
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0070742 A1

US 20100070742A1

Dowling (43) Pub. Date: Mar. 18, 2010

(54) EMBEDDED-DRAM DSPARCHITECTURE (60) Provisional application No. 60/054,439, filed on Aug.
HAVING IMPROVED INSTRUCTION SET 1, 1997.

Publication Classification
(75) Inventor: Eric M. Dowling, Richardson, TX

G06F 9/44 (2006.01)
G06F 12/00 2006.O1

Correspondence Address: G06F 9/00 30.8
Eyes YODER (MICRON TECHNOL- G06F 9/312 (2006.01)

9 (52) U.S. Cl. 712/225: 711/105: 711/E12.001; P.O. BOX 692.289 71.2/E09.033
HOUSTON, TX 77.269-2289 (US)

(57) ABSTRACT

(73) Assignee: Micron Technology, Inc., Boise, ID An embedded-DRAM processor architecture includes a
(US) DRAM array, a set of register files, set of functional units, and

a data assembly unit. The data assembly unit includes a set of
(21) Appl. No.: 12/623,179 row-address registers and is responsive to commands to acti

vate and deactivate DRAM rows and to control the movement
(22) Filed: Nov. 20, 2009 of data throughout the system. A pipelined data assembly

approach allowing the functional units to perform register-to
O O register operations, and allowing the data assembly unit to

Related U.S. Application Data perform all load/store operations using wide data busses.
(60) Continuation of application No. 10/074,779, filed on Data masking and Switching hardware allows individual data

Feb. 13, 2002, now Pat. No. 7,631,170, which is a
division of application No. 10/001,007, filed on Nov.
14, 2001, now Pat. No. 7,272,703, which is a continu
ation of application No. 09/021,933, filed on Feb. 11,
1998, now abandoned.

words or groups of words to be transferred between the reg
isters and memory. Other aspects of the disclosure include a
memory and logic structure and an associated method to
extract data blocks from memory to accelerate, for example,
operations related to image compression and decompression.

72 17 N. a. 15 723

REGISTER O E
RECISTER 1 s

2 a. MASK
22- DRAM Y AND TO/FROM

MASKED SWTCH
204 ROW UNIT DRAM ARRAY

is REGISTER k s

aca, 267

MASKA ROW
(as SWITC- ADDRESS
N

f25

FUNCTIONAL INTER- 122.
UNTS RECISTER SRé

A 22 MOVE 226
UNIT

DATA ASSEM 3LY UNIT

Z 22/-/

US 2010/0070742 A1 Patent Application Publication

US 2010/0070742 A1 Patent Application Publication

US 2010/0070742 A1 Mar. 18, 2010 Sheet 3 of 6 Patent Application Publication

US 2010/0070742 A1 Mar. 18, 2010 Sheet 4 of 6 Patent Application Publication

|----
y

3262;°~~~~

TOÀ-|| NOO NYNÍTICO
2/ zº

x ^^p

~~~~ 

x ^^p 

~~~~ ?X(\W zozº 
22,7;:

42/ >

Patent Application Publication Mar. 18, 2010 Sheet 5 of 6 US 2010/0070742 A1

- k - 3.32 534

DRAM DRAM
ARRAY ARRAY

WLW WLW

NTERCONNECTION NETWORK

VLIW
55

INSTRUCTION CACHE
aff VLIW/BRANCH

so- MOX
AO

PREFETCH BUFFER 222

2O2

DFSPATCH BUFFER

3O3 BRANCH af2 7O

FUNNAL TO DATA /2

A72 as

9 39/2/

US 2010/0070742 A1

(SCJ8OM WñN)# MITA

W^N | MOX! HONV88||>< -229

Mar. 18, 2010 Sheet 6 of 6 Patent Application Publication

US 2010/0070742 A1

EMBEDDED-DRAM OSPARCHITECTURE
HAVING IMPROVED INSTRUCTION SET

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation of U.S.
patent application Ser. No. 10/074,779 filed on Feb. 13, 2002,
which is a divisional of U.S. patent application Ser. No.
10/001,007 filed on Nov. 14, 2001 (issued on Sep. 18, 2007 as
U.S. Pat. No. 7,272,703), which is a continuation of U.S.
patent application Ser. No. 09/021,933 filed on Feb. 11, 1998
(now abandoned), which claims priority to U.S. Provisional
Patent Application Ser. No. 60/054,439 filed on Aug. 1, 1997.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. This invention relates to the field of microsystems
architectures. More particularly, the invention relates to
memory access, memory hierarchy and memory control strat
egies targeted for use in embedded-DRAM (dynamic random
access memory) digital signal processors (DSPs) and media
processors.
0004 2. Description of the Related Art
0005 Digital signal processors (DSPs) are microproces
sors optimized to execute multiply-accumulate intensive
code on arrays of data. Media processors are similar to DSPs,
but are further optimized for packed-pixel vector processing
and to function in PC and workstation environments. Typical
DSP and media processor applications include modems, tone
processing for telecommunication applications, cellular com
munications processing, video compression/decompression,
audio processing, computer vision, biomedical signal analy
sis, and the like. Many of these applications involve the pro
cessing of large data arrays that are stored in memory. High
speed on-chip SRAM (static random access memory) is
provided on most prior art DSPs in order to allow them to
access data rapidly. In many systems, external memory is
needed, and Such memory has traditionally been imple
mented with costly SRAM in order keep the DSP from insert
ing large numbers of wait states while accessing external
memory. Larger but slower DRAMS are employed when a
very large external memory is needed since fast SRAMs of
the same size would be prohibitively expensive in most appli
cations. The use of a slower external DRAM often becomes
the bottleneck that limits system performance in memory
intensive processing applications such as video compression
and decompression. Some prior art DSPs provide DRAM
interfaces and use DMA (direct memory access) controllers
to move data back and forth between the DRAM and a large
on-chip SRAM. Large on-chip program memories or caches
are provided to keep the processor from having to execute
instructions out of the much slower external DRAM. Hence,
current processor architectures need large amounts of on-chip
SRAM to keep the memory system from creating a bottleneck
and slowing down the processor.
0006 A problem with the prior art is that SRAM takes on
the order of 35 times more silicon area than DRAM for the
same number of memory cells. Also, applications such as
Video processing involve large data arrays that need to be
constantly moved on and off-chip. When the program does
not all fit in program memory or when an instruction cache
miss occurs, the program flow is slowed while waiting for
instructions to be fetched from the slower off-chip DRAM.

Mar. 18, 2010

This problem is exacerbated in VLIW (very long instruction
word) architectures where the difference in access times
between an instruction cache hit and a miss can be an order of
magnitude. Also, when the data arrays to be manipulated do
not fit on chip, extra data movement and less than optimal
systems implementations are required to partition the prob
lem. For example, in video decompression, a coded video bit
stream moves from the CD ROM into DRAM, and then a
separate DMA channel is set up to constantly move segments
of the bit stream on chip and to export results off chip in order
to keep enough working memory space available. This piece
meal approach requires extra overhead and system bus band
width. Possibly more importantly, this piecemeal approach
complicates programming, often leading to assembly coded
implementations that increase the time-to-market and
increase the development and maintenance costs of the sys
tem

0007 Some newer prior art systems integrate DRAM onto
the same chip as the processor. A notable example is the
Siemens Tricore processor. This processor includes wide data
paths to memory and various architectural innovations, but
otherwise uses traditional instruction and data caching struc
tures. The traditional caching approach incorporates a large
hierarchical caching structure with one or more levels. By
storing the most recently used data and instructions in the
faster cache levels, the processor is able to perform data
transactions, on average, much more rapidly than if it had to
interact directly with the DRAM. Typically, a set-associative
or a direct mapped caching policy with a least recently used
eviction strategy is employed. Traditional caching techniques
assume the programmer knows nothing of the memory hier
archy, and Such techniques allow the operating system and
hardware level caching algorithms to perform paging and
line-filling at the various memory hierarchy levels for the
programmer.

0008 While prior art memory hierarchy concepts serve
well in processors, such concepts may not be the best
approaches for embedded-DRAM processor architectures.
First of all, large SRAM caches take up a significant amount
of silicon area, largely defeating the purpose of integrating
DRAM on to the processor. When the processor executes
image and signal processing algorithms, data caches become
much less useful because image and signal data structures do
not typically fit in the cache. In fact, overall performance will
often be degraded due to overhead associated with ineffective
caching. To alleviate this problem, a traditional Solution
would be to integrate both DRAM and large SRAM memory
banks on chip and to use a DMA controller to shuffle data
back and forth between the on-chip DRAM and SRAM
banks. A data cache may also be used to cache recently used
data. This type of solution is implemented on the Siemens
Tricore chip and represents an on-chip extension of the prior
art technology.
0009. A problem that exists in prior art systems, especially
DSPs and media processors, is the difficulty for compilers to
efficiently translate a high-level language program into an
efficient implementation. The difficulty arises largely due to
the complicated pointer manipulations and indexing needed
to keep the pipelines of the architecture running near their
peak efficiency. When data caches are also included, the
problem can be even more severe. For example, it is known
that on Some architectures, a matrix multiply program can be
sped up by almost an order of magnitude just by reorganizing
the loop structures to operate on Smaller Sub-matrices that can

US 2010/0070742 A1

be reused out of a cache. Thus, a problem with prior art DSPs
and processors that employ data caching structures is the
difficulty compilers have in generating efficient code due to
their need to design very complicated pointer manipulation
strategies and the need to account for second order cache side
effects.
0010 From a silicon area standpoint, it would be desirable
to have an architecture that employs as much very dense
DRAM as possible and as little high speed SRAM as possible.
From a performance standpoint, it would be desirable to have
an architecture that incurs minimum delay while accessing a
slower but larger DRAM. It would also be desirable to have an
architecture that could efficiently extract data objects out of
large data structures stored in the DRAM. It would also be
desirable to include DRAM array control oriented registers
and instructions into the architecture so the programmer or
compiler could efficiently manipulate the DRAM resources.
It would be desirable to have an architecture that could be
efficiently exercised by programs translated from high level
languages by compilers. This would reduce an application's
time-to-market while also reducing development costs. It
would also be desirable to be able to respond quickly to
interrupts by avoiding large delays associated with Switching
the machine context into and out of slower DRAM. It would
also be desirable to include a register windowing system to
allow local variables and register spaces to be quickly loaded
and stored to accelerate function calling. It would also be
desirable to minimize or eliminate the need for an instruction
cache, allowing the program to efficiently execute out of
DRAM, with a very minimal cache whose small size does not
produce a performance penalty.

