tokenspace repository into GTokenIDs, and to

then translate the GTokenIDs into tokens, as described above with respect to Figure 2.

[0074] In some embodiments, the fourth set of relevancy scores S4 can be used to

select the top Z documents for presentation as an ordered list to the user, who can then simply
21

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

click and follow internal pointers to the selected document. In some embodiments, the fourth
set of relevancy scores Sy is derived in part from one or more of the first, second and third
sets of relevancy scores S;, S, and S3, to generate an ordered list of documents for
presentation to the user, and/or for further processing by a relevance feedback module 517.
In an alternate embodiment, the last stage query processor generates snippets for the
documents having the highest scores in the relevancy scores produced by the preceding query

processor stage, but does not generate a new set of relevancy scores Sj.

[0075] In some embodiments, the final set of relevancy scores are provided to a
relevance feedback module 517 which generates one or more new query expansion terms
based on documents in the result set produced by the last query stage. For example, the
relevance feedback module 517 could implement one or more known relevance feedback
algorithms, including but not limited to, pseudo-relevance feedback algorithms based on a
full document approach (pseudo relevance feedback based on a whole web page), Document
Object Model (DOM) segmentation, Vision-based Page Segmentation (VIPS), conceptual
relevance feedback using concept lattices, etc. The relevance feedback algorithms can
analyze the documents vetted from the previous query processing stages and generate query
expansion terms based the results of the analysis. The new query expansion terms are
provided to the query expander 506 which generates a new query expression to be processed
by one or more of the query processors 510, 514, 518 and 520. Thus, the multi-stage query
processing system 500 is capable of executing two or more passes on a query, and using
information from each pass to generate improved queries which will ultimately result in the

user receiving more relevant documents.

[0076] In one embodiment, the last query stage processor 520 produces long snippets
when performing the first pass processing of a query, for example including N (e.g., 10 to 40)
tokens preceding and following each occurrence of the query terms in a document. The
snippet may be truncated if it exceeds a predefined length. The query and the long snippets
produced by the last query stage 520 are provided to the relevance feedback module 517,
along with the relevance scores, so as to generate a set of query expansion terms, and,
optionally, a set of query term weights as well. During a second pass processing of the
expanded query, the last query stage 520 produces short snippets, suitable in length and
content for display with the list of documents in the result set having the highest or best

scores.

22

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

[0077] In one embodiment, the query processing system contains L parallel query
processing sub-systems, each of which contains an inverse index 512 and a tokenspace
repository 524 for a respective subset of a collection of documents. For instance, a query
processing system may include over a thousand parallel query processing sub-systems. The
relevance feedback module 517 (Figure 5) may be shared by all the query processing sub-
systems. During a first pass through the query processing system, the query is processed by a
small portion of the parallel query processing sub-systems, while during a second pass the
query is processed by the entire query processing system. For instance, the query processing
system may be divided into S subsets (e.g., 32 subsets), and each query is assigned to one of
the subsets in accordance with the result of applying a hash function to a normalized version
of the query, and then applying a modulo function to the result produced by the hash
function. Each subset of the query processing system may be called a “partition” of the query

processing system, and each query processing sub-system may be called a “sub-partition”.

[0078] The main purpose of the first pass processing of the query is to produce a set
of query expansion terms, and query term weights, so as to improve the quality of the query
results produced by the second pass processing of the query. As long as the documents in the
query processing system are fairly randomly distributed across the query processing sub-
systems, the query needs to be processed by only a small number of sub-systems to produce a
set of query expansion terms. The query expansion terms are used by the query expander 506
to produce an expanded query tree or query expression, which is then processed by the query
processing stages (in a second pass processing of the query) as described above. For
example, the query “new york pictures” might be expanded to “new york (pictures or images
or image or picture).” The result set and snippets produced by the last query stage during the
second pass may be formatted for display (or, more generally, presentation) by the computer

or device from which the query was received.