SUMMARY OF THE INVENTION

0011. The present invention solves these and other prob
lems by providing an embedded-DRAM processor architec
ture with a program-controlled data transfer and caching
structure that reduces or eliminates waiting time due to
DRAM accessing. The present invention achieves this with
out the need for large SRAM caches as was required in prior
art systems. The present invention incorporates an intelligent
memory controller which performs prefetching and look
ahead operations to optimize the use of wide on chip data
paths available to the DRAM arrays. The presentarchitecture
is hardware efficient and involves parallel operations to accel
erate the execution of Standard programs. The present archi
tecture is useful for reducing DRAM related delays in a wide
variety of processor types, especially superscalar and VLIW
processors with multiple pipelines.
0012. A further aspect of the present invention is a DRAM
array structure coupled by wide data paths to a set of SRAM
register files. Another aspect of the present invention is a
memory controller unit operative to execute instructions in
parallel with the processor's core functional units, and to
control the flow of data between the DRAM array structure
and the SRAM register files. While the core functional units
operate on data stored in an active register file, the memory
controller moves data between an inactive register file and the
DRAM array structure. In a method of processing, the core
functional units and the memory controller execute a single
instruction stream together as distinct functional unit group
ings. At specified times, the memory controller may fork a
thread, and when an inactive register file is ready to be
Switched to an active state, the memory controller resynchro
nizes with the core functional units using shared flag bits.

Mar. 18, 2010

(0013. A still further aspect of the invention is a DRAM
array area designated for single-cycle task Switching. In this
aspect of the invention, only the primary register set needs to
be saved. When an interrupt is detected, the memory control
ler optionally saves the register contents of the inactive reg
ister set and then saves the active register set. When the save
is made, the program counter, the status register, and other
volatile state registers are saved to a DRAM bank whose
length matches the total amount of nonvolatile information
that needs to be saved in a task switch. Another aspect of the
invention is a method for calling Subroutines in an embedded
DRAM processor architecture. In this method, the active
register set is automatically saved into a DRAM array stack
area, and a stack frame of local variables is created in a
secondary register set.
0014. A further aspect of the invention involves a DRAM
bank organization together with hardware and algorithmic
Support structures. The structure Supports a method to extract
data objects out of a larger data object stored in a DRAM
array. For example, a large decompressed image may be
stored in the DRAM. A structure to store the image in the
DRAM is provided together with a method to extract, for
example, 8x8 blocks out of the image.
0015. A further aspect of the present invention is an
instruction fetching mechanism that Supports full-speed
execution during sequential accesses. This mechanism also
allows branch instructions to be cached. With the branch
cache, when a branch cache-hit occurs, the pipeline stages
that would otherwise stall proceed at full speed by fetching a
short sequence of instructions from the branch cache. Mean
while, during sequential accesses, the instructions may be
fetched from an interleaved set of DRAM banks. This reduces
the size of the SRAM program cache needed to keep standard,
superscalar and VLIW architectures fetching instructions at
full speed.
0016 A further aspect of the present invention is an archi
tecture and programming model Suitable to be efficiently
programmed in a high level language. An intelligent caching
structure is introduced whereby a cache controller operates
with specific knowledge of the executing program. With the
inventive structure, instead of the cache operating with a
cache-hit or cache-miss policy, the cache controller performs
look-ahead and speculative fetching operations for the func
tional units which only operate on architectural register files.
The intelligent cache controller, called a data assembly unit,
assembles data packets in register files. When the data is
assembled in the register file, it is switched from an inactive to
an active state where it functions as an architectural register
set. The architectural registers are the registers visible to the
program executed by functional units in the architecture. By
using wide data paths, look-ahead policies, speculative pre
charging and prefetching, and data rearrangement, the data
structures presented to the functional units are simple and
consistent and do not require complicated pointer manipula
tions and indexing schemes. Also, since the data assembly
unit prepares the data into a limited set of SRAM register files,
program inefficiencies due to data structures not fitting into
cache are reduced or eliminated.

0017. Another aspect of the present invention is an embed
ded-DRAM processor comprising a plurality of DRAM
banks. Each DRAM bank comprises a plurality of DRAM
arrays, and each DRAM array comprises a plurality of ran
domaccess memory cells arranged in rows and columns. Row
control circuitry selects, in response to a row address, a set of

US 2010/0070742 A1

rows of cells for access. The set of rows make up a row of data
words in one of the DRAM banks. A plurality of register files
have a parallel access port operative to transfer data into or out
of a plurality of registers in response to a single program
controlled latch signal. The register files also have a plurality
of individual register ports whereby selected individual reg
isters may be accessed under program control. A mask and
switch unit couples at least a subset of columns of the row of
cells to the parallel access input of at least two of the register
files. A set of functional units is coupled to the register files.
The functional units access selected registers in the register
files in response to instructions. Register file control circuitry
responds to a register file select signal to select a register file
whose registers may be accessed by instructions executed on
the functional units.

0018. Another aspect of the present invention is an embed
ded-DRAM processor which comprises a plurality of DRAM
arrays. Each of the DRAM arrays comprises a plurality of
random access memory cells arranged in rows and columns.
A data assembly unit comprises a set of row registers. Each
row register is capable of holding a row address. The data
assembly unit is responsive to program instructions to select
at least one of the rows and to selectively provide one of a read
signal and a write signal to a selected one of the DRAM
arrays. Each of first and second register files comprises a set
of registers, a parallel access port for loading or storing one of
the entire register files in a single cycle, and a plurality of
individual register ports to allow individually controlled
accesses to individual registers. A mask and switch unit is
operative to couple the selected rows to a parallel access port
of the first register file. A set of functional units is selectively
coupled under program control to one of the first register file
and the second register file. When the second register file is
selectively coupled to the functional units, the selected rows
may be transferred in a single cycle to or from the first register
file via the parallel access port, and, at the same time, at least
Some of the registers in the second register file are accessible
individually by the set of functional units. Preferably, the
selected row comprises a row of words, wherein a word
contains the number of bits used in each register. Also pref
erably, the mask and Switch unit is responsive to a set of
program-controlled mask bits which select or deselect bit
fields of the selected row to allow a subset of the registers in
the first register filer to be loaded or stored in the single cycle.
Preferably, the mask and switch unit is responsive to a set of
program-controlled permutation bits. The permutation bits
are indicative of a permutation pattern used to rearrange the
relative positions of data bits as they pass through the mask
and Switch unit. For example, the permutation bits indicate a
left-barrel-shift permutation, a right-barrelshift permutation
or a rotate permutation. Preferably, the data assembly unit
further comprises an instruction register coupled to receive
instructions fetched by a first prefetch unit which fetches
instructions for the functional units. Also preferably, the data
assembly unit further comprises an instruction register
coupled to receive instructions fetched by a second prefetch
unit which fetches instructions for the data assembly unit
from a local store.

0019. Another aspect of the present invention is an embed
ded-DRAM processor which comprises a DRAM array
which comprises a plurality of random access memory cells
arranged in rows and columns. A register set can be loaded via
a parallel access port in response to a single latch signal. A
path couples at least a portion of a selected row of the DRAM

Mar. 18, 2010

array to the parallel access ports of the register set. A selector
Switch is operative to couple the register set to a set of func
tional units. The functional units are operative to manipulate
data contained therein. The selector switch is also operative to
couple the register set to a data assembly unit. The data
assembly unit is operative to generate control signals to load
or store the subsets of registers from and to a selected DRAM
row, to move data from one register to another within the
Subset of registers, or to move data between registers from
different subsets of registers.
0020. Another aspect of the present invention is an embed
ded-DRAM processor which comprises a DRAM array
which comprises a plurality of random access memory cells
arranged in rows and columns. The processor also includes a
set of row address registers. One or more of sets of registers
are each capable of being loaded or stored in response to a
single latch signal. An instruction set includes (i) at least one
command to perform arithmetic on the row address registers,
(ii) a command to precharge (activate) rows pointed to by the
row address registers, (iii) a command to deactivate rows
pointed to by the row address registers, (iii) a command to
load a plurality of words of a row designated by the row
address registers into designated sets of data registers, and
(iv) a command to load selected columns of rows pointed to
by the row address registers into designated sets of data reg
isters, the selection based on bits in a mask. Preferably, the
processor further comprises first and second sets of functional
units. The first and second sets of functional units have
respective first and second instruction sets and access first and
second architectural register sets. A command is provided to
select one of the first and second sets of registers to be an
architectural set of registers accessible to the first set of func
tional units. Another command is provided to deselect the
other of the first and second sets of registers so that it is no
longer an architectural register set accessible to the first set of
functional units. Another command is provided to select one
of the first and second sets of registers to be an architectural
set of registers accessible to the second set of functional units.
A further command is provided to deselect the other one of
the first and second sets of registers so that it is no longer an
architectural register set accessible to the second set of func
tional units. Alternatively, a command selects one of the first
and second sets of registers to be an architectural set of
registers accessible to the first set of functional units, and, at
the same time, deselects the one of the first and second sets of
registers to be anarchitectural set of registers accessible to the
second set of functional units.

0021. Another aspect of the present invention is an embed
ded-DRAM which comprises a plurality of DRAM arrays.
Each of the DRAM arrays comprises a plurality of random
access memory cells arranged in rows and columns. A task
control block DRAM array comprises a plurality of random
access memory cells arranged in rows and columns, wherein
the number of columns exceeds the number of rows, and the
number of columns matches the amount of Volatile informa
tion that needs to be saved when performing a task Switch. An
exception handling sequential logic circuit performs the steps
of (i) recognizing a specified event that arises in either hard
ware or software, and continuing to process instructions, (i)
precharging a row in the task control block DRAM array, (iii)
after a delay related to the precharging time of the row, ceas
ing to process instructions and saving the Volatile information
in the row, and (iv) resuming the fetching of instructions from
an address related to the recognized event.

US 2010/0070742 A1

0022. Another aspect of the present invention is an embed
ded-DRAM processor which comprises a plurality of DRAM
arrays. Each of the DRAM arrays comprises a plurality of
random access memory cells arranged in rows and columns.
A task control block DRAM array comprises a plurality of
random access memory cells arranged in rows and columns,
wherein the number of columns exceeds the number of rows,
and the number of columns matches the amount of volatile
information that needs to be saved when performing a task
switch. An SRAM latch is included which has the same
number of columns as the task control block DRAM array. An
exception handling sequential logic circuit performs the steps
of (i) recognizing a specified event that arises in either hard
ware or Software, and continuing to process instructions, (ii)
precharging a row in the task control block DRAM array
related to the recognized event, (iii) after a delay related to the
precharging time of the row, ceasing to process instructions
and saving the volatile information in the SRAM latch, (iv)
loading the precharged row containing Volatile information
into the processor, and (V) resuming the fetching of instruc
tions from an address related to the recognized event. Prefer
ably, the exception handling sequential logic circuit further
performs, in parallel with the loading step and the resuming
step, the step of precharging a second row in the task control
block DRAM array. The second row is related to the process
which was being executed prior to the recognized event. The
exception handling logic circuit stores the contents of the
SRAM latch in the second row.