[0079] In one embodiment, the first pass processing of the query is performed on a
different database than the subsequent passes. For instance, the initial database for the first
pass may be a database of previously processed queries, while the database used for the

subsequence passes may be a set of documents having an inverse index for mapping query

terms to documents in the database.

23

10

15

20

25

30

WO 2006/020595 PCT/US2005/028192

Document Processing Server

[0080] Figure 6 is a block diagram of an embodiment of a tokenspace repository
server 600. The server 600 can be a stand alone computer system or part of a distributed
processing system including multiple computer systems. The server 600 generally includes
one or more processing units (CPUs) 604, one or more network or other communications
interfaces 608, memory 602, and one or more communication buses 606 for interconnecting
these components. The server 600 may optionally include a user interface, for instance a
display and a keyboard. Memory 602 may include high speed random access memory and
may also include non-volatile memory, such as one or more magnetic disk storage devices.

Memory 602 may include mass storage that is remotely located from the central processing
unit(s) 604.

[0081] The memory 602 stores an operating system 610 (e.g., Linux or Unix), a
network communication module 612, a lexicon generator 614 (e.g., the lexicon generator
108), an encoding system 616 (e.g., encoding system 300), one or more global-lexicons 618
(e.g., global-lexicon 206), one or more mini-lexicons 620 (e.g., mini-lexicons 208), a
tokenspace repository 622 (e.g., tokenspace repository 112), attribute records 624 (e.g.,
attribute records table 316), and a validity range map 626 (e.g., validity range map 210). The
operation of each of these components has been previously described with respect to Figures

1-5.
Query Processing Server

[0082] Figure 7 is a block diagram of an embodiment of a query processing server
700. The server 700 can be a stand alone computer system or part of a distributed processing
system including multiple computer systems. The server 700 generally includes one or more
processing units (CPUs) 704, one or more network or other communications interfaces 708,
memory 702, and one or more communication buses 706 for interconnecting these
components. The server 700 may optionally include a user interface, for instance a display
and a keyboard. Memory 702 may include high speed random access memory and may also
include non-volatile memory, such as one or more magnetic disk storage devices. Memory
702 may include mass storage that is remotely located from the central processing unit(s)
704.

24

10

15

WO 2006/020595 PCT/US2005/028192

[0083] The memory 702 stores an operating system 710 (e.g., Linux or Unix), a
network communication module 712, a tokenspace inverse index 714 (e.g., tokenspace
inverse index 408), a decoding system 716 (e.g., a decoding system 308), one or more lexicon
translation tables or mappings 718 (e.g., derived from global-lexicon 206 and mini-lexicons
208), a validity range map 720 (e.g., validity range map 210), a DocID map 722 (e.g., DocID
map 410), a query parser 724 (e.g., query parser 504), query tree 726, one or more query
processors 728 (e.g., query processors 510, 514, 518 and 520), attribute records 730 (e.g.,
attribute records table 316), and a tokenspace repository 732 (e.g., tokenspace repository
112). The operation of each of these components has been previously described with respect

to Figures 1-5.

[0084] The foregoing description, for purpose of explanation, has been described with
reference to specific embodiments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the precise forms disclosed. Many
modifications and variations are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the principles of the invention and its
practical applications, to thereby enable others skilled in the art to best utilize the invention
and various embodiments with various modifications as are suited to the particular use

contemplated.

25

10

15

20

25

WO 2006/020595 PCT/US2005/028192

What is claimed is:

1. A method of processing a query in a multi-stage query processing system,
comprising:

retrieving a first set of document identifiers from an index in response to one or more
query terms;

generating a first set of relevancy scores for a set of compressed documents
corresponding to at least a subset of the first set of document identifiers;

decompressing at least a portion of the set of compressed documents to recover a first
set of tokens, wherein the first set of recovered tokens are associated with positions in the set
of compressed documents corresponding to the first set of document identifiers; and

generating additional query terms from the first set of recovered set of tokens;

formulating a new query using the additional query terms; and

processing the new query to retrieve a second set of document identifiers from the
index and to generate a second set of relevancy scores based at least in part on the additional

query terms.

2. The method of claim 1, further comprising;:

decompressing at least a portion of the set of compressed documents to recover a
second set of tokens, wherein the second set of recovered tokens are associated with positions
in the set of compressed documents corresponding to the second set of document identifiers;
and

reconstructing one or more portions of the set of compressed documents using the

second set of recovered tokens.

3. The method of claim 1, further comprising:
presenting the reconstructed portions to a user with an ordered list of documents
selected from the set of compressed documents based at least in part on the second set of

relevancy scores.

4, The method of claim 1, wherein the second set of relevancy scores are based on one
or more positions of the query terms in the set of compressed documents corresponding to the

second set of document identifiers.

26

10

15

20

25

WO 2006/020595 PCT/US2005/028192

5. The method of claim 1, wherein the second set of relevancy scores are based on
distances between query terms in the set of compressed documents corresponding to the

second set of document identifiers.

6. The method of claim 3, wherein the second set of relevancy scores are based on a
context in which a query term is used in the set of compressed documents corresponding to

the second set of document identifiers.

7. A method of processing a query in a multi-stage query processing system,
comprising:

retrieving a first set of information in response to one or more query terms;

generating at least one additional query term based on the first set of information;

formulating a new query using the at least one additional query term, the new query
having a plurality of query terms; and

processing the new query to retrieve a set of document identifiers from an index;

generating a set of relevancy scores for a set of compressed documents corresponding
to at least a subset of the set of document identifiers;

decompressing at least a portion of the set of compressed documents to recover a set
of tokens, wherein the set of recovered tokens are associated with positions of one or more
query terms of the plurality of query terms in the set of compressed documents corresponding
to the set of document identifiers; and

generating a list of documents based on at least a portion of the set of document
identifiers, the list including information corresponding to at least a portion of the set of

recovered tokens.

8. A computer-readable medium having stored thereon instructions which, when
executed by a processor in a multi-stage query processing system, causes the processor to
perform the operations of:

retrieving a first set of document identifiers from an index in response to one or more
query terms;

generating a first set of relevancy scores for a set of compressed documents

corresponding to at least a subset of the first set of document identifiers;

27

10

15

20

WO 2006/020595 PCT/US2005/028192

decompressing at least a portion of the set of compressed documents to recover a first
set of tokens, wherein the first set of recovered tokens are associated with positions in the set
of compressed documents corresponding to the first set of document identifiers; and

generating additional query terms from the first set of recovered set of tokens;

formulating a new query using the additional query terms; and

processing the new query to retrieve a second set of document identifiers from the
index and to generate a second set of relevancy scores based at least in part on the additional

query terms.

9. A multi-stage query processing system, comprising:

means for retrieving a first set of document identifiers from an index in response to
one or more query terms;

means for generating a first set of relevancy scores for a set of compressed documents
corresponding to at least a subset of the first set of document identifiers;

means for decompressing at least a portion of the set of compressed documents to
recover a first set of tokens, wherein the first set of recovered tokens are associated with
positions in the set of compressed documents corresponding to the first set of document
identifiers; and

means for generating additional query terms from the first set of recovered set of
tokens;

means for formulating a new query using the additional query terms; and

means for processing the new query to retrieve a second set of document identifiers
from the index and to generate a second set of relevancy scores based at least in part on the

additional query terms.

28

PCT/US2005/028192

WO 2006/020595

1/10

vAcw—.

L ainbi4

A 1434

j
>
XOpH osaat) P (s)Mossaosoud Aien Snsod EﬂMﬂ
aoedsusyo] d Aenp Y m:_wmmamo M..n_
- Aenp
Buuis AsenDd
S
LN
Aoysodey |«) weysAs o
aoedsueyo] suajoL Buiposasq/buiposug < ucwu_.,:m_w%ﬂww__
papodsug
a sbujddepy
ZiL 80L\ /] Jojesauss) uoodixaT .AI.., 901
201
woysAg Buissesoid juswnsog
001