0023. Another aspect of the present invention is a com
puter system which includes input/output devices and an
embedded-DRAM. The computer system comprises a plural
ity of DRAM arrays. Each DRAM array is arranged as a
plurality of rows and columns of memory cells. A set of
row-address registers is also included. At least one register
file comprises a first parallel access port operative to load or
store contents of the register file in a single cycle from or to a
DRAM row as selected by the row-address register. The reg
ister file further comprises a second set of access ports opera
tive to transfer data to and from selected individual registers
in the register file. The computer system includes commands
operative to manipulate the row-address registers and com
mands operative to perform precharge operations to activate
and deactivate DRAM rows. Further commands are operative
to load and store DRAM rows to or from the at least one
register file. Still further commands are operative to mask
certain fields of the row so that the parallel access load and
store operations can selectively transfer only a Subset of the
selected row to or from the at least on register file. Additional
commands are operative to access selected ones of the regis
ters as operands and to process information contained therein.
0024. Another aspect of the present invention is a com
puter system which includes input/output devices and an
embedded-DRAM processor. The computer system com
prises a plurality of DRAM arrays. Each DRAM array is
arranged as a plurality of rows and columns of memory cells.
A plurality of register files are included. Each register file
comprises a first parallel access port operative to load or store
contents of the register file in a single cycle from or to a
DRAM row as selected by the row-address register. Each
register file further comprises a second set of access ports
operative to transfer data to and from selected individual
registers in the register file. The computer system includes a
set of functional units and a data assembly unit. The data
assembly unit executes commands operative to manipulate

Mar. 18, 2010

the row-address registers, commands operative to perform
multiple word load and store operations from or to DRAM
rows to or from the at least one register file, and commands
operative to place a selected register file in the architectural
register set of the functional units. The functional units
execute commands operative to manipulate data stored in
selected ones of the register files.
0025. Another aspect of the present invention is a data
assembly unit which comprises a set of row-address registers
and one or more mask registers. A row-address arithmetic unit
is operative to manipulate addresses stored within the row
address registers under program control. A mask logic unit is
operative to manipulate bits in the mask register under pro
gram control. An instruction prefetch register is operative to
receive instructions from an external Source or from a local
program Store. An inter-register move unit is operative to
control the movement of data between registers in one or
more sets of external data register files. A control interface
comprises row address lines, row precharge control lines,
read/write control lines, and mask bit lines. The control inter
face is operative to control the parallel movement of rows of
information stored in external memory arrays to and from the
external register files.
0026. Another aspect of the present invention is a method
in an embedded-DRAM processor which incorporates wide
data paths to memory. The method is a method of intelligent
caching which comprises the steps of segmenting the archi
tecture into first and second portions, executing instructions
by the first portion which manipulate only register operands,
and executing instructions by the second portion which per
form row-oriented load/store operations as well as individual
register-to-register move operations. The first portion of the
architecture sees a Subset of the total available registers as its
set of architectural registers. The first portion of the architec
ture comprises one or more functional units which execute a
first program comprising instructions using register oper
ands. The second portion of the architecture executes a sec
ond program tightly coupled to the first program. The second
program comprises parallel row-oriented load/store/mask
commands, register-to-register move commands, and archi
tectural register set Switch commands to insure that data
accessed by the first program is available when it is needed.
0027. Another aspect of the present invention is a method
for intelligent caching. The method comprises the step of
splitting an architecture into first and second portions. The
first portion comprises a set of functional units and a set of
architectural registers exercised thereby. The second portion
comprises at least one functional unit capable of moving data
between a main memory and the first set of architectural
registers. The method includes the further step of splitting a
single program into first and second portions. The first portion
of the program is executed on the first portion of the archi
tecture. The second portion of the program is executed on the
second portion of the architecture. The second portion of the
architecture is operative to prefetch data into the architectural
registers prior to being processed by the first portion of the
architecture. The second portion of the architecture is opera
tive to move results produced by the first portion of the archi
tecture into main memory after they are produced by the first
portion of the architecture. Prior to when the first portion of
the architecture executes a conditional branch instruction, the
second portion of the architecture prefetches first and second
data sets from memory into the architectural registers. The

US 2010/0070742 A1

first data set is needed when the condition evaluates to true.
The second data set is needed when the condition evaluates to
false.

0028. Another aspect of the present invention is a method
in an embedded-DRAM processor which comprises a plural
ity of DRAM arrays, wherein the arrays comprise rows and
columns of random access memory cells. The processor
includes a set of functional units which execute a first pro
gram, and includes a data assembly unit which executes a
second program. The second program is tightly coupled with
the first program. The data assembly unit is operative to load
and store a plurality of data elements from a DRAM row to or
from one or more register files. Each register file includes a
parallel access port. The method is a method of intelligent
caching which comprises the step of executing a first
sequence of instructions on the set of functional units. The
functional units are operative to process data stored in the
register files. The method includes the step of executing a
second sequence of instructions on the data assembly unit.
The data assembly unit is operative to transfer data between
the register files and main memory. The second sequence of
instructions instructs the data assembly unit to prefetch data
into the register files from the DRAM arrays via the parallel
access port. When conditional logic in the first program
makes it uncertain as to the data which will next be needed by
the functional units executing the first sequence of instruc
tions, the second sequence of instructions instructs the data
assembly unit to prefetch time-critical data so that irrespec
tive of the conditional outcome in processing the first
sequence of instructions, the required data will be present in
the registers.
0029. Another aspect of the present invention is a method
in an embedded-DRAM processor wherein the embedded
DRAM processor comprises a plurality of DRAM arrays
which comprise rows and columns of random access memory
cells. A set of functional units executes a first program, and a
data assembly unit executes a second program. The second
program is tightly coupled with the first program. The data
assembly unit is operative to load and store a plurality of data
elements from a DRAM row to or from one or more register
files which each includes a parallel access port. A selector
switch is operative to include or remove a register file from the
architectural register set of the functional units executing the
first sequence of instructions. The method is a method of
intelligent caching which comprises the step of executing the
first sequence of instructions on the functional units, whereby
the instructions involve operands, and the operands corre
spond to architectural registers visible to the functional units.
The method includes the step of executing the second
sequence of instructions on the data assembly unit, whereby
the execution of the second sequence of instructions is opera
tive to prefetch information into one or more register files
which are not architectural registers visible to the functional
units. In response to progress made in the first program, the
data assembly unit executes one or more instructions which
transform the one or more register files which received
prefetched data into architectural register files visible to the
functional units and transform current architectural register
files into non-architectural register files which are inacces
sible to the functional units. Preferably, the method includes
the additional step of speculatively prefetching information
needed by two or more execution paths when a conditional
branch in the first instruction sequence makes it ambiguous as
to which data will next be needed by the functional units.

Mar. 18, 2010

0030. Another aspect of the present invention is a method
of pipeline processing instructions on an embedded-DRAM,
wherein each step of the method operates on different data
and occurs in a substantially overlapped fashion. The method
comprises the steps of issuing a precharge command by a data
assembly unit to precharge one or more designated rows of
memory cells located in one or more DRAM arrays; issuing a
data move command by a data assembly unit to move a
plurality of data words from a previously precharged row into
a designated register file; issuing a register map command by
a data assembly unit to map a previously loaded register file
into the architectural register space of a set of functional units:
and executing instructions by a set of functional units to
perform arithmetic operations on a set of architectural regis
ters accessed through the execution of opcodes correspond
ing to instructions whose operands reference the architectural
registers. Preferably, the method further comprises the steps
of determining whether execution of instructions by the func
tional units encounters conditional instructions which make it
ambiguous as to which data will be needed in Subsequent
instructions; and, when it is ambiguous as to which data will
be needed in Subsequent instructions, precharging and
prefetching multiple data sets that may be needed depending
on the outcome of the conditional instructions. Also prefer
ably, the method further comprises the step of determining
whether execution of instructions by the functional units
encounters a conditional branch instruction so that it becomes
ambiguous as to whether data associated with a fall-through
instruction or a branch target instruction will next be needed
by the functional unit; and, when it becomes ambiguous
whether data associated with a fall-through instruction or a
branch target instruction will next be needed by the functional
unit, prefetching data predicted to be needed and specula
tively precharging one or more rows in the DRAM arrays
containing data that will be needed if the prediction is wrong.
The prediction is preferably made by the data assembly unit
based on information in a branch history table. Alternatively,
the prediction is made by the data assembly unit based on
information contained in a loop counter used by the first
program.

0031. Another aspect of the present invention is a method
of object oriented processing in a computer system incorpo
rating an embedded-DRAM processor. The embedded
DRAM processor comprises a set of functional units which
operate on a set of architectural registers. A data assembly
unit performs multi-register parallel load and store operations
between a set of register files and a main memory which
comprises a set of DRAM arrays. Each DRAM array com
prises rows and columns of memory cells. The method com
prises the step of executing an object oriented program writ
ten in a high level programming language on the embedded
DRAM processor. The program involves the use of data
objects comprising a set of data arranged in predefined man
ner. The method includes the step of partitioning the object
oriented program into an operational program and a data
assembly program. The operational program is operative to
manipulate data stored in the data objects. The data assembly
program is operative to move data between the main memory
and the register files. The data assembly program is also
operative to assemble the data into the register files in a
predefined format corresponding to the organization of the
data objects. The method includes the step of simultaneously
executing the operational program and the data assembly
program. The data assembly program is operative to assemble

US 2010/0070742 A1

at least portions of the data objects into the register files. The
operational program is operative to access and manipulate the
data structures or the objects presented thereto in the register
files. Preferably, the data objects are presented to the opera
tional program by selecting the register file containing the
preassembled data to be an architectural register file visible to
the operational program.
0032. Another aspect of the present invention is a method
in an embedded-DRAM processor which comprises a data
assembly unit and a plurality of DRAM arrays. Each DRAM
comprises rows and columns of memory cells. The method is
a method of performing BitBLT (bit block transfer) opera
tions. The method comprises the step of loading a plurality of
bits of data in parallel from a selected row of the DRAM
arrays into a register file containing a parallel access port and
a set of individual register access ports. The method further
comprises the step of operating on the data using a mask and
Switch unit to perform at least one of the steps of passing the
data through unchanged, masking certain bits from being
moved, and permuting the location of words or bits. The
method also includes the steps of storing the contents of the
register file to a target row of the DRAM array memory using
a parallel register file store command, and controlling which
words orbits of the register are written to the row by process
ing a store instruction responsive to a mask. Preferably, the
step of permuting is performed by barrel-shifting. Also pref
erably, the method comprises the further steps of accessing
the data loaded in the register file using a set of individual
register access ports and performing shifts or other manipu
lations of individual words contained in the registers prior to
storing the register file back into a row of the DRAM array. In
certain embodiments, the method comprises the further steps
of loading a second plurality of bits of data in parallel from a
selected row of the DRAM arrays into a second register file
containing a parallel access port and a set of individual reg
ister access ports, and accessing the data loaded in the register
file and the second register file using a set of individual
register access ports and performing combinational manipu
lations of individual words of the data contained in the reg
ister file and the second register file prior to storing manipu
lated result data back into a row of the DRAM array.
0033. Another aspect of the present invention is a method
in an embedded-DRAM processor which comprises a plural
ity of DRAM arrays which comprise rows and columns of
random access memory cells. A set of functional units
execute a first program, and a data assembly unit executes a
second program. The second program is tightly coupled with
the first program, and the data assembly unit is operative to
load and store a plurality of data elements from a DRAM row
to or from one or more register files which each includes a
parallel access port and individual register access ports. The
method is a method of processing pseudo load/store com
mands found within the first program. The method comprises
the steps of executing a speculative load command in the
second program prior to the execution of at least one load
command in the first program, executing a load command in
the first program on one of the functional units, and passing
the prefetched data from the second program to the second
first program in response to a load address generated by a load
command in the first program. Preferably, the method further
includes the steps of executing a speculative row precharge
command in the second program prior to the execution of at
least one store command in the first program, executing a
store command in the first program on one of the functional