wajsAg [eAsl}oy UopeuLIOU|

PCT/US2005/028192

WO 2006/020595

2/10

[1]%4

Z ainbi4

Z-V SUOdIXaT-IuIp 802 90¢C
Jo4 deyy abuey pijea Z-V SUodIXaT-IulN uodIXa jeqolo
I.I [J
[
- [
s . EoN
S . auaoLsl ‘usyoy
— “Nawexorol ‘uexoy
SO .
d 48s d "ausyoLo [Yauaior | [*Ngueors] ‘tuayoy
9 -] T (4
sod yels o aiusyolo |""aiueqol | | Nquuexolro %usxoy
- I —1 W | [.
<ﬂ0n—|a.—8w g 000 auayjols | "aius)oln Q_cﬂov_o._.w uopenjoung
sod Hels v — °aiuexoro [*Yajuexoyq | | *qlusdioro [‘sBel TWLH
suojisod buntels | suoamxet-juIN —1 Sqjueyol | sqjuao) sqiuaol susdol
abuey uayjo) leqo|o [es0 leqo|o anbiupn
DR TSee o ¥ I] N %
e l‘l””llll 4' J \\ /I/ \\
waysAg Bujposaq Jopjing ‘ Japling
{Buiposuy < sBuiddegy UuodIXaT-IUlN | uooixa [eqojo
o:m b W ﬂ
L 0C A1 1A)

¥

80T

JOJelauas) uodixaT

el

Aiojisoday
jJuswinoog

90 —.A

PCT/US2005/028192

WO 2006/020595

3/10

sdnoig
Pspoouz

sdnoug
papoouz

g¢ ainbly4

Jopooa(Q

do) .
eyeq ybus] |— | (IEUOB
-o|qel ._W>|— A d8pod3(ejjoQg

Jeposug

————— ¥jeq pbus

-sjqeuen

90¢ w

(1] 34 ﬂ . . ZLe ﬂ

80¢
waysAg Buipooseq

ve ainbi4

uopeuLouj
Joisn

«———| (euopdo) |

Jepooug ejjeqg

(reuondo)
._Omwmoo.-mum.-m

uoneuuoju|
josn

o€ ﬂ

00€
waysAg bupoouy

cog m

PCT/US2005/028192

WO 2006/020595

4/10

cce

<

oju| gLy

¢ ainbi4

oce

<

Oju} ZANQURY

oju] LaInquyy

waysAs
Bujpooag
{Buipoosug

vie

8lE -

<

pJoday
sINqURY
papooug

-] 2

<

22934~y

1994~V

waysAg Buipoosg/buipoosug synqupy

093Y-vY

sjqe pioosy
sanquypy

s-ooo“

Njusod

PCT/US2005/028192

WO 2006/020595

y 91nbil4

suopisod
jo Aﬂwm_._ dmjoo-] eBeyg puooss or dnyjoo] obeyg 3su1y
sov
uopisod "do xqjoo .
) o160 om aroa 29s'veL | 1ovsoe
T TLETS P ° o
S =] :
__s8J00g ‘a1607| ‘sqjooq 2 il sg|e0q - p< -~
m—._MM-__MMm_ Uesjood| o 3sy| UORISOd “doy 14190 ;0 suopsod cLL } 50 .w_rm_m__
40 j0s3}jnsey e "doy odioog Bugsers 0 0o . |
oly depy giooQ sqgjooqg jo JcE/usod
m suonisod buntels 7
o o0y
Js)7 uopjsod Asojisoday :zgjusyol
= dewy
w ° pioooy
- Xxapuyj “ |
0} giusyol
suogjsod (s)aiuevoyr
Jo (shsp 351 uopisod Aiogisodey :LaiuedoL W [eqoio
3517 UoRisod Asojisodey :pqjuenol} oy -
(434 uodixeT]
Xopuj 8SIoAU| jeqoio
80V vol Zov A 4 |
E£m>m Bujssedoagd AienDd (s)usay KionpD