Mar. 18, 2010

units, passing the data to be stored from the first program to
the second program, and storing the data into a precharged
DRAM row by the second program. Also preferably, the data
are passed to and from the first program from and to the
second program by transferring data from an architectural
register in the first program to and from a register accessible
to both programs. Also preferably, data are passed to and from
the first program from and to the second program by reas
signing a register in the architectural register set of one pro
gram to be in the architectural register set of the other pro
gram. Also preferably, data are loaded and stored directly to
and from the architectural registers of the first program by the
data assembly unit during a time interval when the first pro
gram executes the load or store command.
0034. Another aspect of the present invention is a scroll
RAM which comprises a plurality of DRAM banks. Each
DRAM bank comprises one or more DRAM arrays. The
DRAM arrays are stacked to provideparallel word-width data
outputs, wherein each of the DRAM arrays comprises ran
dom access memory cells arranged in rows and columns. One
or more row address control inputs are operative to simulta
neously select one row in each of a plurality of the DRAM
banks. A set of multiplexers is coupled to the plurality of
DRAM arrays. The multiplexers are operative to select a
Subset of columns in each the selected row. An interconnec
tion network is responsive to the multiplexer outputs and is
operative to forward the selected subset of columns to a
parallel-access port of a register file. Preferably, the intercon
nection network is responsive to a mask word that selects data
to be forwarded or to not be forwarded. Also preferably, the
interconnection network includes a barrel-shift function or a
barrel-rotate function. Preferably, the multiplexers are bi
directional multiplexer/demultiplexers, and the scroll-RAM
can be used to both load and store data objects contained in
the DRAM banks.

0035 Another aspect of the present invention is a method
to store a matrix in a DRAM array and to access data blocks
contained therein. The method comprises the step of storing a
matrix in a plurality of DRAM banks, wherein each DRAM
bank comprises a set of DRAM arrays. Each array comprises
rows and columns of memory cells. The arrays are arranged in
the bank to provide for parallel accessing of data words,
whereby rows of data words contained in the matrix are
assigned to rows of the DRAM banks in a wrapped and
interleaved fashion. The method includes the additional step
of accessing a plurality of rows of words in parallel from a
plurality of the DRAM banks. The method includes the addi
tional step of selecting Subsets of columns in each of the
accessed rows and forwarding these in parallel to an intercon
nection network. The method further includes the step of
passing the selected rows from the interconnection network to
aparallel access port of a register file for further processing by
a set of functional units. In preferred embodiments, the matrix
is an image and the blocks correspond to data objects manipu
lated by an image processing algorithm Such as a video
encoder or a video decoder. Preferably, the interconnection
network masks out certain fields to prevent these fields from
being transferred to the register file. Also preferably, the
interconnection network further permutes the data being
transferred to arrange it in a programmably controlled format.
0036) Another aspect of the present invention is a method
to reduce the amount of instruction cache needed in an
embedded-DRAM processor. The method comprises the step
of storing a program in a row-interleaved fashion among a

US 2010/0070742 A1

plurality of DRAM arrays, wherein one or more instruction
fetch packets are stored on each row. When a sequence of
consecutive instruction fetch packets is to be read, the method
reads the consecutive sequence of consecutive fetch packets
or groups of fetch packets from interleaved rows of different
DRAMS, and the method pipelines the precharging and
fetching operations so as to increase the number of rows that
can be accessed per time interval by substantially the number
of DRAM banks involved in the interleaving. The method
further includes the step of caching only the minimum num
ber offetch packets found in branch target instruction streams
in a branch-oriented instruction cache so that when the
sequential accessing pattern is interrupted and interleaving is
rendered ineffective, the cache Supplies only the minimum
number of fetch packets needed to allow the interleaved
prefetch pipeline time to begin fetching from the branch
target address. Preferably, the caching is performed by send
ing tags related to instructions in the instruction stream to the
cache, and, when a tag matches a stored tag, providing the
cached fetch packets to the instruction stream. When a branch
is deemed to be taken but the tag does not match a stored tag,
the method performs a cache miss operation to fill the cache
line with the information so that the next time the tag is
encountered, a hit will occur provided the line has not been
previously evicted. Also preferably, the caching is performed
using a preloaded cache containing a pre-specified set of
cache lines to Supply branch target instructions when the
interleaving mechanism fails due to non-sequential accesses.
Preferably, the caching is performed by comparing a tag
which is found substantially ahead of the branch instruction
in the instruction stream. A speculative precharge is therefore
performed in one or more alternate DRAM arrays used to
Supply branch target fetch packets to preempt delays caused
by branching.
0037 Another aspect of the present invention is a method
to eliminate the need for an SRAM instruction cache for a
dispatched instruction stream of an embedded-DRAM pro
cessor. The method comprises the step of distributing fetch
packets of a program among at least three synchronous
DRAM (SDRAM) arrays, including first, second, and third
SDRAM arrays. The method also includes the step of storing
consecutive access portions of a program in a row-interleaved
fashion on at least the first and second SDRAM arrays. Mul
tiple instruction fetch packets are stored on each row of each
of the SDRAM arrays. The SDRAM arrays support a burst
transfer mode wherein one fetch packet may be read from the
SDRAM array on every clock supplied to the SDRAM array.
The method includes the step of reading as many as one of the
instruction fetch packets per clock out of the first SDRAM
array using the burst transfer mode. While the burst transfer
occurs in the first SDRAM array, the method precharges a row
in the second SDRAM array containing the next fetch packets
to be accessed by the program. The method includes the step
of storing branch target fetch packets in a third SDRAM array.
Thus, when a branch is encountered eminent in the instruction
stream being read from the first SDRAM array, the fall
through prefetch packets can be precharged in the second
SDRAM array while the branch target fetch packets can also
be speculatively precharged in the third SDRAM array. When
the branch is resolved, the pipelining of bank interleaved
fetching may continue without delay. Preferably, the roles of
the first, second and third SDRAM arrays may switch back
and forth as the program is being executed.

Mar. 18, 2010

0038 Another aspect of the present invention is a method
to eliminate the need for an SRAM instruction cache for a
dispatched instruction stream of an embedded-DRAM pro
cessor. The method comprises the steps of distributing fetch
packets of a program among at least three DRAM arrays,
including first, second, and third DRAM arrays; and storing
consecutive access portions of a program in a row-interleaved
fashion on at least the first and second DRAM arrays, wherein
multiple instruction fetch packets are stored on each row of
each of the DRAM arrays. The first, second and third DRAM
arrays are coupled to one or more SRAM latches so that a
plurality offetch packets can be latched into at least one of the
one or more SRAM latches and accessed at a rate higher than
the rate at which column data can be read out of any single
DRAM array. The method further includes the step of
sequencing as many as one of the instruction fetch packets per
clock from the at least one of the one or more SRAM latches
to be dispatched to a set of functional units. While sequencing
instruction fetch packets from the at least one of the one or
more SRAM latches, the method precharges a row in the
second DRAM array containing the next fetch packets to be
accessed by the program. The method includes the further
step of storing branch target fetch packets in the third DRAM
array So that when a branch is encountered eminent in the
instruction stream being read from the first DRAM array, the
fall-through prefetch packets can be precharged in the second
DRAM array while the branch target fetch packets can also be
speculatively precharged in the third DRAM array. As a
result, when the branch is resolved, the selected row can be
latched into the one or more SRAM latches and fetching may
continue from the one or more SRAM latches.
0039. Another aspect of the present invention is an embed
ded-DRAM processor architecture which includes a set of
DRAM arrays, a set of register files, set of functional units,
and a data assembly unit. The data assembly unit includes a
set of row-address registers and is responsive to commands to
activate and deactivate DRAM rows and to control the move
ment of data throughout the system. With respect to this
aspect of the present invention, large SRAM caches and tra
ditional caching policies are replaced with a pipelined data
assembly approach so that the functional units perform reg
ister-to-register operations, and so that the data assembly unit
performs all load/store operations using very wide data bus
ses. Data masking and Switching hardware is used to allow
individual data words or groups of words to be transferred
between the registers and memory. The data assembly unit
acts as an intelligent cache controller to perform lookahead
operations to insure exactly those data words that are needed
by the functional units are available in a much smaller cache
when they are needed. Other aspects of the invention include
a memory and logic structure and an associated method to
extract data blocks from memory to accelerate, for example,
operations related to image compression and decompression.
New techniques and structures minimize the amount of
instruction cache needed to execute programs at full speed
from a DRAM-oriented program memory.

BRIEF DESCRIPTION OF THE FIGURES

0040. The various novel features of the invention are illus
trated in the figures listed below and described in the detailed
description which follows.
0041 FIG. 1 is a block diagram that illustrates an embodi
ment of the embedded-DRAM processor architecture of the
present invention.

US 2010/0070742 A1

0042 FIG. 2 is a block diagram that illustrates an embodi
ment of a register file comprising row-parallel and word
parallel data paths.
0043 FIG.3 is a block diagram that illustrates an embodi
ment of a memory controller designed according to the
present invention.
0044 FIG. 4 is a state diagram that illustrates one embodi
ment of a scroll-RAM used to extract data objects out of an
image memory.
0045 FIG. 5 is a block diagram that illustrates instruction
prefetching from an interleaved DRAM bank assisted by a
branch-oriented instruction cache.
0046 FIG. 6 is a block diagram that illustrates one
embodiment of a branch-oriented instruction cache structure
that accelerates program fetching from an interleaved set of
DRAM banks.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0047 FIG. 1 is a block diagram that illustrates an embodi
ment of the embedded-DRAM processor architecture of the
present invention. A set of N DRAM banks 102 are coupled to
a mask and Switch unit 108 via data busses of width dw1. The
number dw 1 is defined in words, and each word contains b
bits. In the preferred embodiment, the number dw 1 is equal to
the number of columns in a DRAM row, for example,
dw1=128. The DRAM banks 102 are preferably stacked
according to the number of bits, b, in a word as defined by the
architecture. For example, if a set of functional units 128
operate on 16-bit quantities, then b=16 and each of the
DRAM array 102 is preferably stacked to provide dw 1 16-bit
words. For example, in the preferred embodiment, the num
ber N is equal to 64, and each DRAM array 102 is organized
as a stack of sixteen 16,384-bit DRAMs containing 128 col
umns and 128 rows. When stacked into 16-bit word modules,
a total of 16 megabits are provided among all the DRAM
arrays 102. Arrays on the order of 1 gigabit are anticipated to
be available in coming years, and systems with different
numbers and sizes of DRAMs are within the scope of the
invention. For example, a 1-gigabit system can be constructed
using 64, 16-bit banks of 256x256 DRAM arrays. The mask
and Switch unit 108 is an interconnection network which, in
its simplest embodiment, may provide a simple pass-through.
Depending on the embodiment, the mask and switch unit 108
may selectively block specified data fields, and may also
permute and/or multiplex specified data fields. A task control
block (TCB) DRAM array 104 is also preferably included in
the system and is coupled to the mask and switch unit 108 via
a data bus whose width is dw2 words wide. A stack frame
DRAM 106 is also preferably included and is coupled to the
mask and Switch unit 108 via a data bus with a width of dw 1
words. A direct memory access controller/serial access
memory (DMNSAM) 110 with an external interface 130 is
also preferably coupled to the mask and Switch unit via a data
bus, also preferably of width dw 1 bits wide.
0048. A set of three high-speed register files 112, 114, and
116 are connected to the mask and switch unit 108, also
preferably via dw 1-word wide data busses. In alternate
embodiments, rows of width dw 1 may be sub-divided and
sent to Smaller register files, or can be multiplexed and sent to
the register files in a plurality of transfer cycles. The register
files 112, 114, and 116 are preferably implemented using high
speed SRAM technology and are each coupled to a selector
120 which in turn couples the register files 112, 114, 116 to

Mar. 18, 2010

the set of functional units 128. While the preferred embodi
ment employs three high-speed register files 112, 114, 116,
systems with other numbers of register files are anticipated.
To implement aspects of the present invention, at least two
high-speed register files 112, 114 should be used. A data
assembly unit 122 is coupled via address and control lines to
the high-speed register files 112, 114, and 116. In some
embodiments, additional data paths may be used to transfer
data between internal registers located within the data assem
bly unit 122 and registers located within the register files 112,
114 and 116. The data assembly unit 122 is also coupled via
control and address lines 123 to the mask and switch unit 108.
Address information delivered to the mask and switch unit
108 from the data assembly unit 122 is further coupled to the
address and control inputs of the DRAM array modules 102,
104, 106 as well as to the DMA/SAM 110. The set of func
tional units 128 optionally receive program instructions as
selected by a multiplexer 132. The multiplexer 132 has one
input coupled to an interleaved DRAM program memory
array 134 via a set of lines 124 and the mask and switch unit
108. The multiplexer 132 has another input coupled to an
output of a branch-oriented instruction cache 124. The pro
gram memory DRAM array 134 is preferably implemented
with a dw3 width data bus, where dw3 represents the number
of instructions to be prefetched into a prefetch buffer (not
shown). The prefetch buffer holds instructions to be executed
by the functional units 128. In some implementations, the
prefetch buffer may also contain instructions to be executed
by the data assembly unit 122 as well. The program memory
array 134 is also preferably stacked into an interleaved access
bank so that one fetch packet containing instructions may be
fetched per clock cycle when instructions are fetched from a
sequential set of addresses. As will be discussed below in
connection with FIG. 5, the program DRAM 134 may also
preferably contain multiple fetch packets that can be accessed
in a clocked burst mode similarly to the way column data is
read out of prior art synchronous DRAMS (SDRAMs).
0049. The embodiment of FIG. 1 executes programs
stored in the program DRAM bank 134 and operates on data
stored in the DRAM banks 102, 104, and 106 using a mini
mum amount of SRAM cache. The details of instruction
fetching from DRAM and the operation of a minimal branch
oriented instruction cache will be described below in connec
tion with FIG. 5 and FIG. 6. According to the present inven
tion, the amount of high speed SRAM needed for data
memory or data cache is minimized using a concept of intel
ligent caching. In intelligent caching, a cache controller has
specific knowledge of the executing program, and itself
executes a program to keep the high-speed cache memory full
of useful data. By this use of the word cache is meant any
Small, high-speed data or program store that is used to prevent
the processor form waiting for slower bulk memory. The
cache does not necessarily use set-associative, direct-mapped
or least recently used policies as found on prior art caches.
0050. To implement intelligent caching, the data assembly
unit 122 and the functional units 128 pipeline the processing
of arithmetic operations and load/store operations. A pro
gramming model is presented wherein the functional units
128 perform arithmetic operations on data stored in one or
more architectural register files. An architectural register file
is a register file visible to the programmer, i.e., is a register file
whose registers may be referenced as operands in instructions
executed by the functional units 128. The selector 120 can
switch different ones of the register files 112, 114, 116 to be

US 2010/0070742 A1

the architectural register file. A selected register file is said to
be an active register file. A deselected register file register file
is not accessible to the functional units 128 and is said to bean
inactive register file. While the functional units execute
instructions whose operands all correspond to architectural
registers, the data assembly unit performs load/store and pos
sibly register-to-register move operations on the inactive reg
ister files. Control and data paths may also be provided to
allow the data assembly unit to move individual data elements
between an inactive register file and an active register file. The
idea of an intelligent cachestructure is to split the architecture
into a core execution portion and an intelligent data assembly
portion. First and second programming models are used to
implement a single program. The first programming model is
used by the functional units and only involves register-to
register operations in the architectural register files. In some
embodiments, load/store operations, or pseudo load/store
operations as will be subsequently discussed may also be
Supported. The second programming model is used to pro
gram the data assembly unit 122. The data assembly unit 122
executes a Supervisorportion of the program and is preferably
able to see all the register sets, active and inactive. The data
assembly unit 122 executes a program that performs look
ahead oriented data-move operations to insure data used by
the functional units 128 is available when it is needed. When
conditional execution and branching create uncertainties as to
what data will be needed, the data and assembly unit may
speculatively precharge DRAM rows and/or speculatively
prefetch data to be used by the functional units 128. Depend
ing on the condition, one or another data set can be selected to
become the active register set. Instead of a “dumb' caching
policy which just keeps the most recently used data in the
cache, and operates on a hit-or-miss basis, the data assembly
unit 122 takes an active role in the execution of the program to
insure that exactly the required data is available in the small
cache implemented as a collection of register files.
0051. In some implementations, all of the register sets may
be visible to the functional units 128 at all times. In this case,
there are no active register sets or inactive register sets except
in the sense that different groups of registers will be accessed
by the data assembly unit 122 while others will be accessed by
the functional units 122. In this case, the present invention
uses Switched data paths to allow the functional units and the
data assembly unit 122 parallel access to the registers. The
program is responsible to insure that the fictional units access
certain registers and the data assembly unit 122 accesses
others in a given cycle. In this case, the data assembly unit 122
can still fork independent execution threads and monitor
branch activity of the main program to perform different
speculative data accessing maneuvers to fill and empty the
register files. Flag bits may be made available from the func
tional unit's pipelines indicative of which registers are being
used in a given cycle. Also, since the data assembly unit 122
has full knowledge of the executing program, it may controla
parallel path masked load mechanism to set up a Subset of the
registers that it knows is not being used by the main program
at the time.

0052. As will be discussed in greater detail below in con
nection with FIGS. 2-4, the data assembly unit 122 is opera
tive to control the DRAM arrays using a set of row-address
pointer registers. A set of activation bits is manipulated under
program control to activate or deactivate entire rows of
selected DRAM banks in the DRAM arrays 102, 104, 106.
Hence, while the DRAM access times are slower than the

Mar. 18, 2010

high speed SRAM register file's access times, very wide data
paths dw 1, dw2 are used to move entire rows (or subsets
thereof) to the register files all at once. This increases the raw
bandwidth available from the DRAM. Based on the concept
of spatial locality of reference, most often, these row-level
transfers will efficiently service most data demands. In signal
and image processing, the parallel loads will often move the
needed portion of the data set in one or two transactions. For
example, in FIR (finite impulse response) filtering, one set of
registers is used to hold the filter coefficients, while another
set is used to hold the data. While the functional units com
pute the inner-product between the coefficients and the data,
the data assembly unit 122 will have ample time to load the
next set of coefficients and the next set of data values into
inactive registers. When the inner-product is complete, the
inactive registers can be activated so that processing may
continue. As will be discussed below in connection with FIG.
4, different configurations of the mask and Switch unit may be
used to move data objects located on the DRAM arrays 102.
0053. The data assembly unit 122 has at its disposal the
ability to precharge a given DRAM row ahead of time, and
also has the ability to move large data blocks all at once. The
data assembly unit 122 also works in conjunction with the
mask switch unit 108 to enable the transfer of selected words
or groups of words within a row. The data assembly unit 122
is able to move data from one register location to another
within or between register files. Since the data and assembly
unit 122 is able to control the selection of the active file as
seen by the functional units 128, it can execute instructions to
assemble a packet of data to be processed by the functional
units to preempt waiting due to cache misses. In cases where
branching makes it unclear as to what data will be used, the
data assembly unit 122 is free to speculatively precharge
DRAM rows, to speculatively prefetch time-critical data that
may be needed in both branch paths, or to do both. In signal
and image processing applications where very regular index
ing patterns are used to access large data structures, this
Solution is especially optimal and easy to implement.
0054 Data movement on and off chip through external
interface 130 is preferably controlled via the DMA/SAM 110.
The DMA functionality of the DMA/SAM 110 is used to
control the transfer of blocks of data to and from an external
memory from and to the internal DRAM arrays 102. The
SAM (serial access memory) functionality may be used as a
video RAM port in conjunction with a display device. The
DMA/SAM 110 enables high speed I/O and frame buffer
operations with minimal intervention by the processor. The
data assembly unit 122 is preferably responsible to configure
the DMNSAM 110 and can send commands to initiate indi
vidual or burst transfers when needed. In some embodiments,
the external interface 130 may include, for example, a PCI
compliant bus interface in addition to a SAM port.
0055. The optional TCB DRAM 104 is provided to store
the volatile portion of the processor for low-cost task switch
ing. Upon recognition of an interrupt, the data assembly unit
122 activates a row in DRAM pointed to by a current task
pointer. When the row is precharged, the active register file is
saved and the next task’s active register file is loaded. In cases
where the inactive register files need to be saved, this can
normally be done in the background. The TCB DRAM is
typically implemented in a rectangular array with much fewer
rows than columns. One row is needed for each task, and one
column is needed for each nonvolatile bit that needs to be
saved on a task switch. In the preferred embodiment, this