PCT/US2005/028192

WO 2006/020595

805 /| (s)ucopey VeS| onsodey | |(s)uoopxeq sigeL | N\ S @4nbi4
| [eqois eoedsuajo) “JuIN .\/ InquURY . 228
_ _ | 'ees
LS , weysAs buiposaq _\~
> ——
oS-) s20(Les
i (reuogdo) (so0q (sesn 01) (soog 2g g
\ omnpow | (sesn o1) Z do) 308j08 sooq | Adop3osjes sal109g ‘saoQ
| yoeqpead | sooQ AJ ‘Peyuog uo | AI_ ‘seInquPy uo | 8y} uj suoyisod
| 9OUBAQ|oY = s——— poseg 0109g) |e — pasegq 2i09g) |€—— jo sysI
b e ' Zecl S$S lossadoid S . $'S 10s$3904d ‘sqgjooQ
_ s .M-MM%“M fionp se109g ‘sooQ fienp JO 389G }Insoy
L 2 | ebeys ynog | O UL SUORISOd | obeyg pupyy z obeys
uojsuedxy sapoqg 30 sisI
A1snp meN JO jJoS }nsoy > ‘sglooq
91§ y ebeys ClS 025 jologinsay ﬂ
W o) , € obelg 8LS
S suonisod Xxapuj
= —— 9SJOAU| 80S | uodixeT
© QNS_ dieocd aoedsuayo] f\/ leqo|s
IS sareg , suua)
A ¥ 1 s quusyo uosuedx3 suu9
(s9sn o1) (sv0qg (49sn o)) 'sog | IUNOLO Asanp Ec:n._v.
so0(Q X do] josjes so0Q . M3N
AI_ ‘Aluixold uo Al_ 10§s99%01d _
e paseg 0109g) [«] Aonp - hmﬁwﬂnxm] .NM.:« d le— Aienp
S ©'§ 831095 | ,0ss0901g § 803§ | opeyg ysily O |squeyolro O
‘soo(9y} ul fienp ‘suopisod Joisi
suoRisod 0 SIsI | obyyg puoseg | £AI°0A 0 S w ﬂ A
‘sgieoq Jog)nsdy 0ls 905 v0S 20s
jo 398 }nsay | ebeyg 005
. waysAg Buissesold Aanp abejs-BIny

Z obelg

PCT/US2005/028192

WO 2006/020595

7/10

9 aunbi1y4

aoe8}U]
/] depy eBuey AipijeA MomgaN [T
929 809
«Nc\ SpJoday anqupy
Num\. | Kioyisoday soedsuarjo)
ozo—"| (S)uooixo-1uIN
wvw.\. (s)uosjxa] jeqolo
m_.w.\. waysAg Bupoouzg |
.
vio—" | 10JeJauas) UovIxeT N
909
Z19—"" | 9|NPON UOHEIUNWIWOY YIOMISN
(s)ndo
oL9—" | weaysAg Bugesado "
N 09
209 Atoweapy
009

Joasag Buissesold Juswinao(

PCT/US2005/028192

WO 2006/020595

8/10

ze2 - | Kioysodey ededsuayo) yA 0&3@&&
052 e SPJoodYy SInquyy
8z v (s)ossasold A1onpd
9cL < 9841 Menp ERYTRE T -
>HomieN

ver | Jesied fienpd 80.
221~ | dew giooq
0zz—"| dep obuey Aipijea
12— | So|qe] UO[ejSUBL] UOI|XaT
w_‘u\. waysAg bujposaqg
" X9pu| 9sJaAU| aoedsua)o) /