US 2010/0070742 A1

includes the active registerset, a program counter, and a status
register. In one embodiment of a method for task Switching,
only the active register set is saved, and any write-data in the
inactive register sets are saved in the background by the data
assembly unit 122. The program in the data assembly unit 122
is backed up to the point where the current packet is being
prepared for the functional units.
0056. The optional stack frame DRAM bank 106 is
responsive to stack push and pop commands used to allocate
and deallocate Subroutine local variable spaces on the top of
a stack. This functionality can also be implemented with the
standard DRAM arrays 102.
0057 FIG. 2 shows one embodiment of the invention
highlighting the data transfer and register selection mecha
nisms between the DRAM arrays 102 and, for example, the
register file 112. The connections to the other register files
114, 116 are similar. The register file 112 is coupled to a set of
switches 204. Each of the switches 204 includes a first port
coupling to the register file 112, a second port coupling to a
parallel load/store channel carrying a masked DRAM row
208 to or from the mask and Switch unit 108. Each switch 204
also includes a second port coupling to a selector Switch 206.
The selector switch 206 selectively couples the registers of
the register file 112 either to the functional units 128 or to the
data assembly unit 122. Specifically, the second port of the
selector switch 206 couples the registers 112 to an optional
inter-register move unit 224 included within the data assem
bly unit 122. The data assembly unit 122 also includes a
load/store unit 226. The load/store unit 226 presents a mask
switch control input 230 to the 108. The load/store unit 226
also presents a row-address input 228 to the mask and Switch
unit 108. In some embodiments, the row address control 228
may pass directly to the DRAM arrays 102,104,106. In the
embodiment shown, the mask and switch unit 108 performs
address decoding functions as well as its other tasks.
0058. In the execution of a program, the register file 112
may be selected by the switch 206 to be active or inactive.
When the register file 112 is selected to be active, the switches
204 couple multiple parallel data paths between the register
file 112 and the functional units 128 by further setting
switches 204 to pass data along the path to switch 206. In
Some implementations, the register 112 may be implemented
with dual-port SRAM cells, whereby the switches 204
become an integral part of the register file 112 itself. When the
register file 112 is deselected, it may be loaded, stored, or
otherwise manipulated by the data assembly unit 122. The
switches 204 may be set to couple the register file 112 to the
switch 206 so that the inter-register move unit 224 can shuffle
data back and forth between registers to arrange data stored
within the register file 112 according to the needs of the
program. This facilitates object oriented programming
because data objects may be loaded from memory into well
defined data structures where data are located at predeter
mined fixed locations. The switches 204 may also be set to
couple the register file 112 to the parallel load/store path so
that a full row of DRAM data 208 can be loaded or stored via
the mask and switch unit 108. This is called the parallel access
port of the register file. The mask and switch unit 108 pro
vides a limited amount of data path functionality as data
passes between the DRAM arrays and the register files. The
mask functionality allows certain fields to be masked so that
subsets of rows can be accessed. The switch functionality
may involve word-level orbit-level permutation operations as
well as multiplex-and-combine operations. Multiplex-and

Mar. 18, 2010

combine operations according to the present invention are
discussed in connection with FIG. 4. The switching function
ality of various embodiments ranges from no Switching at all,
to a word level barrel-rotator, all the way to a full bit level
crossbar Switch. In general, the Switching function may be
any permutation network deemed desirable for the applica
tion. The functionality of the mask and switch unit 108 func
tionality may be limited to a simple pass-through connection
in Some implementations. The inter-register move unit 224 is
used to perform additional Switching functions by moving
data within the register file 112 under program control. Inter
register move unit 224 may also include bit-level shift and
rotate through carry instructions in some implementations.
This is especially useful when performing bit block transfer
(BitBLT) operations from one memory area to another. For
example, in a BitBLT operation, a masked segment of data
may be moved from a row in the DRAM array 102 into the
inactive register file 112, shifted, and then moved with a mask
operation to a different row in the DRAM array 102.
0059. The system of FIG. 2 provides a way to load the
register file 112 while the functional units 128 are processing
data in another register file 114 or 116. On a cycle-by-cycle
basis, the Switch 206 can be switched to activate or deactivate
a given bank. In some embodiments, the switch 206 may be
coupled to two register files so that portions of two register
files can be made to appear as the architectural register set to
the functional units. The Switches 204 can be set to activate a
subset of a first register file while the switches 204 associated
with a second register file can be set to activate the other
subset of a second register file. For example, data from the
register files 112 and 114 can be processed through the func
tional units concurrently. The same type of Switch control can
be used when the register files are deactivated, for example, to
allow the inter-register move unit 224 to move data from the
register file 112 to the register file 114. In some embodiments,
the switch 206 functionality can be distributed to each switch
204 to allow individual registers to be designated as active
while the inactive registers are still accessible to the inter
register move unit 224. These arrangements enable the con
cept of intelligent caching according to the present invention.
The traditional set associative and direct mapped caching
strategies are effectively replaced by a highly agile and pro
gram-specific data assembly unit that uses the concept of
program look-ahead and speculative precharging and specu
lative prefetching to insure the data is in the registers when it
is needed. This structure converts the available bandwidth
provided by DRAMS with wide data paths into a useful
architecture that requires only a minimal amount of SRAM to
keep the functional units fed with a constant source of data.
The functional units process data using only register oper
ands, and all data interaction to and from memory is trans
parent. While the functional units see a simple programming
model comprising a set of defined architectural register files,
the data assembly unit 122 moves data in out of these registers
in a transparent way. When the functional unit needs data, it
may simply assume it is in a given register. The data assembly
unit is responsible to get the data to the specified location.
Pipeline stalls can largely be detected and often eliminated at
compile time to replace the servicing of cache misses at run
time. The effectiveness of this approach is made possible by
the wide data paths to memory and the memory accessing
strategy employed by the data assembly unit.
0060. The present invention extends branch prediction
concepts into the data-caching domain. When the program

US 2010/0070742 A1

flow is such that the look-ahead operations are uncertain, in
accordance with the present invention, data-oriented branch
prediction and speculative prefetching policies may be imple
mented in the intelligent cache to maintain performance lev
els. In data-oriented branch prediction, the data prefetching as
opposed to the instruction prefetching is of concern. In one
embodiment, when a branch instruction is encountered, the
load/store unit will look at cached branch history data or
access known program information Such as loop counter vari
ables to predict the branch. Instead of attempting to keep the
instruction prefetch buffer full of the next instructions to
execute, the data assembly unit attempts to keep the register
files full of the next data to be accessed. In speculative data
prefetching, when a conditional branch presents an ambiguity
as to what data will next be accessed by the functional units
128, both data sets are prefetched and the data that is not
needed is flushed. Branch history information may or may not
be employed with speculative prefetching. Also, rows of the
DRAM 102 may be speculatively precharged even though the
data transfer may never occur. These forms of speculative
data prefetching are important intelligent caching concepts.
In most DSP and media processing applications, a simple
program look-ahead prefetching policy with no prediction
but with speculative fetching will normally be sufficient to
keep the program from needing to wait for data accesses.
0061 FIG. 3 shows an embodiment of the data assembly
unit 122. A set of row address registers 302 is coupled in a
feedback arrangement to a row address arithmetic unit
(RAAU) 306. Associated with each of the address registers
302 is an activation bit 304. The activation bits 304 can be set
or cleared and the row addresses can be modified under pro
gram control. A set of optional column registers 310 is
coupled to an optional column address arithmetic unit
(CAAU) 308. An instruction register (IR) 312 receives load/
store commands over a line 314 from a dispatch unit associ
ated with the main instruction stream of the processor. The
instruction register 312 may also optionally accept a separate
execution thread of instructions from local program memory
316. An instruction pipeline fetch unit 326 controls the
instruction stream into the data assembly unit. The instruction
pipeline fetch unit 326 dispatches instructions or decoded
portions thereof to the various functional components of the
data assembly unit such as the RAAU 306, the CAAU 308, a
mask logic unit 330, and a branch logic and program control
unit 328. An optional branch history table 322 receives branch
related information from the main instruction stream to cache
branch history information about recently taken branches as
is common in prior art branch prediction units used to
improve instruction pipeline performance. An optional set of
interface registers 324 buffer data to be sent or received by the
main functional units 128 over a line 320. The mask logic unit
330 is coupled in a feedback arrangement with a mask register
332 to perform logic operations on the load/store mask. The
mask information is sent over a line 334 to a control input of
the mask and switch unit 108. The inter-register move unit
224 is coupled to the interface registers 324 and controls a
data path 336 to an inactive register file. The inter-register
move unit 224 provides register addresses to the inactive
register files over a line 338 and provides switch control
inputs over a line 340 to control, for example, the switches
204 and 206.

0062. With the architecture of FIG. 3, the data assembly
unit 122 is able to operate as a functional unit closely coupled
to the main instruction stream of the processor. That is, a

Mar. 18, 2010

dispatch unit that dispatches instructions to the functional
units 128 can also dispatch instructions over the line 314 to
the data assembly unit 122 as if it were any other functional
unit. However, the data assembly unit can optionally include
its own program memory 316, which may involve a micro
program memory in some implementations. Whether the pro
gram memory 316 is a microinstruction memory or a macro
instruction memory, it can hold sequences of instructions to
carry out in response to a single command dispatched by the
main dispatch unit. In some embodiments, the branch infor
mation received over a line 318 may be additionally used to
synchronize the execution of the data assembly unit 122 with
the main instruction stream executed by the functional units
128. With the three interfaces (i.e., the instruction register
312, the branch history table and caching unit 322, and the
interface registers 324), the data assembly unit 122 can pro
cess instructions in lock-step with the main instruction stream
or can operate in a more loosely coupled fashion to meet the
needs of the executing program.
0063. In operation, the data assembly unit 122 accepts
instructions from and monitors parameters of the main pro
gram as it executes on the functional units 128. The data
assembly unit 122 activates rows of the DRAM before they
are actually needed by the program. The data assembly unit
122 also assembles data into an inactive register file using
row-oriented masked Switched move commands together
with the data move unit 224. Branch information is shared so
that the data assembly unit's program flow control unit 328
can speculatively make available data before the functional
units 128 need it. The row address unit 306 together with the
activation bits 304 are used with masked row-oriented load/
store commands that control the movement of data between
the DRAM array and an inactive register file. In some imple
mentations, additional column oriented information may be
needed by the mask and switch unit 108 or related DRAM
array access resources as will be discussed in connection with
FIG. 4.

0064 FIG. 4 illustrates an embodiment of a scroll-RAM
400 in accordance with the present invention. The exemplary
scroll-RAM 400 includes a set of eight DRAM banks 402.
Each of the DRAM banks 402 is coupled via a data bus dwx
bits in width to a first port of a bidirectional multiplexer/
demultiplexer (mux) 404. A second port of each of the mul
tiplexer/demultiplexers 404 is coupled via a data bus of width
dwy bits to an interconnection network 406. The interconnec
tion network 406 is coupled to an inactive register bank 408.
The DRAM banks 402 receive row addresses and activation
and deactivation commands over a set of lines 410, preferably
driven by the row registers 302 and the activation bits 304.
The multiplexer/demultiplexers 404 receives a column con
trol selection input 412, preferably from an output of the
CAAU 308 of the data assembly unit 122. The interconnec
tion network 406 receives a mask control input 414, prefer
ably from the mask control/switch output 334 of the data
assembly unit 122. The inactive register file 408 receives a set
of control signals 416 from the inter-register move unit 224
over lines 338 and 340.

0065. The scroll-RAM 400 of the present invention is a
memory assembly device used to extract data blocks from an
image distributed across multiple DRAM arrays. The scroll
RAM 400 represents an example of the type of functionality
that may be incorporated into the mask and switch unit 108 in
various embodiments. The scroll-RAM 400 is intended for
use in image encoding and decoding systems as well as in

US 2010/0070742 A1

other image and video processing where images are pro
cessed in block. For example, in MPEG image encoding and
decoding systems, 8x8 image blocks are processed using a
discrete cosine transform (DCT) during encoding and via an
inverse DCT (IDCT) during image decoding. Motion com
pensation involves the processing of groups of four Such 8x8
image blocks in a 16x16 macroblock. A problem arises when
an image is stored in a DRAM and such blocks must be
extracted. In many cases, the desired rows of the 8x8 or 16x16
blocks reside on different rows of the DRAM. Thus, to extract
an 8x8 block, eight row accesses may be needed. To extract a
16x16 macroblock, 16 row accesses may be needed. In a
system involving a data assembly unit, it would be desirable
to extract an 8x8 block in a very short time. The scroll-RAM
400 enables rapid extraction of image blocks for use with
embedded-DRAM processors. As will be discussed below,
the scroll-RAM 400 is also useful in DSP operations such as
digital filtering.
0066. In operation, rows of an image are interleaved and
wrapped within the DRAM banks 402. For example, a first
row of the image is assigned to the DRAM bank 1, the second
row is assigned to the DRAM bank 2, and so on, up until the
eighth row is assigned to the DRAM bank 8. At this point, the
rows wrap, i.e., the ninth row is assigned to DRAM bank 1,
and each consecutive row is assigned to the next consecutive
DRAM bank until DRAM bank 8 is reached, and then the
assignment wraps back to DRAM bank 1. The rows continue
to be assigned in this fashion until all rows are assigned to a
DRAM bank. This is the initial assumed image storage con
figuration for the exemplary use of the scroll-RAM 400 as a
block extraction unit. If a larger scroll-RAM 400 is available,
one row is assigned to each DRAM in a wrapped fashion. For
example, if 16 DRAM banks are used, the rows are wrapped
modulo 16. With data arranged in this fashion, either 16x16
macroblocks or 8x8 blocks can be selected for extraction.
With the image stored in this manner, a block may be
extracted in parallel. For example, to extract the upper-right
8x8 block from an image, all eight DRAM banks 404 receive
the row address corresponding to the first stored image row, as
well as an activation/read signal on the lines 410. In response,
the DRAM arrays 402 drive all dwx words of their data bus
lines through their sense amplifiers through to the column
multiplexers/demultiplexers 404. These multiplexers select
an eight-element slice of the row to forward onto the dwy
word data bus output. In this case, dwy equals eight. Next the
interconnection network functions to assemble the 8x8 block
in a predetermined order and to forward this rearranged data
to the inactive register file 408. For example, the 8x8 block
may always be stored in row major order. This allows the
functional units 128 to receive the data in an expected, pre
assembled format corresponding to a specified program
object type. The assembly and presentation of data as fixed
object structures facilitates efficient translation of high-level
language programs and simplifies pointer manipulations nor
mally associated with programming DSPs. If more DRAM
banks are used, just the top eight are selected in this example
to extract the upper 8x8 block.
0067. In this embodiment the multiplexers 404 perform
the Switching operations in an embodiment of the mask and
switch unit 108. The interconnection network can provide
additional switching capabilities. For example, when the 8x8
block is properly aligned with a row boundary the intercon
nection network does not need to performany work. This type
of alignment will be maintained as blocks of data are scanned

Mar. 18, 2010

out of a compressed image for IDCT processing. However,
during motion compensation, it becomes desirable to extract
blocks that are not properly aligned on eight-row boundaries.
For example, in some cases it may be desirable to extract an
8x8 block whose first row corresponds to the second row of
the image. In this case, due to the wrapped manner in which
the image is stored, the second row of the image will appear
at the input to the second multiplexer 404. Likewise, all
Subsequent multiplexers will receive Subsequent image rows,
except the first multiplexer which will receive the ninth,
wrapped row of the image. At this point the interconnection
network desirably acts as a barrel-rotator so that the 8x8 block
can be restored to row-major order in a single cycle. In some
embodiments, to save hardware, the rearrangement function
can be performed within the inactive register file 408 under
control of the inter-register data move unit 224 over lines 416.
This second approach is slower, but may be the best solution.
In the case of image decoding, the functional units need to
compute a full IDCT on a previous block, leaving time for the
data to be rearranged, while at the same time, the next set of
needed rows in the DRAM banks 402 may be precharged. If
the rearrangement occurs under control of the inter-register
move unit 224, then the interconnection network 406 reduces
to a set of wires. In connection with FIG. 1, the scroll-RAM
400 may be implemented as a subset of the mask and switch
unit 108 on a subset of the DRAM arrays 102.
0068. The scroll-RAM 400 may also be used when the
program requires columns of data to be extracted from an
image or matrix stored in the interleaved row-major order
discussed above. To extract a column from the exemplary
scroll-RAM 400, eight elements may be extracted during
each DRAM access. The multiplexers 404 are sent control
signals to pass the desired column, and the mask unit is
controlled to only forward the desired column from the col
lection of eight columns presented. Next the interconnection
network is sent a control signal to barrel-rotate each extracted
column into the position that insures the final column is left in
the register file in column major order. In this example, Mdata
elements of a column can be loaded into a register file in M/8
DRAM access cycles. The barrel-rotator and rearrangement
functions also allow the column to be shifted by variable
amounts to accelerate filtering operations.
0069 FIG. 5 illustrates an embodiment of a system which
generates a main instruction stream by fetching instructions
directly from an interleaved DRAM bank. A branch-oriented
instruction cache is provided to allow prefetching to proceed
at full speed, even when access interleaving fails due to
branching. This structure minimizes the amount of high
speed instruction cache that is needed by the system. A set of
program memory DRAM arrays 534 are arranged for inter
leaved access. Each DRAM row preferably contains a VLIW
(very long instruction word) instruction fetch packet, or at
least a packet of instructions to be dispatched to the functional
units 128 and optionally to the to the data assembly unit 122.
The DRAM arrays 534 are preferably arranged in a rectan
gular grid. The number of rows in each of the DRAM arrays
534 is selected to provide the desired amount of program
memory locations. The number of columns in each of the
DRAM arrays 534 is preferably matched to the size of the
instruction fetch packet used by the system. The outputs of the
DRAM arrays 534 are coupled to an interconnection network
510, which may be a simple bus with an interleaved access
controller. The output of the interconnection network 510 is
coupled to a prefetch buffer 502 via a multiplexer (MUX)

US 2010/0070742 A1

511. The prefetch buffer output is coupled to a dispatch unit
504. Information may be fed from the prefetch unit 502 over
a line 512 to a branch-oriented instruction cache 508. The
branch-oriented instruction cache 508 also is coupled (via the
multiplexer 511) to insert or extract fetch packets into or from
the instruction stream that passes from the interconnection
network 510 to the prefetch buffer 502. The prefetch buffer
may send early indication information as well as a branch
instruction tag on a line 514 to give the branch cache time to
evaluate branch instruction tags. The line 514 may also send
indication of the branch instruction to the data assembly unit
122 to warn of an upcoming branch condition. The dispatch
unit's output is coupled to all functional units 128 and 122
(not shown) which receive instructions from the main instruc
tion stream. One output of the dispatch unit sends branch
instructions to a branch functional unit 506 capable of execut
ing branch instructions. The branch functional unit 506 sends
branch evaluation and target address data to a branch cache
508 and optionally to the data assembly unit 122 to indicate
when a branch is evaluated to be taken.

0070. As shown in FIG. 5, k DRAM banks 534 are
arranged for interleaved sequential access. Each DRAM row
size is matched to the VLIW instruction word size so that each
DRAM access produces one complete VLIW instruction
word. With this interleaved arrangement, k VLIW instruc
tions can be accessed per DRAM access time. For example, if
the processor cycle time is 5 nanoseconds and the DRAM
access time is 30 nanoseconds, then setting k-6 allows one
VLIW instruction to be fetched per processor cycle. This
banking arrangement allows full speed execution during
sequential processing, but the processor may need to wait
when the sequential access sequence is broken. That is, when
a branch is taken, the interleaving no longer allows full speed
access and unless some form of caching is used, the processor
will need to wait the full 30 nanoseconds for the DRAM.

0071. The cache 508 is a special type of instruction cache
that caches k consecutive VLIW instruction words when a
branch is taken. The cache organization will be discussed in
connection with FIG. 6. The VLIW fetch packets are loaded
into the cache in parallel when they are loaded into the
prefetch register after the cache miss occurs. The next time
the branch is executed, a cache hit will occur, and the words
will be supplied from the cache 508 instead of from the
DRAM array 534. With this solution, the cache only needs to
cache instructions immediately after a branch. Instead of the
cache 508 needing to cache all the most recently used pro
gram code, the cache only needs to hold instruction sequences
that occur immediately after recently used branch instruc
tions. The architecture uses the interleaved banks of the
DRAM 534 to allow fast access, uses very wide data paths to
fetch groups of instructions at a time, and uses a minimum
amount of SRAM to hide the latency of the DRAM, keeping
with the objectives of the invention.
0072 FIG. 6 shows an embodiment of the branch-oriented
instruction cache 508. The cache 508 comprises a set of cache
lines 600. Each cache line 600 includes a tag field 602, a
number of entries field 604, an optional destination field 606,
and a variable number of VLIW fetch packets 608. The num
entries field 604 indicates how many VLIW fetch packets are
associated with each cache tag. For example, less thanklines
need to be cached if one of the instructions contains a branch
to a previously stored cache line, as happens in tight looping
situations. The cache miss service algorithm monitors the
branch indicator lines and, if a branch is taken while servicing

Mar. 18, 2010

the miss, only those fetch packets up to the point where the
second branch occurred are cached. If the branch leads out
side the cache, a second cache miss will occur and the process
is repeated. Less thank fetch packets are also needed when
the cached fetch packets take multiple cycles to execute. For
example, if the first fetch packet requires k cycles to dispatch,
then only one fetch packet need be cached. The destination
field 606 contains branch target address information.
0073. The amount of branch cache needed can be further
reduced by employing rectangular program memory DRAMs
having long rows which hold multiple fetch packets, where
each fetch packet is multiplexed out in a burst mode using a
column multiplexer. The technique uses the same concept
used by prior art synchronous DRAMs to read out a stream of
consecutive words in a burst mode.