. 90L
AV SINPOIN UOREDJUNWIWIOD HIOMION

(s)ndo
oL | weysAg Bugesedo
N— ¥oL
202 fAowapy 00Z

Jonseg Buissasoud Auenp -

PCT/US2005/028192

WO 2006/020595

v8 ainbi4

9/10

808
. S}esy0 Noolg 90
o pue suooixa uojboy uodixa [eqo|o
° .| zuoibey -
N o
dnouig L uoiboy .
dnoig . ®
dnoug <" | ouoibey . “Yaluaiorsl tueyoy
dnosg [~ sjuswnosog 028 Z+N z
uoibay ¢C8 pazjuajol “sesyo | “uooxe ¢ QUIADLS ueoL
.. yoolg uoiboy “Nauadolsl ‘ueyoy
., zes Fsjesyo | Tuoopet | NaluenoLo| oyeyoy
° \ 3oojg uoibay o
Rigesyo | Ruoome | | n_:w"v_o._.mui:o_um-.«o::m 502
mcwh_%.__.mwwwwwuc 30019 uojboy "qluexoo (‘sbel INLH Xyaid
3
%sresu0 | ®uoopxe squajol | suajol
C ¥oo|g uoibey .o | [eqo|o enbyun
- ; wZ/usod _
H \, ves /" oss/ {ums) N /
\ 1 3 uoibay \ /
%uooixe
uojbsy
waysAg Bulpoouy (e— 19pling 1epiing - Kioysodsy
9SS buipoous matw:%_uu_n Suo9jxeT uojboy | uodixe [eqojo . jusuindog
uojboy
1/\) /ﬁwy 202 W Svﬂ
018 L
g8 04nby x :

801

JOjelduss) UodixaT

PCT/US2005/028192

WO 2006/020595

10/10

g6 ainbi4

906 206

ybus) | and ,mn_b = lopoo Adon| adA)

0L6 W 806 W (dAy Aq pauioads odfy
ybus)) usxol

06 ﬂ c06 m

v6 24nb14
[g'slo
g uojbay [oLle1
3O V¥ Xdoig 0} [6lo1
m—h@v—O.F vwvoc:w _HN.NHO
[1]1%}
waysAg Buipo
g uoibay Jo v oolg g uoibay
Bujsudwo? suaoy (jeqoio) 403 Uo9IXa]
228 08
eee | |Z |¥SSL| 9Ol L et] 2 | €L | 12 |¥SGL|eee| €12

INTERNATIONAL SEARCH REPORT

Intzasational Application No

/US2005/028192

A. CLASSIFICATION OF SUBJECT MATTER
606F17)%0

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HO3M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y XIAOWEI SHENG ET AL: "An information 1-9
retrieval system based on automatic query
expansion and hopfield network"

NEURAL NETWORKS AND SIGNAL PROCESSING,
2003. PROCEEDINGS OF THE 2003
INTERNATIONAL CONFERENCE ON NANJING, CHINA
DEC. 14-17, 2003, PISCATAWAY, NJ,
USA,IEEE,

vol. 2, 14 December 2003 (2003-12-14),
pages 1624-1627, XP010691831

ISBN: 0-7803-7702-8

the whole document

Y EP 0 584 992 A (XEROX CORPORATION; XEROX 1-9
CORP) 2 March 1994 (1994-03-02)
column 1, line 1 - column 3, line 12
column 7, Tine 15 - 1ine 42

Ry

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :)) - -
T later document published after the international filing date

‘A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of paricular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
inthe an.

& document member of the same patent family

Date of the actual completion of the international search

6 January 2006

Date of mailing of the international search report

16/01/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Lechenne-Stiller, L

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Intgahational Application No

/US2005/028192

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 2004/158560 Al (WEN JI-RONG ET AL)
12 August 2004 (2004-08-12)

abstract

paragraph ‘0007!

paragraph ‘0010!

paragraph ‘0040!; figure 2

US 5 991 713 A (UNGER ET AL)

23 November 1999 (1999-11-23)
abstract

column 8, line 55 - column 12, Tine 25;
figures 7-10

column 16, line 5 - 1ine 17

1-9

1-9

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Intgxnational Application No
Information on patent family members

/US2005/028192
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0584992 A 02-03-1994 DE 69330196 D1 13-06-2001
DE 69330196 T2 18-10-2001
JP 3553106 B2 11-08-2004
JP 6208453 A 26-07-1994

US 2004158560 Al 12-08-2004 NONE

US 5991713 A 23-11-1999 NONE

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