0074 Another method to reduce the amount of SRAM
needed for program caching is to use branch look-ahead
mixed with a speculative row precharge. In this technique, a
bank of rectangular DRAMs is used with long rows holding
multiple fetch packets. The DRAM arrays 534 operate in a
clocked burst mode as is common on prior art synchronous
DRAMs (SDRAMs). The sequencer reads one fetch packet
per clock in the burst mode. In pipelined SDRAM embodi
ments, the clock is equal to the SDRAM's column access
time. In latch-prefetch oriented SDRAM embodiments, a
latch is used to buffer a plurality of fetch packets from a given
row, so fetch packets may be read out in a burst mode using a
clock which is faster than the column-access time of the
DRAM array itself. Based on precompiled look-ahead infor
mation, when a branch is deemed to be in the present burst
transfer, the prefetch unit speculatively precharges both the
next sequential row with the fall-though address and the row
containing the branch target address. This insures that the
flow of instructions can continue in a burst mode uninter
rupted. If the fall-through and the branch target instructions
are in the same bank but on different rows, then the branch
cache will miss if the target stream is executed. With this
method, the branch cache only needs to be filled with the
branch information related to instruction flows with the fall
through and the branch target addresses in the same DRAM
array. When the branch target stream is Subsequently
executed, a branch cache hit is said to occur, and the instruc
tion stream is read from the branch cache while the prefetcher
precharges the appropriate row and resumes burst fetching.
With this method, while multiple fetch packets are fetched per
DRAM row, the branch cachelines include a variable number
of fetch packets as previously described in connection with
FIG. 6.

0075 Another method to accelerate program fetching is to
use deterministic branch caching. In this method, the branch
cache control hardware is preset in advance. Since the cache
is much Smaller than normal, those branch target instruction
sequences which create row conflicts and need caching are
preloaded with the program. The branch cache uses look
ahead fetch addresses as tags to prepare the branch cache to
Supply instructions when speculative precharging cannot pro
ceed. This way, no misses are suffered. When different pro
gram pages are loaded into memory, the cache may be modi
fied accordingly using a pre-specified load addresses. This
method uses the concept of an intelligent cache, whereby a
cache controller knowledgeable of the low level idiosyncra
sies of the program from compile time is able to meet the
caching needs without the common method of requiring very
large caches based on hit and miss.

US 2010/0070742 A1

0076. To implement intelligent caching in the instruction
stream, the program is compiled or at least loaded with
knowledge that it will be executed from a banked DRAM
program memory. In a preferred embodiment, long rows of
SDRAM-like memory holding multiple fetch packets which
can each be read out in a single clock cycle in a burst mode are
employed. The program is compiled, loaded, or compiled and
loaded so that the fall-through address of a branch and the
branch target addresses are in different banks. This allows a
speculative precharge read-initiation command to be issued
to insure that both the fall-through and the branch target
streams can be read out in an uninterrupted burst mode. To
implement this, preferably at least three program memory
DRAM banks are employed. This way, two banks can be used
to maintain a continuous SDRAM-style burst access, while
branch targets may be handled with a separate bank. If
needed, the DRAM and processor speeds can be matched by
fetching two or more fetch packets per cycle into multiple
SRAM prefetch buffers. Also, burst transfers which inter
leave accesses among multiple DRAM arrays may be used.
The additional time created by fetch packets which take mul
tiple cycles to dispatch will cause a memory pipeline stall, but
reading of fetch packets may resume, one per clock, in
response to a request to a next fetch packet prefetch request.
This solution eliminates the need for a branch-oriented
instruction cache, and thus, no SRAM is needed at all. In
prefetch oriented SDRAM implementations, some SRAM is
needed for the latch, but this may be shared with the prefetch
buffer in some embodiments. That is, the long DRAM row is
latched into a long prefetch buffer so that a multiplexer selects
which section of the long latch is the current prefetchbuffer to
create a virtual burst-read effect. The ability to fetch programs
from much larger banks of DRAM arrays using potentially
much less silicon area than traditional SRAM based program
cache approaches means that program sizes may increase
without a significant use of resources. Also, program delays
due to program cache-misses are effectively eliminated.
0077 Although the present invention has been described
with reference to a specific embodiment, other embodiments
may occur to those skilled in the art without deviating from
the intended scope. For example, in an alternate embodiment,
to save hardware, less than entire rows could be multiplexed
out of the DRAMS. In some embodiments, an inactive regis
terfile may be defined to be a visible architectural register file
that is simply not being presently accessed by the set of
functional units 128. In other embodiments, the data assem
bly unit may only contain a subset of the blocks shown in FIG.
3, and may contain additional blocks not shown in FIG. 3.
Also, in FIG. 5, the branch oriented program cache could be
coupled to the output side of the prefetch register or the
dispatch register. The register files may be less than an entire
row-width wide, or multiple cycles may need to be performed
to load or store an entire register file.
0078 Numerous other arrangements may be designed by
those skilled in the art without departing from the scope of the
present invention. Therefore, it is to be understood that the
invention herein encompasses all such embodiments which
do not depart from the spirit and scope of the invention as
defined in the appended claims.
What is claimed is:
1. An embedded-DRAM (dynamic random access

memory) processing system comprising:
an embedded processor comprising one or more functional

units:

Mar. 18, 2010

a DRAM array comprising a plurality of memory cells
arranged in rows and columns;

a row address register configured to store a pointer that
references a row of the DRAM array; and

one or more dual-port register files, wherein each dual-port
register file comprises a plurality of data registers, and
wherein each dual-port register file comprises:
a first port configured to parallely transfer data between

a selected dual-port register file and the referenced
row; and

a second port configured to transfer data between the
selected dual-port register file and one of the func
tional units.

2. The embedded-DRAM processing system of claim 1,
wherein each dual-port register file comprises at least one
dual-port static random access memory (SRAM) cell.

3. The embedded-DRAM processing system of claim 1,
wherein each of the dual-port register files is capable of
loading data from or storing data to the entire referenced row
of the DRAM array in a single operation.

4. The embedded-DRAM processing system of claim 3,
comprising an instruction set comprising:

a first command for performing an arithmetic operation on
the row address register;

a second command for activating the row referenced by the
pointer;

a third command for deactivating the row referenced by the
pointer Subsequent to the referenced row being activated
by the second command; and

a fourth command for loading data from selected columns
of the entire activated row into a set of data registers of
one of the one or more dual-port register files in a single
operation.

5. A method for loading data, comprising:
using a pointer stored in a row address register to identify

a row of a DRAM array:
issuing a first command to activate the row referenced by

the pointer;
selecting a set of columns within the activated row using a

bit mask:
issuing a second command to cause data stored in the

selected set of columns of the activated row to be loaded
into a set of data registers within a register file in a single
operation; and

issuing a third command to deactivate the activated row.
6. The method of claim 5, whereinactivating the referenced

row comprises precharging the referenced row.
7. The method of claim 5, comprising issuing a fourth

command for performing an arithmetic operation on the row
address register.

8. The method of claim 5, comprising issuing a fifth com
mand for manipulating bits in the bit mask.

9. The method of claim 5, comprising issuing a sixth com
mand to toggle the register file between an active state and an
inactive state based at least partially upon whether data stored
in the register file is being assembled by a data assembly unit.

10. The method of claim 5, wherein the second command
causes the entire activated row to be loaded into the set of data
register when every column of the activated row is selected by
the bit mask.

11. A data processing device, comprising:
a DRAM array comprising a plurality of memory cells

arranged in rows and columns;

US 2010/0070742 A1

first and second register files each comprising a plurality of
data registers, wherein each of the first and second reg
ister files is capable of storing an entire row of the
DRAM array in response in response to a single com
mand, and wherein each of the first and second register
files is capable of entering an active state and an inactive
State;

a set of functional units configured to perform logical
operations on data accessed from the first register file
when the first register file is in the active state and from
the second register file when the second register file is in
the active state; and

an instruction set comprising:
a first command to load data from selected columns of an

entire selected row of the DRAM array into a set of
data registers of one of either the first or second reg
ister files in a single operation; and

a second command for toggling each of the first and
second register files between the active state and the
inactive state.

12. The data processing device of claim 11, wherein the
execution of the second command causes the first register file
to toggle from the inactive state to the active state, and causes
the second register file to toggle from the active state to the
inactive state.

13. The data processing device of claim 11, comprising a
data assembly unit configured to assemble data stored in the
first and second register files:

wherein the first register file is determined to be in the
inactive state if data stored within the first register file is
being assembled by the data assembly unit, and to be in
the active state when the data assembly unit completes
assembling the data stored within the first register file;
and

wherein the second register file is determined to be in the
inactive state if data stored within the second register file
is being assembled by the data assembly unit, and to be
in the active state when the data assembly unit completes
assembling the data stored within the second register
file.

14. The data processing device of claim 13, wherein the
data assembly unit comprises an instruction register config
ured to receive a first set of instructions from a main instruc
tion stream of a processor, and a second set of instructions
from an execution thread stored in program memory.

15. The data processing device of claim 13, wherein the
data assembly unit comprises:

a mask register, and
a mask logic unit configured to manipulate data in the mask

register, wherein the information stored in the mask
register is output from the data assembly unit via a
control line.

16. The data processing device of claim 15, comprising a
mask and Switch unit configured to receive the mask register
information via the control line and to select a set of data
registers from either the first register file or the second register
by manipulating bits of a bit mask using the received mask
register information.

17. The data processing device of claim 16, wherein the
first command causes the entire selected row of the DRAM

15
Mar. 18, 2010

array to be loaded into the set of data registers in a single
operation when all columns of the selected row are selected
by the bit mask.

18. The data processing device of claim 17, wherein the
instruction set comprises a third command for manipulating
the bits in the bit mask.

19. The data processing device of claim 11, wherein the set
of functional units comprises:

a dispatch unit configured to dispatch one or more instruc
tion streams; and

a plurality of functional units each being configured to
execute a respective one of the one or more instruction
streams dispatched by the dispatch unit.

20. An embedded-DRAM (dynamic random access
memory) processing device comprising:

a DRAM array comprising a plurality of memory cells
arranged in rows and columns;

a row address register configured to store a pointer that
references a row of the DRAM array:

one or more register files, wherein each register file com
prises a plurality of data registers, and wherein each
register file is capable of storing an entire row of the
DRAM array in response in response to a single com
mand; and

an instruction set comprising:
a first command for performing an arithmetic operation

on the row address register;
a second command for activating the row referenced by

the pointer;
a third command for deactivating the row referenced by

the pointer subsequent to the referenced row being
activated by the second command; and

a fourth command for loading data from selected col
umns of the entire activated row into a set of data
registers of a register file in a single operation.

21. The embedded-DRAM processing device of claim 20,
whereinactivating the referenced row comprises precharging
the referenced row.

22. The embedded-DRAM processing device of claim 20,
wherein the selected columns are selected based upon the
state of a plurality of bits within a bit mask.

23. The embedded-DRAM processing device of claim 22,
wherein the fourth command causes the entire activated row
to be loaded into the set of data registers when all columns of
the activated row are selected by the bit mask.

24. The embedded-DRAM processing device of claim 20,
wherein the one or more register files comprises a first register
file being in an active state and a second register file being in
an inactive state.

25. The embedded-DRAM processing device of claim 24,
comprising:

a first functional unit configured to execute a fifth com
mand for processing the contents of a data register
within the active register file; and

a second functional unit configured to execute a sixth com
mand for parallely transferring data between the inactive
register file and the DRAM array.

26. The embedded-DRAM processing device of claim 25,
wherein the fifth and sixth commands are executed substan
tially contemporaneously.

c c c c c

